水利水电工程论文范文

时间:2023-01-16 23:21:08

引言:寻求写作上的突破?我们特意为您精选了12篇水利水电工程论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

水利水电工程论文

篇1

引言

水利水电工程原有的物流体系很薄弱,难以与社会物流系统相结合。因此,对水利水电工程现代物流系统的构建研究是很有必要的。

一、水利水电工程物流系统的特征

水利水电工程物流系统具有整体性、相关性、目的性、环境适应性,同时还具有规模庞大、结构复杂、目标众多等大系统所具有的特征。①水利水电工程物流系统是一个“人——机系统”:水利水电工程物流系统是由人和形成劳动手段的设备、工具所组成。②水利水电工程物流系统是一个大跨度系统:这反映在地域跨度大和时间跨度大。③水利水电工程物流系统是一个可分系统:作为水利水电工程物流系统,无论其规模多么庞大,都可以分解成若干个相关联系的子系统。④水利水电工程物流系统是一个动态系统水利水电工程物流系统联结多个供应商和工程施工需要,随需求、供应、渠道、价格的变化,系统内的要素及系统的运行经常发生变化。⑤水利水电工程物流系统的复杂性:水利水电工程建设所耗用物资的数量大、品种繁多、专业性较强、且具有不均衡性和不确定性。并且受物流系统中的采购、运输、仓储、信息、供应等子系统的制约,这些子系统的组织和合理运用,是一个非常复杂的问题。⑥水电工程物流系统是一个多目标函数系统:水利水电工程物流系统的总目标是实现宏观和微观的经济效益。解决最优订货策略、信息管理、随机情况下的库存风险管理和安全库存量的确定,使之有效的对水电工程物流进行管理,达到工程项目的投资、进度、质量三个控制的预定目标等都是水利水电工程建设管理者面对且必须解决的问题。

二、水利水电工程物流优化系统构建

物流从控制论的观点,其管理过程就是信息的收集、传递、加工、判断和决策的过程,以工程建设为例,其全部活动可概括为两大类:一类是生产活动,一类是管理活动,围绕和伴随着一系列生产活动,执行着决策,计划和调节职能,以保证生产有序高效进行,伴随着生产活动的是物流,伴随着管理活动的是信息流。在水利水电工程物流系统管理中,大量的信息量通过有效的管理,将会更加有力的保证工程进度,降低工程成本,提高经济效益。

水利水电工程物流信息的基本内容基本包括七个方面的内容:①需求信息:包括工程设计、施工预算、施工图文件、施工方案、工程进度计划、物资需求数量、物资的品种规格、资金计划、招投标文件、投标书、合同文件等。②资源信息:包括资源的分布、结构和潜力情况。③供应信息:包括各种供应渠道的变化和竞争的信息。④消耗信息:包括物资消耗的原始记录,主要材料的核销情况、单位产品消耗、同类工程消耗情况、降低消耗的主要措施和经验。⑤资金信息:即各工程物资采购资金使用情况、资金周转次数等。⑥储运信息:包括运输路线、运输工具、装卸、运输费用、运输条件、运输方式、交通运输状况、仓库设施及设备状况、仓储条件、入库及出库信息、库存情况、大型机电设备运输的沿途状况和仓储装卸情况、物资在工程各标段的流向等。⑦物资经济政策及管理信息:包括国家对有有关物资的方针政策和措施,物资市场的管理措施和要求,国民经济计划安排对物资市场供求的影响,还包括各种物资的经济订购批量,各种调查报表、专题报告、物资管理方面的指令、条例和规章制度,物资综合利用情况以及回收、修复、再生、复用的情况等等。通过上面的分析我们可以看出,物流信息系统是水利水电工程物流系统中的一个重要的子系统,是通过对水利水电工程物流相关的信息进行加工处理来实现对物流的有效控制和管理,并为物流管理提供战略及运作决策支持的系统。

三、物流信息系统管理两类活动流中的信息

调控活动包括水电工程建设的总体安排调度与需求计划,具体为工程设计、施工方案、资金计划、进度计划、采购计划等。物流运作活动包括供应商的综合能力、订单的产生与跟踪、货物运输、库存配置、物资消耗等。调控活动流程是整个物流信息系统框架的支柱。整个调控活动中的计划指导水电工程的物资从采购到送货过程中的分配与调度,使物流运作活动有序的完成。

库存管理直接与调控信息流和物流运作信息流相联系,是两大信息流的集成与结合部分,因此,如何加强对库存的管理,确定合适的安全库存量,选择最优库存策略是需要重点研究的问题。由以上分析,我们可以得出水利水电工程物流优化系统图。

由于水利水电工程设计、施工计划、工程进度、资金、工程物资需求量、采购、运输、包装、仓储、配送、货运等各物流功能和要素的管理涉及到的众多部门,为了协调一致,必须建立相关的物流信息系统,加强专业化物流系统的建设,转化原来水利水电工程建设中的单纯物资供应概念,注重与专业的物流公司合作,保证物流体系的不断优化和高效运作。

参考文献:

[1]齐二石,周刚.物流工程.天津:天津大学出版社.2001.P10~17.

[2]日本日通综合研究所.物流手册.吴润涛等译.北京:中国物资出版社.1986.P34~42.

[3]王晓东.现代物流管理.北京:对外经济贸易大学出版社.2001(9).

[4]丁立言,张铎.物流系统工程.北京:清华大学出版社.2000.

[5]顾培亮.系统分析与协调.天津:天津大学出版社,1998.

