时间:2022-02-11 08:02:47
引言:寻求写作上的突破?我们特意为您精选了12篇大学生数学建模竞赛范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
二、培训中创新方法——案例模板式教学
数学建模培训一般是通过给学生讲解数学建模的基本知识与理论,相关的数学软件及软件包,辅以讲座,上机,讨论等方式,让学生对数学建模的基本方法及相关数学软件的使用有一定的了解,对数学建模的基本思想有基本把握。在培训中,通过对以往竞赛试题的分析,将近几年的数学建模竞赛分为两大类:固定式问题和开放式问题,采用案例模板式教学对参加建模竞赛的同学进行辅导。其中,固定式问题指让学生对固定的有一定物理背景的问题进行数学建模求解;开放式问题指让学生准确把握题意后能充分根据自己的喜好,选取不同方向或方法进行建模求解。例如:2013年全国大学生数学建模大赛A题《车道被占用对城市道路通行能力的影响》为典型的固定式题目,要求学生对已给的视频数据确定通行能力的数学模型,并且求出排队长度。而2010年全国大学生数学建模竞赛B题《2010年上海世博会影响力的定量评估》为典型的开放式题目,让学生选取感兴趣的某个侧面,利用互联网数据,建立数学模型,使学生在准确把握题意后能充分根据自己的喜好,选取不同方向进行建模求解,相对于固定问题开放性较强。因此,要求教师在数学建模培训中,既要突出固定式的求解思路,又要注意培养学生开放式的发散思维。具体表现为:在固定求解思路上,要包括深刻理解题意,挖掘问题内部的区别,结合已有的数学建模基础、数学建模基本方法、数学建模特殊方法,通过对具体竞赛题的分析,总结出相关类型问题的数学求解方法;在开放性问题上,充分调动学生的积极性,让学生在查阅相关资料后,进行讨论交流,各抒己见,从各个层面,多角度的找出可行性强的数学建模方法。
【摘要】本文总结了笔者组织开展数学建模培训以及组队参加全国大学生数学建模竞赛的实施方案和培训经验总结,并结合大学阶段的高等数学教学,探讨了如何更加有效的开展大学数学建模竞赛并将竞赛培训的有关经验应用于大学数学教育之中。
关键词 数学建模;数学模型;竞赛培训
全国大学生数学建模竞赛是由教育部主办的全国高校规模最大的课外科技活动之一。本项比赛目的在于激发学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革。我校每年11月组织学生报名,随着比赛的逐年举办,学生的热情也是日渐高涨。通过近几年的培训参赛,我们再历年的比赛中取得了一些成绩,同时也有更多经验值得总结探讨。
1 领导高度重视建模竞赛活动
此次建模竞赛中取得的成绩和学校、教务处、学生处以及数学系等领导的重视是密不可分的。数学系成立了数学建模竞赛工作小组组织安排此次竞赛活动,学校以及教务处给予此次活动更方面的支持,亲自动员并多次亲临现场看望学生,学生处领导积极解决暑期学生生活方面的各项苦难,数学系领导亲自参加竞赛的培训工作,细心了解学生及培训教师的情况并积极解决,使得此次活动能顺利圆满的进行。
2 选拔优秀学生组队培训和竞赛
数学建模竞赛的主角是参赛学生,选择参赛学生的成功与否将直接影响到参赛成绩。我们于每年11月启动了全校规模的报名活动,为使学生更好的了解数学建模以及数学建模竞赛,数学系指导教师在报名之前进行了“走进数学建模”主题讲座。学生报名热情高涨,积极半报名参加。
选拔分为预赛和复赛两个阶段。主要围绕以下三个方面选拔参赛队员:首先要对数学建模有浓厚的兴趣;其次,要有创造力,勤于思考,用于创新并且有扎实的数学功底,能熟悉操作计算机;最重要的还要有团队合作意识。经过预赛以及复赛共选拔出30-40名同学进入竞赛培训名单。
3 科学系统的培训方法
此次竞赛培训共分两个阶段进行。第一阶段从每年3月至月,培训教师利用周末时间向学生讲解数学建模的一些基础知识,包括:Matlab的使用;学生欠缺的知识(如运筹学,概率统计等);常用数学模型(如规划模型,微分方程模型,回归模型,层次分析法等)。经过第一阶段的培训,学生已经具备的初步的数学建模能力,具备了参加数学建模竞赛的基础。
第二阶段从8月至9月,数学系对参赛学生进行了暑期培训。经过第一阶段的培训,有33名同学进入了暑假培训班。按照比赛要求,每三人一组,分本科专科组,共十余队,其中本科组四队,专科组七队。由于比赛在9月初进行,暑期培训就显得尤为重要了。由于我校暑假的特殊情况,学生的食宿等各项问题都需解决。数学系领导及时与学生处以及各部分协调,解决了学生的生活困难,保证了培训的顺利进行。在本阶段培训以模型的案例分析为重点,主要从近年竞赛真题出发,通过对试题的分析,讨论,加深对数学建模的认识,同时学习了竞赛论文的写作规范。为了让学生更好的准备比赛,数学系还邀请了四川省数学建模竞赛阅卷专家来校对培训教师以及学生进行指导。通过本阶段的学习,学生已经具备了参加数学建模竞赛的能力。
由于数学建模竞赛需要大量用到计算机,数学系在培训期间对学生全天开放数学系实验室,并有培训老师现场指导,以便学生更好的学习和练习数学建模的相关知识。
4 组建一支专业的培训教师队伍
在数学建模培训中,培训教师是核心。指导教师保证培训效果和竞赛成功的关键因素。为此,数学系从本系老师中抽调了专业教师组成指导教师组,制定培训方案,组织学生培训。从3月份集训开始,到9月份比赛结束,指导教师放弃了周末以及暑假的休息时间进行培训。尤其是暑假近一个月的培训,在高温的情况下给学生上课,所有的老师都是任劳任怨,从未有过一个老师争报酬,讲价钱。为了最后的比赛,和学生一起在暑期奋战。
5 重视参赛工程的指导
在学生参赛过程中,指导教师的及时指导是学生完成竞赛的保证。主要体现在以下方面:一是做好参赛学生的心理指导,比赛是在连续72小时内完成的,并且要和同组的队员合作,对学生的心理和生理都是极大的挑战。有很多学生中间会有放弃的心理,此时需要指导教师的鼓励和关心。指导教师细致的思想工作,在整个培训过程中不断强调团队合作的重要性,这些都是学生顺利完成比赛的保证。二是做好论文细节方面的指导。论文格式的规范与否与能否获奖息息相关。在竞赛的最后阶段,指导教师会提醒学生注意论文格式,并亲自帮学生检查论文格式是否符合要求,论文题目、摘要、
关键词 是否合适,
参考文献格式是否正确,论文是否完整等各方面问题。这些细节是论文是否取得好成绩的关键。为了更好的指导学生参加比赛,数学系在比赛期间抽调了十余名教师在比赛三天中对学生全天进行指导。
6 竞赛培训与大学数学教育相结合
[中图分类号]G71[文献标识码]A[文章编号]1005-6432(2013)22-0107-02
1前言
2013年的美国大学生数学建模竞赛成绩已于美国东部时间4月5日上午9点在其官方网站(http:///undergraduate/contests/mcm/login.php)全球同步。中南大学53支参赛队伍经过四天四夜的顽强拼搏,喜获18项一等奖(Meritorious Winner)、14项二等奖(Honorable Mention),再次刷新我校在该项比赛的最好战绩,为我校数学建模竞赛活动添加了值得记录的一笔。2013年美国大学生数学建模竞赛的有关数据详见下表。
