数学建模小论文

时间:2022-04-18 03:54:15

引言:寻求写作上的突破?我们特意为您精选了1篇数学建模小论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

数学建模小论文

数学建模小论文:关于高等数学教学中融入数学建模思想的探讨

论文摘要:数学建模的思想就是用数学的思路、方法去解决实际生产、生活当中所遇到的问题。当前高等数学教学的一个很大的缺陷就是“学”和“用”脱节。把数学建模的思想溶入到教学中去是一个解决问题的很好的方法。

一、数学建模在高等数学教学中的重要作用

数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,即数学建模。数学建模是指对现实世界的一些特定对象,为了某特定目的,做出一些重要的简化和假设,运用适当的数学工具得到一个数学结构,用它来解释特定现象的现实性态,预测对象的未来状况,提供处理对象的优化决策和控制,设计满足某种需要的产品等。从此意义上讲数学建模和数学一样有古老 历史 。例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。今天,数学以空前的广度和深度向其它 科学 技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。特别是新技术、新工艺蓬勃兴起, 计算 机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。因此数学建模被时代赋予了更为重要的意义。

二、数学建模思想在高等数学教学中的运用

高等数学教学的重点是提高学生的数学素质,学生的数学素质主要体现为:抽象思维和逻辑推理的能力;如今在一些教材中也渐渐的补充了与实际问题相对应的例子,习题。如:人大出版社中的第四章第八节所提到的边际分析与弹性分析,以及几乎各种教材中对于函数极值问题的实际应用的例子。其实这就是实际应用中的一个简单的建摸问题。但仅仅知道运算还是不够的,我们还要从具体问题给出的数据建立适用的模型。下面我们就具体的例子来看看高等数学对 经济 数学的应用。例:有资料记载某 农村 的达到小康水平的标准是年人均收入为2000元,据调查该村公400人,其中一户4人年收入60万,另一户4人20万,其中70%的人年收入在300元左右,其余在500左右。对于该村是否能定位在已经达到了小康水平呢。首先我们计算平均收入:60万,20万各一户共8人,300元共400×70%=280人,500元共400-288=112人。

平均收入为元

从这个数据我们可以看出该村的平均收入超过2000元,所以认为达到了小康水平,但我们在来看一下数据,有99.5%的人均收入低于2000千,所以单从人均收入来衡量是不科学的,那么在概率论中我们利用人均年收入的标准差a来衡量这个标准。

我们可以看出标准差是平均水平的六倍多,标准差系数竟超过100%,所以我们不能把该村看作是达到了小康水平。因此我们要真正的把高等数学融入到实际应用当中是我们高确良 等 教育 的一个重点要改革的内容。为了在概念的引入中展现数学建模,首先必须提出具有实际背景的引例。下面我们就以高等数学中导数这一概念为例加以说明。

(1)引例

模型I:变速直线运动的瞬时速度

1、提出问题:设有一物体在作变速运动,如何求它在任一时刻的瞬时速度?

2、建立模型

分析:我们原来只学过求匀速运动在某一时刻的速度公式:S=vt那么,对于变速问题,我们该如何解决呢?师生讨论:由于变速运动的速度通常是连续变化的,所以当时间变化很小时,可以近似当匀速运动来对待。假设:设一物体作变速直线运动,以它的运动直线为数轴,则在物体的运动过程中,对于每一时刻t,物体的相应位置可以用数轴上的一个坐标S表示,即S与t之间存在函数关系:s=s(t)。称其为位移函数。设在t0时刻物体的位置为S=s(t0)。当在t0时刻,给时间增加了t,物体的位置变为S=(t0+t):此时位移改变了S=S(t0+t)-S(t0)。于是,物体在t0到t0+t这段时间内的平均速度为:v=当t很小时,v可作为物体在t0时刻瞬时速度的近似值。且当—t—越小,v就越接近物体在t0时刻的瞬时速度v,即vt0=[(1)式]; (1)即为己知物体运动的位移函数s=s(t),求物体运动到任一时刻t0时的瞬时速度的数学模型。

模型II:非恒定电流的电流强度。己知从0到t这段时间流过导体横截面的电量为Q=Q(t),求在t0时刻通过导体的电流强度?通过对此模型的分析,同学们发现建立模型II的方法步骤与模型I完全相同,从而采用与模型I类似的方法,建立的数学模型为:It0=要求解这两个模型,对于简单的函数还容易 计算 ,但对于复杂的函数,求极限很难求出。为了求解这

两个模型,我们抛开它们的实际意义单从数学结构上看,却具有完全相同的形式,可归结为同一个数学模型,即求函数改变量与自变量改变量比值,当自变量改变量趋近于零时的极限值。在 自然 科学 和 经济 活动中也有很多问题也可归结为这样的数学模型,为此,我们把这种形式的极限定义为函数的导数。

(2)导数的概念

定义:设函数y=f(x)在点x0的某一领域内有定义,当自变量x在x0处有增量x时,函数有相应的增量y=f(x0+x)-f(x0)。如果当x0时yx的极限存在,这个极限值就叫做函数y=f(x)在x0点的导数。即函数y=f(x)在点x0处可导,记作f′(x0)或f′|x=x0即f′(x0)=。有了导数的定义,前面两个问题可以重述为:(1)变速直线运动在时刻t0的瞬时速度,就是位移函数S=S(t)在t0处对时间t的导数。即vt0=S′(t0)。(2)非恒定电流在时刻t0的电流强度,是电量函数Q=Q(t)在t0处对时间t的导数。即It0=Q′(t0)。

如果函数y=f(x)在区间(a,b)内每一点都可导,称y=f(x)在区间(a,b)内可导。这时,对于(a,b)中的每一个确定的x值,对应着一个确定的导数值f′(x),这样就确定了一个新的函数,此函数称为函数y=f(x)的导函数,记作y′或f′(x),导函数简称导数。显然,y=f(x)在x0处的导数f′(x0),就是导函数f′(x)在点x0处的函数值。由导函数的定义,我们可以推导出一系列的求导公式,求导法则。(略)有了求导公式,求导法则后,我们再反回去求解前面的模型就容易得多。现在我们就返回去接着前面模型I的建模步骤。

3、求解模型:我们就以自由落体运动为例来求解。设它的位移函数为s=gt2,求它在2秒末的瞬时速度?由导数定义可知:v(2)=S′(2)=*2gtlt=2=2tg

4、模型检验:上面所求结果与高中物理上所求得的结果一致。从而验证了前面所建立模型的正确性。

5、模型的推广:前面两个模型的实质,就是函数在某点的瞬时变化率。由此可以推广为:求函数在某一点的变化率问题都可以直接用导数来解,而不须像前面那样重复建立模型。除了在概念教学中可以浸透数学建 模的思想和方法外,还可以在习题教学中浸透这种思想和方法。在这里就不一一列举。

通过数学建模的思想引入高等数学的教学中,其主要目的是通过数学建模的过程来使学生进一步熟悉基本的教学内容,培养学生的创新精神和科研意识,提高学生应用数学解决实际问题的思想和方法。

数学建模小论文:高职院校中开展数学建模活动的可行性分析

[论文关键词]高职院校 数学建模活动 可行性分析

[论文摘要]数学建模活动是一种知识性和应用性相结合的实践活动。通过数学建模活动的开展,侧重培养学生综合运用数学知识分析和解决实际问题的能力,增强创新意识和科学计算的能力,开拓知识面,从而推动数学教学思想、内容和体系、方法和手段的改革。因此,本文就在高职院校中开展数学建模活动进行可行性分析。

面对二十一世纪,高职院校的教育应以培养应用型人才为目标,人才的知识能力结构是应用型,而不是学术型;要按照应用型能力结构,重新构建理论和实践教学的体系,培养的应用能力应为创造性。开展数学建模活动的宗旨是:创新意识、团队精神、重在参与、公平竞争。数学建模活动极大地激发了学生学习数学的积极性,培养了学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,拓展知识面,培养了创新精神和合作意识。

一、高职院校数学教育的现状及开展数学建模活动的必要性

高等数学是理工经济类学生必修的基础理论课,其目的在于培养职业技术人才所必须的基本数学素质。目前,国内许多高职院校的数学课程主要是由微积分、线性代数、概率论与数理统计等几部分组成,课程内容存在重经典、轻现代;重连续、轻离散;重分析推导、轻数值计算;重运算技巧、轻数学思想方法的趋向,而且各部分内容自成体系,过分强调各自的系统性与完整性,缺乏应用性和相互联系。在这种体系下,不仅需要大量的教学时数,而且不利于学生综合利用数学知识能力的培养,联系实际的领域也不够宽阔。

为解决上述问题,培养二十一世纪的技术应用型人才,数学建模活动以其对学生知识、能力、素质的综合培养,成为高职院校数学教学改革的有力手段。它是在基础课和专业课之间架起的一座桥梁,通过数学建模活动的开展,侧重培养学生综合运用数学知识分析和解决实际问题的能力,增强创新意识和科学计算的能力,开拓知识面,从而推动数学教学思想、内容和体系、方法和手段的改革。

二、在高职院校中开展大学生数学建模活动的可行性分析

1.开展数学建模活动是高职数学课程教学改革的需要

高等职业教育的培养目标是为生产服务和管理第一线培养实用型人才,根据这个目标,高职数学课程的教学改革应以突出数学的应用性为主要的突破点。高职数学课程的一个重要的任务,就是培养学生用数学原理和方法解决实际问题的能力。在高职院校中开展数学建模活动,以此推动高职数学课程的改革应该是一个很好的做法。开展数学建模活动的出发点就在于培养高职学生使用数学工具和运用计算机解决实际问题的意识和能力,进而推动高职数学课程教学的改革。

2.开展数学建模活动,能加速应用数学人才和复合人才的培养

开展数学建模活动,能促进数学理论研究专门人才和应用型数学人才的培养。进入21世纪以来,高新科学技术发展突飞猛进,各行各业的应用型人才显得十分缺乏。

正是考虑到应用型数学人才的培养的重要性,国际和国内的数学建模竞赛在近十年来迅速发展。数学建模竞赛的题目由日常生活、工程技术和管理科学中的实际问题简化加工而成,它不要求有十分高深的数学知识,但涉及的面很广;并且一般没有事先设定的严格的标准答案,但留有充分的余地供参赛者发挥聪明才智和创造精神。数学建模活动采用开放式,可查阅资料和使用计算机,每个参赛队由三人组成,可自由组合,也可跨系、跨专业组队,参赛队必须在三天的时间内完成一篇包括模型的假设、建立和求解,计算方法的设计和实现,结果的分析和检验,模型的改进等方面的论文。参赛小组在完成论文的过程中,可以通过各种手段来收集资料,使用计算机和任何软件,甚至通过网上查询来完成解答。因此,开展数学建模竞赛对于加速高职院校培养应用型的人才和复合型人才具有十分积极的推动和促进作用。

3.开展数学建模活动,能扩大学生的知识面

数学建模活动所涉及的内容很广,用到的知识面比较宽,不但包含了较广泛的数学基础知识和各种数学方法技巧,而且联系到各种各样实际问题的背景:如生物、物理、医学、化学、生态、经济、管理等。我们认识到单靠数学系的老师担当指导教师对学生进行这些方面的知识传授可能不够深入全面。因此,学生在课下还需要自学。如建模方法与应用、线性规划、动态规划、生态数学模型、概率统计排队论、层次模型分析、图论、离散数学、计算机仿真、案例分析、Matlab,Mathematica等。这样大大丰富了学生的知识面,开拓了学生在数学方面的视野。这样充分调动了学生的学习积极性,激发学生努力自学,有利于将学生的潜能更充分地发挥,有利于培养和提高学生的自学能力。参加数学建模培训的同学均有这种深刻体会。

4.开展数学建模活动,有助于培养学生的创新能力

现代教育思想的核心是

培养学生创新意识及能力,而能力是在知识的教学和技能的训练中,通过有意识地培养而得到发展的。教学中,数学建模方法和思想的融入,有助于激发学生的原创性冲动,唤醒学生进行创造性工作的意识,因为建模本身就是一项创造性思维活动,它既有一定的理论性,又有较强的实践性。既要求思维的数量,又要求思维的深刻性和灵活性,其关键是把实际问题抽象为数学问题,这就要求学生具有一定的转化能力,而且要有相当的观察、分析、类比等各种综合能力。对一个实际问题而言,一般不是只有一个正确模型,许多不同的模型都可以用来解决相同的问题,而同一个抽象模型又可以用于解决不同的具体问题,它没有固定的方法和规定的数学工具,也没有现成的答案、模式可以遵循。其结果只有更好,没有最好。这样数学建模本身就给学生提供了一个自我学习,独立思考,认真探索的实践过程。给学生带来了灵活的思维方式,开拓了学生的视野。它鼓励学生深层次思考问题,为学生提供了一个发挥创造性才能的氛围和条件。通过建模,学生要从错综复杂的实际问题中,抓住问题的要点,使问题逐渐明确,并将问题中的联系归成一类,揭示出它们的本质特征,得出解决问题的重点与难点,自觉地运用所给问题的条件寻求解决问题的最佳方案和途径,这一过程能充分发挥学生丰富的想象力和创新能力。

数学建模活动是一种知识性和应用性相结合的实践活动。在高职院校开展数学建模活动有助于培养高职学生的实践能力和动手能力以及分析问题和解决问题的能力,为学生以后从事技术性工作奠定良好的基础。

数学建模小论文:数学建模教学存在的问题和作用分析

什么是数学建模?数学建模是将数学中所学到的知识与实际问题相联系的工具,是具有创新性的科学方法,它把一些实际问题经过处理转化为一个数学问题或数学模型,然后利用平时所学的数学方法求解,根据求解的结果回到原问题,对原问题进行一些定性、定量分析和研究以及推广,最终解决实际问题。换句话说,数学建模就是用数学的知识和方法解决实际问题。

当根据实际问题建立了相应的数学模型时,我们仿佛进入了抽象的数学世界。在数学世界内,我们用所学的相应数学方法对建立的数学模型进行分析、推导,同时可以借助计算机求解这个模型,从而得到数学上的结论。然后我们再回到实际,将刚才数学上的结论对应为实际问题的实际结论,例如给出实际问题的处理方法、未来的发展状况等。同时这些结论还必须经得起实际的检验,即用已发生的实际问题的一些数据信息检验,确认结论的正确性。

从 2009 年至今参加了六届全国大学生数学建模竞赛,发现数学建模在实际操作上还有很多问题:

(1)常见的数学问题十分严谨,所给的条件一般都是不多不少、数据准确,最后所得的结论是唯一的。而数学建模问题几乎都是实际生活中遇到的实际问题,问题背景复杂,条件多,况且对于实际生活中的许多实际问题,结论并不唯一,例如一些决策问题。

(2)常见的数学应用题原始问题数学化的过程简单明了,不需要大量的数据计算。而数学建模问题需要对原始问题进行合理的分析和假设、利用数学工具和方法将其加工成抽象的数学问题,学生还要在仔细研读问题材料的同时,必须进行紧张的思维活动,分析大量数据,找出规律,合理地简化问题。学生在数学建模过程中普遍感到问题繁琐,无从下手,考虑不周全,不知道用什么方法解答问题,对数据的处理能力也比较差,缺少数学建模意识。

(3)常见的数学应用题所得到的结论很少需要学生思考是否和实际相符、是否其中的一些已知条件需要进一步调整和修改,进而结论也要相应地修改。而数学建模问题必须要有做完的已知模型的验证,不符的地方要再分析,然后修改之前的一些假设,再重新求解的循环往复过程,直到与实际基本相符为止。

(4)常见的数学问题要求学生独立完成,不鼓励与他人一起做。而数学建模问题要求学生有团队精神,集体参与交流,各抒己见,扩展思路。

上述问题在从小学到大学的数学课教学中都长期存在,造成数学与实际脱离,给大多数学生留下"数学抽象繁琐不易懂"的印象,部分学生还对数学产生恐惧心理,产生一种外在压力。与此同时我们又看到数学建模对学生的能力培养:

(1)提高了学生的文章写作能力,参考文献检索能力。文章写作能力作为当代学生的一种重要实践能力,在大学生今后的生活中经常会用到,例如写毕业论文。参考文献检索能力是大学生今后能自主学习的必备技能之一,在今后的工作中经常要用到。很多用人单位希望招聘的学生具有一定的文章写作和组织能力。全国大学生数学建模竞赛要求学生 3 人一组在 72 小时内提交一篇颇具规模且格式规范的学术论文,其中需要学生将分析假设、方法思路叙述清晰完整,竞赛过后,学生的写作论文能力都会有相应的提高。另外由于全国大学生数学建模竞赛的问题所涉及知识非常广泛,有些甚至指导老师都没有接触过,故不可能指望教师一一讲解,遇到新的待解决问题学生只有通过临时上网查阅资料或参考文献,获得解决问题相应的知识,现学现用,竞赛过后,学生在大量资料中迅速找到自己所需资料的能力也会有相应的提高。

(2)提高了学生的计算机应用能力。数学建模问题多数都是非常复杂的,有些问题例如微分方程根本求不了解析解,所以人工求解几乎不可能,因此计算机的应用变得非常重要,例如微分方程可以利用计算机做出近似的数值解,这样就对学生的计算机能力提出了更高的要求。有时题目所给的数据不是常见的整数值(一般都是小数点后保留 3 到 4 位)且数据也比较多,进行一些简单的计算例如求平均值都很难操作,所以如 Matlab、Lindo、Word、spss、Photoshop 等软件对解决建模问题是必要的。整个建模过程下来,学生都普遍感到自己的计算机应用能力得到了极大的提高。

