时间:2023-02-04 13:52:43
引言:寻求写作上的突破?我们特意为您精选了4篇电力系统自动化论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
①继电保护自动化技术在母线保护中的应用。母线继电保护主要包括两种,即相位对比保护以及差动保护。相位对比保护指的是通过相位的对比方式,提高系统保护母线的可靠性和有效性;差动保护是将特点以及变化都一致的电流互感器设置在母线元件上,当系统母线侧边端子和二次绕组进行连接之后,再将继电保护装置安装在系统母线差动位置。在大电流接地过程中,通过三相连接的方式实现;小电流接地过程中,在相间短路中设置系统母线保护,然后通过两相连接的方式实现。②继电保护自动化技术在发动机保护中的应用。发电机是电力系统的重要组成部分,保证发动机的安全、稳定运行至关重要。继电保护自动化技术在发电机保护中应用主要包括两个方面:一方面,重点保护,如果发电机定子绕组匝间发生短路故障,将会导致发电机的故障部位温度上升,破坏绝缘层,威胁发电机的安全运行,通过在定子绕组内安装匝间保护装置,能够有效的防止定子匝间短路故障的发生;如果发电机的单相接地产生的电流超过规定值,通过安装接地保护装置能够对发电机进行继电保护;通过将发电机中性点、电流、相位进行相互结合,能够形成纵联差动保护,实现对发电机的保护;另一方面,备用保护,过电压保护能够有效的防止发电机自负荷较低的状况下发生绝缘被击穿的现象;过电保护能够有效的实现对外部短路故障的保护,防止发生短路破坏发电机;当发电机定子绕组发生低负荷问题时,继电保护装置能够自动切断电源,并发出相应的报警信号,实现对发电机的保护。③继电保护自动化技术在变压器保护中的应用。变压器是电力系统的重要组成部分之一,对电力系统的运行安全性和稳定性具有非常重要的作用。继电保护自动化技术在变压器保护中的应用主要包括以下几个方面:其一,短路保护,变压器短路保护包括阻抗继电保护和过电流继电保护,阻抗继电保护主要是通过利用变压器阻抗元件产生的保护作用,阻抗元件运行一段时间之后,会自动切断电源,以此实现对变压器的保护;过电流继电保护主要是在变压器电源两边电源和时间元件中安装过电流继电保护装置,电流元件运行一段时间之后,会自动切断电源,进而实现对变压器的保护。其二,瓦斯保护,当变压器的油箱出现问题时,在故障电弧的作用下绝缘材料和油都会发生分解,产生有害气体,通过采用瓦斯保护,当油箱出现上述故障时,能够自动的启动保护动作,将变压器电源切断,同时发出警报信号通知维护人员赶到故障地点进行处理。其三,接地保护,对于不接地变压器保护,应该采取零序电压保护措施;对于直接接地变压器保护,应该采取零序电流保护。④继电保护自动化技术在线路接地保护中的应用。电力系统的线路错综复杂,接地方式也相对较多,因此电力系统的接地方式包括大电流型接地与小电流型接地,当出现大电流接地时,应该立刻切断电源,防止接地故障对电力系统造成的破坏;当发生小电流型接地时,继电保护装置会发出报警信号,电力系统在一定时间内依然可以运行。针对不同的接地故障,应该根据故障状况采取相应的保护措施,具体状况如下所示:其一,零序功率,当电力系统发生接地故障时,零序功率的方向发生变化,零序电流波动相对较小,以此实现对电力接地故障的预测以及保护;其二,零序电流,当电力系统线路发生接地故障时,零序电流会迅速上升,继电保护动作非常敏感,能够及时的采取切断电源的保护措施,对电力系统进行保护;其三,零序电压,电力系统在正常运行时,并不会产生零序电压,如果电力系统发生接地故障,会导致零序电压的产生,继电保护装置能够及时的发出相应的报警信号,同时电网维护人员通过观察电压表数值能够判断系统是否发生接地故障,主要是因为当电力系统发生接地故障时,电压数值会降低。
1.2实例分析
文章以某电网为例,该电网于2010年应用了继电保护自动化技术,2011年4月23日,110kV变压器主变低压侧继电保护动作,1号主变101开关跳闸,2号主变119、131开关过流保护动作跳闸,重合闸动作,合成功,电网维护人员赶到事故现场,设备并无异常,维护人员通过查看跳闸过的线路,两条线路故障都能够合闸成功,但是却导致越级跳闸。通过对故障进行分析,发现为线路故障,开关拒动,处理方法表现为:把故障开关隔离,恢复供电,然后通知检修人员认真检查,查实状况后采取措施进行检修。
2继电保护自动化技术的未来发展趋势