2美国大学生数学建模竞赛概况
美国大学生数学建模竞赛(以下简称美赛)是由数学建模竞赛(The Mathematical Contest in Modeling,MCM)和交叉学科数学建模竞赛(The Interdisciplinary Contest in Modeling,ICM)两部分构成,由美国自然基金协会和美国数学应用协会联合成立的Consortium for Mathematics and Its Applications(简称COMAP)主办,美国运筹学学会、工业与应用数学学会、数学学会等多家机构协办。奖项设置分为:Outstanding Winner、Finalist、Meritorious Winner、Honorable Winner、Successful Participant、Unsuccessful六种,国内约定俗成地将其译为:特等奖、特等奖提名、一等奖、二等奖、成功参赛奖、未成功参赛。其中,绝大多数队伍能够获得成功参赛奖及以上的奖励。一等奖、二等奖、成功参赛奖的比例控制在15%,30%,55%左右,随年际略有浮动。而特等奖及特等奖提名(2010年新增,在最后一轮选拔被淘汰的队伍获此奖项)的评选是相当严格,通过两轮筛选挑出排名最高的二三十篇论文将进入最后的评审,获得特等奖的论文必须经过所有评委的评审。因此,这两类奖项的数量非常稀缺,尤其是特等奖更被誉为美赛的“皇冠”,获得该项奖的学校往往将其视为数学建模的最高荣誉。
美赛通常在每年的2月举行。2013年美赛在美国东部时间1月31日20点至2月4日20点(北京时间2月1日9点至2月5日9点)进行。今年的赛题延续了美赛以往的风格,与之同时也出现了一些新的亮点,在MCM的B题表现得尤为明显。需要指出的是,B题与2009年美国高中生数学建模竞赛(Annual High School Mathematical Modeling Contest,HiMCM)A题的命题思路如出一辙,但题目的开放性及难度明显高于后者。B题允许参赛选手从美国、中国、俄罗斯、埃及、沙特阿拉伯等五国中任选一国为其制订2013—2015年水资源战略计划,而2009年HiMCM的B题限定国家仅仅是美国。
作为各类数学建模竞赛的鼻祖,美赛不同于一般的纯数学竞赛,它是涉及多学科、多领域的高难度智力竞赛,所考察的是学生的综合能力,强调的是假设的合理性、解决方案的创造性、结果的合理性以及表达的清晰程度。作为最具国际影响力的赛事之一,美赛吸引了来自哈佛、斯坦福、清华、北大等国内外一流高校的学生参加。2013年更是有超过6000 支队伍参赛,创下该项赛事的历史新高,选手来自美国、中国、加拿大、英国、德国、法国等15个国家及地区。其中,中美两国各有6134支、397支队伍参赛,分别占参赛队伍总数的93.0%、6.0%,从某种意义来说,美国大学生数学建模竞赛是“中美两国对抗赛”。
与以往相比,2013年美赛的竞赛规则呈现出以下几点变化[2]:
再次强调电子版上除了控制号之外不能有任何个人信息;
电子版的首页为摘要页;
纸质论文邮寄一份(2012年要求邮寄两份);
纸质论文从上到下依次为控制页、摘要页和正文;
明确从2012年起开始颁发Frank R.Giordano特别奖;
自2013年起,全国大学生数学建模竞赛组委会联合中国工业与应用数学学会数学模型专业委员会,将与美赛组织者通力合作,共同评阅美赛论文[3]。
3美赛备战参考建议
因为参加美赛绝大多数是中国队伍,美赛俨然已成为“中国大学生数学建模竞赛”的春季赛。但其并不与“中国式数学建模+中译英”画等号。如果不熟悉美赛的风格及相关注意事宜,难以在激烈的竞赛中脱颖而出。如何准备才能在美赛中取得佳绩?笔者结合自身实践与体会,从以下几方面阐述,抛砖引玉以飨读者。
3.1培养检索英文文献能力
通常情况下,数学建模是在对实际问题做适当简化和处理的基础上建立模型,这就需要选手熟悉问题的背景和特点。早期的美赛题目许多来自于美国的社会与生活,如2005年的“水灾计划”和“收费亭”赛题。这对于不熟悉美国社会特点的外国选手,尤其是中国学生来说是很难找到切入点,故常常得到一些不切实际的结果。更糟糕的是,与赛题相关的中文文献往往寥寥无几,难以满足比赛的需要,这就要求参赛选手必须习惯检索英文文献。鉴于Google学术搜索包括了世界上绝大部分出版的学术期刊且其功能强大、操作简单,所以我们建议选手优先熟悉Google学术搜索功能及高级学术搜索技巧。
3.2注重文献阅读技巧
有针对地选择文献关键在于选准关键词,这样才能确保检索内容的全面性。阅读文献时的顺序是先看摘要,通过浏览摘要决定是否需要通读全文。阅读第一遍的时候一定要专注,力求明白大意,尽量不查字典以避免因过分依赖字典而造成思维上的混乱。可以在阅读过程中标记生词,待通读全文后再查找其意思。同时,要集中时间阅读文献以便形成整体印象,从而大幅提高阅读效率。
3.3充分发掘优秀论文资源
除了通过UMAP杂志出版的一年一期特等奖论文专刊以及数模论坛求助等途径获取原版优秀论文,笔者更提议各参赛选手及时与指导老师联系,尽可能获得本校历年美赛论文的原稿,并依照年份及选题按获奖等级归类。笔者个人认为,特等奖论文固然非常优秀,但其思维独特、难以效仿,能获得特等奖的参赛队伍更是凤毛麟角,广大参赛选手难以望其项背。相比而言,本校选手的数模培训经历相似,建模水平相近,通过鉴赏其作品,更利于把准自身方向,进而制订出可行的计划。同时,通过对若干论文研读可以总结出各档次论文的成败经验,从而更为真切地感受美赛的风格和特点,定好自身论文的基调。
3.4重视英文写作
美赛题目是以英文形式呈现,要求参赛选手用规范的英文作答,但对文辞的要求并不高,只要能基本地表达清楚含义即可。科技性的文章以陈述的句式为主,不需要华丽的修辞词汇。因此,对于有一定英语功底的选手,只需熟悉英文的几种常用句式和科技文献的写作特点,再辅以一定量的针对性练习即可。但赛题中问题的多样性以及论文的写作等要求三个人必须分工合作,这往往会使得最终论文出现不连贯现象。而这正是美赛评委最为忌讳的。评委们希望看到论文的内容前后一致,没有丝毫拼接的痕迹,并据此作为评奖的重要标准之一。这就要求队伍中英语水平最高的选手抓紧时间对已成形的文章加以润色,力争做到语句顺畅。
3.5规范论文格式
数学建模必然要借鉴一些文献,相应在论文的最后附上参考文献。过去多数培训对这方面关注程度不够,不少选手也认为参考文献无关紧要,结果表现在文献的引注不规范、不全面、数量很少。美赛是属于国际层次的竞赛,其对论文参考文献标注的要求与学术性文章相当,即当文章中使用前人的数据、结论等内容,就要标上相应的文献,否则就会被认定为学术不端行为,轻则影响竞赛成绩,重则取消竞赛资格。2007年有两支评定为特等奖的中国队伍就是因为其论文包含了大量其他资源的整段内容但没有任何注明的缘故而被组委会取消资格,这无疑给今后的参赛选手敲响了警钟[4]。
参考文献:
[1]http:///undergraduate/contests/mcm/contests/2013/results/.
