水利水电工程论文范文

时间:2023-01-16 23:21:08

引言:寻求写作上的突破?我们特意为您精选了4篇水利水电工程论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

水利水电工程论文

篇1

引言

水利水电工程原有的物流体系很薄弱,难以与社会物流系统相结合。因此,对水利水电工程现代物流系统的构建研究是很有必要的。

一、水利水电工程物流系统的特征

水利水电工程物流系统具有整体性、相关性、目的性、环境适应性,同时还具有规模庞大、结构复杂、目标众多等大系统所具有的特征。①水利水电工程物流系统是一个“人——机系统”:水利水电工程物流系统是由人和形成劳动手段的设备、工具所组成。②水利水电工程物流系统是一个大跨度系统:这反映在地域跨度大和时间跨度大。③水利水电工程物流系统是一个可分系统:作为水利水电工程物流系统,无论其规模多么庞大,都可以分解成若干个相关联系的子系统。④水利水电工程物流系统是一个动态系统水利水电工程物流系统联结多个供应商和工程施工需要,随需求、供应、渠道、价格的变化,系统内的要素及系统的运行经常发生变化。⑤水利水电工程物流系统的复杂性:水利水电工程建设所耗用物资的数量大、品种繁多、专业性较强、且具有不均衡性和不确定性。并且受物流系统中的采购、运输、仓储、信息、供应等子系统的制约,这些子系统的组织和合理运用,是一个非常复杂的问题。⑥水电工程物流系统是一个多目标函数系统:水利水电工程物流系统的总目标是实现宏观和微观的经济效益。解决最优订货策略、信息管理、随机情况下的库存风险管理和安全库存量的确定,使之有效的对水电工程物流进行管理,达到工程项目的投资、进度、质量三个控制的预定目标等都是水利水电工程建设管理者面对且必须解决的问题。

二、水利水电工程物流优化系统构建

物流从控制论的观点,其管理过程就是信息的收集、传递、加工、判断和决策的过程,以工程建设为例,其全部活动可概括为两大类:一类是生产活动,一类是管理活动,围绕和伴随着一系列生产活动,执行着决策,计划和调节职能,以保证生产有序高效进行,伴随着生产活动的是物流,伴随着管理活动的是信息流。在水利水电工程物流系统管理中,大量的信息量通过有效的管理,将会更加有力的保证工程进度,降低工程成本,提高经济效益。

水利水电工程物流信息的基本内容基本包括七个方面的内容:①需求信息:包括工程设计、施工预算、施工图文件、施工方案、工程进度计划、物资需求数量、物资的品种规格、资金计划、招投标文件、投标书、合同文件等。②资源信息:包括资源的分布、结构和潜力情况。③供应信息:包括各种供应渠道的变化和竞争的信息。④消耗信息:包括物资消耗的原始记录,主要材料的核销情况、单位产品消耗、同类工程消耗情况、降低消耗的主要措施和经验。⑤资金信息:即各工程物资采购资金使用情况、资金周转次数等。⑥储运信息:包括运输路线、运输工具、装卸、运输费用、运输条件、运输方式、交通运输状况、仓库设施及设备状况、仓储条件、入库及出库信息、库存情况、大型机电设备运输的沿途状况和仓储装卸情况、物资在工程各标段的流向等。⑦物资经济政策及管理信息:包括国家对有有关物资的方针政策和措施,物资市场的管理措施和要求,国民经济计划安排对物资市场供求的影响,还包括各种物资的经济订购批量,各种调查报表、专题报告、物资管理方面的指令、条例和规章制度,物资综合利用情况以及回收、修复、再生、复用的情况等等。通过上面的分析我们可以看出,物流信息系统是水利水电工程物流系统中的一个重要的子系统,是通过对水利水电工程物流相关的信息进行加工处理来实现对物流的有效控制和管理,并为物流管理提供战略及运作决策支持的系统。