(3)培养学生的合作意识、团队精神。全国大学生数学建模竞赛的问题是一个非常复杂的系统工程,单靠一个人的力量是不够的。因此学生们以 3 人一组合力解决数学建模问题,各成员之间各自表达自己的意见和建议,相互讨论,最后达成统一,这个过程中容易形成自主的学习气氛,这种氛围会吸引学生积极参与其中。为了完成相同的目标,在团队中每个人各司其职,学生明确自己在团队中的角色,他们的领导能力、协调能力等可以充分发挥出来,其表现欲会得到极大的调动。

数学建模培养了学生的团队合作精神。小组成员在整个建模过程中,锻炼了与他人沟通、合作的能力,同时也锻炼了在发生意见分歧的时候如何协调的能力,这在学生今后的工作中也会经常遇到,这些都是常规数学课中锻炼不到的能力。因此数学建模的教学对培养应用型人才的独立学院来说是非常有必要的,但教学中必须与以往的数学教学区分开来。因此,开设数学建模课应做到以下几方面:

(1)注重数学知识点中相关概念实际背景介绍,培养学生的数学建模意识。高等数学课程中的一些常见概念例如极限、导数、定积分、级数等,其实都是从实际生活中遇到的问题中抽象出来的数学模型。但是教师授课时往往只注重理论叙述,忽略了来源。因此,教师在讲授新的知识点时当涉及有关概念时,应尽量找一些和概念相关的实际问题或是学生熟悉的日常生活中的例子,引导学生自主解决这些问题,通过这些书本上没有写出的例子,使学生感到数学课本里的基本概念不是硬性规定的,而是与实际生活息息相关的。例如介绍导数的概念时,我们可以找一些物理中的瞬时速度、加速度实例、经济等领域中边际问题等。通过实例,在常规教学中就向学生渗透数学建模的思维方法,使学生对数学建模有一定的了解。

(2)要突出数学应用,教师在建模教学中要多收集实际生活中的素材,为课堂教学服务。如提出一个生活中案例:女人穿高跟鞋真的会让人觉得更美吗?试从数学的角度进行理论上的客观分析。学生会感到很奇怪:这跟数学也有关?他们会精神集中,默默思考,同样习惯地等待着老师的答案

。其实这个问题涉及到数学中的黄金分割概念。在人的身上,当然肚脐是理想的黄金分割点,即由脚底至肚脐的长度与身高比值愈接近 0.618,就愈给别人一种美的感觉,很可惜,一般人都低于此数值,大约只有 0.58 至 0.60(腿长的人会有较高的比值),所以通过一个简单的比例计算便可得出想要的结论。

(3)根据学生所学专业,选择不同类型的数学建模问题进行训练,这样也可以提高学生在其专业领域的能力。如工科类专业的学生可以多训练统计线性回归、曲线拟合等问题;经管类专业的学生可以多训练风险决策、利润和成本问题等问题;制药专业的学生可以选择来自化学、生物学、医学等方面的问题。这样充分利用学生所学的专业知识,使得数学真正融入专业,为专业所用,从而激发学生学习数学建模的热情。

(4)加强学生的实际动手能力,多进行数值计算。因为问题的数据量往往很大并且非常复杂,没有计算机很难实现,即使有计算机也需要很长时间的操作才能完成。而数值计算又是数学建模中至关重要的环节,因此要重视这方面的能力培养。matlab 和 excel 都是很好的数值计算工具,教师应多选择这样的问题,让学生利用上述工具动手计算,提高熟练度,从而达到提高计算效率的目的。

(5)数学建模课应采取教师为指导,学生为主体的模式。教师的讲只占一小部分,然后提出几个具体问题,在限定时间和允许查资料的情况下让学生分组讨论,提出解题思路,然后由学生自己操作,进行数值计算,得出结论,教师负责检查方法的合理性并提出改进意见。要鼓励学生大胆假设,开拓思路,不过分依赖教师,以小组为单位独立完成,这样使得学生能够通过自主学习解决实际问题。

数学建模与常规数学学习相比有其先进性,它使学生变为主体,教师为学生服务,为学生创造出自主学习的空间,使学生将数学真正与实际生活联系到一起,体现其在解决实际问题中的作用,同时也能使学生了解数学与其他学科之间的联系,体现了数学为其他学科服务的价值,在独立学院培养应用型人才的过程中,数学课应该摆脱普通本科的束缚,扮演新的角色,所以数学建模必不可少。数学建模使学生了解数学的真正来源以及用法,增强学生的应用意识,激发学生学习数学的兴趣,培养学生的实践创新能力,促使学生在今后的生活工作中继续学习。生数学建模竞赛的问题所涉及知识非常广泛,有些甚至指导老师都没有接触过,故不可能指望教师一一讲解,遇到新的待解决问题学生只有通过临时上网查阅资料或参考文献,获得解决问题相应的知识,现学现用,竞赛过后,学生在大量资料中迅速找到自己所需资料的能力也会有相应的提高。

(2)提高了学生的计算机应用能力。数学建模问题多数都是非常复杂的,有些问题例如微分方程根本求不了解析解,所以人工求解几乎不可能,因此计算机的应用变得非常重要,例如微分方程可以利用计算机做出近似的数值解,这样就对学生的计算机能力提出了更高的要求。有时题目所给的数据不是常见的整数值(一般都是小数点后保留 3 到 4 位)且数据也比较多,进行一些简单的计算例如求平均值都很难操作,所以如 Matlab、Lindo、Word、spss、Photoshop 等软件对解决建模问题是必要的。整个建模过程下来,学生都普遍感到自己的计算机应用能力得到了极大的提高。

(3)培养学生的合作意识、团队精神。全国大学生数学建模竞赛的问题是一个非常复杂的系统工程,单靠一个人的力量是不够的。因此学生们以 3 人一组合力解决数学建模问题,各成员之间各自表达自己的意见和建议,相互讨论,最后达成统一,这个过程中容易形成自主的学习气氛,这种氛围会吸引学生积极参与其中。为了完成相同的目标,在团队中每个人各司其职,学生明确自己在团队中的角色,他们的领导能力、协调能力等可以充分发挥出来,其表现欲会得到极大的调动。数学建模培养了学生的团队合作精神。小组成员在整个建模过程中,锻炼了与他人沟通、合作的能力,同时也锻炼了在发生意见分歧的时候如何协调的能力,这在学生今后的工作中也会经常遇到,这些都是常规数学课中锻炼不到的能力。

因此数学建模的教学对培养应用型人才的独立学院来说是非常有必要的,但教学中必须与以往的数学教学区分开来。

因此,开设数学建模课应做到以下几方面:

(1)注重数学知识点中相关概念实际背景介绍,培养学生的数学建模意识。高等数学课程中的一些常见概念例如极限、导数、定积分、级数等,其实都是从实际生活中遇到的问题中抽象出来的数学模型。但是教师授课时往往只注重理论叙述,忽略了来源。因此,教师在讲授新的知识点时当涉及有关概念时,应尽量找一些和概念相关的实际问题或是学生熟悉的日常生活中的例子,引导学生自主解决这些问题,通过这些书本上没有写出的例子,使学生感到数学课本里的基本概念不是硬性规定的,而是与实际生活息息相关的。例如介绍导数的概念时,我们可以找一些物理中的瞬时速度、加速度实例、经济等领域中边际问题等。通过实例,在常规教学中就向学生渗透数学建模的思维方法,使学生对数学建模有一定的了解。

(2)要突出数学应用,教师在建模教学中要多收集实际生活中的素材,为课堂教学服务。如提出一个生活中案例:女人穿高跟鞋真的会让人觉得更美吗?试从数学的角度进行理论上的客观分析。学生会感到很奇怪:这跟数学也有关?他们会精神集中,默默思考,同样习惯地等待着老师的答案。其实这个问题涉及到数学中的黄金分割概念。在人的身上,当然肚脐是理想的黄金分割点,即由脚底至肚脐的长度与身高比值愈接近 0.618,就愈给别人一种美的感觉,很可惜,一般人都低于此数值,大约只有 0.58 至 0.60(腿长的人会有较高的比值),所以通过一个简单的比例计算便可得出想要的结论。

(3)根据学生所学专业,选择不同类型的数学建模问题进行训练,这样也可以提高学生在其专业领域的能力。如工科类专业的学生可以多训练统计线性回归、曲线拟合等问题;经管类专业的学生可以多训练风险决策、利润和成本问题等问题;制药专业的学生可以选择来自化学、生物学、医学等方面的问题。这样充分利用学生所学的专业知识,使得数学真正融入专业,为专业所用,从而激发学生学习数学建模的热情。

(4)加强学生的实际动手能力,多进行数值计算。因为问题的数据量往往很大并且非常复杂,没有计算机很难实现,即使有计算机也需要很长时间的操作才能完成。而数值计算又是数学建模中至关重要的环节,因此要重视这方面的能力培养。matlab 和 excel 都是很好的数值计算工具,教师应多选择这样的问题,让学生利用上述工具动手计算,提高熟练度,从而达到提高计算效率的目的。

(5)数学建模课应采取教师为指导,学生为主体的模式。教师的讲只占一小部分,然后提出几个具体问题,在限定时间和允许查资料的情况下让学生分组讨论,提出解题思路,然后由学生自己操作,进行数值计算,得出结论,教师负责检查方法的合理性并提出改进意见。要鼓励学生大胆假设,开拓思路,不过分依赖教师,以小组为单位独立完成,这样使得学生能够通过自主学习解决实际问题。

数学建模与常规数学学习相比有其先进性,它使学生变为主体,教师为学生服务,为学生创造出自主学习的空间,使学生将数学真正与实际生活联系到一起,体现其在解决实际问题中的作用,同时也能使学生了解数学与其他学科之间的联系,体现了数学为其他学科服务的价值,在独立学院培养应用型人才的过程中,数学课应该摆脱普通本科的束缚,扮演新的角色,所以数学建模必不可少。数学建模使学生了解数学的真正来源以及用法,增强学生的应用意识,激发学生学习数学的兴趣,培养学生的实践创新能力,促使学生在今后的生活工作中继续学习。

数学建模小论文:试论大学数学建模方法教学策略在中学的有效应用

【论文关键词】数学建模 教学策略 应用

【论文摘要】目前在很多高校都已经开设了“数学建模”课程,大学数学建模方法教学策略也逐渐成熟,那么在中学可设“数学建模”课程或进行教学也成为了新课改下的热门话题,但如何把大学数学建模方法教学策略应用到中学教学中,还需要加以研究。

数学建模是指根据需要针对实际问题组建数学模型的过程,也就是对某一实际问题,经过抽象、简化、明确变量和参数,并依据某种“规律”建立变量和参数间的一个明确的数学关系(即数学模型),然后求解该数学问题,并对此结果进行解释和验证,若通过,则可投入使用,否则将返回去,重新对问题的假设进行改进,所以,数学建模是一个多次循环执行的过程。鉴于目前很多高校都开设了“数学建模”课程,数学建模课程的开设对高校教育改革起到了很大的作用,在新课改的背景下,数学建模也将被引入到中学教育之中。研究大学数学建模方法教学策略并探讨其在中学教学中的应用很有必要。

1.大学与中学在数学建模教学上的联系

大学教育面对的是成年学生,而中学教育面对的多是未成年学生,在年龄上,两者有着区别;大学生是已经受过中学教育的学生,而中学生尚未完成中学教育,所以在受教育程度上两者有很大差别,但尽管如此,两者都是在校学生,都还处在教育系统之中,所以两者及两种教育环境仍然具有一些相同之处。

1.1两者教学环境大同小异

无论是大学教育,还是中学教育,采取的教学方式都是课堂授课教学,都有固定的场所,特定的老师和相配套的课本教材等等,在这一点上来讲,两者区别并不大,都处在相同的教育系统中,只是两种环境中的老师水平不同,学生受教育的程度以及教学深度不同罢了。

1.2数学建模模式相同

数学建模,本身内涵已经固定,既适合在大学教育中设立此类课程,也适合中学生进行学习,其目的都是一样,都是要解决实际的现实问题,都具备数学建模的实用化特征,但由于所用数学知识有所差别,解决的实际问题大小有差异,但都是解决问题。

1.3中学生和大学生都具备接受知识的能力

数学课程在小学就已经开始设立,到中学教育程度时,相比小学生,中学生的数学能力有大幅度提高,已经能够进行很好的知识理解,虽然并没有大学生的理解力那么高,但学习简单的数学建模的能力已经具备。

1.4中学数学建模学习能为以后更深的学习打下基础

在中学开设数学建模课程教学,能为以后高层次的数学建模培养人才,从早就打下良好的数学基础,能够减少将来遇到的各种问题。

2.可应用于中学数学建模中的大学教学策略

数学建模,是提高学生的数学素质和创新能力的重要途径,是提高教师的教学和科研水平的有效手段。从以上的介绍可知,大学数学建模方法教学策略可以很好的应用于中学数学建模教学过程中。目前,大学课程中开展数学建模教学的途径与方法很多,其中,能够很好的应用到中学数学建模课程中的也有很多,下面着重叙述比较常用且很奏效的主要途径和方法:

2.1充分利用教材,对教材进行深度把握

教师在课堂教学过程中要充分利用手中的教材工具,对教材进行深度把握,提高教材利用的效率。教材是专家学者在对理论深层地把握的基础上结合生活中的实际经验总结研究出来的,教材内容既是理论的实践化,又是生活的理论化,其中要讲授和阐明的问题都是非常具有代表性的,因此教材具有很高的利用价值,要懂得充分利用。但教材中并没有告诉教师具体的教学方法,只是安排了需要进行教授的课程,因此在教学过程中,教师要使用合理的教学方式进行授课,如在对教材内容讲解后可以考虑把教材中的问题换一种方式进行重新提问和思考,变换问题的条件,更改提出问题的方式,对因果进行互换,结合新的问题进行重新提问。数学本身就是生活的提炼,是对生活中的实际问题的一种简化,通过反刍的方式,把数学模型重新应用到实际问题中,对理解数学模型的构建和内涵都具有很大的作用。

2.2利用案例教学,设计精良的案例

所谓案例教学法,是指教师在课堂教学中用具体而生动的例子来说明问题,已达到最终目的的一种教学方式。而数学建模教学中的案例教学法,则对应的是在数学建模教学过程中,结合案例进行数学建模问题的讲解,达到让学生对数学建模的建模过程和方法以及建模的具体应用有清晰的认识的目的。数学建模教学中应用案例教学法主要应该包括三个部分,即事前、事中、事后三个部分。事前是指教师在数学建模开始之前选择合适的问题,讲解问题的环境,也就是介绍清楚问题的背景资料,所掌握的数据信息,建模可能用到的数学方法和模型,以及问题的最终目的。事中是指在教师讲解清楚问题的准备工作之后,教师与学生,学生之间针对问题进行讨论,讨论的目的是要搞清楚问题的实质是什么,可以利用哪些方法和模型工具,探讨那一种方法最为合理,最终决定使用的具体模型工具。事后则是指模型的最后检验,模型是否合理需要通过最后对模型结果的检验做标准,可以在两种以上不同的模型得出的结果之间进行对比,考察其存在的差距。

2.3强化课堂教学效果,课后进行实践

课堂上进行数学建模的教学和探讨,课后要补以实践进行强化训练。课堂教学一定程度上停留在理论阶段,虽然数学建模具有很大实用性,但是学生进行建模的时候只是通过教师所提供的数据信息和建模方法,尽管学生也参与了一定的讨论,却仍然无法能让学生对用模能够有比较直观的感受和了解,因此实践训练成为了数学建模一个必不可少的构成部分。数学建模实践主要可以通过两种形式进行,一种是实验室实践,学校应该建立健全数学建模专用实验室,实验室可以看做是现实的理想化环境,在理想化的实验室里可以很好的对认模、建模等过程的认识。由于中学生对理解问题的能力还处于初级阶段,实验室可以不用那么复杂,这样既可以节约实验室建设成本,也能同时达到实践训练目的。一种联系实际进行实践。教师要从较为简单的实际问题出发,让学生自主选择和他们自己比较相关的问题,进行简单的数学建模练习,然后以作业的形式上交给教师,教师进行逐个批复,然后就发现的新问题进行讨论与解决。

2.4开展数学建模活动,鼓励学生积极参与

为了提高学生的数学建模能力,学校可以开展数学建模活动,可以是竞赛制的,也可以是非竞赛制的,但对成绩比较优秀的学生都要给一定的奖励,以提高学生的积极性。建模活动要有规章制度,要比较正规化,否则可能会达不到预期效果,而且建模过程要保证学生不受干扰,竞赛要保证公平、公开。

2.5巩固学生基础,开发学生学习兴趣

数学建模首先需要的是扎实的数学功底,学生的数学基础知识要过关,同时学生要具备较好的理论联系实际的能力以及抽象能力,因此教师必须要抓好学生的基础知识学习,从一开始就打下坚实的基础,在日常的教学过程中要有意加强学生的理论联系实际的意识和能力。还有就是要开发学生的学习兴趣,兴趣是他们最好的老师,如果教学过程过于枯燥无味,那么学生们就无法提起兴趣进行学习,会产生厌倦情绪,不利于学习效果。数学建模过程本身应该是一个比较有趣的过程,是对实际生活进行简化的一个过程,它应该是生动的,有实际价值的。应该鼓励学生间的交流,鼓励学生用建模的思维方法去思考和解决生活中发现的小问题,对做的比较好的同学可以予以适当的奖励。

数学建模小论文:加强高中数学建模教学培养学生的创新能力

摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。

关键词:创新能力;数学建模;研究性学习。

《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生:

(1)学会提出问题和明确探究方向;

(2)体验数学活动的过程;

(3)培养创新精神和应用能力。

其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。

数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。

一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。

教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。

如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大?