参加完二九年高教杯全国大学生数学建模竞赛,感觉只有一个字——累!三天紧张拼搏的日子已经过去,时间飞快走过的感觉仿佛依旧,充实忙碌的情景依然时时浮现眼前。
经过这次竞赛,我学到了许多东西,拓广了对数学的认识,锻炼了自己的思维,主要有以下几点:
一、理论联系实际
以前,对于书本上的知识永远只是停留在理论的基础上,特别是数学知识。只是沉溺于解题和公式的推导所带来的乐趣中,很少来把书本上的知识与实际联系起来。自从参加了数学建模集训-竞赛的整个流程后,才真正踏进数学的殿堂,原来利用数学的知识还可以解决工业、商业和农业等生活中的问题。
数模竞赛的题目往往是从日常生产生活中提炼、抽象出来的,尽管题目已经得到了相当程度的简化,但对于我们这些仍在学校里求学而并未遇到过如此复杂问题的学生来说,并不简单。有时我们需要对海量数据进行处理,有时我们面临的却是零数据,无论何种情形,问题的解决都很让人头疼。不过这并不要紧,我们是勇敢者,既然已经选择了挑战,无论多艰难都要坚持下去,绝不退缩,在纷繁复杂的题目中寻找规律,运用合适的数学工具加以解决,对问题进行有效的分类,并逐个击破。
二、团队合作
三天三夜的时间面对同一个题目,不仅仅是紧张枯燥、机械乏味的脑力劳动。只有真正参加了比赛的同学,才能体会到一种与集体融为一体,与数学融为一体,与竞赛融为一体的感觉。
这里需要说明一点,我们不建议论文只由一个人来写,而应由队伍中的所有同学共同完成,以体现每个人的特点、反映每个人的智慧。分了工并不是说大家各自为正、互不交流,而是为了更好地进行合作。遇到问题时,大家需要共同讨论,发表自己的见解并理解同伴的想法,最后将意见统一起来。有的时候即使自己感觉别人不对,如果多数人意见统一了,也最好能同意他人的看法,这需要对队友充分的信任且具备否定自己的魄力。如果分工不当、配合失误,往往会导致竞赛的失败,对此我们一定要小心谨慎。
竞赛中的合作是一种艺术,只有大家不断的磨合,才能使合作达到默契的程度。
三、顽强的意志力
通过这次比赛使我重新认识了自己,72小时的连续奋战,不敢相信我的体力会如此充沛,能把题目做出来,写出了还算成功的论文来,不管得奖与否,这对我们已经是最大的肯定了。这次比赛也让我明白了一个道理:人的潜能是巨大的,关键是自己怎样去挖掘。记得参赛第一天早上8点,当我们拿到题目的时候,对着密密麻麻几千字的题目,只能用四个字来形容我们当时的表情——一头雾水;当第四天上午,我们把经过三天三夜的汗水与脑汁换来的论文时,我们终于松了一口气。
数学建模竞赛作为教育部四大学科竞赛之首,规模最大,影响最大。因此,数学建模竞赛培训显得尤为重要。它有利于让学生尽早了解并掌握建模的基础理论知识及相关应用软件;有利于培养学生分析问题和解决实际问题的能力;有利于培养学生的团队合作精神,使队员间尽早磨合,相互了解;有利于培养学生的创新意识和发散思维;有利于训练学生快速获取有用信息和资料的能力;有利于增强学生的写作技能和排版技术等。
通过参加数学建模竞赛,受到了一次科学研究的初步训练,初步具备了科学研究的能力,提高了自身的分析问题和解决问题的能力以及计算机应用能力,培养了刻苦钻研问题的精神以及与他人友好合作的团队精神,培养了敢于战胜困难的坚强意志和创新能力,这些能力和精神为各自今后的学习和工作都带来了巨大的影响。因为参与数学建模比赛,许多学生收获了知识,取得了荣誉,参赛队员的共同体会是:一次参赛,终生受益。
二、培训中创新方法--案例模板式教学
数学建模培训一般是通过给学生讲解数学建模的基本知识与理论,相关的数学软件及软件包,辅以讲座,上机,讨论等方式,让学生对数学建模的基本方法及相关数学软件的使用有一定的了解,对数学建模的基本思想有基本把握。
在培训中,通过对以往竞赛试题的分析,将近几年的数学建模竞赛分为两大类:固定式问题和开放式问题,采用案例模板式教学对参加建模竞赛的同学进行辅导。其中,固定式问题指让学生对固定的有一定物理背景的问题进行数学建模求解;开放式问题指让学生准确把握题意后能充分根据自己的喜好,选取不同方向或方法进行建模求解。例如:
2013年全国大学生数学建模大赛A题《车道被占用对城市道路通行能力的影响》为典型的固定式题目,要求学生对已给的视频数据确定通行能力的数学模型,并且求出排队长度。而2010年全国大学生数学建模竞赛B题《2010年上海世博会影响力的定量评估》为典型的开放式题目,让学生选取感兴趣的某个侧面,利用互联网数据,建立数学模型,使学生在准确把握题意后能充分根据自己的喜好,选取不同方向进行建模求解,相对于固定问题开放性较强。
因此,要求教师在数学建模培训中,既要突出固定式的求解思路,又要注意培养学生开放式的发散思维。具体表现为:在固定求解思路上,要包括深刻理解题意,挖掘问题内部的区别,结合已有的数学建模基础、数学建模基本方法、数学建模特殊方法,通过对具体竞赛题的分析,总结出相关类型问题的数学求解方法;在开放性问题上,充分调动学生的积极性,让学生在查阅相关资料后,进行讨论交流,各抒己见,从各个层面,多角度的找出可行性强的数学建模方法。求解思路如下图1和图2所示。
作者简介:谢海(1972-),男,广西岑溪人,桂林理工大学理学院,讲师,主要研究方向:智能计算和不确定性理论。(广西桂林541004)
一、什么是数学建模
“不论是用数学方法解决哪类实际问题,还是与其他学科相结合形成交叉学科,首要的和关键的一步是将研究对象的内在规律用数学的语言和方法表述出来,即建立所谓数学模型,还要将求解得到的结果返回到实际问题中去,这种解决问题的全过程称为数学建模。”[1]
二、我国大学生数学建模竞赛发展现状
大学生数学建模竞赛(MathematicCompetitioninModeling,简称MCM)1985年最先在美国出现。1989年,我国3校4队大学生首次参加美国的数学建模竞赛。借鉴美国数学建模竞赛成功经验,我国于1992年开始举办全国大学生数学建模竞赛(ChinaUndergraduateMathematicalContestinModeling,简称CUMCM),每年一届。
全国大学生数学建模竞赛参赛校数和队数逐年持续增长,师生们参赛的热情与日俱增,表明这项竞赛具有良好的声誉,在高等院校和社会上的影响力越来越大,对学生的吸引力越来越强,树立了自己的品牌,使之成为全国高校规模最大的一项科技课外活动。
我国大学生数学建模竞赛以全国大学生数学建模竞赛为核心,其他形式的竞赛有:地区性建模竞赛,如大学生数学建模邀请赛(原为华东地区数学建模竞赛)、苏北地区数学建模竞赛、华中地区大学生数学建模邀请赛;省市级建模竞赛;校内建模竞赛;专业建模竞赛,如电工数学建模竞赛。
此外,我国参加美国大学生数学建模竞赛的队伍也在壮大,参加2008年美国大学生数学建模竞赛(MCM)有849队,占总数的73%,参加交叉学科竞赛(ICM)的有357队,占总数的94%。
总体上说,我国大学生数学建模竞赛活动发展态势良好,成效显著。
三、大学生数学建模竞赛的成效
在全国大学生数学建模竞赛带动下,我国各级各类大学生数学建模竞赛蓬勃发展,数学建模不仅仅是一项竞赛,更是推动大学数学教育教学改革,提高大学生素质的成功探索,取得了巨大的成效。
全国大学生数学建模竞赛组委会主任李大潜院士在分析数学建模之所以受到大学生追捧的原因时说:“数学建模及其竞赛活动打破了原有数学课程自成体系、自我封闭的局面,为数学和外部世界的联系在教学过程中打开了一条通道,提供了一种有效的方式。学生们通过参加数学建模的实践,亲自参加了将数学应用于实际的尝试,亲自参加了发现和创造的过程,取得了在课堂里和书本上所无法获得的宝贵经验和亲身感受,这必能启迪他们的数学心灵,促使他们更好地应用数学、品味数学、理解数学和热爱数学,在知识、能力及素质三方面迅速地成长。可以毫不夸张地说,数学建模的教育及数学建模竞赛活动是这些年来规模最大也最成功的一项数学教学改革实践,是对素质教育的重要贡献”。数模教育及数模竞赛活动有助于广大教师转变教学观念,改进教学方法手段,不断把数模思想和方法融入到大学数学主干课程中,促进整个大学数学课程教学改革,并取得了丰硕成果。2001年、2005年两届高校国家级教学成果一、二等奖中,以数学建模、数学实验为主要内容的有11项,占整个数学类的38%。在2003至2008年度国家级精品课程中数学类共有64项,其中数学建模或数学实验共有9项,占整个数学类的14.1%。数模竞赛活动促进了数模教育教学,数模教育教学的深入展开反过来更好推动数模竞赛活动健康开展。
很多学生用“一次参赛,终生受益”来描述他们参加全国大学生数学建模竞赛的切身感受。通过参与数模、走进数模、体验数模,学生真切感悟到数学解决实际问题广泛性和有效性,形成一种“学数学、爱数学、用数学”的良好氛围。数学建模是数学走向应用的必经之路,是启迪学生数学心灵的必胜之途,是培养学生创新能力的极好载体,有利于提高学生综合素质。
四、数模竞赛与数模文化
数学不仅是一门科学,也是一种文化,即“数学文化”。所谓数学文化,是指数学作为人类认识世界和改造世界的一种工具、能力、活动、产品,在社会历史实践中所创造的物质财富和精神财富的积淀,是数学与人文的结合。全国大学生数学建模竞赛的“目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革。”其竞赛宗旨是“创新意识、团队精神、重在参与、公平竞争”。全国大学生数学建模竞赛的目的和宗旨充分反映了以数模竞赛为核心的各种数模活动带有浓郁的人文气息,具有明显的文化特征。数模竞赛带动了数模系列活动迅速展开,高校掀起数模热,数模系列活动的人文色彩越来越浓厚,文化特征越来越明显。数模竞赛带动数模系列活动,丰富数模文化基本的内涵,拓展数模文化的表现形式。数模文化是数学文化的重要组成部分。在高校里,数模文化可以看作是数学文化与校园文化的综合体。数学建模其实不是什么新鲜事物,而古而有之,历史上一些著名数学模型一直沿用至今。公元前3世纪欧几里德建立的欧氏几何学,就是对现实世界的空间形式所提出的一个数学模型。这个模型十分有效,后来虽然有各种重要的发展,但至今仍在使用。开普勒根据第谷的大量天文观测数据所总结出来的行星运动三大规律,后经牛顿利用与距离平方成反比的万有引力公式、从牛顿力学的原理出发给出了严格的证明,更是一个数学建模取得辉煌成就的例子。由此看出,数学建模具有丰富的文化底蕴。
五、高校加强数模文化建设的若干思考
近年来,数模热在高校里持续升温,为宣传数模、普及数模奠定良好基础。数模文化虽然是数学文化的组织部分,但数模文化也自成体系、具有自身特色。因此,高校加强数模文化建设、充分挖掘数模的文化内涵,具有重要的理论意义和现实针对性。高校加强数模文化建设应认真考虑以下几个问题:(1)建设数模文化的定位是什么。建设数模文化应着力提高大学生的数模素养、文化素养和思想素养。(2)如何确定有数模特色的数模文化基本内容。数模文化内容是十分丰富的,其基本内容应重点介绍数模史、数模思想、数模方法、数模精神、数模竞赛、典型数学模型赏析等。(3)如何构建形式多样、喜闻乐见的传播平台。数模文化的传播平台应形式多样、富有吸引力且便于学生参与,如:可通过“数模文化周”、“数模文化周”、“数模文化长廊”、“数模墙报、板报”、“数模文化讲座”、“数模论坛”、“数模网站”、“数模竞赛”、“数模夏令营”等传播数模文化。(4)如何将数模文化融入到数模教学及大学数学教学中去。将数模文化融入到数模教学及大学数学教学中去,能更加丰富数模课及大学数学的教学内容。(5)能否开设“数模文化”课程。目前,全国有将近四十所高校将“数学文化”作为公共选修课进行开设,取得了较好的效果。由于数模文化本身就自成体系,因此在条件成熟的情况,应该考虑能否也将“数模文化”作为公共选修课开设。
六、结束语
数模的文化功能目前还没有充分发挥,因此,数模文化研究应得到更多的关注,给予更高的重视。高校应大力宣传数模文化、建设数模文化,弘扬数模精神,充分发挥数模的文化功能,更好地提高学生的综合素质。
参考文献:
[1]周远清,姜启源.数学建模竞赛实现了什么[N].光明日报,2006-01-11.