三、物流信息系统管理两类活动流中的信息

调控活动包括水电工程建设的总体安排调度与需求计划,具体为工程设计、施工方案、资金计划、进度计划、采购计划等。物流运作活动包括供应商的综合能力、订单的产生与跟踪、货物运输、库存配置、物资消耗等。调控活动流程是整个物流信息系统框架的支柱。整个调控活动中的计划指导水电工程的物资从采购到送货过程中的分配与调度,使物流运作活动有序的完成。

库存管理直接与调控信息流和物流运作信息流相联系,是两大信息流的集成与结合部分,因此,如何加强对库存的管理,确定合适的安全库存量,选择最优库存策略是需要重点研究的问题。由以上分析,我们可以得出水利水电工程物流优化系统图。

由于水利水电工程设计、施工计划、工程进度、资金、工程物资需求量、采购、运输、包装、仓储、配送、货运等各物流功能和要素的管理涉及到的众多部门,为了协调一致,必须建立相关的物流信息系统,加强专业化物流系统的建设,转化原来水利水电工程建设中的单纯物资供应概念,注重与专业的物流公司合作,保证物流体系的不断优化和高效运作。

参考文献:

[1]齐二石,周刚.物流工程.天津:天津大学出版社.2001.P10~17.

[2]日本日通综合研究所.物流手册.吴润涛等译.北京:中国物资出版社.1986.P34~42.

[3]王晓东.现代物流管理.北京:对外经济贸易大学出版社.2001(9).

[4]丁立言,张铎.物流系统工程.北京:清华大学出版社.2000.

[5]顾培亮.系统分析与协调.天津:天津大学出版社,1998.

篇2

该枢纽由主坝和副坝两部分组成,其中主坝为混凝土闸坝,最大坝高37.8m,坝长338.45m,坝顶高程1242.6m;副坝位于黄河左岸阶地上,为土石坝,最大坝高15.1m,坝长529.2m。水库正常蓄水位1240.5m,总库容0.26亿m3,总装机容量12.03万kW,多年年平均发电量6.06亿kW·h,设计灌溉面积87.7万亩。

2物探任务与要求

黄河沙坡头水利枢纽工程的物探工作始于1996年,至2003年底全部结束。期间历经了可行性研究阶段、初步设计阶段和技施设计阶段。各阶段工作时间及任务要求如下:

⑴可行性研究阶段物探工作于1996年进行,主要任务是通过岩体波速测试和声波测井,划分岩性并了解岩体动弹性参数。

⑵初步设计阶段物探工作于2000年进行,物探任务与要求为:

①通过声波测井取得主坝坝基、交通桥基础岩体结构、软硬岩体分布规律,了解孔内软弱夹层、构造破碎带分布情况,以便验证和补充钻探资料。

②测定岩体的纵、横波速度,并求得泊松比、动弹性模量等参数。为坝基岩体质量评价提供依据。

③通过综合物探方法查明副坝坝基地层结构及古河道分布情况。

④查明导流明渠、交通桥地层结构及古渠道分布情况。

⑤通过对灌浆前、后岩体波速测试,评价灌浆试验效果。

⑶技施设计阶段物探工作于2002~2003年进行,物探任务与要求为:

①通过对坝基岩体进行地震波测试,了解基础岩体的弹性波参数,为工程基础岩体评价、验收提供依据。

②对固结灌浆的基础岩体进行声波检测,通过灌浆前、后岩体波速的变化情况,评价固结灌浆效果。

③通过对坝基混凝土垫层进行回弹检测,了解并查明混凝土垫层与基岩面的胶结状况。

3地形及地质简况

3.1地形地貌

坝址区内地势南西高而北东低,相对高差500~1000m。黄河自西向东流经坝址区,河谷呈不对称“U”形谷。坝址左岸地势相对平坦,为黄河Ⅰ级阶地,岸边有美利渠与黄河平行展布;右岸为香山山脉北麓,岸边有羚羊角渠与黄河平行展布,羚羊角渠南侧地形较陡,且冲沟发育。