这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。

这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。

2.通过几何、三角形测量问题和列方程解应用题的教学渗透数学建模的思想与思维过程。

学习几何、三角的测量问题,使学生多方面全方位地感受数学建模思想,让学生认识更多现在数学模型,巩固数学建模思维过程、教学中对学生展示建模的如下过程:

列方程解应用题体现了在数学建模思维过程,要据所掌握的信息和背景材料,对问题加以变形,使其简单化,以利于解答的思想。且解题过程中重要的步骤是据题意更出方程,从而使学生明白,数学建模过程的重点及难点就是据实际问题特点,通过观察、类比、归纳、分析、概括等基本思想,联想现成的数学模型或变换问题构造新的数学模型来解决问题。如利息(复利)的数列模型、利润计算的方程模型决策问题的函数模型以及不等式模型等。

3.结合各章研究性课题的学习,培养学生建立数学模型的能力,拓展数学建模形式的多样性式与活泼性。

高中新大纲要求每学期至少安排一个研究性课题,就是为了培养学生的数学建模能力,如“数列”章中的“分期付款问题”、“平面向是‘章中’向量在物理中的应用”等,同时,还可设计类似利润调查、洽谈、采购、销售等问题。设计了如下研究性问题。

分析:这是一个确定人口增长模型的问题,为使问题简化,应作如下假设:(1)该国的政治、经济、社会环境稳定;(2)该国的人口增长数由人口的生育,死亡引起;(3)人口数量化是连续的。基于上述假设,我们认为人口数量是时间函数。建模思路是根据给出的数据资料绘出散点图,然后寻找一条直线或曲线,使它们尽可能与这些散点吻合,该直线或曲线就被认为近似地描述了该国人口增长规律,从而进一步作出预测。

通过上题的研究,既复习巩固了函数知识更培养了学生的数学建模能力和实践能力及创新意识。在日常教学中注意训练学生用数学模型来解决现实生活问题;培养学生做生活的有心人及生活中“数”意识和观察实践能力,如记住一些常用及常见的数据,如:人行车、自行车的速度,自己的身高、体重等。利用学校条件,组织学生到操场进行实习活动,活动一结束,就回课堂把实际问题化成相应的数学模型来解决。如:推铅球的角度与距离关系;全班同学手拉手围成矩形圈,怎样围使围成的面积最大等,用砖块搭成多米诺牌骨等。

四、培养学生的其他能力,完善数学建模思想。

由于数学模型这一思想方法几乎贯穿于整个中小学数学学习过程之中,小学解算术运用题中学建立函数表达式及解析几何里的轨迹方程等都孕育着数学模型的思想方法,熟练掌握和运用这种方法,是培养学生运用数学分析问题、解决问题能力的关键,我认为这就要求培养学生以下几点能力,才能更好的完善数学建模思想:

方程(1)(2)有实数解的充要条件是直线x+y=1-z与圆x2+y2=1/3-z2有公共点后者有公共点的充要条件是圆心(O、O)到直线x+y的距离不大于半径。

总之,只要教师在教学中通过自学出现的实际的问题,根据当地及学生的实际,使数学知识与生活、生产实际联系起来,就能增强学生应用数学模型解决实际问题的意识,从而提高学生的创新意识与实践能力。

数学建模小论文:论数学建模竞赛与高职学生数学能力的培养

论文关键词:数学建模竞赛;数学教学;能力

论文摘要:论述数学建模对培养学生的创造性、竞争意识和社会应变能力的作用, 研究了数学建模对高职数学教学的重要作用, 提出了数学教育不仅要使学生学会并掌握一些数学工具,更应着眼于提高学生的数学素质能力,而数学建模竞赛正是培养这种能力的有效载体.

高等职业教育作为教育类型得到了空前发展.高职教育在于培养适应生产、建设、管理、服务第一线需要的高素质技能型人才不仅成为人们的一种共识, 而且逐步渗透到高职院校的办学实践中.数学课程作为一门公共基础课程如何服务于这个目标成为高职基础课程改革中的热点.将数学建模思想融入高职数学教学应是一个重要取向之一.

一、数学建模竞赛对大学生能力培养的重要性

大学生数学建模竞赛起源于美国, 我国从1989 年开始开展大学生数模竞赛,1994年这项竞赛被教育部列为全国大学生四大竞赛之一,每年都有几百所大学积极参加.数学建模竞赛与以往主要考察知识和技巧的数学竞赛不同,是一个完全开放式的竞赛.数学建模竞赛的主要目的在于“激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励学生踊跃参加课外科技等活动,开拓知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革”.数学建模竞赛的题目没有固定的范围和模式,往往是由实际问题稍加修改和简化而成,不要求参赛者预先掌握深入的专门知识.题目有较大的灵活性供参赛者发挥其创造性,参赛者从所给的两个题目中任选一个,可以翻阅一切可利用的资料,可以使用计算机及其各种软件.竞赛持续3天3夜,参赛者可以在此期间充分地发挥自己的各种能力.数学建模竞赛也是一个合作式的竞赛,学生以小组形式参加比赛,每组3人,共同讨论,分工协作,最后完成一份答卷论文.数学建模涉及的知识几乎涵盖了整个自然科学领域甚至涉及到社会科学领域.而且愈来愈多的人认识到学科交叉的结合点正是数学建模.数学建模竞赛是能够把数学和数学以外学科联系的方法.通过竞赛把学生学过的知识与周围的现实世界联系起来,培养了学生的下列能力:

(一)有利于大学生创新性思维的培养

高等教育的重要目的是培养国家建设需要的中高层次人才,而许多教育工作者认识到目前的高等学校教学中还存在着许多缺陷,其中一个重要的问题是培养的学生缺乏创造性的思维,缺乏一种原创性的想象力.这是我国高等教育的一个致命弱点,严重制约了我国科技竞争力.我国高等学校的教学还是以灌输知识为主,这种教育体制严重扼杀了学生的能动性和创造性.数学建模竞赛并不要求求解结果的唯一性和完美性,而是重点要求学生怎样根据实际问题建立数学关系,并给出合乎实际要求的结果和方案,重点考察的是学生的创造性思维能力.

(二)有利于学生动手实践能力的培养

目前的数学教学中,大多是教师给出题目,学生给出计算结果.问题的实际背景是什么? 结果怎样应用? 这些问题都不是现行的数学教学能够解决的.数学模型是一个完整的求解过程,要求学生根据实际问题,抽象和提炼出数学模型,选择合适的求解算法,并通过计算机程序求出结果.在这个过程中,模型类型和算法选择都需要学生自己作决定,建立模型可能要花50%的精力,计算机的求解可能要花30%的精力.动手实践能力有助于学生毕业后快速完成角色的转变.

(三)有利于学生知识结构的完善

一个实际数学模型的构建涉及许多方面的问题,问题本身可能涉及工程问题、环境问题、生殖健康问题、生物竞争问题、军事问题、社会问题等等,就所用工具来讲,需要计算机信息处理、Internet 网、计算机信息检索等.因此数学建模竞赛有利于促进学生知识交叉、文理结合,有利于促进复合型人才的培养.另外数学建模竞赛还要求学生具有很强的计算机应用能力和英文写作能力.

(四)有利于学生团队精神的培养

学生毕业后,无论从事创业工作还是研究工作,都需要合作精神和团队精神.数学建模竞赛要求学生以团队形式参加,3个人为一组,共同工作3天.在竞赛的过程中3位同学充分的分工与合作,最后完成问题的解决.集体工作,共同创新,荣誉共享,这些都有利于培养学生的团队精神,培养学生将来协同创业的意识.任何一个参加过数学建模竞赛的学生都对团队精神带来的成功和喜悦感到由衷的鼓舞.

二、将数学建模思想融入高职数学教学中

通过数学建模,给我们的教学模式提出了更多的思考,使我们不得不回过头重新审视一下我们的教学模式是否符合现代教学策略的构建?现代的教学策略追求的目标是提倡学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息的能力、获取新知识的能力、分析和解决问题的能力以及交流与合作的能力.只有遵循现代的教学策略才能培养出适应新世纪、新形势下的高素质复合型人才.知识的获取是一个特殊的认识过程,本质上是一个创造性过程.知识的学习不仅是目的,而且是手段,是认识科学本质、训练思维能力、掌握学习方法的手段,在教学中应该强调的是发现知识的过程,而不是简单地获得结果,强调的是创造性解决问题的方法和养成不断探索的精神.在学习、接受知识时要像前人创造知识那样去思考,去再发现问题,在解决问题的各种学习实践活动中尽量提出有新意的见解和方法,在积累知识的同时注意培养和发展创新能力.数学建模恰恰能满足这种获取知识的需求,是培养学生综合能力的一个极好的载体,更是建立现代教学模式的一种行之有效的方法.因此,在数学教学中应该融入数学建模思想.如何将数学建模思想融入数学课程中,我认为要合理嵌入,即以科学技术中数学应用为中心,精选典型案例,在数学教学中适时引入,难易适中.以为要抓好以下几个关键点:

(一)在教学中渗透数学建模思想

渗透数学建模思想的最大特点是联系实际.高职人才培养的是应用技术型人才,对其数学教学以应用为目的,体现“联系实际、深化概念、注重应用”的思想,不应过多强调灌输其逻辑的严密性,思维的严谨性.学数学主要是为了用来解决工作中出现的具体问题.而高职教材中的问题都是现实中存在又必须解决的问题,正是数学建模案例的最佳选择.因此,作为数学选材并不难,只要我们深入钻研教材,挖掘教材所蕴涵应用数学的材料,从中加以推广,结合不同专业选编合适的实际问题,创设实际问题的情境,让学生能体会到数学在解决问题时的实际应用价值,激发学生的求知欲,同时在实际问题解决的过程中能很好的掌握知识,培养学生灵活运用和解决问题、分析问题的能力.数学教学中所涉及到的一些重要概念要重视它们的引入,要设计它们的引入,其中以合适的案例来引入概念、演示方法是将数学建模思想融入数学教学的重要形式.这样在传授数学知识的同时,使学生学会数学的思想方法,领会数学的精神实质,知道数学的来龙去脉,使学生了解到他们现在所学的那些看来枯燥无味但又似乎天经地义的概念、定理和公式,并不是无本之木、无源之水,也不是人们头脑中所固有的, 而是有现实的来源与背景, 有其物理原型和表现的.在教学实践中, 我们依据现有成熟的专业教材,选出具有典型数学概念的应用案例,然后按照数学建模过程规律修改和加工之后作为课堂上的引例或者数学知识的实际应用例题.这样使学生既能亲切感受到数学应用的广泛,也能培养学生用数学解决问题的能力.总之,在高职数学教学中渗透数学建模思想,等于教给学生一种好的思想方法,更是给学生一把开启成功大门的钥匙,为学生架起了一座从数学知识到实际问题的桥梁,使学生能灵活地根据实际问题构建合理的数学模型,得心应手地解决问题.但这也对数学教师的要求就更高,教师要尽可能地了解高职专业课的内容,搜集现实问题与热点问题等等.

(二)在课程教学及考核中适度引入数学建模问题

实践表明,真正学会数学的方法是用数学, 为此不仅要让学生知道数学有用,还要鼓励他们自己用数学去解决实际问题.同时越来越多的人认识到,数学建模是培养创新能力的一个极好载体, 而且能充分考验学生的洞察能力、创造能力、数学语言翻译能力、文字表达能力、综合应用分析能力、联想能力、使用当代科技最新成果的能力; 学生们同舟共济的团队精神和协调组织能力,以及诚信意识和自律精神.在教学实践中,在数学课程的考核中增加数学建模问题,并施以“额外加分”的鼓励办法,在平常的作业中除了留一些巩固课堂数学知识的题目外,还要增加需要用数学解决的实际应用题.这些应用题可以独立或自由组合成小组去完成, 完成的好则在原有平时成绩的基础上获得“额外加分”.这种作法, 鼓励了学生应用数学,提高了逻辑思维能力, 培养了认真细致、一丝不苟、精益求精的风格,提高了运用数学知识处理现实世界中各种复杂问题的意识、信念和能力, 调动了学生的探索精神和创造力, 团结协作精神, 从而获得除数学知识本身以外的素质与能力.

(三)、适时开设《数学建模和实验》课

数学建模竞赛之所以在世界范围内广泛发展,是与计算机的发展密不可分的,许多数学模型中有大量的计算问题,没有计算机的情况下这些问题的实时求解是不可能的。随着计算机技术的不断发展, 数学的思想和方法与计算机的结合使数学从某种意义上说已经成为了一门技术.为使学生熟悉这门技术,应当增设《数学建模和实验》课,主要以专题讲座的形式向同学们介绍一些成功的数学建模实例以及如何使用数学软件来求解数学问题等等.与数学建模有密切关系的数学模拟,主要是运用数字式计算机的计算机模拟.它根据实际系统或过程的特性,按照一定的数学规律,用计算机程序语言模拟实际运行状况,并根据大量模拟结果对系统和过程进行定量分析.在应用数学建模的方法解决实际问题时,往往需要较大的计算量,这就要用到计算机来处理.计算机模拟以其成本低、时间短、重复性高、灵活性强等特点,被人们称为是建立数学模型的重要手段之一,由此也可以看出数学建模对提高学生计算机的应用能力的作用是不言而喻的.

当今世界经济的竞争是高科技的竞争,是人才综合素质与能力的竞争.数学建模竞赛对培养学生的创造性、竞争意识和适应社会应变能力,具有不可低估的作用.所以说进行数学建模的教学与实践,既适应了知识经济时代对高等学校人才培养的要求,同时也为创新人才的培养开辟了一条新的途径.

数学建模小论文:关于数学建模竞赛教学策略研究

【论文摘要】提出数学建模的基本概念,考查了我国大学生数学建模竞赛发展状况;从学生能力、教师素质、教学实施及学校管理与组织等四个方面总结阐述现行大学生数学建模教育存在的突出问题,在此基础上,提出了大学数学建模教学策略。

【论文关键词】数学建模竞赛;创新;应用;能力;教学

一、数学建模的基本概念

1.数学建模的定义

数学模型一般是实际事物的一种数学简化。要描述一个实际现象可以有很多种方式,为了使描述更具科学性、逻辑性、客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。因此,数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到的一个数学结构。建立数学模型的过程称为数学建模。数学建模是利用数学方法解决实际问题的一种实践。即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解。因此,数学建模就是用数学语言描述实际现象的过程。1985年在美国出现了一种叫做MCM的一年一度大学生数学模型(1987年全称为Mathematical Competition in Modeling,1988年改全称为Mathematical Contest in Modeling,其缩写均为MCM)。这并不是偶然的。在1985年以前美国只有一种大学生数学竞赛(The William Lowell Putnam mathematical Competition,简称Putman(普特南)数学竞赛),这是由美国数学协会(MAA即Mathematical Association of America的缩写)主持,于每年12月的第一个星期六分两试进行。在国际上产生很大影响,现已成为国际性的大学生的一项著名赛事。该竞赛每年2月或3月进行。

2.数学建模的步骤

一个合理、完善的数学建模步骤是建立一个好的数学模型的基本保证,数学建模讲究灵活多样,所以数学建模步骤也不能强求一致。建立一个实际问题的数学模型,需要一定的洞察力和想像力,筛选、抛弃次要因素,突出主要因素,做出适当的抽象和简化。全过程一般分为表述、求解、解释、验证几个阶段,并且通过这些阶段完成从现实对象到数学模型,再从数学模型到现实对象的循环,可用流程图表示如下:

具体包括以下八个步骤:①提出问题;②分析变量;③模型假设;④建立模型;⑤模型求解;⑥模型分析;⑦检验模型;⑧模型应用。

二、我国大学生数学建模竞赛的发展状况

我国自1989年首次参加这一竞赛,历届均取得优异成绩。经过数年参加美国赛表明,中国大学生在数学建模方面是有竞争力和创新联想能力的。为使这一赛事更广泛地展开,1990年先由中国工业与应用数学学会,然后与国家教委联合主办全国大学生数学建模竞赛(简称CMCM),该项赛事每年9月进行。1992年由中国工业与应用数学学会组织举办了我国10座城市的大学生数学模型联赛,74所院校的314队参加。教育部领导及时发现并扶植、培育了这一新生事物,决定从1994年起由教育部高教司和中国工业与应用数学学会共同主办全国大学生数学建模竞赛,每年一届。数学模型竞赛与通常的数学竞赛不同,它来自实际问题或有明确的实际背景。它的宗旨是培养大学生用数学方法解决实际问题的意识和能力,整个赛事是完成一篇包括问题的阐述分析、模型的假设和建立、计算结果及讨论的论文。通过训练和比赛,同学们不仅用数学方法解决实际问题的意识和能力有很大提高,而且在团结合作发挥集体力量攻关,以及撰写科技论文等方面将都会得到十分有益的锻炼。

十几年来这项竞赛的规模以平均年增长25%以上的速度发展。2009年全国有33个省、市、自治区(包括香港和澳门特区)1137所院校、15046个队(其中甲组12276队、乙组2770队)、4万5千多名来自各个专业的大学生参加竞赛。而到了2010年,发展到有来自全国33个省、市、自治区(包括香港和澳门特区)及新加坡和澳大利亚的1197所院校、17317个队(其中本科组14108队、专科组3209队)、5万多名大学生参加了本项竞赛。2011年,有来自国内外1251所高校19490支参赛队的近6万名大学生参加竞赛,为历年来参与人数最多的一次。

三、我国现行大学生数学建模竞赛与教学的问题分析

鼓励和指导学生参加全国大学生数学建模竞赛,力争在竞赛中获得佳绩;同时加大教学改革力度,将数学建模教学的成果在实践中进一步扩大,是众多高校近些年来努力追求的一个目标。然而,在总结成绩的同时,我们也应该清醒地看到在数学建模竞赛和教学过程中反映出的一些问题,只有很好的认识和总结这些问题,在下一步的实践中找到解决策略,才能使数学建模活动向着良好的方向前进。