一、通过数学建模竞赛把数学建模课程标准化
数学建模是一个连接数学理论和现实世界的纽带.我校从2009年开始开设数学建模选修课,最初开设选修课是为了参加数学建模竞赛的需要,通过参加高教社杯数学建模竞赛,在学生中进行立体宣传,充分调动学生兴趣和参赛热情.通过参加数学建模竞赛,引起了学校对数学建模课程的重视与支持.这两年,我校参加全国竞赛成绩斐然,数学建模竞赛在我校影响力的增加,选修数学建模课程的学生人数大幅增加,为数学建模课的开设奠定了基础.同时开设数学建模课程的目的也转向了竞赛与普及相结合,以提高大学生的综合素质和实践能力为重要目标,已经成为我校素质教育的一个重要方面.目前,已在全校所有专业开设了数学建模选修课,理论教学的同时辅以上机实践训练,每年500名学生修读此课.
打破数学课程是一个纯思维课程的框架,以数学建模为契机,将信息与计算机技术引入到数学课程中,应用计算机工具和数学软件来解决各种实际问题,给学生展现一个全新的数学世界.2010年我们在数学建模课程中增加了数学实验,并在学校以及教务部门的支持下,课程组结合课程教学安排,每年5月底举办校内大学生数学建模竞赛,该项活动得到了全校学生的积极响应,2011年有65个组,175人参赛.
二、数学建模对大学生能力的培养
数学建模活动是一个理论和实践相结合的活动,我校主要包括数学建模课程、数学建模竞赛和数学实验三个方面.从我校开展数学建模后的调查中得知,学生通过参加数学建模综合能力得到了加强,表现在以下几个方面:
1.提高大学生逻辑思维推理能力与抽象思维能力
建模是从实际问题出发抽象成数学问题,再对数学问题进行求解,最后将数学结论再应用到实际问题当中,并要具有通用性,这样的一个建模过程极大地锻炼了大学生逻辑思维推理能力与抽象思维能力.
2.提高大学生坚忍的态度和适应能力
坚忍的态度是成功的一个重要指标,成功是没有固定的土壤的.通过数学建模的学习及竞赛训练,大学生不仅学习到数学知识和现代的教学方法,更重要的是学会了如何利用现有的工具应用综合能力解决问题,体会到了坚忍不拔的重要性.因此,他们无论在那里,都能适应,都能坚持.
3.提高大学生可持续发展的能力
数学建模过程中涉及的问题非常之广,建模活动中要用到的很多是大学生在课堂中没有学习过的,这就要求大学生能通过自我学习和探讨后进行应用,培养了大学生的自我充电的能力.在工作岗位上正是这种能力保证了自己能够不断地发展.
4.提高大学生的领导能力和团队合作能力
随着问题规模的扩大,个人完成某项任务已经不可能,此时就需要团队协作,而数学建模竞赛恰恰锻炼了学生这种能力.建模活动需要将各个方面的专业人员组合在一起,具有不同知识结构的人在一起相互讨论,数学建模竞赛恰恰是三名同学为一组,在学习、集训、竞赛过程分工合作,相互探索和交流,最后形成统一认识.这就需要有组织和团队合作的素质,而这种素质为他们今后的工作开展奠定了基础.
5.提高了问题解决过程中的标准化思维模式的建立
数学建模活动的任务,要经过分析与综合、抽象与概括、比较与类比、系统化与具体化的阶段,其中分析与综合是基础,抽象与概括是关键.而对数学解答与模型检验而言,要求大学生所学的数学知识与计算机知识还有其他方面知识综合起来,根据计算结果作出合理的解释.通过实践,明白学以致用,提高分析、综合与解决问题的能力.
6.提高大学生的创新能力和创造精神
在数学建模实践中,所有问题都没有现成的答案、没有现成的模式,要靠充分发挥团队的创造性去解决.而面对一大堆资料、计算机软件等,如何解决问题,也要充分发挥自己的创造性.
三、开设数学建模课程在我校取得的效应
虽然我校开设建模时间较晚,但在普及度、校内竞赛以及全国竞赛等几个方面,特别是从参加全国大学生数学建模竞赛以来,我校都取得了优异的成绩,自2009年组织学生参加全国大学生建模竞赛以来,共获全国一等奖1项,全国二等奖3项,陕西省一等奖4项,二等奖6项,在陕西省参赛高校与全国高校中成绩优异.
在教学团队建设方面取得明显成效.从早期的4名教师,逐步扩大到七八名教师,不但解决了数学建模教学的需要,而且相当大地提高了教科研水平.
在课程建设方面,根据高职学校的实际情况,我们开设了数学建模选修课,在课程教学过程中除了数学理论教学外,还在数学实验环节里讲述Lingo和Matlab等软件,极大地提高了学生的学习兴趣,加强了动手能力的培养.
随着数学建模竞赛的不断深入开展,用人单位逐渐对在数学建模竞赛中取得一定成绩的学生有了充分的认可.
例1 北师大版数学必修1函数一章引例中的加油站储油罐储油量v与高度h、油面宽度w的函数关系(北师大版数学必修1第24页)与2010年全国大学生数学建模竞赛A题[1](CUMCM 2010A:储油罐的变位识别与罐容表标定)不谋而合,体现了中学数学建模与大学建模目的的统一,即应用数学知识解决实际问题.这里将两个题目摘要如下:
2010年全国大学生数学建模竞赛A题“储油罐的变位识别与罐容表标定”:为加油站储存燃油的地下储油罐设计“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况.图1是一种典型的储油罐尺寸及形状示意图,其主体为圆柱体,两端为球冠体。图1 储油罐正面示意图教材例题:图2是某高速公路加油站储油罐的图片(见北师大版必修一第24页),加油站常用圆柱体储油罐储存汽油.储油罐的长度d、截面半径r是常量;油面高度h、油面宽度w、储油量v是变量.储油量v与油面高度h和油面宽度w存在着依赖关系.在这里,主要讨论变量之间的依赖关系和函数关系.