篇2

该枢纽由主坝和副坝两部分组成,其中主坝为混凝土闸坝,最大坝高37.8m,坝长338.45m,坝顶高程1242.6m;副坝位于黄河左岸阶地上,为土石坝,最大坝高15.1m,坝长529.2m。水库正常蓄水位1240.5m,总库容0.26亿m3,总装机容量12.03万kW,多年年平均发电量6.06亿kW·h,设计灌溉面积87.7万亩。

2物探任务与要求

黄河沙坡头水利枢纽工程的物探工作始于1996年,至2003年底全部结束。期间历经了可行性研究阶段、初步设计阶段和技施设计阶段。各阶段工作时间及任务要求如下:

⑴可行性研究阶段物探工作于1996年进行,主要任务是通过岩体波速测试和声波测井,划分岩性并了解岩体动弹性参数。

⑵初步设计阶段物探工作于2000年进行,物探任务与要求为:

①通过声波测井取得主坝坝基、交通桥基础岩体结构、软硬岩体分布规律,了解孔内软弱夹层、构造破碎带分布情况,以便验证和补充钻探资料。

②测定岩体的纵、横波速度,并求得泊松比、动弹性模量等参数。为坝基岩体质量评价提供依据。

③通过综合物探方法查明副坝坝基地层结构及古河道分布情况。

④查明导流明渠、交通桥地层结构及古渠道分布情况。

⑤通过对灌浆前、后岩体波速测试,评价灌浆试验效果。

⑶技施设计阶段物探工作于2002~2003年进行,物探任务与要求为:

①通过对坝基岩体进行地震波测试,了解基础岩体的弹性波参数,为工程基础岩体评价、验收提供依据。

②对固结灌浆的基础岩体进行声波检测,通过灌浆前、后岩体波速的变化情况,评价固结灌浆效果。

③通过对坝基混凝土垫层进行回弹检测,了解并查明混凝土垫层与基岩面的胶结状况。

3地形及地质简况

3.1地形地貌

坝址区内地势南西高而北东低,相对高差500~1000m。黄河自西向东流经坝址区,河谷呈不对称“U”形谷。坝址左岸地势相对平坦,为黄河Ⅰ级阶地,岸边有美利渠与黄河平行展布;右岸为香山山脉北麓,岸边有羚羊角渠与黄河平行展布,羚羊角渠南侧地形较陡,且冲沟发育。

3.2地质简况

坝址区附近有石炭系、第三系、第四系地层发育。

主坝坝基为石炭系下统前黑山组(C1q)、臭牛沟组(C1c)、中统靖远组(C2j)和第三系上新统临夏组(N2l)地层。坝区位于窑上复式倒转向斜的正常翼,岩层遭受构造破坏剧烈,层间挤压带、小型褶皱、揉皱,小断层以及节理、劈理发育,泥岩呈大小不等的菱形块体,炭质页岩则呈鳞片状,并具有失水干裂解体,再遇水泥化的特点,使坝基岩体成为典型的极软岩。岩层沿走向和倾向均呈舒缓波状,总体产状:走向NE45°~EW,倾向SE或S,倾角33°~70°。

副坝、导流明渠、交通桥及水源地部位分布着厚层第四系松散堆积物,表层为风积砂,深部则为厚层砂砾石层;基岩为第三系上新统临夏组(N2l)的棕红色、紫红色砂质粘土岩,局部夹有砾岩。

4物探方法与技术

根据不同勘查阶段的任务要求,物探主要开展了声波法、地震波法、地质雷达法、电阻率法工作。具体方法有:单孔声波测井、声波对穿、地震波相遇法、地震波CT、瑞利面波法、高密度电阻率法、地质雷达等。

⑴声波法:包括单孔声波和声波对穿。它是弹性波测试方法之一,其理论基础建立在固体介质中弹性波的传播特性上,采用频率主要为1k~30kHz和50k~1000kHz两个频段。该方法以人工激振的方法向介质发射声波,在一定距离上接收受介质物理特性调制后的声波,通过观测和分析声波在不同介质中的传播速度、振幅、频率等参数解决工程问题。本工程使用仪器为SD—1型声波检测仪,单孔声波由下而上逐点测试,点距为0.2m。声波对穿由下而上水平同步逐点测试,点距为0.1m。

⑵地震波法:包括地震波相遇法、地震波CT和面波法。其理论基础与声波法相同,采用频率范围为1~n×100Hz。该方法利用人工激发的地震波在弹性性质不同的地层内传播规律,研究与岩土工程有关的地质、构造和岩土体的物理力学特性,可对工程场地和人工建筑物的适应性进行评价。本工程使用仪器为R24型工程地震仪,地震波相遇法采用4~12道接收,检波点间距1.0m。地震波CT采用二边对比观测系统,激发点间距1.0m,接收点间距2.0m。面波法采用双边激发,12道接收,检波点间距2.0m。

⑶高密度电法:以岩土体的电性特征为基础,通过仪器观测和分析研究即可取得地下地质结构的变化规律,以此解决岩土工程问题。本工程使用仪器为WDJD-1型多功能电测仪,选用温纳尔装置,基本点距为2~3m,电极隔离系数为9~16。

⑷地质雷达法:通过地面的发射天线(T)向地下发射高频电磁波(主频为数十数百乃至数千兆赫),当它遇到地下地质体或介质分界面时发生反射,并返回地面,被放置在地表的接收天线(R)接收,并由主机记录下来,形成雷达剖面图。由于电磁波在介质中传播时,其路径、电磁波场强度以及波形将随所通过介质的电磁特性及其几何形态而发生变化。因此,根据接收到的电磁波特征,既波的旅行时间(亦称双程走时)、幅度、频率和波形等,通过雷达图像的处理和分析,可确定地下界面或目标体的空间位置或结构特征。本工程使用仪器为RAMAC/GPR雷达系统,实测采用剖面法,且收发天线的连线方向与测线方向平行,分别选用主频50MHz和250MHz两种天线进行测试,记录点距0.2~0.5m。

5物探成果概述

在可行性研究阶段、初步设计阶段、技施设计阶段共提交物探测试成果报告7份,取得了一定的技术效果。

5.1可行性研究阶段

通过对坝址区附近的钻孔声波测试和右岸PD01平硐硐壁岩体的地震波测试初步掌握了坝基岩体的弹性特征及不同岩性岩体的波速分布的基本规律。主要成果为:

⑴钻孔内基岩岩体波速主要受岩性控制:第三系上新统临夏组砂质粘土岩的波速均值为2100m/s,而砾岩、砂砾岩的波速均值为2900m/s;石炭系下统泥岩、炭质页岩的波速均值为2560m/s,泥质灰岩、砂岩的波速均值为3500m/s,灰岩的波速均值为4000m/s。

⑵PD01平硐岩性主要是石炭系泥岩、页岩等,岩体裂隙发育,实测岩体弹性参数为:纵波速度1500~2500m/s,横波速度520~1200m/s,动弹性模量1.69~8.10GPa,表明该平硐岩体强度较低。

⑶断层破碎带与泥岩、炭质页岩等低波速岩体间无明显的波速差异,而与灰岩、砂岩等高波速岩体间的波速差异明显。

⑷该坝址所测岩体波速与岩体风化分带的关系不甚明显。

5.2初步设计阶段

5.2.1地层结构

利用地质雷达、高密度电阻率法、瑞利面波法等综合物探方法,并结合钻孔资料,基本查明了导流明渠、副坝、交通桥、水源地的地层结构以及古渠道、古河道的分布规律。主要成果如下:

⑴导流明渠、副坝、交通桥、水源地的地层可分为三层结构。表层主要由风积砂等第四系松散堆积物组成,局部出现薄层耕植土,层厚1~12m,电阻率一般为500~1200Ω·m,面波速度一般为150~200m/s;中部岩性为砂卵砾石,层厚8~26m,电阻率一般为200~500Ω·m,面波速度一般为200~350m/s;下部为基岩,岩性为第三系砂质粘土岩,该层作为坝基岩体,层厚大于500m,电阻率一般为80~200Ω·m,面波速度一般为450~650m/s。

⑵古渠道主要分布在美利渠北侧,在平面上共有三条展布,主要规律为:位于导流明渠进水口附近为一条;交通桥上游20m至主坝下游100m之间分为三条;主坝下游100m处至导流明渠出水口附近,最北侧的两条古渠道合并为一条,而邻近美利渠的那条古渠道与美利渠平行向下游继续延伸。由于这些古渠道都由粉细砂充填,所以物探异常解释的渠底深度一般为5~10m(古渠道附近正常沉积地层的表层风积砂厚度较薄,一般小于3m)。

⑶古河道主要分布在左岸副坝区,其最大深度不小于30m。上覆地层为砂卵砾石,层厚10~30m,且由导流明渠往北逐渐变厚,下伏基岩为第三系砂质粘土岩。

5.2.2声波测井

通过对钻孔岩体的声波测试,较全面地查明了坝址区内不同岩体的声波变化规律:

⑴第三系(N2l)地层中,砂质粘土岩的岩体纵波平均速度为2120m/s,动弹性模量平均值6.37GPa;砾岩的岩体纵波平均速度为2400m/s,动弹性模量平均值为9.66GPa。

⑵石炭系(C)地层中,泥岩、页岩、炭质页岩、灰质泥岩、泥质粉砂岩、长石石英砂岩等岩体的纵波平均速度为2130~2410m/s,动弹性模量平均值为6.78~12.96GPa;泥质灰岩、灰岩、砂岩等岩体的纵波平均速度为3020~3690m/s,动弹性模量平均值为16.70~28.93GPa。

⑶断层破碎带的纵波平均速度为2150m/s,动弹性模量平均值为6.91GPa。

5.2.3岩体地震波测试

通过分析右岸PD02平硐硐壁岩体和左岸02#静载荷试验场地的地震波测试成果,得出下列基本结论:

⑴岩体弹性波参数均相对较低,纵波速度一般为1000~2500m/s,岩体动弹性模量一般为1.1~9.6GPa。

⑵岩体泊松比(μ)与岩体纵波速度(Vp)具有较好的相关性,相关关系为:

μ=0.4629-0.00006Vp;相关系数R=0.97………………………(1)

⑶岩体纵波速度各向异性差异不显著,各向异性系数一般小于1.2。

⑷受开挖扰动卸荷的影响,在垂直方向上岩体具有两层速度结构,表层地震纵波速度仅为400m/s,埋深约为0.6~0.7m。

5.2.4右岸灌浆试验检测

综合分析灌浆前后岩体的声波和地震波测试结果可知:

⑴坝基岩体具有一定的可灌性,灌浆后岩体强度得到一定的改善。

⑵地震波CT测试效果优于单孔声波测井的测试效果,既跨孔透射法优于单孔声波测井。

⑶地震波CT测试,更能客观地评价灌浆试验的灌浆效果。灌浆前后整体波速提高率一般为5~12%。

5.3技施设计阶段

5.3.1坝基岩体地震波测试

为提供枢纽工程坝基建基面岩体弹性波参数的建议值,我单位于坝基开挖工作前期,在拟开挖的坝基岩体上,模拟现场施工条件,进行了坝基岩体地震波测试的试验工作。总结出了不同开挖方式对坝基岩体扰动的影响程度、原状岩体经开挖暴露后纵波速度随时间的变化规律、物探工作的测试方法、测试时机及坝基岩体的开挖方式,并提交了建基面岩体波速验收标准的建议值。

在坝基开挖施工期间,采用试验时确定的测试方法——地震波相遇时距曲线观测系统,以基岩面岩体基本未扰动为原则,在人工撬挖的保护层上进行了大量的地震波测试工作。测线总长度累计15967m。取得了丰富的坝基岩体的弹性波参数,为坝基岩体的评价、验收提供了定量指标。坝基岩体地震纵波速度的变化规律基本上反映了坝基岩体分布的规律。

5.3.2安装间、北干电站、河床电站、隔墩坝基础岩体固结灌浆声波检测

根据初设阶段灌浆试验的检测成果,并结合灌浆区内岩体亲水性强的特点,确定了坝基岩体固结灌浆物探检测采用钻孔声波透射法进行。

通过分析安装间~隔墩坝的17对钻孔灌浆前后声波透射的测试结果表明,杂色泥岩、灰质泥岩灌浆后的波速总体平均提高率为6.3%,此结果与初设阶段的测试结果基本一致;砂岩条带灌浆后波速总体平均提高率为10.1%,说明砂岩条带的灌浆效果相对较显著。