1.学生能力方面的问题

数学建模活动是一种创造性的数学活动,与纯数学问题相比,数学建模题目的文字叙述更贴近现实生活,题目相对较长,数据相对较多,数量关系也显得更隐蔽,是一种非形式化的材料,所以,解决一个建模问题对学生学习能力方面提出了更高的要求。

2.教师素质方面的问题

在数学建模竞赛与教学中,教师所担任的角色是竞赛的指导者、教学的组织者、学习的参与者、信息的咨询者,开展建模活动为学生的主体性学习、创造性学习、发展性学习提供了一方希望的田野,同时也为教师的“专业化”发展创造了一个广阔的舞台。建模活动的成效如何,很大程度取决于教师的综合素质。因此,教师在指导学生参加数学建模竞赛时应注意:①更新教育教学观念。在数学建模教学过程中,教师的职能不再单纯是“传道、授业、解惑”,教师必须克服旧的教学思想所形成的定势,更新自己的教育教学观念,力求做到:由传统教学下以知识为中心到知识学习和实践活动并重;由传统教学下以教师为中心到以学生为中心,培养学生学会学习的能力,发展学生的创造意识和创造能力;由只关注学生学习的结果到同时重视学习过程中的情感和体验;由只重视逻辑思维到同时重视直觉思维;由只重视语言材料和视觉通道到同时重视非语言材料和非视觉通道。②进一步拓展知识体系。数学建模学习的开放性、自主性使教师面临着知识和能力的挑战,建模的题目内容丰富、范围极广,学生在研究过程中不仅可能会触及到本学科深层次的专业知识、本学科的研究前沿,还会遇到很多跨学科交叉的内容,以及自然、医学、社会中方方面面的问题。教师只有不断挖掘原有的知识体系,扩宽自己的知识领域,才能在建模教学中有发言权,才能更好的组织学生开展建模学习活动。③提高创造能力和科研意识。创造性是教师能力的一个重要方面,每个教师都必须依据特定的教学内容、教学对象和教学环境对自己的教学工作作出计划并进行实施,还要及时做出评价和调整以及事后的反思和总结。④自觉转变教学过程中的角色。在传统的教育观念中,教师的专业实践被视为学科内容的知识、教学论、心理学原理及其技术的合理利用。数学建模学习的特点决定了教师在教学中要体现“教学的组织者、情感的支持者、学习的参与者、信息的咨询者”等角色。教师的作用是建立基本的概念框架,将学生引入一定的问题情境并为学生提供咨询、方法指导和监控。同时教师将由关注知识转化为关注学生,教师的职能更重要的体现为如何将“信息”转化为“知识”,将“智能”转化为“智慧”。

3.教学实施方面的问题

参加大学生数学建模竞赛的目的决不仅仅是获奖,更重要的是通过参加大学生数学建模竞赛活动,促进高校数学教学改革,起到培养全体学生能力、提高全体学生素质的作用。在现行的大学生数学建模教学活动中,主要存在:①大学数学建模教育在高校中的普及性不够。近年来我国高校数学建模教育发展非常迅速,但总的看来,绝大多数新出版的相关教材都是为数学建模竞赛编写的,其特点是内容难度大,涉及面广,且难度和涉及领域大大超出了一般学生的接受程度。面对高等教育的大众化,也为了提高全体大学生的数学素养和综合应用数学解决实际问题的能力,全国工科数学教学指导委员会议建议在高校中开展数学建模的普及性教育研究,中国工业与应用数学学会理事长、中国科学院院士李大潜教授也多次在全国性的会议上呼吁开展数学建模的普及性教育,努力培养全体大学生的应用意识和创新能力,确保数学建模竞赛持续健康地开展,力戒有些院校为了数学竞赛而忽视了绝大部分学生的数学建模教育。因此,开展数学建模的普及性教育已是势在必行。比如面向全校学生开设数学建模选修课;开展校内选拔赛;鼓励跨专业、跨院系组队;进一步加强对学生社团——数学建模协会的的扶持等等。②数学建模思想在高校数学课堂教学中渗透的力度不够。实践表明,数学建模对学生的训练与传统数学课程相比差别较大,学校开设的数学建模选修课及数学建模培训班,对培养学生观察力、想象力、逻辑思维能力及分析、解决实际问题的能力起到了很好的作用。但是,开设这门课程的课时不会太多,参加建模培训班的同学更是有限,要全面提高大学生的素质,培养有创新精神的复合型应用人才,还要在平时的传统数学课中配合教材适时渗透数学建模思想。要将数学建模竞赛与数学教学改革做到有机结合。

4.学校组织与管理方面的问题

开展数学建模教育并不是开设一门新的课程,而是一种教育观念的转变,关系到培养适应社会需要的创新型人才的宏伟目标,这不仅需要教师的付出,教学模式的改革,更需要学校各方面的重视、支持和协调,学校上层领导部门如果充分认识到开展数学建模教育的意义,教师的积极性和潜能、创造力就会发挥出来,即便学校的条件设备差一些,也会想办法克服;相反,如果学校认识不到数学建模教育的必要性和重要性,那么即使是条件一流的学校,也难以有效利用资源。在提倡创新教育的今天,数学建模教育的发展应该有着广阔的前景,这不仅需要学校各层面的支持,而且还需要教育行政部门、地方政府提供必备的条件,给学校开设其他课程和举办其他活动更大的支持力度,比如:改革考试制度、划拨专项资金、加强数学实验室和机房的建设、加强舆论宣传,深化改革成果等。

四、大学生数学建模教学策略构建

大学生数学建模教学策略构建应从数学建模教学的选题入手,注重大学生数学建模思维意识与数学建模能力的培养,构建合理有效的大学数学建模教学模式,同时,在实施过程中还要注意根据学生的不同情况进行层次性教学。

1.数学建模课程的教学效果很大程度上取决于题目的选择是否恰当,目前可供选择的数学建模教材很多,无论选择了哪本教材,教师都要视本校数学建模课程的教学计划、学生的实际水平以及所选教材的难易程度进行适当的取舍。那么,大学生数学建模教学选题应遵循价值性原则、以问题为中心的原则、客观可行性原则以及趣味性原则。

2.传统的数学教学更多的注重知识的培养而忽视实践应用能力的培养,其造成的后果是,学生们学习了不少数学,却仅是纯粹的理论内容,而不会甚至不知如何应用所学知识。因此,在高等数学的教学过程中,教师应有意识地突出数学建模思想,结合大学传统数学课程的内容特点,在平时的课堂教学中注重培养学生的建模思维意识。从不同的细节以及角度,渗透、穿插适当的数学建模知识,全方位的培育与熏陶学生的思维意识,提高学生的数学建模能力。

3.大体说来,大学数学建模教育可以分以下三个层次进行:①初级层次:大学一、二年级,在这一阶段,一般学生还不知道建模是怎么一回事,这时可选择一些一般的应用问题,或数量关系比较明显的实际问题和改编后的数学建模题目,结合建模的一般涵义、方法和步骤进行讲解,使学生具有初步的建模能力。②中级层次:大学二、三年级,在这一阶段,学生已经具备了初步的建模能力,这时可选择一些更具建模特点的题目,这种题目大部分是从自己或周围人的生产、生活的实际中来,需要经过分析、判断,做出适当假设,当去掉非本质的因素后,量与量之间的关系是容易发现的,得到的结果需做出一定的分析、说明和简单的评价。就学生的智力发展趋势来看,一般的学生都可以经过努力达到中级阶段的能力。③高级层次:大学三、四年级,在这一阶段,学生需要在一定建模能力的基础上,处理一些较复杂的数学建模问题,这些问题基本上是从生产、生活、工程等实际问题中来,都是未经过数学抽象和转化的“原坯”问题,它需要学生自己去挖掘、采集有用的信息,自己去提出模型的假设,需要采集、整理、分析判断数据和信息,并需对所做模型进行分析和评价,其建模结果也只是最优解答,并非标准答案,最终还要写成科技论文。

五、结语

大学数学建模教育的开展是我们整个高校教学改革的一部分,教学模式的改革也会给学生的日常管理和思想教育带来一系列新的压力,这些都不是一朝一夕所能解决的,大学数学建模教育的改革是一项复杂和系统的工程,它需要学校从大局出发,协调好教学与管理等各层面之间的关系。

数学建模小论文:以竞赛推进数学建模课程化促进大学生能力培养的实践

论文关键词: 数学建模 数学建模竞赛 大学生能力

论文摘要: 本文从我校数学建模竞赛推进数学建模课程开设的成功经验,浅淡了数学建模促进大学生能力的培养。

随着科学技术的迅速发展和计算机的日益普及,数学的应用越来越广泛和深入,数学科学的地位发生了巨大的变化,它正在从国民经济和科技的后台走到了前沿。

把数学与客观问题联系起来的纽带,首先是数学建模。应用数学去解决各类实际问题,首先是建立数学模型。数学建模是联系数学与实际问题的桥梁,是数学在各个领域广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之一。

一、 以竞赛推进数学建模课程化

数学建模作为一门崭新的课程在20世纪80年代进入我国高校,萧树铁先生1983年在清华大学首次为本科生讲授数学模型课程,他是我国高校开设数学模型课程的创始人,1987年由姜启源教授编写了我国第一本数学建模教材。在八十年代后期开设数学建模选修课或必修课只是少数老牌大学。但自1992年由中国工业与应用数学学会举办全国大学生数学建模竞赛( 94年起由国家教委高教司和中国工业与应用数学学会共同举办)以来,随着参加竞赛高校的学生增加,各高校相继开设了数学建模课程。2008 年全国有31个省/市/自治区(包括香港)1023所院校、12846个队(其中甲组10384队、乙组2462队)、3万8千多名来自各个专业的大学生参加竞赛。目前,在本科院校根据自己学校特点基本上开设数学课程。

我校从95年开始开设数学建模选修课,到97年学校决定在原有的基础上,从97级学生开始,在部分专业开设数学建模必修课,并同时对其他专业开设数学建模选修课。最初开设选修课是因为参加数学建模竞赛的需要,选修的学生数较少,而且必须是往年成绩较优的学生才允许选修。我们通过以竞赛为平台, 加强引导与指导, 充分激发学生的学习兴趣和热情。而且通过数学建模竞赛,促进了我校教学内容、教学方法、教学手段的创新,参加过训练和竞赛的学生们普遍感到,以往学多门课程的知识不如参加一次竞赛集训学得全面和扎实。因为数学建模竞赛需要全面掌握本领域相关知识, 在深入理解、领会前人智能精髓的基础上, 敢于提出自己的想法和观点。只有善于进行创造性地学习和运用知识, 善于对已知知识进行融会贯通, 注意知识积累的同时更注重对知识的处理和运用, 才能取得成功。随着数学建模竞赛在我校影响的增加,同时参加竞赛过的学生能力的提高,要求选修数学建模课程的学生逐年增加?,使得开设数学建模必修课有了一定的群众基础,同时开设数学建模课程的目的也转向了竞赛与普及相结合,以提高大学生的综合素质和实践能力作为一个重要目标。目前,已在自动化、信息管理、统计、电子信息科学与技术、计算机、软件、通信等专业的学生开设不同层次的数学建模必修课与限选课,同时仍然在全校开设不同层次的数学建模选修课。对于不同层次,理论教学学时分别为34、50、66学时,并辅以上机实践训练,每年从当初几十名学生到目前每年近2000名学生修读此课。为了进一步提高实践动手能力,在软件工程、网络工程、信息与计算科学、应用数学专业开设数学建模课程设计,取得了比较明显的效果。

为了让信息与计算科学、应用数学专业的学生能更好的应用计算机工具和数学软件来解决各种实际问题,从2001年开始我们开设了数学实验课作为数学建模课程的补充和完善,并且目前面向全校开设数学实验选修课。为了进一步推广和普及数学建模,让更多的学生了解和参与数学建模,在原开设多种课程基础上,在学校以及教务部门的支持下,课程组于2000年起结合课程教学安排,在每年五月底举办全校大学生数学建模竞赛。该项活动得到了全校学生的积极响应,2009年有152个组,456人参赛。我校数学建模教学已经形成了多个品种、多种层次、多种方式的教学格局。

二、数学建模促进大学生能力的培养

数学建模活动包括数学建模课程、数学建模竞赛和数学实验课程等方面。建模活动本身就是一项创造性的思维活动,它既具有一定的理论性又具有较大的实践性;既要求思维的数量,还要求思维的深刻性和灵活性。著名数学家丁石孙副委员长对数学建模活动给予了很高的评价,他说:“我们教了几十年的数学,曾经花了很多力气想使大家能够认识到数学的重要性,但是我们没有找到一个合适的方法,数学建模活动是一个很好的方法,使很多的学生包括他们的朋友都能够认识到数学的真正用处”。李大潜院士也曾说过:“数学建模活动具有强大的生命力,并必将不断发展、日臻完善”。很多高校从当初为了竞赛的需要,但随着对数学建模对学生能力培养的认识,数学教学改革的深入发展,许多普通高校都在积极思考,大胆探索,取得了许多可喜的成果。特别是对数学教学改革以数学建模为突破口,在教学体系、方法和内容上都进行了实质性的改革,已取得了突破性的成果。如改革教学内容,教学与计算机结合,实行研讨式教学等,这也为数学建模网络教学奠定了很好的基础。我校从1997年开始,我校将数学建模的教育从面向少数优秀学生转变为面向更多的普遍学生。越来越多的学生从数学建模的学习中获得了进步,使数学建模教学在大学生素质培养中日益发挥着巨大的作用。

1.促进大学生逻辑思维能力与抽象思维能力的提高。建模是从实际问题到数学问题,从数学问题到数学解,从数学解到实际问题的解决,这一过程提高了大学生逻辑思维能力与抽象思维能力。

2. 促进大学生的适应能力增强的。通过数学建模的学习及竞赛训练,他们不仅受到了现代数学思维及方法的熏陶,更重要的是对于不同的实际问题,如何进行分析、推理、概括以及利用数学方法与计算机知识,还有各方面的知识综合起来解决它。因此,他们具有较高的素质,无论到什么行业,都能很快适应需要。

3. 促进学生自学能力。由于数学模型实际问题的广泛性,大学生在建模实践中要用到的很多知识是学生以前没有学过的,而且也没有时间再由老师作详细讲解来补课,只能由教师讲一讲主要的思想方法,同学们通过自学及相互讨论来进一步掌握。这就培养了学生的自学能力和分析综合能力。他们走上工作岗位之后正是靠这种能力来不断扩充和更新自己的知识。

4. 促进大学生相互协作能力。在数学建模学习过程中,有大量的数学模型不是单靠数学知识就能解决的,它需要跨学科、跨专业的知识综合在一起才能解决,当今科学的发展也使得一个人再也没有足够精力去通晓每一门学科,这就需要具有不同知识结构的人经常在一起相互讨论,从中受到启发。数学建模集训、竞赛提供了这一场所。三位同学在学习、集训、竞赛过程是彼此磋商、团结合作、互相交流思想、共同解决问题,使得知识结构互为补充,取长补短。这种能力、素质的培养对他们的科学研究打下了良好的基础。

5. 促进大学生分析、综合和解决实际问题能力的培养。这是由数学建模的任务,目的所决定的。建模过程大体都要经过分析与综合、抽象与概括、比较与类比、系统化与具体化的阶段,其中分析与综合是基础,抽象与概括是关键。而从数学解答与模型检验而言,要求大学生所学的数学知识与计算机知识还有其它方面知识综合起来,动手去解决, 根据计算结果作出合理的解释。通过实践,明白学以致用,提高了分析、综合与解决实际问题的能力。

6. 促进大学生的创造能力的提高。在数学建模实践中,大多问题没有现成的答案、没有现成的模式,要靠充分发挥自己(和队友)的创造性去解决。而面对一大堆资料、计算机软件等,如何用于解决问题,也要充分发挥自己的创造性。数学建模对大学生的创造性的培养是很有好处的。

三、开设数学建模课程取得的效应

数学建模活动十分有利于达到培养高素质创新人才的育人目标。我校开设的数学建模课程,在师资水平、普及程度、特色内容建设、校内竞赛以及全国竞赛等几个方面,在国内同类院校中处于领先地位,特别是每年全国大学生数学建模竞赛中,我校都取得了良好的成绩,而且在全国也有一定的影响,得到全国竞赛组委会专家的充分肯定。

在教学团队建设方面取得明显成效。从最初的4名教师,逐步扩大到涉及运筹与优化、微分方程、概率论与数理统计、计算科学、最优控制、计算机应用等在数学建模中常用的学科方向的十多名教师,不仅解决了课程教学的需要,也促进了教师教学科研水平的提高。

在课程设置研究方面。根据我们这样一类学校的实际情况,我们在不同专业的学生中开设了多种不同课时不同程度要求的数学建模课,满足了各种不同程度不同水平的学生的需要。并在个别专业开设数学实验必修课,同时面向全体开设了数学实验选修课,把数学理论教学与数学软件以及计算机实现进行了很好的结合,进一步丰富了数学建模教学的内涵。以及在几个不同专业中开设了数学建模课程设计环节,有效地解决了大量一般学生如何加强数学实践动手能力培养的问题。

在加强教学内容与方法的研究与实践方面,并取得明显成效。除了选用合适的优秀教材作为参考资料,更是投入精力编写了适合我校的教学用书(即将在高教出版社出版)以及学生自主学习材料。数学建模教学的目的是能够让学生知道到什么地方找什么工具来解决什么样的问题,我们坚持努力把研究式讨论式的教学方法应用到数学建模教学中去。2000年开始,每年结合春季的数学建模教学工作,在五月底进行校内大学生数学建模竞赛。该项活动推广普及了数学建模教学,使更多学生的研究能力和实践动手能力得到了锻炼,同时也有力促进了数学建模竞赛活动在地方性普通院校中的开展,促进了竞赛水平的提高。