图2 加油站圆柱形储油罐示意图可以看出,这道大学生建模竞赛题与中学教材的例题殊途同归,具有异曲同工之妙.二者都是研究加油站储油罐储油量与油面高度和油面宽度的关系,从而给出储油量v与油面高度h和油面宽度w之间的对应关系,而在大学生建模中更深入的要求给出地下储油罐“油位计量管理系统”的罐容表(即罐内油位高度与储油量的对应关系)的实时变化情况,并且深入研究罐体变位后对罐容表的影响.显然中学教材中出现的例题只是要求研究简单的函数关系,符合中学生的能力水平;大学生数学建模竞赛则根据大学生的实际能力,考虑实际问题的需求,直接设计可供加油站应用的罐容对照表.
例2 引用一道高考题叙述高中数学模型思想在概率统计中的应用,并分析与大学生数学建模的联系.
(2012年高考北京文)近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如表1.
表1:某市垃圾统计数据 单位:吨
“厨余垃圾”箱“可回收物”箱“其他垃圾”箱厨余垃圾400100100可回收物3024030其他垃圾202060
(Ⅰ)试估计厨余垃圾投放正确的概率;
(Ⅱ)试估计生活垃圾投放错误的概率;
(Ⅲ)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a>;0,a+b+c=600.当数据a,b,c的方差S2最大时,写出a,b,c的值(结论不要求证明),并求此时S2的值.
殊不知,这道题目取材于2011年全国大学生数学建模夏令营题目“垃圾分类处理与清运方案设计”[2].作为新课标的高考题,题目结合概率统计模型的思想,考查学生基本能力,立意贴近生活.
例3 (2012年高考陕西卷理科第20题)银行服务窗口的业务办理过程中的等待时间问题,现实生活气息浓厚,它对应用数学模型分析问题与解决问题能力的考查,起到良好的示范作用.同时,这道题目借用运筹学排队论[3]的思想,解决服务系统的排队问题.具体题目如下:
某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间统计结果如表2.
表2:银行顾客办理业务时间统计
办理业务所需的时间/min12345频率0.10.40.30.10.1
注:从第一个顾客开始办理业务时计时.
(Ⅰ)估计第三个顾客恰好等待4分钟开始办理业务的概率;
(Ⅱ)X表示至第2分钟末已办理完业务的顾客人数,求X的分布列及数学期望.
排队论模型[4]是大学生数学建模的基本模型之一,模型基于概率论以及数理统计课程,通过建立一些数学模型,以对随即发生的需求服务提供系统预测.现实生活中诸如排队买票、病人排队就医、轮船进港等等问题服务系统.
这道高考题基于银行服务窗口的排队问题,出于排队论思想命题,同时又考虑中学生实际能力,结合考点,成功地将题目适当的简化为一道具有实际背景的概率问题.体现了中学建模与大学建模同样是出于解决实际问题的需求,却又需要考虑题目使用对象,做出适当改编.在全国大学生数学建模竞赛(CUMCM)中应用排队论思想的题目也很多,例如CUMCM 2009 B题眼科病床的合理安排:医院就医排队是大家都非常熟悉的现象,它以这样或那样的形式出现在我们面前,例如,患者到门诊就诊、到收费处划价、到药房取药、到注射室打针、等待住院等,往往需要排队等待接受某种服务.考虑某医院眼科病床的合理安排,建立数学模型解决该问题;又如CUMCM 2007 D题体能测试时间安排:根据学生人数和测试仪器数安排体能测试时间,使得学生等待时间最小。2 结论和建议
2.1 一些结论
通过以上几个例题以及对中学数学建模和大学数学建模的分析,可以得到二者各自的特点:
中学数学建模问题或者建模竞赛:
①问题背景涉及的知识领域的专业性比较基本、初级,问题在专业和数学上都已经做了较大的简化和提炼.
②要解决的主题比较具体,比较单纯,容易理解,子问题深入程度的层次少、扩展小,学生容易找到切 入点.
③所用的数学知识或专业知识的层次符合中学生的知识结构水平和学习能力.
④问题的难度不大,远低于大学生数学建模.
⑤数学模型或解决方案往往比较简单、现成,对信息查询能力的要求不很高,模型计算不太复杂.
⑥学生的考虑及其实现都需要切合数学建模的基本模式,较高的数据处理及数据分析的能力,而在建模的整体性、系统性方面的综合分析思维能力是不强调的.
全国大学生数学建模问题或建模竞赛
①问题背景取材比较广阔,例如:
有当时社会或科学关注问题:CUMCM 1998B灾情巡视路线、2002B彩票中的数学、2003A SARS的传播、2004A奥运会临时超市网点设计、2010B 2010年上海世博会影响力的定量评估;
有源于生物医学环境类的:DNA序列分类、中国人口增长预测、血管的三维重建、SARS的传播、艾滋病疗法的评价及疗效的预测、眼科病床的合理安排、长江水质的评价和预测;还有源于交通运输管理类的、源于经济管理与社会事业类的、源于工程技术设计类的等.
②强调对问题的建模和求解,对模型或方案设计的质量、计算能力、建模仿真实现、模型及结果检验的要求比较高.
③开放性问题逐渐增多,不好入手.
④从数学建模解决问题的思维层次角度看,在深度和广度上都有一定的要求.
产生以上特点的原因可以总结如下:
第一,中学生和大学生起点不同.中学建模和大学建模是分别基于各自对应的数学以及其他知识基础进行的.对数学知识的要求差异很大.大学生数学建模需要具有数学分析、数值分析、离散数学、运筹学以及常(偏)微分方程等高等数学知识,甚至在建模过程中还需要快速学习其他方面的知识;而对中学生则以初等数学知识为主,适合中学生的认知水平,在建模过程中一般不需要大量的知识补充;
第二,需要研究的问题不同.大学生数学建模涉及的范围较为广泛,其表述形式较为隐晦,对数学化的要求较高;而中学生数学建模的问题大多贴近中学生的生活实际,具有一定的实践性和趣味性,学生较易入手;
第三,二者侧重点不同.中学生数学建模更多的是渗透建模思想、树立建模观念,学会处理实际问题的思考方法和解决途径;大学生数学建模则强调建立模型的实用性以及对问题实质性的分析和求解,对科学计算(计算机编程)的要求较高;
另外,一个客观的原因,即二者组织形式不同.大学数学建模以课程形式走进学生,同时开展三级数学建模竞赛(校内竞赛、国家级竞赛、国际竞赛)引导学生参与.而中学数学建模竞赛活动尚未普及,只是在一些地方开展过,因此只能从课堂教学和以教师为引导的实践活动展开.
当然,同样作为数学在实际问题中的应用,二者都是对实际问题分析简化,基于数学知识,应用计算机进行科学计算,最终得出对实际问题的最优解.而且二者在很多问题上可以建立姊妹题的形式,上述几个例题也证实了这一点。
2.2 几点建议
中学数学教材中多处体现的数学模型的应用预示着数学模型思想在中学数学中越来越重要,同时引用的几个例题不但说明了大学建模与中学建模的区别与联系,还体现了中学教材中数学建模思想的广泛应用.近年来,数学建模竞赛作为全国开展的最为广泛的学生科技活动,备受广大师生关注,因此,这几道例题也为平时的教育教学发出信号:
1.中学数学建模的教学以创新性、现实性、真实性、合理性、有效性等几个方面作为标准,对建模的要求不可太高,重在参与.
2.数学建模问题难易应适中,千万不要搞一些脱离中学生实际的建模教学,题目难度以“跳一跳可以把果子摘下来”为度.
3.广大师生日常中应该注意以教材为蓝本的知识挖掘,特别是对中学数学教材中出现的实际应用型问题深入分析,以课题学习或者探究活动形式开展数学建模.主动关注大学生数学建模竞赛的动向,甚至大胆对大学生建模竞赛题目做出改编,作为中学建模题目或者考试试题.
4.建模教学对高考应用问题应当有所涉及.鉴于当前中学数学教学的实际,保持一定比例的高考应用问题是必要的,这样更有助于调动师生参与建模教学的积极性,保持建模教学的活动,促进中学数学建模教学的进一步发展。
参考文献
中图分类号:G642 文献标识码:A DOI:10.16400/ki.kjdkz.2015.05.015
Exploration and Practice of Mathematical Modeling Activities
in the Innovation Educational Background
WANG Wenfa[1], WU Zhongyuan[2], XU Chun[1]
([1] College of Mathematics and Computer Science, Yan'an University, Yan'an, Shaanxi 716000;
[2] Office of Academic Affairs, Yan'an University, Yan'an, Shaanxi 716000)
Abstract Under the innovative education based on university personnel training requirements and problems of traditional mathematics education, the importance of mathematical modeling of students' innovative ability to Yan'an University, for example, according to "sub-level, sub-module" model of teaching and organization contest guidance, teaching and assessment in accordance with academic competitions, math majors and computer majors, two contests with a thesis project and Daiso, boutique website and digital-analog Association and second class "four convergence" approach to student innovation and innovative ability, and made remarkable achievements in personnel training, curriculum development, team building, professional building.