继电保护自动化技术的未来发展趋势主要包括以下几个方面:其一,智能化,近年来,人工智能技术在电力系统继电保护自动化中得到非常广泛的应用,例如模糊逻辑算法、遗传算法、神经网络等,通过将这些人工智能技术应用在继电保护自动化系统中,能够保证继电保护自动化系统正确判别故障,并具有智能化解决复杂问题的能力,进而实现继电保护的智能化;其二,网络化,计算机网络技术在国家经济建设以及能源发展中发挥了至关重要的作用,通过将网络化技术应用在电力继电保护系统中,利用计算机网络能够将主要设备的继电保护装置连接在一起,创建继电保护装置网络,能够显著的提高继电保护的可靠性,因此电力系统继电保护技术的网络化是未来发展的一种必然趋势;其三,计算机化,随着计算机技术的快速发展,自动化芯片控制的电路保护硬件已经从16位单CPU结构发展为32位CPU微机保护结构,显著的提高了继电保护的性能以及响应速度,继电保护自动化系统的计算机化已经成为不可逆转的发展趋势。
1.2信息采集方式:对一个较先进的变电站综合自动化系统而言,其信号采集应该是可以完全分散分布和下放的,因为只有这样才能最大限度地减少二次控制电缆,简化二次回路。特别是在10kV变电站,可将测控部分合并在10kV保护装置内,根据模拟量对采样精度的不同要求,采用专用的电流输入口以接测量用。
1.3网络结构与通信:分散分布式结构,各间隔层与站级层所有控制指令、数据传送、信息交换等都是通过计算机数字通信实现的。这就对承担数字通信的物理介质的可靠性、实时性提出了非常高的要求。因此在变电站自动化向分散式系统发展时,采用计算机网络的优点来替代传统串口通信成为一种趋向。
2变电站电力系统自动化的技术发展途径
2.1神经网络控制技术的应用:由于神经网络具有本质的非线性特性、并行处理能力、强鲁棒性以及自组织自学习的能力,所以受到人们的普遍关注。神经网络是由大量简单的神经元以一定的方式连接而成的。神经网络将大量的信息隐含在其连接权值上,根据一定的学习算法调节权值,使神经网络实现从m维空间到n维空间复杂的非线性映射。
2.2模糊逻辑控制技术的应用:模糊方法使控制十分简单而易于掌握,在家用电器中也显示出优越性建立模型来实现控制是现代比较先进的方法,实践证明它有巨大的优越性!模糊控制理论的应用非常广泛。电热炉一般用恒温器来保持几档温度,以供烹饪者选用,模糊控制的方法很简单,输入量为温度及温度变化两个语言变量,每个语言的论域用&组语言变量互相跨接来描述。
2.3专家系统控制技术的应用:专家系统在电力系统中的应用范围很广,包括对电力系统处于警告状态或紧急状态的辨识,提供紧急处理,系统恢复控制,非常慢的状态转换分析,切负荷,系统规划,电压无功控制,故障点的隔离,配电系统自动化,调度员培训,电力系统的短期负荷预报,静态与动态安全分析,以及先进的人机接口等方面!虽然专家系统在电力系统中得到了广泛的应用,但仍存在一定的局限性,如难以模仿电力专家的创造性。
2.4线性最优控制技术的应用:最优控制是现代控制理论的一个重要组成部分,也是将最优化理论用于控制问题的一种体现。线性最优控制是目前诸多现代控制理论中应用最多,最成熟的一个分支。
3国内变电站自动化技术发展存在的问题
3.1不同产品的接口问题:接口是综合自动化系统中非常重要而又长期以来未得到妥善解决的问题之一,包括RTU、保护、小电流接地装置、故障录波、无功装置等与通信控制器、通信控制器与主站、通信控制器与模拟盘等设备之间的通信。这些不同厂家的产品要在数据接口方面沟通,需花费软件人员很大精力去协调数据格式、通信规约等问题。
3.2运行维护人员水平不高的问题:目前,变电站综合自动化系统绝大部分设备的维护依靠厂家,在专业管理上几乎没有专业队伍,出了设备缺陷即通知相应的厂家来处理,从而造成缺陷处理不及时等一系列问题。要想维护、管理好变电站综合自动化系统,首先要成立一只专业化的队伍,培养出一批能跨学科的复合型人才,加宽相关专业之间的了解和学习。其次,变电站综合自动化专业的划分应尽快明确,杜绝各基层单位“谁都管但谁都不管”的现象。
4变电站自动化系统应能实现的功能
4.1微机保护:是对站内所有的电气设备进行保护,包括线路保护,变压器保护,母线保护,电容器保护及备自投,低频减载等安全自动装置。各类保护应具有下列功能:故障记录转贴于。存储多套定值。显示和当地修改定值。与监控系统通信。根据监控系统命令发送故障信息,动作序列。当前整定值及自诊断信号。接收监控系统选择或修改定值,校对时钟等命令。