3.2地质简况

坝址区附近有石炭系、第三系、第四系地层发育。

主坝坝基为石炭系下统前黑山组(C1q)、臭牛沟组(C1c)、中统靖远组(C2j)和第三系上新统临夏组(N2l)地层。坝区位于窑上复式倒转向斜的正常翼,岩层遭受构造破坏剧烈,层间挤压带、小型褶皱、揉皱,小断层以及节理、劈理发育,泥岩呈大小不等的菱形块体,炭质页岩则呈鳞片状,并具有失水干裂解体,再遇水泥化的特点,使坝基岩体成为典型的极软岩。岩层沿走向和倾向均呈舒缓波状,总体产状:走向NE45°~EW,倾向SE或S,倾角33°~70°。

副坝、导流明渠、交通桥及水源地部位分布着厚层第四系松散堆积物,表层为风积砂,深部则为厚层砂砾石层;基岩为第三系上新统临夏组(N2l)的棕红色、紫红色砂质粘土岩,局部夹有砾岩。

4物探方法与技术

根据不同勘查阶段的任务要求,物探主要开展了声波法、地震波法、地质雷达法、电阻率法工作。具体方法有:单孔声波测井、声波对穿、地震波相遇法、地震波CT、瑞利面波法、高密度电阻率法、地质雷达等。

⑴声波法:包括单孔声波和声波对穿。它是弹性波测试方法之一,其理论基础建立在固体介质中弹性波的传播特性上,采用频率主要为1k~30kHz和50k~1000kHz两个频段。该方法以人工激振的方法向介质发射声波,在一定距离上接收受介质物理特性调制后的声波,通过观测和分析声波在不同介质中的传播速度、振幅、频率等参数解决工程问题。本工程使用仪器为SD—1型声波检测仪,单孔声波由下而上逐点测试,点距为0.2m。声波对穿由下而上水平同步逐点测试,点距为0.1m。

⑵地震波法:包括地震波相遇法、地震波CT和面波法。其理论基础与声波法相同,采用频率范围为1~n×100Hz。该方法利用人工激发的地震波在弹性性质不同的地层内传播规律,研究与岩土工程有关的地质、构造和岩土体的物理力学特性,可对工程场地和人工建筑物的适应性进行评价。本工程使用仪器为R24型工程地震仪,地震波相遇法采用4~12道接收,检波点间距1.0m。地震波CT采用二边对比观测系统,激发点间距1.0m,接收点间距2.0m。面波法采用双边激发,12道接收,检波点间距2.0m。

⑶高密度电法:以岩土体的电性特征为基础,通过仪器观测和分析研究即可取得地下地质结构的变化规律,以此解决岩土工程问题。本工程使用仪器为WDJD-1型多功能电测仪,选用温纳尔装置,基本点距为2~3m,电极隔离系数为9~16。

⑷地质雷达法:通过地面的发射天线(T)向地下发射高频电磁波(主频为数十数百乃至数千兆赫),当它遇到地下地质体或介质分界面时发生反射,并返回地面,被放置在地表的接收天线(R)接收,并由主机记录下来,形成雷达剖面图。由于电磁波在介质中传播时,其路径、电磁波场强度以及波形将随所通过介质的电磁特性及其几何形态而发生变化。因此,根据接收到的电磁波特征,既波的旅行时间(亦称双程走时)、幅度、频率和波形等,通过雷达图像的处理和分析,可确定地下界面或目标体的空间位置或结构特征。本工程使用仪器为RAMAC/GPR雷达系统,实测采用剖面法,且收发天线的连线方向与测线方向平行,分别选用主频50MHz和250MHz两种天线进行测试,记录点距0.2~0.5m。