在教学改革方面。将数学建模思想融入到其他工科数学课程中去,并且在教学中注意强调讨论式教学以及学生的自主学习。

在同类院校树范性方面。2003年,该课程被确定为浙江省首批省级精品课程。通过几年的建设,已初步建成较有特色的课程资源。充分提升了网络工具的辐射作用,一方面加强了我校数学建模教学和竞赛工作,以及数学建模课外活动的开展,另一方面对其他同类高校能起到较好辐射作用。另外,我校数学建模课程教师曾多次作为讲课教师参加浙江省数学建模教练培训工作,多次应邀到兄弟院校讲课,也曾有多所院校到我校参观调研。

通过几年努力,完成数学建模教改研究项目《数学建模提高大学生综合知识能力的探索与实践》、《在工科院校中开设数学建模必修课和选修课的实践》与《以学科竞赛促进学生创新能力培养的“四维互动”模式研究与实践》,三项成果皆获得浙江省教学成果二等奖。组织学生数学建模课外活动的开展,申报“新苗人才计划”、“创新杯”并取得成功。自1995 年组织学生参加全国大学生建模竞赛以来,共获全国一等奖25项,全国二等奖41项,浙江省奖一等奖42项,二等奖48项,三等奖41项。2006年至今共获国际一等奖8项,国际二等奖14项。取得了省参赛高校与全国高校中的优异成绩。

通过参加数学建模活动,很多学生的自主学习和科研能力得到了显著提高,在毕业设计、实习和研究生阶段的学习中表现出了明显的优势,得到用人单位和研究生导师的普遍认可。从2001年至今获得“计算机世界奖学金”十几位学生中,清一色在数学建模竞赛中取得优异成绩。而且随着数学建模活动的不断深入开展,各级领导和各行业的用人单位逐渐对数学建模在实际中的应用和人才培养中的地位和作用都有了新的认识。目前,数学建模活动在我校的开展,得到了越来越多同学的欢迎。数学建模活动不断走向深入,由阶段性转向日常教学活动。在教学方面,由初期的只在优秀学生与部分专业学生开设选修课,发展形成了多个品种、多种层次、教学格局;在竞赛方面,由初期的只参加全国竞赛,发展到既参加全国竞赛,又将参加国际竞赛,同时每年举办校内竞赛;在撰写论文方面,由初期的只研究如何撰写竞赛论文,发展到现在与教师做课题与一般学术论文写作,参加新苗人才计划与创新杯等。

数学建模小论文:论计算机在数学建模中的作用

【论文关键词】建模意识 计算机应用 数学建模竞赛 数学实验

【论文摘要】本文重点分析了数学建模的特点,探讨了计算机应用与数学建模意识的培养之间密不可分的联系,阐述了计算机在数学建模竞赛中的作用和地位,最后介绍了笔者参加建模竞赛与学生参加竞赛的经验与感受。

一、引言

在利用数学方法分析和解决实际问题时,要求从实际错综复杂的关系中找出其内在的规律,然后用数学的语言--即数字、公式、图表、符号等刻画和描述出来,然后经过数学与计算机的处理--即计算、迭代等得到定量的结果,供人们进行分析、预报、决策和控制,这种把实际问题进行合理的简化假设归结为数学问题并求解的过程就是建立数学模型,简称建模。而这种成功的方法和技术反映在培养专门人才的大学教学活动中,就是数学建模教学和竞赛。数学建模简而言之就是应用数学模型来解决各种实际问题的过程,也就是通过对实际问题的抽象、简化、确定变量和参数,并应用某些规律建立变量与参数间的关系的数学问题(或称一个数学模型),再借用计算机求解该数学问题,并解释、检验、评价所得的解,从而确定能否将其用于解决实际问题的多次循环、不断深化的过程。

二、数学建模的特点

从1985年开始美国都会举办一年一度的数学建模竞赛(MathematicalContestinModeling,缩写:MCM),而我国自1992年举办首届全国大学生数学建模竞赛以来,它已经成为全国大学生科技竞赛的重要项目之一,全国大学生数学建模竞赛是面向全国大学生的群众性科技活动;竞赛要求学生(可以是任何专业)以三人为一组参加竞赛,可以自由的收集信息、调查研究,包括使用计算机和任何软件,甚至上网查询,但不得与团队以外的任何人讨论,在三天时间内,完成一篇包括模型的假设、建立、求解,计算方法的设计和用计算机对解的实现,以及结果的分析和检验,模型的改进等方面的论文。这一活动对于提高大学生素质,促进高校数学与计算机教学改革都起着积极的推动作用。

多年来,一年一度的全国大学生数学建模竞赛和国际大学生数学建模竞赛,给传统的高等数学教育改革带来了新的思路和评价标准,《数学建模》课也从仅仅为参赛队员培训,扩展为一门比较普及的选修课,同时,《数学试验》作为一门新的课程也应运而生。数学建模与数学试验教学的重点是高等与现代数学的深层应用和面向问题的设计,而不是经典理论的深入研讨和系统论证。数学建模问题绝大部分来自一些具体的科研课题或实际工程问题,而不同于普通的数学习题或竞赛题。数学建模问题的特点是:面向现实生活的应用,有相关的科研背景,综合性强,涉及面广,因素关系复杂,缺乏足够的规范性,难以套用传统成熟的解决手段,数据量庞大,可采取的算法也比较复杂,结果具有一定的弹性空间,需要一定的伴随条件,许多问题得到的只能是近似解。

另一方面,建模问题不同于理论研究,它重在对实际问题的处理,而不是深层次纯粹数学理论或者世界难题。所以,求解建模问题大都借助各种辅助工具或手段,尤其是计算机软件的应用,大大地提高了解题效率和质量。总之,《数学建模》是一门技术应用的课程,而不是基础教育课程,它强调的是如何更好更快地解决问题,如何充分利用各种科技手段作为技术支持,因而计算机的应用已经成为其不可或缺的一项基本组成。与此相关的计算机技术主要有两部分:一是如何将实际问题或模型转化或表述为可用计算机软件或编程实现的算法;二是采用哪些应用软件或编程技术可以解决这些问题。显然,后者是前者的基础,确定了工具方案,才有相应的解决方案。

由于数学建模的以上特点,决定了数学建模与计算机具有密切相关的联系,计算机在数学建模思想意识培养中发挥了重要的作用,主要是提供了有力工具和技术支持,它是更好更快进行建模的基础。计算机水平的高低可以说决定一个团队整体的建模水平。

三、数学建模与计算机的关系

计算机的产生正是数学建模的产物,20纪40年代,美国为了研究弹道导弹飞行轨迹的问题,迫切需要一种计算工具来代替人工计算,计算机在这样的背景下应运而生。计算机的产生与发展又极大地推动了数学建模活动,计算机高速的运算能力,非常适合数学建模过程中的数值计算;它的大容量贮存能力以及网络通讯功能,使得数学建模过程中资料存贮、检索变得方便有效;它的多媒体化,使得数学建模中一些问题能在计算机上进行更为逼真的模拟实验;它的智能化,能随时提醒、帮助我们进行数学模型求解。此外,如Mathlab、Maple、SAS、SPSS等一批优秀数学软件的出现更使数学建模如虎添翼。再者,数学建模与生活实际密切相关,所采集到的数据量多,而且比较复杂,比如DVD在线租赁,长江水质的评价和预测,银行贷款和分期付款等,往往计算量大,需要借助于计算机才能快捷、简便地完成。数学建模竞赛与以往所说的那种数学竞赛(纯数学竞赛)不同,它要用到计算机,甚至离不开计算机,但却又不是纯粹的计算机竞赛,它涉及到物理、化学、生物、医学、电子、农业、军事、管理等各学科、各领域,但又不受任何一个具体的学科、领域的限制。数学建模过程需要经过模型假设、模型建立、模型求解、模型分析与检验、模型应用等几个步骤,在这些步骤中都伴随着计算机的使用。例如,模型求解时,需要上机计算、编制软件、绘制图形等,数学建模竞赛中打印机随时可能使用,同时,数学建模的学习对计算机能力的培养也起着极大推动作用,如报考计算机方向的研究生时,对数学的要求非常高;在进行计算机科学的研究时,也要求有极强的数学功底才能写出具有相当深度的论文,计算机科学的发展也是建立在数学基础之上的,许多为计算机的发展做出杰出贡献的科学家都出身于数学专业,显而易见,比赛中的一个重要环节是使用计算机来解决问题,这对使用计算机的能力的提高是很明显的。

数学建模的目的是构建数学建模意识,培养学生创造性思维能力,在诸多的思维活动中,创新思维是最高层次的思维活动,是开拓性、创造性人才所必须具备的能力,培养创造性思维能力,主要应培养学生灵活运用基本理论解决实际问题的能力,在数学教学中培养学生的建模意识实质上是培养、发展学生的创造性思维能力,因为建模活动本身就是一项创造性的思维活动,它既具有一定的理论性,又具有较强的实践性,还要求思维的深刻性和灵活性,而且在建模活动过程中,能培养学生独立、自觉地运用所给问题的条件,寻求解决问题的最佳方法和途径,可以培养学生的想象能力、直觉思维、猜测、转换、构造等能力,而这些数学能力正是创造性思维所具有的最基本的特征,在培养创新思维过程中要求必须具有一定的计算机基础,只有具有一定的计算机知识才能更好的处理数据,发现事物之间的内在的联系,才能更好的进行知识的转换,才能更好的构造出最优的模型。总之,具有必备的计算机知识是培养建模意识的关键,是培养数模创新能力的前提。计算机也为数学建模竞赛活动提供了有力的工具。

四、计算机在数学建模中的运用

计算机的运用,不仅方便我们上网查找建模问题所涉及的知识,相关的文献资料,而且方便我们处理数据,进行模型求解,模型检验。

建模相关计算机软件是我们在建立模型,处理模型必需掌握的软件,他们各有自己的特点,使用他们时要注意区分他们的优缺点,选择更合适的软件来处理问题,常用软件包含一下几种类型:

1、通用数学软件。主要包括有Matlab、Mathematica、Maple和Mathcad等,在能力和用法上,都比较相近,主要用于绘制已知函数的图形和进行计算,支持完全的符号运算、精确计算和任意精度的近似计算。它们都能对数学中的微积分、解析几何、线性代数、微分方程、计算方法、概率统计等诸多领域的常见问题进行求解,但也有各自特点:例如Mathematica的符号计算能力较为强大,而Matlab在数值计算、矩阵计算和图形绘制方面更有优势,因此可以结合起来使用。

2、Lingo/Lindo 计算最优化问题的专用数学软件。Lindo用于求解线性规划和二次规划,Lingo除了具有Lindo的全部功能外,还可以用于求解非线性规划,也可以用于一些线性和非线性方程组的求解以及代数方程求根等,二者都可以求解整数规划。。

3、统计分析软件。SPSS名为社会学统计软件包,主要功能有:基本统计分析、定义表、比较平均数;一般线性模式;相关分析;回归分析、逻辑线性分析、聚类和判别分析、因子分析、非参数检验、时间序列、比例、多元反应等。SAS提供许多数据库查询统计功能,在概率和统计的经典处理计算方面提供了丰富的函数支持。是统计专业软件。

4、高级程序语言种类较多,如C、C++、C#、Basic、Delphi和Java等。

5、绘图软件。将一些图表加入附件可以为文章增色。数学软件只能绘制已知函数的图形,若是要绘制一个大致的图形,就必须使用绘图软件。可以使用几何画板、Photoshop、Flash等。因此,数学建模竞赛今后的趋势是,要求学生对各方面的知识都有所了解,对学生的计算机知识要求也更高,近年来的数学建模竞赛几乎所有的竞赛题目都涉及大量的计算或逻辑运算,因此不掌握计算机和相关数学软件的使用是难以取得好成绩的;又由于竞赛题目来自不同的领域,事先又不了解,而利用Internet可以迅速查到相关资料,这也有助于在竞赛中取得好成绩,由此可见,计算机和数学建模之间具有密不可分的联系,两者的有机结合,有效的提高了高校学生灵活运用理论知识的能力、知识的迁移能力、实际应用能力以及分析问题和解决问题。

五、结束语

笔者上大学期间参加了两次数模竞赛,近几年也参加了学院的数学建模竞赛辅导,能够深刻从中体会到其中的酸甜,也领悟到数学建模竞赛的精髓;它不仅有利于学生更好的掌握知识、运用知识,也有利于高校的科研和教学,使学生和教师能在平时的学习、工作中自动形成勤于思考的好习惯,数学建模竞赛与学生毕业以后工作时的条件非常相近,是对学生业务、能力和素质的全面培养,特别是开放性思维和创新意识,这项活动的开展有利于学生的全面素质的培养,既丰富、活跃了广大学生的课外生活,也为优秀学员脱颖而出创造了条件。不少参赛培训的同学有共同的体会,一次参赛终身受益。数学建模是通向未来的成功之路,不管名次如何,每个参赛者都是成功者。总之,利用计算机技术来开展数学建模,必将有利于数学模型的建立、求解、演算和表达,为探索者创造出理想的背景,同时也使我们的计算机用得越来越好、越来越活,数学建模中计算机的应用,使数学建模的进步如虎添翼;计算机中数学建模方法的使用,使得计算机的发展日益迅速,计算机技术与数学建模的结合,必将推动两者的快速发展。

数学建模小论文:论计算机在数学建模中的作用

【论文关键词】建模意识 计算机应用 数学建模竞赛 数学实验

【论文摘要】本文重点分析了数学建模的特点,探讨了计算机应用与数学建模意识的培养之间密不可分的联系,阐述了计算机在数学建模竞赛中的作用和地位,最后介绍了笔者参加建模竞赛与学生参加竞赛的经验与感受。

一、引言

在利用数学方法分析和解决实际问题时,要求从实际错综复杂的关系中找出其内在的规律,然后用数学的语言--即数字、公式、图表、符号等刻画和描述出来,然后经过数学与计算机的处理--即计算、迭代等得到定量的结果,供人们进行分析、预报、决策和控制,这种把实际问题进行合理的简化假设归结为数学问题并求解的过程就是建立数学模型,简称建模。而这种成功的方法和技术反映在培养专门人才的大学教学活动中,就是数学建模教学和竞赛。数学建模简而言之就是应用数学模型来解决各种实际问题的过程,也就是通过对实际问题的抽象、简化、确定变量和参数,并应用某些规律建立变量与参数间的关系的数学问题(或称一个数学模型),再借用计算机求解该数学问题,并解释、检验、评价所得的解,从而确定能否将其用于解决实际问题的多次循环、不断深化的过程。

二、数学建模的特点

从1985年开始美国都会举办一年一度的数学建模竞赛(MathematicalContestinModeling,缩写:MCM),而我国自1992年举办首届全国大学生数学建模竞赛以来,它已经成为全国大学生科技竞赛的重要项目之一,全国大学生数学建模竞赛是面向全国大学生的群众性科技活动;竞赛要求学生(可以是任何专业)以三人为一组参加竞赛,可以自由的收集信息、调查研究,包括使用计算机和任何软件,甚至上网查询,但不得与团队以外的任何人讨论,在三天时间内,完成一篇包括模型的假设、建立、求解,计算方法的设计和用计算机对解的实现,以及结果的分析和检验,模型的改进等方面的论文。这一活动对于提高大学生素质,促进高校数学与计算机教学改革都起着积极的推动作用。

多年来,一年一度的全国大学生数学建模竞赛和国际大学生数学建模竞赛,给传统的高等数学教育改革带来了新的思路和评价标准,《数学建模》课也从仅仅为参赛队员培训,扩展为一门比较普及的选修课,同时,《数学试验》作为一门新的课程也应运而生。数学建模与数学试验教学的重点是高等与现代数学的深层应用和面向问题的设计,而不是经典理论的深入研讨和系统论证。数学建模问题绝大部分来自一些具体的科研课题或实际工程问题,而不同于普通的数学习题或竞赛题。数学建模问题的特点是:面向现实生活的应用,有相关的科研背景,综合性强,涉及面广,因素关系复杂,缺乏足够的规范性,难以套用传统成熟的解决手段,数据量庞大,可采取的算法也比较复杂,结果具有一定的弹性空间,需要一定的伴随条件,许多问题得到的只能是近似解。

另一方面,建模问题不同于理论研究,它重在对实际问题的处理,而不是深层次纯粹数学理论或者世界难题。所以,求解建模问题大都借助各种辅助工具或手段,尤其是计算机软件的应用,大大地提高了解题效率和质量。总之,《数学建模》是一门技术应用的课程,而不是基础教育课程,它强调的是如何更好更快地解决问题,如何充分利用各种科技手段作为技术支持,因而计算机的应用已经成为其不可或缺的一项基本组成。与此相关的计算机技术主要有两部分:一是如何将实际问题或模型转化或表述为可用计算机软件或编程实现的算法;二是采用哪些应用软件或编程技术可以解决这些问题。显然,后者是前者的基础,确定了工具方案,才有相应的解决方案。

由于数学建模的以上特点,决定了数学建模与计算机具有密切相关的联系,计算机在数学建模思想意识培养中发挥了重要的作用,主要是提供了有力工具和技术支持,它是更好更快进行建模的基础。计算机水平的高低可以说决定一个团队整体的建模水平。