4.2数据采集及处理功能:包括状态数据,模拟数据和脉冲数据。状态量包括:断路器状态,隔离开关状态,变压器分接头信号及变电站一次设备告警信号、事故跳闸总信号、预告信号等。目前这些信号大部分采用光电隔离方式输入系统,也可通过通信方式获得。常规变电站采集的典型模拟量包括:各段母线电压、线路电压,电流和有功、无功功率值。
4.3事件记录和故障录波测距:事件记录应包含保护动作序列记录,开关跳合记录。变电站故障录波可根据需要采用两种方式实现,一是集中式配置专用故障录波器,并能与监控系统通信。另一种是分散型,即由微机保护装置兼作记录及测距计算,再将数字化的波型及测距结果送监控系统由监控系统存储和分析。
4.4控制和操作功能:操作人员可通过后台机屏幕对断路器,隔离开关,变压器分接头,电容器组投切进行远方操作。为了防止系统故障时无法操作被控设备,在系统设计时应保留人工直接跳合闸手段。
4.5系统的自诊断功能:系统内各插件应具有自诊断功能,并把数据送往后台机和远方调度中心。对装置本身实时自检功能,方便维护与维修,可对其各部分采用查询标准输入检测等方法实时检查,能快速发现装置内部的故障及缺陷,并给出提示,指出故障位置。
4.6数据处理和记录:历史数据的形成和存储是数据处理的主要内容,它包括上一级调度中心,变电管理和保护专业要求的数据,主要有:①断路器动作次数;②断路器切除故障时截断容量和跳闸操作次数的累计数;③输电线路的有功、无功,变压器的有功、无功、母线电压定时记录的最大,最小值及其时间;④独立负荷有功、无功,每天的峰谷值及其时间;⑤控制操作及修改整定值的记录。
一、电力系统自动化总的发展趋势
1.当今电力系统的自动控制技术正趋向于:
(1)在控制策略上日益向最优化、适应化、智能化、协调化、区域化发展。
(2)在设计分析上日益要求面对多机系统模型来处理问题。
(3)在理论工具上越来越多地借助于现代控制理论。
(4)在控制手段上日益增多了微机、电力电子器件和远程通信的应用。
(5)在研究人员的构成上益需要多“兵种”的联合作战。
2.整个电力系统自动化的发展则趋向于:
(1)由开环监测向闭环控制发展,例如从系统功率总加到AGC(自动发电控制)。
(2)由高电压等级向低电压扩展,例如从EMS(能量管理系统)到DMS(配电管理系统)。
(3)由单个元件向部分区域及全系统发展,例如SCADA(监测控制与数据采集)的发展和区域稳定控制的发展。
(4)由单一功能向多功能、一体化发展,例如变电站综合自动化的发展。
(5)装置性能向数字化、快速化、灵活化发展,例如继电保护技术的演变。
(6)追求的目标向最优化、协调化、智能化发展,例如励磁控制、潮流控制。
(7)由以提高运行的安全、经济、效率为完成向管理、服务的自动化扩展,例如MIS(管理信息系统)在电力系统中的应用。
近20年来,随着计算机技术、通信技术、控制技术的发展,现代电力系统已成为一个计算机(Computer)、控制(Control)、通信(Communication)和电力装备及电力电子(PowerSystemEquiqmentsandPowerElectronics)的统一体,简称为“CCCP”。其内涵不断深入,外延不断扩展。电力系统自动化处理的信息量越来越大,考虑的因素越来越多,直接可观可测的范围越来越广,能够闭环控制的对象越来越丰富。
二、具有变革性重要影响的三项新技术
1.电力系统的智能控制
电力系统的控制研究与应用在过去的40多年中大体上可分为三个阶段:基于传递函数的单输入、单输出控制阶段;线性最优控制、非线性控制及多机系统协调控制阶段;智能控制阶段。电力系统控制面临的主要技术困难有:
(1)电力系统是一个具有强非线性的、变参数(包含多种随机和不确定因素的、多种运行方式和故障方式并存)的动态大系统。
(2)具有多目标寻优和在多种运行方式及故障方式下的鲁棒性要求。
(3)不仅需要本地不同控制器间协调,也需要异地不同控制器间协调控制。
智能控制是当今控制理论发展的新的阶段,主要用来解决那些用传统方法难以解决的复杂系统的控制问题;特别适于那些具有模型不确定性、具有强非线性、要求高度适应性的复杂系统。
智能控制在电力系统工程应用方面具有非常广阔的前景,其具体应用有快关汽门的人工神经网络适应控制,基于人工神经网络的励磁、电掣动、快关综合控制系统结构,多机系统中的ASVG(新型静止无功发生器)的自学习功能等。
2.FACTS和DFACTS