5物探成果概述

在可行性研究阶段、初步设计阶段、技施设计阶段共提交物探测试成果报告7份,取得了一定的技术效果。

5.1可行性研究阶段

通过对坝址区附近的钻孔声波测试和右岸PD01平硐硐壁岩体的地震波测试初步掌握了坝基岩体的弹性特征及不同岩性岩体的波速分布的基本规律。主要成果为:

⑴钻孔内基岩岩体波速主要受岩性控制:第三系上新统临夏组砂质粘土岩的波速均值为2100m/s,而砾岩、砂砾岩的波速均值为2900m/s;石炭系下统泥岩、炭质页岩的波速均值为2560m/s,泥质灰岩、砂岩的波速均值为3500m/s,灰岩的波速均值为4000m/s。

⑵PD01平硐岩性主要是石炭系泥岩、页岩等,岩体裂隙发育,实测岩体弹性参数为:纵波速度1500~2500m/s,横波速度520~1200m/s,动弹性模量1.69~8.10GPa,表明该平硐岩体强度较低。

⑶断层破碎带与泥岩、炭质页岩等低波速岩体间无明显的波速差异,而与灰岩、砂岩等高波速岩体间的波速差异明显。

⑷该坝址所测岩体波速与岩体风化分带的关系不甚明显。

5.2初步设计阶段

5.2.1地层结构

利用地质雷达、高密度电阻率法、瑞利面波法等综合物探方法,并结合钻孔资料,基本查明了导流明渠、副坝、交通桥、水源地的地层结构以及古渠道、古河道的分布规律。主要成果如下:

⑴导流明渠、副坝、交通桥、水源地的地层可分为三层结构。表层主要由风积砂等第四系松散堆积物组成,局部出现薄层耕植土,层厚1~12m,电阻率一般为500~1200Ω·m,面波速度一般为150~200m/s;中部岩性为砂卵砾石,层厚8~26m,电阻率一般为200~500Ω·m,面波速度一般为200~350m/s;下部为基岩,岩性为第三系砂质粘土岩,该层作为坝基岩体,层厚大于500m,电阻率一般为80~200Ω·m,面波速度一般为450~650m/s。

⑵古渠道主要分布在美利渠北侧,在平面上共有三条展布,主要规律为:位于导流明渠进水口附近为一条;交通桥上游20m至主坝下游100m之间分为三条;主坝下游100m处至导流明渠出水口附近,最北侧的两条古渠道合并为一条,而邻近美利渠的那条古渠道与美利渠平行向下游继续延伸。由于这些古渠道都由粉细砂充填,所以物探异常解释的渠底深度一般为5~10m(古渠道附近正常沉积地层的表层风积砂厚度较薄,一般小于3m)。

⑶古河道主要分布在左岸副坝区,其最大深度不小于30m。上覆地层为砂卵砾石,层厚10~30m,且由导流明渠往北逐渐变厚,下伏基岩为第三系砂质粘土岩。

5.2.2声波测井

通过对钻孔岩体的声波测试,较全面地查明了坝址区内不同岩体的声波变化规律:

⑴第三系(N2l)地层中,砂质粘土岩的岩体纵波平均速度为2120m/s,动弹性模量平均值6.37GPa;砾岩的岩体纵波平均速度为2400m/s,动弹性模量平均值为9.66GPa。

⑵石炭系(C)地层中,泥岩、页岩、炭质页岩、灰质泥岩、泥质粉砂岩、长石石英砂岩等岩体的纵波平均速度为2130~2410m/s,动弹性模量平均值为6.78~12.96GPa;泥质灰岩、灰岩、砂岩等岩体的纵波平均速度为3020~3690m/s,动弹性模量平均值为16.70~28.93GPa。

⑶断层破碎带的纵波平均速度为2150m/s,动弹性模量平均值为6.91GPa。

5.2.3岩体地震波测试

通过分析右岸PD02平硐硐壁岩体和左岸02#静载荷试验场地的地震波测试成果,得出下列基本结论:

⑴岩体弹性波参数均相对较低,纵波速度一般为1000~2500m/s,岩体动弹性模量一般为1.1~9.6GPa。

⑵岩体泊松比(μ)与岩体纵波速度(Vp)具有较好的相关性,相关关系为:

μ=0.4629-0.00006Vp;相关系数R=0.97………………………(1)

⑶岩体纵波速度各向异性差异不显著,各向异性系数一般小于1.2。

⑷受开挖扰动卸荷的影响,在垂直方向上岩体具有两层速度结构,表层地震纵波速度仅为400m/s,埋深约为0.6~0.7m。

5.2.4右岸灌浆试验检测

综合分析灌浆前后岩体的声波和地震波测试结果可知:

⑴坝基岩体具有一定的可灌性,灌浆后岩体强度得到一定的改善。

⑵地震波CT测试效果优于单孔声波测井的测试效果,既跨孔透射法优于单孔声波测井。

⑶地震波CT测试,更能客观地评价灌浆试验的灌浆效果。灌浆前后整体波速提高率一般为5~12%。

5.3技施设计阶段

5.3.1坝基岩体地震波测试

为提供枢纽工程坝基建基面岩体弹性波参数的建议值,我单位于坝基开挖工作前期,在拟开挖的坝基岩体上,模拟现场施工条件,进行了坝基岩体地震波测试的试验工作。总结出了不同开挖方式对坝基岩体扰动的影响程度、原状岩体经开挖暴露后纵波速度随时间的变化规律、物探工作的测试方法、测试时机及坝基岩体的开挖方式,并提交了建基面岩体波速验收标准的建议值。

在坝基开挖施工期间,采用试验时确定的测试方法——地震波相遇时距曲线观测系统,以基岩面岩体基本未扰动为原则,在人工撬挖的保护层上进行了大量的地震波测试工作。测线总长度累计15967m。取得了丰富的坝基岩体的弹性波参数,为坝基岩体的评价、验收提供了定量指标。坝基岩体地震纵波速度的变化规律基本上反映了坝基岩体分布的规律。

5.3.2安装间、北干电站、河床电站、隔墩坝基础岩体固结灌浆声波检测

根据初设阶段灌浆试验的检测成果,并结合灌浆区内岩体亲水性强的特点,确定了坝基岩体固结灌浆物探检测采用钻孔声波透射法进行。

通过分析安装间~隔墩坝的17对钻孔灌浆前后声波透射的测试结果表明,杂色泥岩、灰质泥岩灌浆后的波速总体平均提高率为6.3%,此结果与初设阶段的测试结果基本一致;砂岩条带灌浆后波速总体平均提高率为10.1%,说明砂岩条带的灌浆效果相对较显著。

5.2.3坝基岩体混凝土垫层回弹检测

坝基岩体混凝土垫层回弹检测的目的是了解并查明混凝土垫层与基岩面的胶结状况。回弹仪主要用于检测混凝土强度,该工程中使用回弹仪(型号为HT—3000)检测混凝土垫层与基岩面的胶结状况是其应用范围的拓展。检测的基本原理如下:

当混凝土垫层与基岩胶结紧密或胶结良好时,混凝土与坝基岩体形成一个整体,此时在混凝土表面测试的回弹值应为混凝土强度的真实反映;当混凝土垫层与基岩之间胶结不良或胶结面出现架空时,由于混凝土的约束力降低而使回弹时产生颤动,造成回弹能量损失,从而导致在混凝土表面测试的回弹值低于正常混凝土强度的真实回弹值。由此,可根据实测混凝土表面回弹值的变化规律,来定性地判断混凝土垫层与基岩的胶结状况。

参照《回弹法检测混凝土抗压强度技术规程》(JGJ/T23—2001)及回弹仪的率定结果并结合工程实际情况,C20混凝土(龄期大于28天)的实测回弹平均值应不小于25.0。而实测回弹平均值小于25.0的测区是由于混凝土垫层与基岩间胶结不良或脱空所至。检测结果表明:

基础岩体为杂色泥岩、灰质泥岩的坝段,实测回弹平均值小于25.0的测区约占测区总数的28.0%。说明混凝土垫层与基岩间脱空现象较明显;而在南干电站,基础岩体主要为砂岩。实测回弹平均值小于25.0的测区仅占该部位测区总数的3.8%,说明混凝土垫层与砂岩的胶结状况相对较好。

6总结

可行性研究阶段、初步设计阶段的物探成果在技施设计阶段均得到验证,如5.2.1中的地层结构空间变化规律已在基础开挖后得到证实,其开挖结果与物探解释成果基本一致,取得了较好的应用效果,发挥了物探的应有作用。

纵观可行性研究阶段、初步设计阶段和技施设计阶段的物探成果及其工作量,黄河沙坡头水利枢纽坝址区的主要工程地质问题是建基岩体的质量问题,所以在工程建设的每个阶段都进行了大量的基础岩体弹性波测试,使得测试成果得到进一步加强。下面仅就坝基岩体的质量特征进行总结。

6.1坝基岩体弹性特征

⑴坝基岩体弹性波普遍偏低,主要是因为岩体主要由泥、页岩等泥质岩类组成,且岩体中破裂结构面发育,岩体破碎所致。

⑵实测坝基岩体地震纵波速度一般为1000~2500m/s,岩体动弹性模量一般为1.10~9.60GPa。岩体泊松比与岩体纵波速度具有较好的相关性,相关关系见(1)式。

⑶受岩石结构、微裂隙、劈理、层理发育影响,致使岩体波速值各向差异不显著。坝基岩体弹性波测试结果表明:杂色泥岩、薄层灰质泥岩、厚层灰质泥岩、炭质页岩、砂岩的平行地层走向和垂直地层走向的地震纵波速度比值分别为1.04、1.08、1.06、1.07、1.03。

⑷坝基岩体同一岩性的声波速度比地震波速度一般高约20%~40%。地震波主频约为n×100Hz,属低频范围,而声波主频约为10k~20kHz,属高频范围,虽然两者均属于弹性波的范畴,但由于两者的震源扰动机制、波源频率、测段长度的不同以及测试岩体具有的低通滤波作用的影响,使得同一岩性的声波速度高于地震波速度。

6.2坝基岩体卸荷特征

⑴爆破开挖、机械开挖对坝基岩体扰动明显。经爆破开挖和机械开挖后,表层的纵波速度一般为400~700m/s,影响深度为0.2~0.6m。

⑵原状岩体经开挖暴露后,纵波速度有随时间延长而降低的趋势,在11小时内纵波速度值下降5%左右。

⑶坝基边坡岩体较建基面岩体卸荷影响相对较大,一般边坡岩体地震纵波速度略低于建基面岩体地震纵波速度。如杂色泥岩、薄层灰质泥岩、厚层灰质泥岩边坡的实测地震纵波速度平均值分别为1430m/s、1380m/s、1840m/s,而其建基面的实测地震纵波速度平均值分别为1510m/s、1460m/s、1910m/s。

⑷开挖方式和暴露时间直接影响岩体卸荷程度和弹性波速,因此采取有效的开挖方式,减少对基础的扰动,并及时保护对工程来讲非常重要。

7体会

物探工作是各个设计阶段工程勘察的重要组成部分。随着我国水利水电事业的快速发展,类似工程今后可能还会遇到。通过黄河沙坡头水利枢纽的工程实践,颇有体会:

⑴要充分理解《规范》和《任务书》对每一勘探阶段所要求的精度和深度,扎实做好每一勘探阶段的基础工作。笔者认为,黄河沙坡头水利枢纽物探工作的布置、资料解释比较合理,起到了前期成果指导后期工作,后期成果补充、验证前期工作的效果。