三、数学建模与计算机的关系

计算机的产生正是数学建模的产物,20纪40年代,美国为了研究弹道导弹飞行轨迹的问题,迫切需要一种计算工具来代替人工计算,计算机在这样的背景下应运而生。计算机的产生与发展又极大地推动了数学建模活动,计算机高速的运算能力,非常适合数学建模过程中的数值计算;它的大容量贮存能力以及网络通讯功能,使得数学建模过程中资料存贮、检索变得方便有效;它的多媒体化,使得数学建模中一些问题能在计算机上进行更为逼真的模拟实验;它的智能化,能随时提醒、帮助我们进行数学模型求解。此外,如Mathlab、Maple、SAS、SPSS等一批优秀数学软件的出现更使数学建模如虎添翼。再者,数学建模与生活实际密切相关,所采集到的数据量多,而且比较复杂,比如DVD在线租赁,长江水质的评价和预测,银行贷款和分期付款等,往往计算量大,需要借助于计算机才能快捷、简便地完成。数学建模竞赛与以往所说的那种数学竞赛(纯数学竞赛)不同,它要用到计算机,甚至离不开计算机,但却又不是纯粹的计算机竞赛,它涉及到物理、化学、生物、医学、电子、农业、军事、管理等各学科、各领域,但又不受任何一个具体的学科、领域的限制。数学建模过程需要经过模型假设、模型建立、模型求解、模型分析与检验、模型应用等几个步骤,在这些步骤中都伴随着计算机的使用。例如,模型求解时,需要上机计算、编制软件、绘制图形等,数学建模竞赛中打印机随时可能使用,同时,数学建模的学习对计算机能力的培养也起着极大推动作用,如报考计算机方向的研究生时,对数学的要求非常高;在进行计算机科学的研究时,也要求有极强的数学功底才能写出具有相当深度的论文,计算机科学的发展也是建立在数学基础之上的,许多为计算机的发展做出杰出贡献的科学家都出身于数学专业,显而易见,比赛中的一个重要环节是使用计算机来解决问题,这对使用计算机的能力的提高是很明显的。

数学建模的目的是构建数学建模意识,培养学生创造性思维能力,在诸多的思维活动中,创新思维是最高层次的思维活动,是开拓性、创造性人才所必须具备的能力,培养创造性思维能力,主要应培养学生灵活运用基本理论解决实际问题的能力,在数学教学中培养学生的建模意识实质上是培养、发展学生的创造性思维能力,因为建模活动本身就是一项创造性的思维活动,它既具有一定的理论性,又具有较强的实践性,还要求思维的深刻性和灵活性,而且在建模活动过程中,能培养学生独立、自觉地运用所给问题的条件,寻求解决问题的最佳方法和途径,可以培养学生的想象能力、直觉思维、猜测、转换、构造等能力,而这些数学能力正是创造性思维所具有的最基本的特征,在培养创新思维过程中要求必须具有一定的计算机基础,只有具有一定的计算机知识才能更好的处理数据,发现事物之间的内在的联系,才能更好的进行知识的转换,才能更好的构造出最优的模型。总之,具有必备的计算机知识是培养建模意识的关键,是培养数模创新能力的前提。计算机也为数学建模竞赛活动提供了有力的工具。

四、计算机在数学建模中的运用

计算机的运用,不仅方便我们上网查找建模问题所涉及的知识,相关的文献资料,而且方便我们处理数据,进行模型求解,模型检验。

建模相关计算机软件是我们在建立模型,处理模型必需掌握的软件,他们各有自己的特点,使用他们时要注意区分他们的优缺点,选择更合适的软件来处理问题,常用软件包含一下几种类型:

1、通用数学软件。主要包括有Matlab、Mathematica、Maple和Mathcad等,在能力和用法上,都比较相近,主要用于绘制已知函数的图形和进行计算,支持完全的符号运算、精确计算和任意精度的近似计算。它们都能对数学中的微积分、解析几何、线性代数、微分方程、计算方法、概率统计等诸多领域的常见问题进行求解,但也有各自特点:例如Mathematica的符号计算能力较为强大,而Matlab在数值计算、矩阵计算和图形绘制方面更有优势,因此可以结合起来使用。

2、Lingo/Lindo 计算最优化问题的专用数学软件。Lindo用于求解线性规划和二次规划,Lingo除了具有Lindo的全部功能外,还可以用于求解非线性规划,也可以用于一些线性和非线性方程组的求解以及代数方程求根等,二者都可以求解整数规划。。

3、统计分析软件,SPSS名为社会学统计软件包,主要功能有:基本统计分析、定义表、比较平均数;一般线性模式;相关分析;回归分析、逻辑线性分析、聚类和判别分析、因子分析、非参数检验、时间序列、比例、多元反应等。SAS提供许多数据库查询统计功能,在概率和统计的经典处理计算方面提供了丰富的函数支持。是统计专业软件。

4、高级程序语言种类较多,如C、C++、C#、Basic、Delphi和Java等。

5、绘图软件。将一些图表加入附件可以为文章增色。数学软件只能绘制已知函数的图形,若是要绘制一个大致的图形,就必须使用绘图软件。可以使用几何画板、Photoshop、Flash等。因此,数学建模竞赛今后的趋势是,要求学生对各方面的知识都有所了解,对学生的计算机知识要求也更高,近年来的数学建模竞赛几乎所有的竞赛题目都涉及大量的计算或逻辑运算,因此不掌握计算机和相关数学软件的使用是难以取得好成绩的;又由于竞赛题目来自不同的领域,事先又不了解,而利用Internet可以迅速查到相关资料,这也有助于在竞赛中取得好成绩,由此可见,计算机和数学建模之间具有密不可分的联系,两者的有机结合,有效的提高了高校学生灵活运用理论知识的能力、知识的迁移能力、实际应用能力以及分析问题和解决问题。

五、结束语

笔者上大学期间参加了两次数模竞赛,近几年也参加了学院的数学建模竞赛辅导,能够深刻从中体会到其中的酸甜,也领悟到数学建模竞赛的精髓;它不仅有利于学生更好的掌握知识、运用知识,也有利于高校的科研和教学,使学生和教师能在平时的学习、工作中自动形成勤于思考的好习惯,数学建模竞赛与学生毕业以后工作时的条件非常相近,是对学生业务、能力和素质的全面培养,特别是开放性思维和创新意识,这项活动的开展有利于学生的全面素质的培养,既丰富、活跃了广大学生的课外生活,也为优秀学员脱颖而出创造了条件。不少参赛培训的同学有共同的体会,一次参赛终身受益。数学建模是通向未来的成功之路,不管名次如何,每个参赛者都是成功者。总之,利用计算机技术来开展数学建模,必将有利于数学模型的建立、求解、演算和表达,为探索者创造出理想的背景,同时也使我们的计算机用得越来越好、越来越活,数学建模中计算机的应用,使数学建模的进步如虎添翼;计算机中数学建模方法的使用,使得计算机的发展日益迅速,计算机技术与数学建模的结合,必将推动两者的快速发展。

数学建模小论文:论数学建模竞赛培训中的论文选读

[论文关键词]建模竞赛 论文选读 写作 数学方法 软件应用

[论文摘要]赛前培训是建模竞赛取得好成绩的保证,文章介绍了培训中论文选读这一环节,指出可以从读文章内容结构、读论文思路、读论文所用方法、读论文所用软件等方面进行培训。

全国大学生数学建模竞赛是全国高校规模最大的课外科技活动之一,2007年全国有30个省、市、自治区的969所院校、11742个队(其中甲组9494队、乙组2248队)、35000多名来自各个专业的大学生参加竞赛,参赛人数为历年之最。在数学建模培训和竞赛中,参赛学生在各方面的能力都有较大提高,包括理论联系实际和实事求是的科学态度、获取新知识的能力、综合使用数学和计算机分析问题解决问题的能力、团队精神和挑战自我的精神等。此赛事反映了学生多方面的综合能力,参赛成绩证明了学校的实力,优异的成绩有助于提高学校知名度。因此,各高等院校非常重视这一赛事,投入的人力、物力逐年增加,都希望能通过这一赛事,在锻炼提高学生综合能力的同时取得佳绩,以提高学校声誉。

一所院校要在建模竞赛中取得佳绩,需要领导的重视和完善的制度,需要一支有较高水平的指导培训人员,利用优胜劣汰方式,选拔出优秀的参赛学生,对参赛学生科学合理地培训。以上这些因素,都影响着比赛的最终成绩。

对参赛学生的培训,各个学校都有自己的经验与做法,但培训的内容不外乎是前期的建模基础知识、方法介绍,强化阶段的建模方法及常用软件的培训,论文选读,后期的模拟竞赛等。我院在2007年组织四个队参加乙组比赛,最终获得了一个全国二等奖,两个广西赛区二等奖的佳绩,笔者参加了赛前的培训工作,主讲论文选读这一内容,以选读历届获奖优秀论文为主。参赛学生于赛后反映,培训中的论文选读令他们获益匪浅,对比赛有重要意义,本文将介绍论文选读这一培训环节,指出论文选读中应读什么、怎么读等问题。

一、读思路,练审题

1.读思路。教师首先从历届赛题中精挑细选优秀论文,详细讲解建模过程,理清每一篇论文的建模思路。讲解时注意讲清以下几个问题:本题是如何入手的?为什么用这个方法?这个方法好不好?还有没有其他的方法?如以公务员招聘(2004年D题)为例,通过分析对比一些优秀论文,说明这道题目通过建立线性规划模型求解比较适宜,同时说明在建立目标函数时,不同的优秀论文有不同的思路,可以通过不同的角度,不同的侧重点去建立,从而得出在不同假设下的结论。在讲解建模过程中,教师可以扮演一个置疑者、引导者,留下一些问题让学生去思考,去讨论,让学生参与其中。事实证明,这种方式能取得较好的效果。

2.练审题。在平时学习中,讨论的题目相对简单,所给条件、问题较为明确,学生一般不太重视审题,但在建模竞赛中,有两道题可选,且题目相对要复杂得多,审题成了一个极为重要的环节,关系着后面几天的成败。在审题这个阶段,要弄清题目所给的条件,明确要回答的问题,给出基本的思路,最终确定选题,题目一旦选定,就不能三心二意,要坚持做下去。

由于审题的重要性,故在培训中,审题的训练必不可少,在学生精读了几个案例,了解了一些优秀论文的思路以后,可以考虑进行审题这一培训环节。具体培训中,可拿历届赛题让每一个小组成员先自己看,独立思考半小时左右,然后小组合议,讨论初步的思路及使用的数学方法,估计完成本题的可行性如何,一道题目的讨论最多不能超过两个小时。讨论结束后,再和优秀论文对比,看看自己是怎么考虑的,别人的思路又如何?通过比较,取长补短,达到提高审题能力的目的。

二、读数学方法,强化常用算法的训练

历届赛题中对同一问题,不同优秀论文有不同的数学方法,但归纳起来,主要有以下几种:线性规划,非线性规划,动态规划,整数规划,多目标规划,回归分析,层次分析,单目标、多目标决策等等。培训中结合优秀论文,让学生学习这些方法的精髓,掌握这些方法的思想及应用。

竞赛中会用到很多算法,归纳起来常用的十大算法为:蒙特卡罗算法;数据拟合、参数估计、插值等数据处理算法;线性规划、整数规划、多元规划、二次规划等规划类问题;图论算法;动态规划、回溯搜索、分治算法、分支定界等计算机算法;最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法;网格算法和穷举法;一些连续离散化方法;数值分析算法;图像处理算法。培训中可结合优秀论文学习以上算法。

根据对历届赛题的分析统计,笔者认为其中的两种算法是要强化训练的。其一是数据拟合、参数估计、插值等数据处理算法。在比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法的应用,通常使用Matlab作为工具(如2005年C题雨量预报方法的评价,需要处理大量的降雨量数据)。其二是线性规划、整数规划、多元规划、二次规划等规划类问题的算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo,Lingo软件实现(如2005年D题DVD在线租赁问题,必须用lingo求解0-1规划模型)。

三、读软件,强化几个常用软件的应用

离开计算机,不可想象能完成好赛题。利用计算机,可以方便地查阅资料,处理大量的数据,进行模型求解和模型检验,选手们必须能熟练地使用计算机,尤其是要有较强的编程能力和使用软件能力。

在论文选读中,重点是要让学生学习优秀论文中常用的编程方法技巧,掌握常用的数学软件。根据对历年赛题所用软件的统计,在培训中应注重对Excel、Mathematica,Matlab,Lingo/Lindo,Spss等软件的常用功能进行强化训练。其中要突出Excel对数据的处理能力,Mathematica与Matlab对常见数学问题的求解及绘图能力,Lingo/Lindo对整数规划、线性规划及非线性规划的求解能力,专业统计软件Spss对数据的处理能力。

四、读文章内容结构,学习优秀论文的写作方法及技巧

数模竞赛论文评阅标准包括:假设的合理性、建模的创造性、结果的正确性、文字表达的清晰性。竞赛论文是竞赛三天成果的表述,是评奖的唯一依据,因此,必须充分重视竞赛论文的写作,全力写好竞赛论文。

不同的优秀论文写作的结构、处理方法不尽相同,但其内容大体相同,即:摘要、问题重述、问题分析、符号说明、模型假设、模型建立、模型求解、模型结果分析、模型优缺点、改进方向、参考文献、附录等。每个内容都有其特殊要求,可以结合优秀论文学习。如符号说明,论文中所用到每一个数学符号,都必须在此说明它们各自的涵义,一个符号说明用一个自然段,全部符号说明形成一个自然节。再如模型假设,所做假设要切合题意,关键性假设不可缺,不要罗列一大堆无用的假设。

这里特别强调一下摘要的写作。摘要在论文评阅中已逐渐加大了权重,摘要就是论文的门面。一般公开发行刊物中论文的摘要都是言简意赅,但数学建模的摘要却不能写得过于简洁,一般得用一个版面,但不能超过一页。其内容有:简要论述本文所要解决的问题及意义,解决问题的思路与方法,主要结果(数值结果或结论),建模的创新之处与特色等。摘要欲想吸引评委的眼球,必须能表达全文的概貌、要点、特色,要回答题目要求的全部问题。以下五个内容不可缺少:问题、模型、算法、结论和特色。文中最好能出现“问题”“模型”“算法”等字眼,让评委一目了然。

在论文选读这一环节,必须要求学生精读全文,分析优秀论文的写作结构安排、数学符号的使用、文字的表达技巧等。实训中,可考虑先让学生通读优秀论文正文后,然后要求学生为此论文写上摘要或让学生模仿优秀论文撰写完整的论文。

数学建模小论文:关于高等数学教学中融入数学建模思想的探讨

论文关键词:高等数学 教学改革 数学建模

论文摘要:数学建模的思想就是用数学的思路、方法去解决实际生产、生活当中所遇到的问题。当前高等数学教学的一个很大的缺陷就是“学”和“用”脱节。把数学建模的思想溶入到教学中去是一个解决问题的很好的方法。

一、数学建模在高等数学教学中的重要作用

数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,即数学建模。数学建模是指对现实世界的一些特定对象,为了某特定目的,做出一些重要的简化和假设,运用适当的数学工具得到一个数学结构,用它来解释特定现象的现实性态,预测对象的未来状况,提供处理对象的优化决策和控制,设计满足某种需要的产品等。从此意义上讲数学建模和数学一样有古老历史。例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。因此数学建模被时代赋予了更为重要的意义。

二、数学建模思想在高等数学教学中的运用

高等数学教学的重点是提高学生的数学素质,学生的数学素质主要体现为:抽象思维和逻辑推理的能力;如今在一些教材中也渐渐的补充了与实际问题相对应的例子,习题。如:人大出版社中的第四章第八节所提到的边际分析与弹性分析,以及几乎各种教材中对于函数极值问题的实际应用的例子。其实这就是实际应用中的一个简单的建摸问题。但仅仅知道运算还是不够的,我们还要从具体问题给出的数据建立适用的模型。下面我们就具体的例子来看看高等数学对经济数学的应用。例:有资料记载某农村的达到小康水平的标准是年人均收入为2000元,据调查该村公400人,其中一户4人年收入60万,另一户4人20万,其中70%的人年收入在300元左右,其余在500左右。对于该村是否能定位在已经达到了小康水平呢。首先我们计算平均收入:60万,20万各一户共8人,300元共400×70%=280人,500元共400-288=112人。

平均收入为元

从这个数据我们可以看出该村的平均收入超过2000元,所以认为达到了小康水平,但我们在来看一下数据,有99.5%的人均收入低于2000千,所以单从人均收入来衡量是不科学的,那么在概率论中我们利用人均年收入的标准差a来衡量这个标准。

我们可以看出标准差是平均水平的六倍多,标准差系数竟超过100%,所以我们不能把该村看作是达到了小康水平。因此我们要真正的把高等数学融入到实际应用当中是我们高确良 等教育的一个重点要改革的内容。为了在概念的引入中展现数学建模,首先必须提出具有实际背景的引例。下面我们就以高等数学中导数这一概念为例加以说明。

(1)引例

模型I:变速直线运动的瞬时速度

1、提出问题:设有一物体在作变速运动,如何求它在任一时刻的瞬时速度?