5.2.3坝基岩体混凝土垫层回弹检测

坝基岩体混凝土垫层回弹检测的目的是了解并查明混凝土垫层与基岩面的胶结状况。回弹仪主要用于检测混凝土强度,该工程中使用回弹仪(型号为HT—3000)检测混凝土垫层与基岩面的胶结状况是其应用范围的拓展。检测的基本原理如下:

当混凝土垫层与基岩胶结紧密或胶结良好时,混凝土与坝基岩体形成一个整体,此时在混凝土表面测试的回弹值应为混凝土强度的真实反映;当混凝土垫层与基岩之间胶结不良或胶结面出现架空时,由于混凝土的约束力降低而使回弹时产生颤动,造成回弹能量损失,从而导致在混凝土表面测试的回弹值低于正常混凝土强度的真实回弹值。由此,可根据实测混凝土表面回弹值的变化规律,来定性地判断混凝土垫层与基岩的胶结状况。

参照《回弹法检测混凝土抗压强度技术规程》(JGJ/T23—2001)及回弹仪的率定结果并结合工程实际情况,C20混凝土(龄期大于28天)的实测回弹平均值应不小于25.0。而实测回弹平均值小于25.0的测区是由于混凝土垫层与基岩间胶结不良或脱空所至。检测结果表明:

基础岩体为杂色泥岩、灰质泥岩的坝段,实测回弹平均值小于25.0的测区约占测区总数的28.0%。说明混凝土垫层与基岩间脱空现象较明显;而在南干电站,基础岩体主要为砂岩。实测回弹平均值小于25.0的测区仅占该部位测区总数的3.8%,说明混凝土垫层与砂岩的胶结状况相对较好。

6总结

可行性研究阶段、初步设计阶段的物探成果在技施设计阶段均得到验证,如5.2.1中的地层结构空间变化规律已在基础开挖后得到证实,其开挖结果与物探解释成果基本一致,取得了较好的应用效果,发挥了物探的应有作用。

纵观可行性研究阶段、初步设计阶段和技施设计阶段的物探成果及其工作量,黄河沙坡头水利枢纽坝址区的主要工程地质问题是建基岩体的质量问题,所以在工程建设的每个阶段都进行了大量的基础岩体弹性波测试,使得测试成果得到进一步加强。下面仅就坝基岩体的质量特征进行总结。

6.1坝基岩体弹性特征

⑴坝基岩体弹性波普遍偏低,主要是因为岩体主要由泥、页岩等泥质岩类组成,且岩体中破裂结构面发育,岩体破碎所致。

⑵实测坝基岩体地震纵波速度一般为1000~2500m/s,岩体动弹性模量一般为1.10~9.60GPa。岩体泊松比与岩体纵波速度具有较好的相关性,相关关系见(1)式。

⑶受岩石结构、微裂隙、劈理、层理发育影响,致使岩体波速值各向差异不显著。坝基岩体弹性波测试结果表明:杂色泥岩、薄层灰质泥岩、厚层灰质泥岩、炭质页岩、砂岩的平行地层走向和垂直地层走向的地震纵波速度比值分别为1.04、1.08、1.06、1.07、1.03。

⑷坝基岩体同一岩性的声波速度比地震波速度一般高约20%~40%。地震波主频约为n×100Hz,属低频范围,而声波主频约为10k~20kHz,属高频范围,虽然两者均属于弹性波的范畴,但由于两者的震源扰动机制、波源频率、测段长度的不同以及测试岩体具有的低通滤波作用的影响,使得同一岩性的声波速度高于地震波速度。

6.2坝基岩体卸荷特征

⑴爆破开挖、机械开挖对坝基岩体扰动明显。经爆破开挖和机械开挖后,表层的纵波速度一般为400~700m/s,影响深度为0.2~0.6m。

⑵原状岩体经开挖暴露后,纵波速度有随时间延长而降低的趋势,在11小时内纵波速度值下降5%左右。

⑶坝基边坡岩体较建基面岩体卸荷影响相对较大,一般边坡岩体地震纵波速度略低于建基面岩体地震纵波速度。如杂色泥岩、薄层灰质泥岩、厚层灰质泥岩边坡的实测地震纵波速度平均值分别为1430m/s、1380m/s、1840m/s,而其建基面的实测地震纵波速度平均值分别为1510m/s、1460m/s、1910m/s。

⑷开挖方式和暴露时间直接影响岩体卸荷程度和弹性波速,因此采取有效的开挖方式,减少对基础的扰动,并及时保护对工程来讲非常重要。

7体会

物探工作是各个设计阶段工程勘察的重要组成部分。随着我国水利水电事业的快速发展,类似工程今后可能还会遇到。通过黄河沙坡头水利枢纽的工程实践,颇有体会:

⑴要充分理解《规范》和《任务书》对每一勘探阶段所要求的精度和深度,扎实做好每一勘探阶段的基础工作。笔者认为,黄河沙坡头水利枢纽物探工作的布置、资料解释比较合理,起到了前期成果指导后期工作,后期成果补充、验证前期工作的效果。

篇3

二、水利水电工程基础建筑灌浆施工控制的有效措施

(1)工程费用控制措施。

基础灌浆施工费用控制的最终目标是做到净效益最大化,尽可能的降低是灌浆施工和其他工序的费用,同时尽可能的降低负效益。因此,应该根据施工现场的具体状况以及自然规律,综合考虑施工控制工艺以及方法,对整个灌浆系统进行合理的设计,同时结合最优化原则,尽可能的减少负效益,寻找最理想的运用方法,有效的控制工程费用。