篇3

二、水利水电工程基础建筑灌浆施工控制的有效措施

(1)工程费用控制措施。

基础灌浆施工费用控制的最终目标是做到净效益最大化,尽可能的降低是灌浆施工和其他工序的费用,同时尽可能的降低负效益。因此,应该根据施工现场的具体状况以及自然规律,综合考虑施工控制工艺以及方法,对整个灌浆系统进行合理的设计,同时结合最优化原则,尽可能的减少负效益,寻找最理想的运用方法,有效的控制工程费用。

(2)环境效益控制措施。

水利水电工程的环境效益控制措施应该重点考虑以下几种因素:控制生产和生活污染物、有害气体、施工飘尘、污染带等的排放,防止对地下水、环境等造成影响;控制施工机械、爆破、运输等机械的噪声,避免对周边居民造成影响;在施工的过程中应该尽可能少的破坏周边植被景观,同时还应该考虑水利水电工程建成后长期对邻近建筑以及人类健康造成的影响。

(3)质量控制措施。

灌浆质量要素包括灌入能力、强度以及可塑性,质量控制目标应该根据水利水电工程的性质以及设计施工要求而定,控制措施主要表现为:首先,根据吸渗反应定理、劈裂判别定理、劈裂定向定理等制定相应的质量控制目标;其次,根据制定的质量控制目标选择合适的灌浆材料,然后预测与协调材料性质、地质条件以及施工技术三者的关系;再者,当灌浆施工结束之后的28天内,重视后期的养护工作,全面的重视施工过程的质量控制,认真的做好压水试验,试验结果表明施工质量合格之后才算过关。

篇4

深覆盖层地基是我们在河流流域进行水利水电工程设计中最常见的一种地基,其主要是因为河流的冲击使得各种碎石、砂石或者是泥石等长时间的堆积,进而造成该地域堆积厚度过大,影响了地基的稳定性和防渗性,并且也不容易进行后期的处理,置换或者是填充的难度都较大,需要我们格外关注。

2、饱和松散砂土

饱和松散砂土的承载力强度和稳定性都是很差的,一旦受到外力的作用就很可能产生错位或者是变形,严重的影响地基的稳定性和安全性,必须采取必要的地基处理技术进行加固处理。

二、水利水电工程施工中地基处理注意事项

针对水利水电工程建设中常见的一些较难处理的地基类型,在地基处理技术设计过程中我们应该注意的事项主要有以下几点:

1、准备工作一定要到位

在准备工作中对于工程地质的勘探是最为重要的,我们首先要充分的了解工程所处的具体地质状况才能够选择最佳的地基处理技术进行设计,如果对于当地地质勘探不明的话就会严重的影响设计方案和工程质量及工程建设进度。

2、合理选择处理方案

针对工程的地基具体状况选择出最佳的地基处理方案,尤其是在地基处理机械、材料和成本等方面进行合理的控制,综合各个方面的状况选择出最佳的设计方案,确保地基处理的效果和质量达到规范设计标准。

3、注重后期的检测

在具体施工完毕后还需要根据我们的设计要求,对地基处理部位进行评估和检测,确保施工的质量。

三、水利水电工程设计中地基处理技术

在水利水电工程地基处理设计中,常用到的地基处理技术主要由以下几种:预压技术、强透水层防渗处理技术、可液化土层处理技术、深覆盖层处理技术、置换技术、灌浆技术和振动水冲技术。