(1)FACTS概念的提出
在电力系统的发展迫切需要先进的输配电技术来提高电压质量和系统稳定性的时候,一种改变传统输电能力的新技术——柔流输电系统(FACTS)技术悄然兴起。
所谓“柔流输电系统”技术又称“灵活交流输电系统”技术简称FACTS,就是在输电系统的重要部位,采用具有单独或综合功能的电力电子装置,对输电系统的主要参数(如电压、相位差、电抗等)进行调整控制,使输电更加可靠,具有更大的可控性和更高的效率。这是一种将电力电子技术、微机处理技术、控制技术等高新技术应用于高压输电系统,以提高系统可靠性、可控性、运行性能和电能质量,并可获取大量节电效益的新型综合技术。
(2)FACTS的核心装置之一——ASVC的研究现状
各种FACTS装置的共同特点是:基于大功率电力电子器件的快速开关作用和所组成逆变器的逆变作用。ASVC是包含了FACTS装置的各种核心技术且结构比较简单的一种新型静止无功发生器。
ASVC由二相逆变器和并联电容器构成,其输出的三相交流电压与所接电网的三相电压同步。它不仅可校正稳态运行电压,而且可以在故障后的恢复期间稳定电压,因此对电网电压的控制能力很强。与旋转同步调相机相比,ASVC的调节范围大,反应速度快,不会发生响应迟缓,没有转动设备的机械惯性、机械损耗和旋转噪声,并且因为ASVC是一种固态装置,所以能响应网络中的暂态也能响应稳态变化,因此其控制能力大大优于同步调相机。
(3)DFACTS的研究态势
随着高科技产业和信息化的发展,电力用户对供电质量和可靠性越来越敏感,电器设备的正常运行甚至使用寿命也与之越来越息息相关。可以说,信息时代对电能质量提出了越来越高的要求。
DFACTS是指应用于配电系统中的灵活交流技术,它是Hingorani于1988年针对配电网中供电质量提出的新概念。其主要内容是:对供电质量的各种问题采用综合的解决办法,在配电网和大量商业用户的供电端使用新型电力电子控制器。超级秘书网
3.基于GPS统一时钟的新一代EMS和动态安全监控系统
(1)基于GPS统一时钟的新一代EMS
目前应用的电力系统监测手段主要有侧重于记录电磁暂态过程的各种故障录波仪和侧重于系统稳态运行情况的监视控制与数据采集(SCADA)系统。前者记录数据冗余,记录时间较短,不同记录仪之间缺乏通信,使得对于系统整体动态特性分析困难;后者数据刷新间隔较长,只能用于分析系统的稳态特性。两者还具有一个共同的不足,即不同地点之间缺乏准确的共同时间标记,记录数据只是局部有效,难以用于对全系统动态行为的分析。
(2)基于GPS的新一代动态安全监控系统
2计算机技术在电力系统中的实现
2.1系统的应用服务器
在上文中所提及到的三层C/S结构,所添加的中间件的部位是最为重要的部分。这里将对中间件进行一个较为详尽的解释。这一部位具有强大的通信功能,同时自身的可扩展性可以得到极高的展现。由此使得客户机与服务器之间、服务器相互之间的数据传输稳定进行,实现两者群体之间的通信进行。结合在上文中所提到的功能的实现问题,可以知道,应用程序服务器在发挥本身程序功能的同时,又承担着DCOM服务器的角色。
2.2实时数据的获取和保存
应用程序服务器是承接实时数据的纽带。说到实时数据这里就要有所区分,实时数据是分为未处理的和已处理的两个部分,前者是存在于前置机中,后者则是具体的计算之后呈现的。这里需要提及到的是WinSock编程。当操作电力自动化时,内部存在一个存盘线程,位于后台部位,只要不是有系统出现暂停或者是退出的问题,就会一直运行。
2.3系统的应用逻辑
在文中我们所采用的三层C/S结构,应用逻辑是需要被定义在应用服务器端的,这样就可以达到所有用户共享这一资源的目的,假设遇到事物逻辑变化,则只需对服务器中的应用逻辑进行一定的更改即可。这样就使得客户端在运行和使用过程中减少了很多不必要的问题。
3计算机技术应用于电力系统自动化的价值和意义
当今社会的发展速度加快,对于电力的性能要求也进一步提高。将计算机技术应用与电力系统自动化的过程中,可以有效提升相关电力部门的管理水平和工作效率,自动化和智能化的优势得到很好的展现。另一方面则是在安全性方面更加有保障,由于计算机技术本身的自动化优势,可以将许多风险性事件的危险度降到最低,电力系统在自动化加强的同时,对电力使用的安全性能方面也有显著加强,使得安全性有效提高。计算机技术于电力系统自动化的应用过程中产生了极大的积极效益,促进了社会整体的进步与发展。