(2)环境效益控制措施。

水利水电工程的环境效益控制措施应该重点考虑以下几种因素:控制生产和生活污染物、有害气体、施工飘尘、污染带等的排放,防止对地下水、环境等造成影响;控制施工机械、爆破、运输等机械的噪声,避免对周边居民造成影响;在施工的过程中应该尽可能少的破坏周边植被景观,同时还应该考虑水利水电工程建成后长期对邻近建筑以及人类健康造成的影响。

(3)质量控制措施。

灌浆质量要素包括灌入能力、强度以及可塑性,质量控制目标应该根据水利水电工程的性质以及设计施工要求而定,控制措施主要表现为:首先,根据吸渗反应定理、劈裂判别定理、劈裂定向定理等制定相应的质量控制目标;其次,根据制定的质量控制目标选择合适的灌浆材料,然后预测与协调材料性质、地质条件以及施工技术三者的关系;再者,当灌浆施工结束之后的28天内,重视后期的养护工作,全面的重视施工过程的质量控制,认真的做好压水试验,试验结果表明施工质量合格之后才算过关。

篇4

深覆盖层地基是我们在河流流域进行水利水电工程设计中最常见的一种地基,其主要是因为河流的冲击使得各种碎石、砂石或者是泥石等长时间的堆积,进而造成该地域堆积厚度过大,影响了地基的稳定性和防渗性,并且也不容易进行后期的处理,置换或者是填充的难度都较大,需要我们格外关注。

2、饱和松散砂土

饱和松散砂土的承载力强度和稳定性都是很差的,一旦受到外力的作用就很可能产生错位或者是变形,严重的影响地基的稳定性和安全性,必须采取必要的地基处理技术进行加固处理。

二、水利水电工程施工中地基处理注意事项

针对水利水电工程建设中常见的一些较难处理的地基类型,在地基处理技术设计过程中我们应该注意的事项主要有以下几点:

1、准备工作一定要到位

在准备工作中对于工程地质的勘探是最为重要的,我们首先要充分的了解工程所处的具体地质状况才能够选择最佳的地基处理技术进行设计,如果对于当地地质勘探不明的话就会严重的影响设计方案和工程质量及工程建设进度。

2、合理选择处理方案

针对工程的地基具体状况选择出最佳的地基处理方案,尤其是在地基处理机械、材料和成本等方面进行合理的控制,综合各个方面的状况选择出最佳的设计方案,确保地基处理的效果和质量达到规范设计标准。

3、注重后期的检测

在具体施工完毕后还需要根据我们的设计要求,对地基处理部位进行评估和检测,确保施工的质量。

三、水利水电工程设计中地基处理技术

在水利水电工程地基处理设计中,常用到的地基处理技术主要由以下几种:预压技术、强透水层防渗处理技术、可液化土层处理技术、深覆盖层处理技术、置换技术、灌浆技术和振动水冲技术。

1、强透水层防渗处理技术

强透水层防渗处理技术主要就是在强透水层清除完成后,采用混凝土或者是粘土回填,然后利用混凝土和水泥在地基四周构建建筑防渗墙和建筑截水墙等设施来达到防渗目的。工程案例:新疆英吉沙县青年水库是一座以灌溉为主的平原丘陵区水库,除险加固后设计库容145.23万m3,由坝体、放水涵洞和放水闸等建筑物组成。水库桩号0-400~0-300段坝基存在粉细砂层透水层,形成坝基渗漏通道。本次设计将粉砂层透水层挖断截渗,将上游坝坡土工膜防渗斜墙延伸至粉砂层以下1.0m,伸入相对不透水层1.0m,与坝体防渗土工膜紧密结合,形成完整闭合防渗体,开挖槽底宽0.5m,边坡1:1,开挖面采用原状土回填夯实。坝基经过防渗处理后,现状坝体运行良好,坝后未有渗水现象。

2、置换技术

置换技术主要包括以下三种具体的操作方法:

(1)振冲置换技术,主要就是采用振冲机来打孔,然后注入粗粒材料,最后使其凝聚成基桩增强稳定性;

(2)换填技术,即通过清理劣质土质,然后填充优质稳定土壤来增强承载力。工程案例:新疆呼图壁县红山下水库为一座拦河式水库,由大坝、放水涵洞,导流冲沙涵洞、溢洪道等建筑物组成。导流冲沙涵洞布置在坝体桩号0+000处,全长184m,由进口段、有压洞身段、闸井段、无压洞身段、陡坡段、消力池段组成,洞身为一孔城门洞型,净宽2.5m,高2.8m。最大泄流量70m3/s。根据地质勘探,导流冲砂涵洞地层岩性为第四系全新统冲洪积(Q4al+pl)卵石混合土层,承载力特征值fak>250kpa,地基承载力比较差,设计时考虑将导流冲砂涵洞下卵石混合土层换填成2~6m厚C15素砼,承载力特征值fak<300kpa,换填后满足涵洞承载力设计要求。

(3)挤(夯)置换技术。

3、预压技术

预压技术是我们在水利水电工程地基处理过程中最常用到的一种地基处理技术,具体来说,预压技术主要包括三种:

(1)真空预压技术,这种处理技术主要就是通过在需要我们进行处理的地基表面铺设塑料薄膜的方法来隔绝处理地基和外界的联系,然后采用真空泵针对隔绝起来的处理地基进行操作以抽取出地基内的空气和水分,进而可以达到提高处理地基的稳定性和承载力的目的,一般说来,在处理过程中,为了更好地达到处理效果,我们还可以采取添加塑料排水板的方法来更快的实现效果,如果是针对面积较大的地基进行处理的话我们可以采取分区的方法逐一进行处理;

(2)堆载预压技术,这种预压技术主要是在需要处理的地基之上堆积一定量的预压物,使得地基能够在预压物的作用下提高自身的承载力和稳定性,在预压物量的计算时我们应该尽可能的使得其重量稍大一些,进而使得我们的预压效果更好一些,在堆积的过程中尤其是要注意如果是碰到超软土基时,需要我们采用一些轻型的机械进行处理,避免大型机械的使用造成软土地基的破坏甚至是导致安全事故的发生;