Key words mathematical modeling teaching; mathematical modeling contest; innovative ability training; reform measures
高等学校的大学生是国家科技发展的主力军,大学生的创新能力决定着国家未来的科技创新能力。数学建模课程教学与竞赛的广泛开展对高等学校大学生的创新能力培养具有十分重要的作用。如何在数学建模课程教学与实践中,既能增强大学生的数学应用意识,又能提高大学生运用数学知识和计算机技术分析和解决问题的能力,从而达到提高大学生综合素质和创新能力的目的,这个问题是近年来众多高校关注的问题。延安大学作为一所地方高校,在近几年数学建模课程教学与实践过程中,进行了一系列卓有成效的探索和改革,学生的创新意识和创新能力得到大幅度提升。
1 更新教育理念,充分认识数学建模对学生综合素质和创新能力培养的重要性
数学作为一门基础学科,它涉及的领域相当广泛,如经济、计算机及软件、管理、国防等,虽然数学在高校教育教学中的地位不断提高,人们对其认识也不断加深。但是,人们对数学类课程、数学学科在创新型人才培养中的重要性仍认识不够深入,在教学内容、教学方法、教学手段、评价措施等诸多方面,仍然沿用传统数学类课程的教学模式和思维方式,导致高校人才培养与创新教育背景下的人才培养需求完全脱节。正如著名的数学家王梓坤院士所说“今天的数学科学兼有科学和技术两种品质,数学科学是授人以能力的技术。”面向21世纪,高等教育在高度信息化的时代培养具有创新能力的高科技技术人才,数学作为一门技术,现已成为一门普遍实施的技术,也是未来高素质人才必须具备的一门技术。因此,在数学建模课程教学与实践过程中,必须转变传统数学类课程的教育教学理念,不能将其简单地当作工具和方法,而要将其当作是一门技术,而且是一门普遍适用的高新技术,在保证打牢基础的同时,力求培养学生的应用意识与应用能力、创新意识与创新能力,真正实现培养高素质创新人才的目的。
2 数学建模课程教学的改革与实践
2.1 分层次、分模块实施数学建模课程教学和竞赛指导
一是在数学建模专业课、专业选修课、公共选修课教学中按照知识点及教师研究方向,将课程内容分为两个层次九个模块。第一层次包括数学软件、初等模型、优化模型、数学规划模型、微分方程模型等五个模块;第二层次包括离散模型、概率模型、统计回归模型、数值计算与算法设计等四个模块。第一层次针对公共选修课教学,第一层次+第二层次针对专业课和专业选修课教学。具体措施是:由数学建模课程教学团队集体制定课程教学大纲和实施计划,每位教师按照课程教学大纲和实施计划主讲自己所从事的方向模块,在保证课程教学内容完整性和系统性的同时,根据学生知识层次,充分发挥每位教师专业优势,有效地提升了课程教学质量;二是在大学数学课程教学中,按知识点将数学建模思想融入其中,在激发学生学习数学兴趣的同时,强化学生的数学应用能力培养;三是在校内数学建模竞赛中,按照“建模知识+专题讲座+模拟+竞赛”的模式组织校内建模竞赛,主要以数学建模的基本思路、基本方法、基本技能为内容,使学生对数学建模有更加深入的感知和认识,在激发学生学习数学兴趣和积极性的同时,培养学生的科研意识和创新意识;四是在全国数学建模竞赛中,按照“集训+软件应用+旧题新做+模拟选拔+强化训练”的模式组织全国建模竞赛,主要以培养学生的洞察力、联想力、创新能力、团队协作精神和吃苦精神为内容,使学生的创新意识、团队协作精神得到良好培养。
2.2 建立数学建模精品课程网站,为数学建模爱好者搭建学习交流平台
网站将数学建模课程教学与数模竞赛有机地融合,为学生全方位了解、学习和掌握数学建模的相关知识、相关技能开辟第二条通道。网站包括:课程介绍【课程描述、教学内容、教学大纲、建设规划】、教学团队【整体情况、课程负责人、主讲教师】、教学资源【教学安排、多媒体课件、授课录像、电子教案、课程作业、课程习题、模拟试卷、参考资源】、实验教学【实验任务、实验大纲、实验指导、课程设计、实验作品、实验报告】、教学研究【教学方法、教学改革、教学课题、教学论文、学生评教】、教学成果【教学成果奖、获教学奖项、人才培养成果、教材建设】、在线学习【在线交流、在线自测】、成绩考核【平时成绩、作业成绩、实验成绩】、下载专区【教学软件、常用工具】、数模协会【协会简介、协会章程、通知公告、新闻动态、竞赛获奖、优秀论文、往届赛题、模拟赛题、校内竞赛、新手入门】等,这些内容几乎囊括了数学建模教育教学活动的所有内容,学生可以通过网络资料学习就可以全面了解数学建模的相关知识与技能。
2.3 专业相互融合,取长补短,充分发挥学生各自专业优势
数学与计算机科学学院现有数学与应用数学、信息与计算科学、计算机科学与技术、软件工程四个专业,其中两个为数学类专业、两个为计算机类专业。在课程教学中针对两专业的长处和不足,按照专业结队子、学生结队子的模式组织教学和小组讨论,强化计算机类专业学生的数学应用能力培养,强化数学类专业学生的计算机软件应用能力培养;在竞赛组队中,每队均配备至少1名计算机类专业学生和1名数学类专业学生。充分发挥各自的优势,取长补短,使学生的综合能力得到提升。
2.4 延伸数学建模竞赛效能,不断提高学生的创新能力
每年全国大学生数学建模竞赛和校内数学建模竞赛试题都是从实际生活中提取出的实际问题。因此,指导教师在指导学生毕业论文(设计)和大学生创新训练项目时,从往届赛题或模拟试题中选择一些题目,将其进行适当的延伸作为学生毕业论文(设计)和大学生创新训练项目选题。通过这一方式,进一步培养学生的创新思维和创新意识,为学生今后从事科学研究奠定了坚实的基础。
3 数学建模课程教学改革取得的成效
3.1 我校全国大学生数学建模竞赛成绩居全省同类院校前列
我校参加全国大学生数学建模竞赛共获得国家一等奖4项、国家二等奖6项、陕西省一等奖33项、二等奖71项,4次被评为优秀组织奖,1名指导教师获陕西省数学建模竞赛陕西赛区优秀指导教师,600多名学生参与大创项目,公开发表科研论文30余篇,学生的就业率和就业质量得到明显提高。该赛事因此也成为了延安大学学科竞赛品牌和亮点。
3.2 我校数学建模教育获得多项教学成果奖、质量工程项目及教改项目
教学成果奖:“理工类大学生数学素质与创新能力培养的研究与实践”荣获2009年陕西省教学成果二等奖;“地方性院校开展数学建模教学的实践与探索” 荣获2003年延安大学教学成果一等奖;“计算机专业高素质应用型人才培养模式的改革与实践” 荣获2012年延安大学教学成果一等奖;“厚基础、重实践、强化工程素质和创新的人才培养模式的研究与实践”荣获2011年延安大学教学成果二等奖;“数学建模课程改革及数学建模竞赛的研究与实践”荣获2007年延安大学教学成果二等奖。
质量工程项目:“数学与应用数学专业”为2010年省级特色专业;“数学建模教学团队”为2011年省级教学团队;“数学建模精品课程”为2012年校级精品课程;2014年“数学建模”课程获批为省级精品资源共享课程;2014年“数学与应用数学”专业获批为省级专业综合试点项目。
教改项目:“大学生数学应用能力创新能力培养的改革与实践”为2009年省级重点教改项目;“地方高校青年教师教学能力提升途径的研究与实践”为2013年省级重点;“青年教师教学能力提升的研究与实践”为2011年校级重点;“计算机相关专业校企合作人才培养模式改革的研究与实践”为2013年校级重点。
3.3 依托数学建模教育平台,推动指导教师教学科研能力和综合素质提升
数学建模教育不仅提高了学生的创新能力,同时也为指导教师的教学、科研及综合素质的提升起到了推动作用。数学建模课程是一门面向全校理、工、经、管、教各学科专业大学生开设的理论与实践相结合的基础课程,主要以学生的洞察能力、创新能力、数学语言翻译能力、抽象能力、文字表达能力、综合分析能力、思辨能力、使用当代科技最新成果的能力、计算机编程能力、数学软件应用能力、团队协作精神和组织协调能力等综合素质培养为目标,以数学建模课程教学、数学建模竞赛、第二课堂、毕业论文(设计)、大学生创新训练项目等为手段,通过“分层次、分模块、四融合”的教学模式的有效实施,在提高我校学生解决在理、工、经、管、教等学科专业领域遇到的数学建模问题的能力的同时,为我校高素质、应用型人才培养做出贡献。
基金项目:2013 “地方高校青年教师教学能力提升途径的研究与实践”(项目编号:13BZ37);2014年陕西本科高等学校“精品资源共享课程建设”项目“数学建模”课程建设阶段性成果
中图分类号:G642 文献标识码:A DOI:10.16400/j.cnki.kjdkz.2015.05.015
Exploration and Practice of Mathematical Modeling Activities
in the Innovation Educational Background
WANG Wenfa[1], WU Zhongyuan[2], XU Chun[1]
([1] College of Mathematics and Computer Science, Yan'an University, Yan'an, Shaanxi 716000;
[2] Office of Academic Affairs, Yan'an University, Yan'an, Shaanxi 716000)
Abstract Under the innovative education based on university personnel training requirements and problems of traditional mathematics education, the importance of mathematical modeling of students' innovative ability to Yan'an University, for example, according to "sub-level, sub-module" model of teaching and organization contest guidance, teaching and assessment in accordance with academic competitions, math majors and computer majors, two contests with a thesis project and Daiso, boutique website and digital-analog Association and second class "four convergence" approach to student innovation and innovative ability, and made remarkable achievements in personnel training, curriculum development, team building, professional building.