2、建立模型

分析:我们原来只学过求匀速运动在某一时刻的速度公式:S=vt那么,对于变速问题,我们该如何解决呢?师生讨论:由于变速运动的速度通常是连续变化的,所以当时间变化很小时,可以近似当匀速运动来对待。假设:设一物体作变速直线运动,以它的运动直线为数轴,则在物体的运动过程中,对于每一时刻t,物体的相应位置可以用数轴上的一个坐标S表示,即S与t之间存在函数关系:s=s(t)。称其为位移函数。设在t0时刻物体的位置为S=s(t0)。当在t0时刻,给时间增加了t,物体的位置变为S=(t0+t):此时位移改变了S=S(t0+t)-S(t0)。于是,物体在t0到t0+t这段时间内的平均速度为:v=当t很小时,v可作为物体在t0时刻瞬时速度的近似值。且当—t—越小,v就越接近物体在t0时刻的瞬时速度v,即vt0=[(1)式];

(1)即为己知物体运动的位移函数s=s(t),求物体运动到任一时刻t0时的瞬时速度的数学模型。

模型II:非恒定电流的电流强度。己知从0到t这段时间流过导体横截面的电量为Q=Q(t),求在t0时刻通过导体的电流强度?通过对此模型的分析,同学们发现建立模型II的方法步骤与模型I完全相同,从而采用与模型I类似的方法,建立的数学模型为:It0=要求解这两个模型,对于简单的函数还容易计算,但对于复杂的函数,求极限很难求出。为了求解这

两个模型,我们抛开它们的实际意义单从数学结构上看,却具有完全相同的形式,可归结为同一个数学模型,即求函数改变量与自变量改变量比值,当自变量改变量趋近于零时的极限值。在自然科学和经济活动中也有很多问题也可归结为这样的数学模型,为此,我们把这种形式的极限定义为函数的导数。

(2)导数的概念

定义:设函数y=f(x)在点x0的某一领域内有定义,当自变量x在x0处有增量x时,函数有相应的增量y=f(x0+x)-f(x0)。如果当x0时yx的极限存在,这个极限值就叫做函数y=f(x)在x0点的导数。即函数y=f(x)在点x0处可导,记作f′(x0)或f′|x=x0即f′(x0)=。有了导数的定义,前面两个问题可以重述为:(1)变速直线运动在时刻t0的瞬时速度,就是位移函数S=S(t)在t0处对时间t的导数。即vt0=S′(t0)。(2)非恒定电流在时刻t0的电流强度,是电量函数Q=Q(t)在t0处对时间t的导数。即It0=Q′(t0)。

如果函数y=f(x)在区间(a,b)内每一点都可导,称y=f(x)在区间(a,b)内可导。这时,对于(a,b)中的每一个确定的x值,对应着一个确定的导数值f′(x),这样就确定了一个新的函数,此函数称为函数y=f(x)的导函数,记作y′或f′(x),导函数简称导数。显然,y=f(x)在x0处的导数f′(x0),就是导函数f′(x)在点x0处的函数值。由导函数的定义,我们可以推导出一系列的求导公式,求导法则。(略)有了求导公式,求导法则后,我们再反回去求解前面的模型就容易得多。现在我们就返回去接着前面模型I的建模步骤。

3、求解模型:我们就以自由落体运动为例来求解。设它的位移函数为s=gt2,求它在2秒末的瞬时速度?由导数定义可知:v(2)=S′(2)=*2gtlt=2=2tg

4、模型检验:上面所求结果与高中物理上所求得的结果一致。从而验证了前面所建立模型的正确性。

5、模型的推广:前面两个模型的实质,就是函数在某点的瞬时变化率。由此可以推广为:求函数在某一点的变化率问题都可以直接用导数来解,而不须像前面那样重复建立模型。除了在概念教学中可以浸透数学建模的思想和方法外,还可以在习题教学中浸透这种思想和方法。在这里就不一一列举。

通过数学建模的思想引入高等数学的教学中,其主要目的是通过数学建模的过程来使学生进一步熟悉基本的教学内容,培养学生的创新精神和科研意识,提高学生应用数学解决实际问题的思想和方法。

数学建模小论文:大学生数学综合素质的核心

论文关键词:大学生;数学建模;数学素质?

论文摘要:数学建模是一种对实际的现象通过心智活动构造出能抓住其重要且有用的特征的表示,是大学生数学综合素质的核心内容。本文探讨了数学建模的内涵,分析了数学建模与数学综合素质的关系,并指出如何通过数学建模来提高大学生的综合素质。?

数学模型作为对实际事物的一种数学抽象或数学简化,其应用性强的特点使其影响正在向更广阔的领域拓展、延伸。因适应新时期应用型、创新型人才培养的需要,数学建模受到了高等院校的重视,相应的课程建设计划得到了实施,竞赛活动得到了开展。基于数学建模培养学生解决实际问题能力的优势,通过数学建模来提升大学生的综合素质,已成为一个逐步引起关注的教育教学问题。

一、数学建模的内涵及其应用趋势

《数学课程标准(实验)》中提出:“数学探究、数学建模、数学文化是贯穿于整个高中数学课程的重要内容……,高中阶段至少应安排一次较为完整的数学探究、数学建模活动。”[1]对于数学建模的理解,可以说它是一种数学技术,一种数学的思考方法。它是“对实际的现象通过心智活动构造出能抓住其重要且有用的特征的表示,常常是形象化的或符号的数学表示”[2]。从科学、工程、经济、管理等角度来看,数学建模就是用数学的语言和方法,通过抽象、简化建立能近似刻画并“解决”实际问题的一种强有力的数学工具。?

通俗地说,数学建模就是建立数学模型的过程。几乎一切应用科学的基础都是数学建模,凡是要用数学解决的实际问题也都是通过数学建模的过程来实现的。就其趋势而言,其应用范围越来越广,并在大学生数学素质培养中肩负着重要使命。尤其是 20 世纪中叶计算机和其他技术突飞猛进的发展,给数学建模以极大的推动,数学建模也极大地拓展了数学的应用范围。曾经有位外国学者说过:“一切科学和工程技术人员的教育必须包括数学和计算数学的更多内容。数学建模和与之相伴的计算正在成为工程设计中的关键工具。”[3]正因为数学通过数学建模的过程能对事实上很混乱的东西形成概念的显性化和理想化,数学建模和与之相伴的计算正在成为工程设计中的关键工具。因而了解和一定程度掌握并应用数学建模的思想和方法应当成为当代大学生必备的素质。对绝大多数学生来说,这种素质的初步形成与《高等数学》及其相关学科课程的学习有着十分密切的关系。

二、数学建模与数学综合素质提升

当今的数学教育界,对什么是“数学素质”,有过深入广泛的讨论。经典的说法认为,数学是一门研究客观世界中数量关系和空间形式的科学,因而,人们认识事物的“数”、“形”属性及其处理相应关系的悟性和潜能就是数学素质。一是抽取事物“数”、“形”属性的敏感性。即注意事物数量方面的特点及其变化,从数据的定性定量分析中梳理和发现规律的意识和能力。二是数理逻辑推理的能力。即数学作为思维的体操、锻炼理性思维的必由之路,可提高学生的逻辑思维能力和推理能力。三是数学的语言表达能力。 即通过数学训练所获得的运用数学符号进行表达和思考、求助与追问的能力。四是数学建模的能力。即在掌握数学概念、方法、原理的基础上,运用数学知识处理复杂问题的能力。五是数学想像力。即在主动探索的基础上获得的洞察力和联想、类比能力。因此,数学建模能力已经成为数学综合素质的重要内容。那么,数学建模对于学生的数学综合素质的提升表现在哪些方面呢??

(一)拓展学生知识面,解决“为‘迁移’而教”的问题。数学建模是指针对所考察的实际问题构造出相应的数学模型,通过对数学模型的求解,使问题得以解决的数学方法。数学建模教学与其他数学课程的教学相比,具有难度大、涉及面广、形式灵活的特点,对学生综合素质有较高的要求。因此,要使数学建模教学取得良好的效果,应该给学生讲授解决数学建模问题常用的知识和方法,在不打乱正常教学秩序的前提下,周密安排数学建模教学活动,为将来知识的“迁移”打下基础。具体可将活动分为三个阶段:第一阶段是补充知识,重点介绍实用的数学理论和数学方法,不讲授抽象的数学推导和繁复的数学计算,有些内容还可以安排学生自学,以此调动学生的学习积极性,发挥他们的潜能;第二阶段是编程训练,强化数学软件包MATLAB编程,突出重要数学算法的训练;第三阶段是数学建模专题训练,从小问题入手,由浅入深地训练,使学生体会和学习应用数学的技巧,逐步训练学生用数学知识解决实际问题,掌握数学建模的思想和方法。[4]?

(二)发挥主观能动性,强化学生自主学习能力。数学建模是一种对实际的现象通过心智活动构造出能抓住其重要且有用的特征的表示,需要学生发挥主观能动性,通过主体心智活动的参与,实现问题的建构和解决。在大学,自主学习是学生学习的一种重要方式。大学生课外知识的获得、参与科研活动、撰写毕业论文和进行毕业设计等等,都是在教师的指导下的自主学习,因此,自主学习的意识和能力培养成为提升大学生综合素质的关键。数学建模对于强化学生自主学习能力,培养数学综合素质无疑具有典型意义。由于数学建模对知识掌握系统性的要求,而这些系统的知识又不可能系统地获得,很多参与数学建模学习和研究的学生,都深感其对提高自主学习能力的重要性,并从中汲取不竭的动力,进行后续的学习和研究。?

(三)把握数学建模的内在特质,培养学生的创新能力。创新能力是指利用自己已有的知识和经验,在个性品质支持下,新颖而独特地提出问题、解决问题,并由此产生有价值的新思想、新方法、新成果。数学建模具有创新的内在特质,其本身就是一个创新的过程。现实生产和生活中,面临的每一个实际问题往往都比较复杂,影响它的因素很多,从问题的提出、模型的建构、结果的检验等各个方面都需要创新活动的参与,建立数学模型需以创新精神为动力,不断激发学生的创造力和想像力。因此,在数学建模活动中,要鼓励学生勤于思考、大胆实践,尝试运用多种数学方法描述实际问题,不断地修改和完善模型,不断地积累经验,逐步提高学生分析问题和解决问题的能力。持续创新是知识经济时代的重要特征,高等院校应坚持把数学建模教育作为素质培养的载体,大力培养学生的创新精神、创新勇气和创新能力,使其真正成为创新的生力军。?

(四)促进合作意识养成,培养团队协作精神。 适应时代的发展,越来越多的高校将参加数学建模竞赛作为高校教学改革和培养科技人才的重要途径。数学建模比赛的过程就是培养学生全局意识、角色意识、合作意识的过程,也是一个塑造学生良好个性的过程。数学建模竞赛采取多人组队、明确时间、完成规定任务的形式进行。一个数学建模任务的完成,往往需要成员之间的讨论、修改、综合,既有分工、又有合作,是集体智慧的结晶。竞赛期间学生可以自由地查阅资料、调查研究,使用必要的计算机软件和互联网。作为对学生的一种综合训练,学生要解决建模问题,必须有足够的知识,并有将其抽象成数学问题、有良好的数学素养,有熟练的计算机应用能力,还要有较好的写作能力,这些知识和能力要素的取得,往往来自于一个坚强的团队。具有一定规模的建模问题一般都不能由个人独立完成,只有通过合作才能顺利完成,没有全局观念和协作精神作为支撑,要完成好建模任务是非常困难的。

三、在数学建模的教与学中提升学生数学素质

数学建模课程的教学不是传统意义上的数学课,它不是“学数学”,而是“学着用数学”。它是以现实世界为研究对象,教我们在哪里用数学,怎样用数学。对模型的探索,没有现成的普遍适用的准则和技巧,需要成熟的经验见解和灵巧的简化手段,需要合理的假设,丰富的想像力,敏锐的洞察力。直觉和灵感往往也起着不可忽视的作用。因此,在数学建模教学中要把握“精髓”,侧重于给予学生一种综合素质的训练,培养学生多方面的能力。?

(一)将数学建模思想渗透到教学中去。把数学建模的思想和方法有机地融入“高等数学”等课程教学是一门“技术含量”很高的艺术。其困难之一就是数学建模往往与具体的数学问题和方法,可能是很深奥的数学问题和方法紧密相连。因此,怎样精选只涉及较为初等的数学理论和方法而又能体现数学建模精神,既能吸引学生而且学生又有可能遭遇的案例,并将其融入课程教学中十分重要。特别要重视在教学中训练学生的“双向翻译”的能力。这一能力的要求,简单地说,就是把实际问题用数学语言翻译为明确的数学问题,再把数学问题得到解决的结论或数学成果翻译为通俗的大众化的语言。“双向翻译”对于有效应用数学建模的思想和方法,是一个极为关键的步骤,权威的专家多次强调了这一点。建模的力量就在于“通过把物质对象对应到认定到能‘表示’这些物质对象的数学对象以及把控制前者的规律对应到数学对象之间的数学关系,就能构造所研究的情形的数学建模;这样,把原来的问题翻译为数学问题,如果能以精确或近似方法求解此数学问题,就可以再把所得到的解翻译回去,从而解出原先提出的问题。” 

(二)数学建模教学中重视各种技术手段的使用。在“高等数学”等课程的教和学中,使用技术手段,尤其是数学软件,只是时间的问题,尽管关于技术手段的好与坏还仍有争议。企图用技术手段来替代个人刻苦努力的学习过程,只会误导学生。但决不能因此彻底地排斥技术手段, 这是一个“度”的问题。对于数学建模的教师来说,技术手段既可能成为科研和教学研究的有力工具, 也可以通过教学实践来研究怎样使用它们。数学建模课程教学中涉及数理统计、系统工程、图论、微分方程、计算方法、模糊数学等多科性内容,这些作为背景性知识和能力的内容,一个好的教师一定要在教学中把它作为启发性的基本概念和方法介绍给学生。而这些内容要取得基于良好引导效果的教学成效,就必须使用包括数学软件在内的多种技术手段,以此来培养学生兴趣,引导学生自学,挖掘学生的学习潜能。

(三)确立“学生是中心,教师是关键”的原则。所有的教学活动都是为了培养学生,都要以学生为中心来进行, 这是理所当然的。数学建模的教学要改变以往教师为中心、知识传授为主的传统教学模式,确立实验为基础、学生为中心、综合素质培养为目标的教学新模式。然而,教学活动是在教师的领导和指导下进行的, 因而,教师是关键。在教学过程中教师对问题设计、启发提问、思路引导、能力培养方面承担重要职责,教师能否充满感情地、循循善诱、深入浅出地开展数学建模的教学就成了学生学习成效的关键,教师的业务能力、敬业精神、个人风格等发挥着非常重要的作用。因此,作为数学建模的教师,把数学建模思想运用在高等数学教学中的意义,就在于在整个教学中给了学生一个完整的数学,学生的思维和推理能力受到了一次全面的训练,使学生不仅增长了数学知识,而且学到了应用数学解决实际问题的本领。

数学建模小论文:论数学建模教育模式探究

论文关键词:数学建模 教育模式 引导-发现

论文摘要:数学建模课程教学的根本宗旨在于能力的培养和综合素质的提高,而能力和素质的培养应以知识及教育模式为载体。本文在高校数学教育改革的背景下,介绍了数学建模教学中引导-发现教育模式对教育改革和创新人才培养所起到的促进作用。

高等学校作为知识创新与人才培养的最主要基地,承担着培养知识结构合理、基础扎实、勇于创新、具有国际竞争力的优秀人才的重任。因此,以素质教育为核心,培养大学生综合素质和创新能力已成为我国高等教育改革的重点与着眼点。那么,在这项改革中,教育模式与方法的探究就显得尤为重要。

教育模式和方法不是一成不变的,是随着时代、社会环境和受教育主体的需求而改变的,当代大学生面临什么样的社会背景与走势,这些背景与走势对大学生的学习提出了什么样的要求[1]。

科技发展走势:科学知识发展越来越快,知识更新周期越来越短,这样情况下会学比学会更重要。

市场经济走势:市场经济的本质特征是竞争。随着我国市场经济的深化,竞争日趋激烈,就业与创业都有竞争,决定竞争胜负的是人的能力与素质,包括人的学习能力。

学习化时代走势:21世纪人类进入学习化社会,终身学习是每一个社会成员的任务,人可以离开学校但离不开学习。大学生的根本任务是学习,但首要是学会学习,为一生的学习打基础。

经济形势走势:人类社会正在从工业经济走向知识经济,创新成为第一位的,创新性学习成为最重要的学习。

21世纪的数学教育对受教育主体面临的上述走势表现出如下的反应和变化:

1.数学教学将从传统的“传授知识”的模式更多地转变到“以学生为主体,以兴趣为引导”的实践模式;

2.数学教学将更着重培养、发展学生的数学学习能力。包括采集与处理信息的能力;独立获取知识的能力;自我训练和实践的能力;创新学习的能力;

3.素质教育要求我们在基础教育阶段就开始培养学生有实现自我“可持续发展”的意识和能力,它要求我们的学生学会设问、学会探索、学会合作,去解决面临的问题。只有学会学习,才能学会生存,只有敢于创新,才能赢得发展。

数学建模作为一个学数学、用数学的过程,恰好是实现上述目标的有效途径之一。同时数学建模给学生们再现了一个微型的科研过程,这对学生们今后的学习和工作无疑会有很好的影响,也对学生的能力提出了更高层次的要求。近年来,数学建模已成为国际、国内数学教育中稳定的内容和热点之一,在建模内容、模式、范围与课堂教学内容真正意义的结合上进行了不懈的努力和探索,本文通过对数学建模教学模式进行了研究和探讨,旨在拟出一套具有较强操作性、行之有效的培养学生数学建模能力的途径和方法。

教学是一种由师生双方共同完成的、有目的、有组织的活动,它是教与学的有机统一,其中教师起着主导作用。“教什么”、“如何教”直接影响着学生学习的主动性和积极性,影响着教学的效率和质量,也关系到教学目标能否实现,教学任务能否完成。优秀教师取得成功的关键就在于他们能对教学内容(教什么)和教学方法(如何教)进行合理的组合,即能按某一种或某几种有效的教学模式进行教学。

数学建模教学模式主要有三种:讲解-传授数学建模教学模式;活动-参与数学建模教学模式;引导—发现数学建模教学模式。本文主要介绍引导—发现数学建模教学模式[2]。

发现学习的根本目的在于促进学生在获取知识的同时,拓展思维能力,培养独立思考能力和创新精神,从而在学习方式上,改变了从师型过多,自主型过少的状况;注重知识的发生、发展过程,让学生自己发现问题,主动获取知识,从而在学习状态上,改变了顺从型过多,问题型过少的状况;实施发现法教学,根据青少年好奇、好学、好问、好动手的主要特点,在教师指导下,通过阅读、观察、实验、思考、讨论等方式,引导学生像数学家当初发现定理那样去发现问题、研究问题,进而解决问题,总结规律,努力使学生成为知识的发现者,从而在学习层次上,改变了继承型过多,创新型过少的状况;发现法教学不注重问题的结果,因为问题提出方式的不同会产生不同的结论,从而在思维方式上,改变了求同型过多,求异型过少的状况;发现法教学旨在在发现问题过程中培养学生学习的兴趣,而不单是应对考试,从而在学习情感上,改变了应试型过多,兴趣型过少的状况。