(3)降水技术,这里的降水主要是降的地下水,地下水位的降低就能够在一定程度上对地基的预压产生较大的效果,并且这种方法还可以和其他一些处理技术结合在一起使用。

4、可液化土层处理技术

可液化土层处理技术就是首先清除可液化土层,然后在回填的一些承载力强的材料上设置反滤层,通过添加一定的砂桩之后就可以进行压实操作,主要的压实方法就是我们最常见的分层振动技术。

5、深覆盖层处理技术

深覆盖层处理技术主要的处理方法有以下几种:

(1)灌浆施工;

(2)高压喷射构建防渗墙;

(3)构建混凝土截水墙;

(4)强夯法;

(5)摩擦桩和沉重桩。

6、灌浆技术

灌浆技术即采用灌浆机将一些浆类化学材料注入到地基内,使其更为稳定。

7、振动水冲技术

振动水冲技术主要就是利用振冲器来夯实地基土壤,以增强其稳定性的方法。

篇5

1.1.1混凝土抗滑桩

所谓的抗滑桩就是指穿过滑坡体并且深入到稳定土层或者是岩层的一种柱形构件,其作用是支挡滑体的滑动力,其设置的位置一般为滑坡的前端附近,这样可以稳定边坡,将其使用在正在活动的浅层以及中层的滑坡可以发挥出较好的效果。为了使得抗滑桩防止滑坡的效果更加有效,在进行设置时应该把抗滑桩身长的三分之一至四分之一埋在滑坡面下面的完整基岩或者是稳定的土层之中,并且使用灌浆的方法使得桩以及其周围的岩土体成为一个整体,并且将其设置在滑体的前端,使其可以承受较大的压力。

1.1.2混凝土沉井

所谓的沉井就是指混凝土的一种框架结构,在其施工中一般可以分为几节来进行,而其结构的设计是依照沉井的场地布置以及受力的状态还有基坑的施工条件等多种因素共同决定的。在高边坡的工程施工中,沉井不仅具有抗滑桩的作用还具有挡土墙的作用。沉井施工包含有很多方面,如:平整场地、沉井制作以及沉井下沉和封底等,在这之中沉井施工的难点就是沉井下沉以及封底。作为沉井施工中的关键工序的沉井下沉,其质量的好坏将对工程的质量以及进度起着直接的影响,在进行沉井下沉时,应该尽可能的将土体作用在沉井外壁的摩擦阻力减少;并且应该在混凝土的强度达到百分之百是才可以开始进行挖土下沉工作;在进行下沉的过程中还需要对防偏问题进行控制,并且将及时纠偏的措施给做好。

1.1.3混凝土挡墙

混凝土挡墙是一种能够有效地防止滑坡的常用方法,其主要是凭借自身的重量来支撑滑体的下滑力,它可以与排水等一系列措施联合起来使用。它可以有效地将滑体的受力平衡从局部来进行改变,从而在一定程度上阻止滑坡体的变形延展,其具有很多的优点,诸如:结构简单、可以快速的起到稳定滑坡的作用等等。在对混凝土挡墙进行设计时,应该依照最低滑动面的形状以及位置来对挡墙基础的砌置深度进行设计,并且还要在墙后面设置相应的排水孔,使其不仅可以在挡墙上的静水压力上起到消弱的作用,还可以将墙后因积水对基础进行侵泡而导致的挡墙滑移给有效地防止。

1.2锚固技术的应用

所谓的锚固技术就是指把一种受拉杆件的一端在边坡或者地基的岩层或者是土层中固定下来,在这里受拉杆件的固定端就叫做锚固端或者是锚固段,而与工程建筑物相联结的一端,能够承受土压力、水压力以及风力对建筑物所施加的推力,使用地层的锚固里将建筑物的稳定得以维持。按其结构形式可以将锚固分为4类,这4类分别是:抗滑桩、锚洞以及喷锚支护还有预应力锚固。

1.2.1锚固洞

对锚固洞进行加固处理是对边坡的稳定进行治理的一种较为有效地措施。在进行锚固洞加固的过程之中,应该遵循一定的原则,这些原则就是:由内向外、由上到下以及循序渐进和逐层加固等等,在同一高度的结构面的锚固洞应该跳洞来进行相应的开挖施工,从而使得不利结构面上已经有的抗滑力避免得到削弱,进而对边坡的稳定造成影响。

1.2.2喷混凝土护坡

喷混凝土护坡是一种新型的混凝土施工工艺,其具有很多的优点,诸如:生产效率高、施工速度快以及可以把混凝土的运输以及浇注和捣固这三个过程结合到一起等等。因为其形成依靠一定的冲击速度,所以将其作为临时的支撑比木结构具有强度高的优点,比钢结构具有经济的优点。而将其作为永久支护时,它较之于现浇混凝土衬砌的早期其强度更高。将其与锚杆的使用相配合,能够将洞室的开挖量减少,将衬砌的厚度减薄,还可以节约水泥的用量。尤其是在进行喷混凝土施工的时候,可以不使用模板,不设立拱架,这样就可以在一定程度上将洞内的有效空间给加大,对其进行施工的时间可以紧跟开挖面来进行喷射,从而将岩石暴露风化的时间减少,对围岩的变形进行及时的控制。

1.2.3预应力锚固

所谓的预应力锚索加固就是指通过锚固在坡体的深部对岩石上的锚索进行稳定,并且把力传递到混凝土的框架上,再由框架施加一个预应力给不稳定的坡体,挤压不稳定松散的岩体,大大提高岩体将的正压力以及摩擦阻力,从而将抗滑力给加大,使得不稳定的液体发育受到一定的限制,从而达到加固边坡以及稳定坡体的效果。

1.3减载、排水等措施的应用

1.3.1减栽反压

在高边坡的加固与治理中减载反压的应用较为广泛。减载的主要目的就是将坡体的下滑力降低,但又时候仅仅减载并不能够将阻滑的作用充分发挥出来,最好是将其余反压措施结合起来,这样不仅可以将其下滑力降低,还可以将其抗滑力增加,这个措施在上陡下缓的滑坡上其效果更佳。