Key words mathematical modeling teaching; mathematical modeling contest; innovative ability training; reform measures
高等学校的大学生是国家科技发展的主力军,大学生的创新能力决定着国家未来的科技创新能力。数学建模课程教学与竞赛的广泛开展对高等学校大学生的创新能力培养具有十分重要的作用。如何在数学建模课程教学与实践中,既能增强大学生的数学应用意识,又能提高大学生运用数学知识和计算机技术分析和解决问题的能力,从而达到提高大学生综合素质和创新能力的目的,这个问题是近年来众多高校关注的问题。延安大学作为一所地方高校,在近几年数学建模课程教学与实践过程中,进行了一系列卓有成效的探索和改革,学生的创新意识和创新能力得到大幅度提升。
1 更新教育理念,充分认识数学建模对学生综合素质和创新能力培养的重要性
数学作为一门基础学科,它涉及的领域相当广泛,如经济、计算机及软件、管理、国防等,虽然数学在高校教育教学中的地位不断提高,人们对其认识也不断加深。但是,人们对数学类课程、数学学科在创新型人才培养中的重要性仍认识不够深入,在教学内容、教学方法、教学手段、评价措施等诸多方面,仍然沿用传统数学类课程的教学模式和思维方式,导致高校人才培养与创新教育背景下的人才培养需求完全脱节。正如著名的数学家王梓坤院士所说“今天的数学科学兼有科学和技术两种品质,数学科学是授人以能力的技术。”面向21世纪,高等教育在高度信息化的时代培养具有创新能力的高科技技术人才,数学作为一门技术,现已成为一门普遍实施的技术,也是未来高素质人才必须具备的一门技术。因此,在数学建模课程教学与实践过程中,必须转变传统数学类课程的教育教学理念,不能将其简单地当作工具和方法,而要将其当作是一门技术,而且是一门普遍适用的高新技术,在保证打牢基础的同时,力求培养学生的应用意识与应用能力、创新意识与创新能力,真正实现培养高素质创新人才的目的。
2 数学建模课程教学的改革与实践
2.1 分层次、分模块实施数学建模课程教学和竞赛指导
一是在数学建模专业课、专业选修课、公共选修课教学中按照知识点及教师研究方向,将课程内容分为两个层次九个模块。第一层次包括数学软件、初等模型、优化模型、数学规划模型、微分方程模型等五个模块;第二层次包括离散模型、概率模型、统计回归模型、数值计算与算法设计等四个模块。第一层次针对公共选修课教学,第一层次+第二层次针对专业课和专业选修课教学。具体措施是:由数学建模课程教学团队集体制定课程教学大纲和实施计划,每位教师按照课程教学大纲和实施计划主讲自己所从事的方向模块,在保证课程教学内容完整性和系统性的同时,根据学生知识层次,充分发挥每位教师专业优势,有效地提升了课程教学质量;二是在大学数学课程教学中,按知识点将数学建模思想融入其中,在激发学生学习数学兴趣的同时,强化学生的数学应用能力培养;三是在校内数学建模竞赛中,按照“建模知识+专题讲座+模拟+竞赛”的模式组织校内建模竞赛,主要以数学建模的基本思路、基本方法、基本技能为内容,使学生对数学建模有更加深入的感知和认识,在激发学生学习数学兴趣和积极性的同时,培养学生的科研意识和创新意识;四是在全国数学建模竞赛中,按照“集训+软件应用+旧题新做+模拟选拔+强化训练”的模式组织全国建模竞赛,主要以培养学生的洞察力、联想力、创新能力、团队协作精神和吃苦精神为内容,使学生的创新意识、团队协作精神得到良好培养。 2.2 建立数学建模精品课程网站,为数学建模爱好者搭建学习交流平台
网站将数学建模课程教学与数模竞赛有机地融合,为学生全方位了解、学习和掌握数学建模的相关知识、相关技能开辟第二条通道。网站包括:课程介绍【课程描述、教学内容、教学大纲、建设规划】、教学团队【整体情况、课程负责人、主讲教师】、教学资源【教学安排、多媒体课件、授课录像、电子教案、课程作业、课程习题、模拟试卷、参考资源】、实验教学【实验任务、实验大纲、实验指导、课程设计、实验作品、实验报告】、教学研究【教学方法、教学改革、教学课题、教学论文、学生评教】、教学成果【教学成果奖、获教学奖项、人才培养成果、教材建设】、在线学习【在线交流、在线自测】、成绩考核【平时成绩、作业成绩、实验成绩】、下载专区【教学软件、常用工具】、数模协会【协会简介、协会章程、通知公告、新闻动态、竞赛获奖、优秀论文、往届赛题、模拟赛题、校内竞赛、新手入门】等,这些内容几乎囊括了数学建模教育教学活动的所有内容,学生可以通过网络资料学习就可以全面了解数学建模的相关知识与技能。
2.3 专业相互融合,取长补短,充分发挥学生各自专业优势
数学与计算机科学学院现有数学与应用数学、信息与计算科学、计算机科学与技术、软件工程四个专业,其中两个为数学类专业、两个为计算机类专业。在课程教学中针对两专业的长处和不足,按照专业结队子、学生结队子的模式组织教学和小组讨论,强化计算机类专业学生的数学应用能力培养,强化数学类专业学生的计算机软件应用能力培养;在竞赛组队中,每队均配备至少1名计算机类专业学生和1名数学类专业学生。充分发挥各自的优势,取长补短,使学生的综合能力得到提升。
2.4 延伸数学建模竞赛效能,不断提高学生的创新能力
每年全国大学生数学建模竞赛和校内数学建模竞赛试题都是从实际生活中提取出的实际问题。因此,指导教师在指导学生毕业论文(设计)和大学生创新训练项目时,从往届赛题或模拟试题中选择一些题目,将其进行适当的延伸作为学生毕业论文(设计)和大学生创新训练项目选题。通过这一方式,进一步培养学生的创新思维和创新意识,为学生今后从事科学研究奠定了坚实的基础。
3 数学建模课程教学改革取得的成效
3.1 我校全国大学生数学建模竞赛成绩居全省同类院校前列
我校参加全国大学生数学建模竞赛共获得国家一等奖4项、国家二等奖6项、陕西省一等奖33项、二等奖71项,4次被评为优秀组织奖,1名指导教师获陕西省数学建模竞赛陕西赛区优秀指导教师,600多名学生参与大创项目,公开发表科研论文30余篇,学生的就业率和就业质量得到明显提高。该赛事因此也成为了延安大学学科竞赛品牌和亮点。
3.2 我校数学建模教育获得多项教学成果奖、质量工程项目及教改项目
教学成果奖:“理工类大学生数学素质与创新能力培养的研究与实践”荣获2009年陕西省教学成果二等奖;“地方性院校开展数学建模教学的实践与探索” 荣获2003年延安大学教学成果一等奖;“计算机专业高素质应用型人才培养模式的改革与实践” 荣获2012年延安大学教学成果一等奖;“厚基础、重实践、强化工程素质和创新的人才培养模式的研究与实践”荣获2011年延安大学教学成果二等奖;“数学建模课程改革及数学建模竞赛的研究与实践”荣获2007年延安大学教学成果二等奖。
质量工程项目:“数学与应用数学专业”为2010年省级特色专业;“数学建模教学团队”为2011年省级教学团队;“数学建模精品课程”为2012年校级精品课程;2014年“数学建模”课程获批为省级精品资源共享课程;2014年“数学与应用数学”专业获批为省级专业综合试点项目。