1、强透水层防渗处理技术

强透水层防渗处理技术主要就是在强透水层清除完成后,采用混凝土或者是粘土回填,然后利用混凝土和水泥在地基四周构建建筑防渗墙和建筑截水墙等设施来达到防渗目的。工程案例:新疆英吉沙县青年水库是一座以灌溉为主的平原丘陵区水库,除险加固后设计库容145.23万m3,由坝体、放水涵洞和放水闸等建筑物组成。水库桩号0-400~0-300段坝基存在粉细砂层透水层,形成坝基渗漏通道。本次设计将粉砂层透水层挖断截渗,将上游坝坡土工膜防渗斜墙延伸至粉砂层以下1.0m,伸入相对不透水层1.0m,与坝体防渗土工膜紧密结合,形成完整闭合防渗体,开挖槽底宽0.5m,边坡1:1,开挖面采用原状土回填夯实。坝基经过防渗处理后,现状坝体运行良好,坝后未有渗水现象。

2、置换技术

置换技术主要包括以下三种具体的操作方法:

(1)振冲置换技术,主要就是采用振冲机来打孔,然后注入粗粒材料,最后使其凝聚成基桩增强稳定性;

(2)换填技术,即通过清理劣质土质,然后填充优质稳定土壤来增强承载力。工程案例:新疆呼图壁县红山下水库为一座拦河式水库,由大坝、放水涵洞,导流冲沙涵洞、溢洪道等建筑物组成。导流冲沙涵洞布置在坝体桩号0+000处,全长184m,由进口段、有压洞身段、闸井段、无压洞身段、陡坡段、消力池段组成,洞身为一孔城门洞型,净宽2.5m,高2.8m。最大泄流量70m3/s。根据地质勘探,导流冲砂涵洞地层岩性为第四系全新统冲洪积(Q4al+pl)卵石混合土层,承载力特征值fak>250kpa,地基承载力比较差,设计时考虑将导流冲砂涵洞下卵石混合土层换填成2~6m厚C15素砼,承载力特征值fak<300kpa,换填后满足涵洞承载力设计要求。

(3)挤(夯)置换技术。

3、预压技术

预压技术是我们在水利水电工程地基处理过程中最常用到的一种地基处理技术,具体来说,预压技术主要包括三种:

(1)真空预压技术,这种处理技术主要就是通过在需要我们进行处理的地基表面铺设塑料薄膜的方法来隔绝处理地基和外界的联系,然后采用真空泵针对隔绝起来的处理地基进行操作以抽取出地基内的空气和水分,进而可以达到提高处理地基的稳定性和承载力的目的,一般说来,在处理过程中,为了更好地达到处理效果,我们还可以采取添加塑料排水板的方法来更快的实现效果,如果是针对面积较大的地基进行处理的话我们可以采取分区的方法逐一进行处理;

(2)堆载预压技术,这种预压技术主要是在需要处理的地基之上堆积一定量的预压物,使得地基能够在预压物的作用下提高自身的承载力和稳定性,在预压物量的计算时我们应该尽可能的使得其重量稍大一些,进而使得我们的预压效果更好一些,在堆积的过程中尤其是要注意如果是碰到超软土基时,需要我们采用一些轻型的机械进行处理,避免大型机械的使用造成软土地基的破坏甚至是导致安全事故的发生;

(3)降水技术,这里的降水主要是降的地下水,地下水位的降低就能够在一定程度上对地基的预压产生较大的效果,并且这种方法还可以和其他一些处理技术结合在一起使用。

4、可液化土层处理技术

可液化土层处理技术就是首先清除可液化土层,然后在回填的一些承载力强的材料上设置反滤层,通过添加一定的砂桩之后就可以进行压实操作,主要的压实方法就是我们最常见的分层振动技术。

5、深覆盖层处理技术

深覆盖层处理技术主要的处理方法有以下几种:

(1)灌浆施工;

(2)高压喷射构建防渗墙;

(3)构建混凝土截水墙;

(4)强夯法;

(5)摩擦桩和沉重桩。

6、灌浆技术

灌浆技术即采用灌浆机将一些浆类化学材料注入到地基内,使其更为稳定。

7、振动水冲技术

振动水冲技术主要就是利用振冲器来夯实地基土壤,以增强其稳定性的方法。

友情链接