1.3.2表里排水

这里的水包括地表水以及地下水。排除地表水主要是对流入边坡的地表水流利用拦截以及修沟等方法进行排除,以减少地表水降低滑动力,增强高边坡的抗滑力以及稳定性。而排除地下水的方法依照地下水的深浅分为两种,分别为:浅层以及深层地下水排水工程。将地下水个排除掉,可以最大程度的将边坡岩体的地下水位降低,将深水压力减小,使边坡的稳定条件得到改善,从而将边坡的稳定性不断地提高。

篇6

2枢纽布置方案

2.1枢纽平面布置方案

此工程枢纽布置,主要包括船闸(2000t级)、泄洪闸、水电站、鱼道等,为Ⅰ级工程,水工建筑物设计洪水标准为100a一遇、校核洪水标准为500a一遇。工程枢纽正常蓄水位与死水位为29.70m,对于船闸设计,按照20a一遇洪水位,来设计高水位,流量为21900m3/s,低水位按照P=98%水位来设计。船闸设置在蔡家洲左汊左侧岸边,电站设置在左汊右侧洲边,按照从左到右的顺序,来布设建筑物工程,包括双线船闸、排污槽、主泄水闸等,具体如图1所示。

2.2枢纽平面布置特点

2.2.1枢纽泄流能力强

水利水电工程枢纽泄流能力和工程坝址有直接关系,尤其是坝址河势与地形地貌等。此布置方案中,船闸上游引航道与导流堤设置位置为原左汊河道区域内的回流区,设置导流堤,能够有效的调顺水流,确保枢纽工程的泄流能力。按照100a一遇洪水标准,进行水工模拟试验,获得的壅高值为0.1m,泄洪能力较好[1]。

2.2.2通航条件较好

此枢纽工程坝址下游2km区域左岸存在支流沩水河,与湘江相汇,河宽为180m,2a一遇洪水流量为1580m3/s,10a一遇洪水流量为2750m3/s,20a一遇洪水流量为3350m3/s,出流和船闸连接段的航道交角为30°。此布置方案船闸通航条件试验结果表明,因为船闸上游引航道口门区和连接段缓流区,通航水流条件可以达到设计要求,干流流量Q干为19700m3/s时,纵向最大流速值为1.76m/s,横向最大流速值为0.28m/s,回流最大流速值为0.2m/s。干流流量为21900m3/s时,纵向最大流速值为1.79m/s,横向最大流速值为0.3m/s,回流最大流速值为0.25m/s。就下游引航道口门区和连接段航道来说,当湘江干流和支流沩水为正常遭遇时,若Q干<13500m3/s,可以满足船舶航行要求。若13500m3/s≤Q干≤21900m3/s,受到导流堤的影响,口门区域右侧航道内部横流较大,可以在左侧航线单线行驶。原方案存在导流堤堤头挑流明显与斜流大等问题,进行布置方案优化,改变船闸挑流堤平面型式,设置立式导流堤等,使得航道通航能力得以全面提升[2]。

2.3枢纽布置设计要点

结合长沙综合枢纽设置的位置,结合自然条件,在左汊主河道区域内来布置电站与船闸,从枢纽泄流能力与船闸通航条件等方面综合分析,将船闸设置在此侧,能够起到不错的效果。此梯级综合枢纽工程建设后,主要功能为发电、航运等,因此在设计时,要坚持确保船闸通航条件的原则,以及泄水闸泄洪能力的原则。当枢纽坝址所处的位置左右两汊道分流比相差较大,而且河底高程相差较大,为了能够确保枢纽工程的通航效果与发电效益,将船闸与电站等建筑物,给布置在主汊河道。为了保证枢纽工程下游河床的稳定性,在布置泄水闸孔时,最好能保证工程建设前后的分流比变化不大。若河流的含沙量较小,在主河道内顺河,来设置船闸引航道时,尽量把船闸设置在流速相对较小的河岸侧,以便发挥枢纽工程的泄流作用,确保船闸通航效果[3]。

3水利水电工程枢纽总体布置三维设计

3.1三维地形建模

基于布尔运算,进行后期三维模型设计,需要构建三维模型。借助三维设计技术,能够为水利水电工程枢纽总体布置,提供极大的便利。三维地形模型构建是基础,需要确保精度的准确性。通常水利水电枢纽工程布置区域较大,覆盖面较广,数据存储量大,会影响到三维地形模型构建的效果。基于此,在构建时,需要确保等高线精度,以确保建模的效果。

3.2枢纽布置模型设计

在进行水利水电工程枢纽布置设计时,对于大坝与电站厂房等,可以按照相关标准规范,来设计三维模型,采取参数化或者模板化方法来建模。利用CATIA软件,融合骨架设计思想,构建枢纽工程建筑物模型,进行数据转化,将数据信息导入到3D软件中,进行枢纽布置,也可以和施工总布置相互联合。利用3D设计技术,能够为水利水电工程枢纽布置设计,提供新的设计方法,能够极大程度上提升工作效率,降低设计误差。利用大数据信息与信息技术,来进行仿真模拟试验,可以及时优化设计缺陷,确保水利水电工程枢纽布置的合理性与科学性。

4结束语

水利水电工程枢纽布置设计,要从枢纽使用的功能分析,严格按照设计要求,把握布置设计原则,结合工程实际,做好充分的调查工作,制定不同的布置方案,做好对比分析,选择最为合适的布置方案,以确保工程建设的质量。

作者:喻尚伟 单位:长沙市水利水电勘测设计院

参考文献

篇7

2主要经验

目前在施工导流方案选择及施工度汛中的主要经验有:

2.1对于导流截流当中的分期导流来说,需要做到的就是尽量减少导流中的分期次数。并且尽可能的去增加一期的导水量,这样的做法可以减少整体工程的工程量,而且能够充分的利用现有的设备,并达到较高的工作效益。