教改项目:“大学生数学应用能力创新能力培养的改革与实践”为2009年省级重点教改项目;“地方高校青年教师教学能力提升途径的研究与实践”为2013年省级重点;“青年教师教学能力提升的研究与实践”为2011年校级重点;“计算机相关专业校企合作人才培养模式改革的研究与实践”为2013年校级重点。
3.3 依托数学建模教育平台,推动指导教师教学科研能力和综合素质提升
数学建模教育不仅提高了学生的创新能力,同时也为指导教师的教学、科研及综合素质的提升起到了推动作用。数学建模课程是一门面向全校理、工、经、管、教各学科专业大学生开设的理论与实践相结合的基础课程,主要以学生的洞察能力、创新能力、数学语言翻译能力、抽象能力、文字表达能力、综合分析能力、思辨能力、使用当代科技最新成果的能力、计算机编程能力、数学软件应用能力、团队协作精神和组织协调能力等综合素质培养为目标,以数学建模课程教学、数学建模竞赛、第二课堂、毕业论文(设计)、大学生创新训练项目等为手段,通过“分层次、分模块、四融合”的教学模式的有效实施,在提高我校学生解决在理、工、经、管、教等学科专业领域遇到的数学建模问题的能力的同时,为我校高素质、应用型人才培养做出贡献。
基金项目:2013 “地方高校青年教师教学能力提升途径的研究与实践”(项目编号:13BZ37);2014年陕西本科高等学校“精品资源共享课程建设”项目“数学建模”课程建设阶段性成果
1990年12月7日至9日,上海市举办大学生(数学类)数学模型竞赛,这是我国省、市级首次举办数学建模竞赛。1991年11月23日至24日,中国工业与应用数学学会第一届第三次常务理事会决定成立数学模型专业委员会,决定组织1992年部分城市大学生数学模型联赛。后来,这个委员会实际上成为我国大学生数学建模竞赛的主要组织者。1992年11月27日至29日,部分城市大学生数学模型联赛举行,这是全国性的首届竞赛,10省(市)74所院校的314队参加。此后,大赛规模越来越大,参与的高校和学生越来越多。
该竞赛一般在每年9月举行,赛期3日。竞赛章程规定,大学生以队为单位参赛,每队3人(须属于同一所学校),专业不限。竞赛分本科、专科两组进行,本科生参加本科组竞赛,专科生参加专科组竞赛(也可参加本科组竞赛),研究生不得参加。每队可设一名指导教师(或教师组),从事赛前辅导和参赛的组织工作,但在竞赛期间必须回避参赛队员,不得进行指导或参与讨论。
全国统一竞赛题目,采取通讯竞赛方式,以相对集中的形式进行。竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实际问题,不要求参赛者预先掌握深入的专门知识,只需要学过高等学校的数学课程。竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准。竞赛期间,参赛队员可以使用各种图书资料、计算机和软件,在国际互联网上浏览,但不得与队外任何人(包括在网上)讨论。
大赛影响
1.1 数学建模竞赛的推广范围不强
赣南师院科技学院共7个系,其中一个理科系,一个文理兼招今年刚成立的系,其他系分别是音体美,以及文科相关的系。在往年的参赛中,参赛学生都来自唯一的理科系中的数学与计算机专业的学生。
1.2 学生的实际操作较少,应用较少
我国近几十年流行的思想是学生只要听老师的话、认真看书、考试并且只要有个好成绩、成绩排名靠前,只管学习就行,其它什么都不要做都行。在这种思想的引导下,学生很少做除了学习之外的事情,更少接触到把学到的知识运用到生活中去解决问题。在读大学之前大部分学生都没参加实践过,即使在读大学之后,不到学校外面参加社会实践的人也不在少数。在这种情况下,学生接触知识面单一,思维得不到训练,当参加数学建模竞赛面对赛题的解决实际问题,面对赛题的内容知识结构多样性,涉及很多方面时,就会产生严重的挫败感,这样形成一个恶性循环,致使严重削弱学生参加数学建模竞赛的积极性。
1.3 学生的合作探究能力较弱,团队精神不强
现阶段的独立学院的学生很大部分是独生子女,是在家里长辈的百般呵护下,成长起来的孩子,大部分眼里只有自己没有他人,遇事多只考虑自己不考虑他人,虽然数学建模竞赛是一种竞争,但这并不是一种单打独斗式的竞争,而是以3人团队的形式参赛虽然队员之间有比较明确的分工,但他们之间还必须要有高度的合作探究和有效的沟通,发挥团队的作用,如果合作探究能力较弱、团队精神不强,那么思维就会受到局限、创新能力就较弱,就得不到很好的培养,拿不到好的成绩,致使严重削弱学生参加数学建模竞赛的积极性。
1.4 学校竞赛的激励机制不太合理,经费提供较少
数学建模竞赛相对于其他竞赛,获奖难度更大,获奖面更小,但是目前赣南师院科技学院的奖金制度中,数学建模竞赛获奖者所获奖金远比难易程度小得多的电脑知识赛更低,甚至还不如校有奖学金高。自从2011年学生参赛奖金制度改革以来,数学建模竞赛经常面临基本上是大一学生参赛的状况。
1.5 学生的吃苦耐劳精神不强
数学建模竞赛的赛期一般为三天三夜,在比赛期间经常会面临熬夜。而在赛前的暑假里,赣南师院科技学院会组织专业的老师给学生进行为期三十至四十天的强化培训,暑假天气炎热,教学环境一般,致使学生参赛一次后就不再参赛。
2 学生参赛积极性不高的应对策略
2.1 做好组织宣传工作,提高师生对数学建模竞赛的认识
通过网站和资料室等平台,对获奖作品进行宣传和展示,让学生和老师随时了解大学生数学建模竞赛的情况,促进师生的积极性,利用学院的网站和资料室,开辟一个专栏,对数学建模竞赛进行宣传,并把历届竞赛获奖作品的相关资料进行展示。利用数学建模竞赛协会,定期组织活动,协会负责数学建模竞赛活动的宣传,如张贴海报、校报、展板、条幅、校广播台等;请参赛的老师和学生开设讲座,了解最新动态;定期举办学术讨论活动和小型竞赛;组织项目申请、项目支持、项目检验等;进行跟踪宣传,不仅能听到获奖赛后感言,更能了解这种国际性赛事的进行程序,如何选拔、历经了艰辛又坚持的过程,让数学建模竞赛成为独立学院应用型创新人才关注的话题。
2.2 实行教学方式多元化,充实课外实践活动
把课程教学活动与数学建模竞赛活动联系起来,构建数学建模竞赛与课程体系和教学方式紧密结合,使数学建模竞赛内容深入到日常教学活动中,使数学建模竞赛成为日常教学活动的有益补充。将与数学建模竞赛相关的课程纳入到校公选课中,供全校不同学科的学生选修。数学建模竞赛不是理工科学生的专项竞赛,吸收更多跨学科跨专业学生学习数学建模竞赛相关课程。同时,充分利用学生的课外活动时间和寒暑假时间进行数学建模竞赛与应用实践活动相结合,开展社会调查、专题调研、项目开发,走出校门到工厂到企业进行实地考察和现场学习,将所学的理论知识与实际相结合。还可在学院内部或兄弟院校之间举行中小型数学建模竞赛,让学生对自己发现的问题进行自主选题,试验题目的可行性,选择多种解决方法,自行设计与制作,为学生提供一个充实课外活动,丰富创新实践的舞台,较好地培养了学生的组织能力、自我管理能力、团队意识等综合素质。
3 建立健全数学建模竞赛激励机制,调动师生的积极性
3.1 创立创新学分制度。建立创新学分制度,这是激励数学建模竞赛活动持续开展的内在动力。学院制定学分认定管理办法,明确规定通过数学建模竞赛培训或竞赛获奖可以认定相应的公共选修课程学分。