一般认为,引导—发现教学模式由以下四个环节组成:

(1)设置情境或创设发现问题;(2)收集信息并进行探索实验;(3)引导发现,激励学生自主地解决问题;(4)引导评价,及时归纳总结。

“引导—发现”数学建模教学模式对于教师和学生来说,都是一个学数学、用数学共同促进的过程。特别对于教师来说,教师的“引导”体现在为学生创设一个好的问题环境,激发起学生的探索欲望,最终由学生“自主发现解决”面临的问题,并使获取的知识成为继续发现问题,获取新知识的起点和手段,形成新的问题环境和学习过程的循环。它的主旨应通过这个过程让学生在发现问题,在探索求解的实践活动中学习数学,加深对数学意义的理解,习惯用数学思维来思考问题,提高用数学知识解决问题的能力和意识。

“发现”在教学中起着非常重要的作用,它能充分调动学生的主动性和积极性,在探索、发现的过程中培养学生的思维能力和创新精神。同样在数学建模教学中,老师应有针对性地选择一些富有思考性、探索性的问题,引导学生在发现中学习。因为发现法有两个效用:一是“兴趣”,即能使学生在发现中产生“兴奋感”,近而培养学习兴趣,从“化意外和复杂性为可预料性和简单性”的行动中获得理智的满足,能使数学建模教学比较生动活泼。二是“迁移”能力的提高。这是指学生从发现学习中能获得这样一种能力,在遇到类似的但未学习过的问题时其思维过程将大大缩短,具备举一反三的能力。引导—发现教学模式的宗旨是要人们意识到并掌握科学探究的过程,而不仅仅是找到问题的答案。在这一模式中,师生之间是一种合作的关系,师生比较平等,学生可以自主地进行探究,有利于培养学生的自控能力。

这一教学模式主要应用在数学建模的高级阶段,在这一阶段,学生己有一定的建模能力,可以接触较复杂的应用问题,学生在采集有用信息时,发现问题,在教师的引导下解决问题。但这种教学方法对教师和学生的要求都比较高,教师需要了解学生掌握建模方法的思维过程和学生的能力水平,学生则必须具备良好的认知结构,而内容必须是较复杂的,符合探究、发现等高级思维活动方式。因此,在数学建模教学中教师应根据不同的教学内容和教学对象有选择地采用此模式进行教学,扬长避短,使此模式教学取得实效。

数学建模小论文:论数学建模与素质教育

[论文关键词]数学建模;素质教育

[论文摘要]通过对数学建模的实践性和操作性的学习和运用,将抽象的数学素质教育具体化、形象化,从而达到对开展数学素质教育的重要性的再认识,为数学素质教育提供新的认识视角,为推动数学素质教育作出努力。

素质教育是指依据人的发展和社会发展的实际需要,以全面提高全体学生的基本素质为根本目的,以尊重学生主体性和主动精神,注重开发人的智慧潜能,注重形成人的健全个性为根本特征的教育。

数学建模是指把现实世界中的实际问题加以提炼,抽象为数学模型,求出模型的解,验证模型的合理性,并用该数学模型所提供的解答来解释现实问题。

全国大学生数学建模竞赛组委会主任李大潜院士 2002年5月18日在数学建模骨干教师培训班上的讲话中说道: “数学教育本质上是一种素质教育,数学建模的教学及竞赛是实施素质教育的有效途径。”

李大潜院士的讲话一语道破“天机”,一下子解决了长期以来困扰数学工作者和学习数学者面临的或者无法参悟的问题,有力地指出了数学建模与实施素质教育的关系。李大潜院士提出的关于数学建模与实施素质教育的关系势必为推动素质教育的发展提供了新的动力和方向。

笔者参加工作以来,一直从事数学教学工作。从学习数学到数学教学,特别是经过多年的数学教学工作,也曾遭遇过类似的“尴尬”,多年来始终没有对数学建模与实施素质教育二者之间的关系形成系统的认识。但在学习了李大潜院士的讲话精神后,方才恍然大悟,经过认真整理与分析,结合自己的学习、工作实际,终于对此二者之间的关系有了进一步的认识。实际上,我们的工作,特别是数学教学工作,就是对学生进行严格的数学训练,可以使学生具备一些特有的素质,而这些素质是其他课程的学习和其他方面的实践所无法代替或难以达到的。这些素质初步归纳一下,有以下几个方面:

1.通过数学的训练,可以使学生树立明确的数量观念,“胸中有数”,认真地注意事物的数量方面及其变化规律。

2.提高学生的逻辑思维能力,使他们思路清晰,条理分明,有条不紊地处理头绪纷繁的各项工作。

3.数学上推导要求的每一个正负号、每一个小数点都不能含糊敷衍,有助于培养学生认真细致、一丝不苟的作风和习惯。

4.数学上追求的是最有用(广泛)的结论、最低的条件(代价)以及最简明的证明,可以使学生形成精益求精的风格,凡事力求尽善尽美。

5.通过数学的训练,使学生知道数学概念、方法和理论的产生和发展的渊源和过程,了解和领会由实际需要出发、到建立数学模型、再到解决实际问题的全过程,提高他们运用数学知识处理现实世界中各种复杂问题的意识、信念和能力。

6.通过数学的训练,可以使学生增强拼搏精神和应变能力,能通过不断分析矛盾,从表面上一团乱麻的困难局面中理出头绪,最终解决问题。

7.可以调动学生的探索精神和创造力,使他们更加灵活和主动,在改善所学的数学结论、改进证明的思路和方法、发现不同的数学领域或结论之间的内在联系、拓展数学知识的应用范围以及解决现实问题等方面,逐步显露出自己的聪明才智。

8.使学生具有某种数学上的直觉和想象力,包括几何直观能力,能够根据所面对的问题的本质或特点,八九不离十地估计到可能的结论,为实际的需要提供借鉴。

但是,通过数学训练使学生形成的这些素质,还只是一些固定的、僵化的、概念性的东西, 仍然无助于学生对学习数学重要性及数学的重大指导意义的进一步认识,无助于素质教育的进一步实施。

“山重水复疑无路,柳暗花明又一村。”数学建模及数学实验课程的开设,数学建模竞赛活动的开展,通过发挥其独特的作用,无疑可以为实施素质教育作出重要的贡献。正如李大潜院士所说:“数学建模的教学及竞赛是实施素质教育的有效途径。”

第一,从学习数学建模的目的来看,学习数学建模能够使学达到以下几个方面:

1.体会数学的应用价值,培养数学的应用意识;

2.增强数学学习兴趣,学会团结合作,提高分析和解决问题的能力;

3.知道数学知识的发生过程,培养数学创造能力。

第二,从建立数学模型来看,对于现实中的原型,为了某个特定目的,作出一些必要的简化和假设,运用适当的数学工具得到一个数学结构。也可以说,数学建模是利用数学语言(符号、式子与图象)模拟现实的模型。把现实模型抽象、简化为某种数学结构是数学模型的基本特征。它或者能解释特定现象的现实状态,或者能预测到对象的未来状况,或者能提供处理对象的最优决策或控制。

第三,从数学建模的模型方法来看,有如下几个方面:

1.模型准备 :了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。

2.模型假设 :根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。

3.模型建立 :在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。

4.模型求解 :利用获取的数据资料,对模型的所有参数做出计算(估计)。

5.模型分析 :对所得的结果进行数学上的分析。

6.模型检验 :将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。

7.模型应用 :应用方式因问题的性质和建模的目的而异。

从以上数学建模的重要作用来看,数学建模对于实施素质教育有着重大的指导意义和主要的推动作用。反过来说,素质教育也对数学建模有着必然的依赖性。

第一,要充分体现素质教育的要求,数学的教学还不能和其他科学以及整个外部世界隔离开来,关起门来一个劲地在数学内部的概念、方法和理论中打圈子。这样做,不利于学生了解数学的概念、方法和理论的来龙去脉,不利于启发学生自觉地运用数学工具来解决各种各样的现实问题,不利于提高学生的数学素养。长期以来,数学课程往往自成体系,处于自我封闭状态,而对于学数学的学生开设的物理、力学等课程,虽然十分必要,但效果并不理想,与数学远未有机地结合起来,未能起到相互促进、相得益彰的作用,更谈不上真正做到学用结合。可以说,长期以来一直没有找到一个有效的方式,将数学学习与丰富多彩、生动活泼的现实生活联系起来,以致学生在学了许多据说是非常重要、十分有用的数学知识以后,却不会应用或无法应用,有些甚至还会觉得毫无用处。直到近年来强调了数学建模的重要性,开设了数学建模乃至数学实验的课程,并举办了数学建模竞赛以后,这方面的情况才开始有了好转,为数学与外部世界的联系在教学过程中打开了一个通道,提供了一种有效的方式,对提高学生的数学素质起了显著的效果。这是数学教学改革的一个成功的尝试,也是对素质教育的一个重要的贡献。

第二,数学科学在本质上是革命的,是不断创新、发展的,是与时俱进的,可是传统的数学教学过程与这种创新、发展的实际进程却不免背道而驰。从一些基本的概念或定义出发,以简练的方式合乎逻辑地推演出所要求的结论,固然可以使学生在较短的时间内按部就班地学到尽可能多的内容,并体会到一种丝丝入扣、天衣无缝的美感;但是,过分强调这一点,就可能使学生误认为数学这样完美无缺、无懈可击是与生俱来、天经地义的,反而使思想处于一种僵化状态,在生动活泼的现实世界面前手足无措、一筹莫展。其实,现在看来美不胜收的一些重要的数学理论和方法,在一开始往往是混乱粗糙、难以理解甚至不可思议的,但由于蕴涵着创造性的思想,却又最富有生命力和发展前途,经过许多乃至几代数学家的努力,有时甚至经过长期的激烈论争,才逐步去粗取精、去伪存真,使局势趋于明朗,最终出现了现在为大家公认、甚至写进教科书里的系统的理论。要培养学生的创新精神,提高学生的数学修养及素质,固然要教授他们以知识,但更要紧的是使他们了解数学的创造过程。这不仅要有机地结合数学内容的讲授,介绍数学的思想方法和发展历史,而且要创造一种环境,使同学身临其境地介入数学的发现或创造过程;否则,培养创新精神,加强素质教育,仍不免是一句空话。在数学教学过程中,要主动采取措施,鼓励并推动学生解决一些理论或实际的问题。这些问题没有现成的答案,没有固定的方法,没有指定的参考书,没有规定的数学工具,甚至也没有成型的数学问题,主要靠学生独立思考、反复钻研并相互切磋,去形成相应的数学问题,进而分析问题的特点,寻求解决问题的方法,得到有关的结论,并判断结论的对错与优劣。总之,让学生亲口尝一尝“梨子”的滋味,亲身去体验一下数学的创造过程,取得在课堂里和书本上无法代替的宝贵经验。毫无疑问,数学模型及数学实验的教学以及数学建模竞赛的开展,在这方面应该是一个有益的尝试和实践。

第三,从应用数学的发展趋势来说,应用数学正迅速地从传统的应用数学进入现代应用数学的阶段。现代应用数学的一个突出的标志是应用范围的空前扩展,从传统的力学、物理等领域扩展到生物、化学、经济、金融、信息、材料、环境、能源等各个学科和种种高科技乃至社会领域。传统应用数学领域的数学模型大都是清楚的,且已经是力学、物理等学科的重要内容,而很多新领域的规律仍不清楚,数学建模面临实质性的困难。因此,数学建模不仅凸现出其重要性,而且已成为现代应用数学的一个重要组成部分。学生接受数学建模的训练,和他们学习数学知识一样,对于今后用数学方法解决种种实际问题,是一个必要的训练和准备,这是他们成为社会需要的优秀人才必不可少的能力和素养。

第四,数学建模竞赛所提倡的团队精神,对于培养学生的合作意识,学会尊重他人,注意学习别人的长处,培养求同存异、取长补短、同舟共济、团结互助等集体主义的优秀品质都起到了不可忽略的作用。

总之,数学建模对于实施素质教育有着不可比拟的巨大推动作用,数学建模与素质教育二者之间存在的这种紧密联系,是靠我们这些从事数学工作者们挖掘的,但是必须更加清醒地认识到,这种联系是需要我们继续去挖掘和发现,需要我们持之以恒地去努力实践,紧密地依托数学建模,大力推进素质教育的实施,为培养新的人才作出持续、不懈的努力。

数学建模小论文:浅谈数学建模对大学生能力的培养

摘要:本文主要分析了数学建模对学生各方面能力的培养所起到的作用,并提出了对数学建模教学的几点建议。

关键词:cumcm;数学模型;能力培养

一、引言

从实际错综复杂的关系中通过合理的抽象与简化,找出其内在的规律,然后用数学的语言———即数字、公式、图表、符号等描述出来,经过数学与计算机的处理得到定量的结果,并解释、检验、评价所得结论,供人们进行分析、预报、决策和控制,这种把实际问题进行合理的简化假设、归结为数学问题并求解的过程就是建立数学模型,简称数学建模。较好的完成一道数学模型题目,需要学生具备扎实的数学基础,更要求学生具有知识拓展、综合运用、自学、创新、团队协作等能力,而数学建模的过程也正是对这些能力的培养与提高的过程。

目前越来越多的高等院校开设了数学建模课程,并选拔优秀学生参加cumcm(全国大学生数学建模竞赛)。

二、数学建模过程对大学生能力培养的几个方面

1. 数学建模有利于培养学生的知识扩展能力和综合运用的能力。数学建模问题多来源于实际,其背景可能涉及天文、地理、医学、经济、管理等领域,cumcm的比赛时间仅有三天,这就要求学生能在较短时间内通过自学和讨论来掌握相关的知识,并且要把各领域知识与数学方法、计算机应用有效的结合起来。

2.数学建模有利于培养学生文献检索和信息收集的能力。建模涉及到的学生未知领域很多,这就要求学生应围绕需要解决的实际问题到图书馆、书店、网络中收集大量相关的信息,才能对问题有全面、深入的了解。学生在有限且短暂的时间里搜集、浏览、去伪存真,迅速捕捉真正有用信息,这就大大锻炼和提高了学生文献检索和信息收集的能力。

3.数学建模有利于培养学生的创新能力。按照对模型机理的了解程度不同,数学模型可分为白箱模型、灰箱模型、黑箱模型。对于灰箱、黑箱模型,需要学生大胆假设、合理推证,能创造性地给出解题方法。传统的数学课程所涉及的问题,一般有精确的答案,而数学建模中的问题没有标准答案,给学生留有充分的余地,鼓励学生创新,让学生充分发挥想象力,不拘于一种方法来解决。

4.数学建模有利于培养学生团队协作、攻关能力。三名学生为一小组参加cumcm,在三天时间内对所给问题给出一个较为完整的解决方案,这就需要三人在竞赛中合理分工,充分发挥个人的才智,集思广益,密切协作,使个人智慧与团队精神有机地结合在一起。当队员之间有分歧时,三人需要经过讨论寻求最优方案,必要时个人要做出妥协,这也是团队精神中不可或缺的精神品质。

5.数学建模有利于提高学生的计算机应用能力。利用计算机上网查找资料,处理大量繁杂的数据,熟练应用mathlab、maple、sas 等数学软件完成复杂的数学运算,这是参加数学建模的学生必须具备的技能。此外,数学建模中较多问题可以在计算机上进行更为逼真的模拟实验与检验,锻炼了学生的计算机应用能力。

6.数学建模有利于培养学生坚韧的意志品质。cumcm 比赛时间共72 小时,在这段时间内学生要选题、查资料、组织相关知识及思路、团队间讨论、编写论文,可以说三天的比赛时间对学生的体力、脑力都是极大的考验,经常会有参赛学生最后关头乱了阵脚,草草交卷了事。因此,数学建模竞赛能够锻炼和培养学生树立顽强自信、不屈不挠的意志品质。

三、对数学建模教学过程中的几点建议

1.鼓励学生积极参与,把教学过程转变为教师为辅学生为主的探究过程。数学建模课程不同于传统的高等数学教学,教师应是提问者,学生是思考者,教师要引导学生主动地分析问题、寻求解决问题的方法,评判学生工作成果的价值、意义、优劣,鼓励学生有创造性的想法和作法。

2.建模课程的讲授要由浅入深、逐步推进。开始时讲授一些简单有趣的例题,激发学生兴趣,充分调动学生的积极性。在基本建模方法学习完毕之后,可以组织模拟竞赛,让学生在模拟竞赛中得到磨练。

3.重视知识产生和发展的过程教学。课程讲授的目的不是让学生死记书本中的固定方法、技巧,而是要培养学生知识转化、应用的能力。因此,教师不要急于给出案例答案,要引导学生积极思考,重要的是体会其中蕴含的分析方法。

4.竞赛前一定要做好思想工作。建模竞赛对学生是一次锻炼也是考验,要让学生卸下包袱,不要过多考虑成绩好坏以及个人得失,只有以平和心态、团队为先的精神状态投入比赛,才能取得好成绩。

数学建模让学生真实感受到了数学的乐趣,它不仅有利于学生更好地掌握知识、运用知识,而且对学生能力和素质的全面培养起到了巨大作用。

作者简介:文冀中(1981- ),男,保定电力职业技术学院基础教学部助教。