2.2在窄河床条件下,广泛采用断流围堰导流方式,用大断面导流隧洞泄流。较多工程采用围堰挡枯水期一定标准流量,汛期允许围堰过水的导流方式,如隔河岩、大朝山等工程。也有的大型工程为了加快施工进度,保证大坝工程质量而采用围堰挡全年洪水的隧洞导流方案,如二滩、构皮滩等工程。

2.3导流的方式与方法不单单只限定在依靠导流建筑物上,在这过程中也可以与一些修建好的已有并且具有持久性的特色建筑物相结合,例如可以利用水坝本身所带有的底部洞口来进行导流的后期部分工程。也可以把坝体中的泄洪设施与导流洞完美的结合起来,以达到最大的合理利用已有设备的目的。

2.4导流所要面临的自然环境因素还有很多,当汛期来临的时候,导流建筑的稳定性将接受严峻的考验。因此在设计与施工的过程中,要把围堰与水坝本身结合起来,让坝体对洪水有一个缓冲的作用,以缓解洪水给导流建筑物带来的冲击和损害。

2.5在通常情况下,遇到汛期的时候不适合采用土石加固堤坝的方式来进行导流,应该以防护原有的坝体为主要措施,这样既可以度过汛期,也可以防止土石的流失。

2.6洪汛是堤坝面临的最大的挑战,每一年都有可能因为洪水的问题而造成坝体的巨大损害,从而不仅给水电设施带来破坏,也会给人们的财产经济带来损失。因此,混凝土施工技术这时就显得十分重要,在洪汛即将来临之前,可以先准备好混凝土制成的面板来堆砌石坝,起到加固的作用。另外,如果还没有进行浇筑之前,可以采用喷射混凝土以及水泥和砂石浆液的形式,做好防汛工作。

2.7由以前的经验可以看出,也可以采用围水挡水的方式来进行发电,即可以在导流工程初建的时候就把厂房建造在这里,利用围堰挡水的方式实现初期的发电。这样不仅实现了工程的整体进程,还可以利用现有的装备设施实现初期的发电,提前取得经济效益。

2.8导流明渠平面布置、复式断面型式、爆破开挖技术、防冲保护、泄洪及通航研究、水工模型试验等技术方面取得重大技术进步。三峡工程导流明渠的实施为大型导流明渠设计、施工、运行积累了成功的经验。

2.9隧洞导流平面布置、隧洞大型断面型式(多为城门洞形或马蹄形)、爆破开挖技术、喷锚支护与混凝土衬砌技术、不良地质条件处理技术及隧洞与永久建筑物结合等方面,均取得重大进步。二滩、龙滩、小浪底、水布垭、构皮滩等工程大型导流隧洞的实施为导流隧洞设计、施工、运行积累了成功的经验。

2.10施工安全度汛应考虑围堰遇超标准洪水时的临时度汛措施,应针对各种不同坝型及其存在的问题,采取相应的防护措施。

3水利水电施工截流技术方法

3.1截流材料。

截流材料主要为填筑料、粘土闭气料、大块石。戗堤填筑料主要采用临时堆存的大坝开挖料,料场补足;粘土闭气料主要采用料场覆盖层开挖料;大块石从左、右岸石方爆破料中选取,满足截流抛投材料的需要。大坝开挖的填筑料临时堆存在大坝下游处,同时为提高上料强度,预备8月中旬开挖料5000立方米,满足戗堤填筑强度的需要。粘土闭气料利用覆盖层开挖料直接上料填筑;选取的大块石临时堆存在左岸戗堤施工平台上,便于抛投,块石大约堆存500立方米。

3.2截流工艺

3.2.1爆破截流施工。

如果水电站的坝体所处的地理环境较为复杂,而且地基较为坚硬,且又处于交通不是很便利的地带,那么在这种时候就需要用到一种较为特殊的截流方式,也就是爆破截流法。像在合龙这种关键的时刻,向施工技术及方式就提出了严格的要求,那么这时爆破方式就会发挥它的功用。在这种时候需要爆破演示,使爆破时产生的大量岩石堆积到龙口处,以实现龙口的瞬间封闭。也可以事先做好大型的混凝土块状物,然后炸断支撑块体的支撑物,将混凝土块抛入水中,以实现截流。爆破截流虽然简单有效,但在实施的过程中也要考虑到其带来的后续效应。也就是说瞬间的截流会产生很大的波浪,有可能会给堤坝造成损坏,也有可能导致下游河道暂时的截流。

3.2.2下闸截流施工方法。

人工泄水道的截流,常在泄水道中预先修建闸墩,最后采用下闸截流.天然河道中,有条件时也可设截流闸,最后下闸截流,三门峡鬼门河泄流道就曾采用这种方式,下闸时最大落差达7.08m,历时30余小时;神门岛泄水道也曾考虑下闸截流,但闸墩在汛期被冲倒,后来改为管柱拦石栅截流。

3.2.3投抛块料截流施工方法。

投抛块料截流是目前国内外最常用的截流方法,适用于各种情况,特别适用于大流量、大落差的河道上的截流。该法是在龙口投抛石块或人工块体(混凝土方块、混凝土四面体、铅丝笼、竹笼、柳石枕、串石等)堵截水流,迫使河水经导流建筑物下泄。采用投抛块料截流,按不同的投抛合龙方法,截流可分为平堵、立堵、混合堵三种方法。先在龙口建造浮桥或栈桥,由自卸汽车或其他运输工具运来块料,沿龙口前沿投抛,先下小料,随着流速增加,逐渐投抛大块料,使堆筑戗堤均匀地在水下上升,直至高出水面。一般说来,平堵比立堵法的单宽流量为小,最大流速也小,水流条件较好,可以减小对龙口基床的冲刷。所以特别适用于易冲刷的地基上截流。

篇8

从多年实践工作经验和相关统计文献资料表明,电气施工发生安全隐患,一方面由于电气施工临时系统设计不合理、继电保护器保护不匹配、接地接线不规范等系统设备自身因素引起。另一方面,则是由于电气施工相关专业技术人员的安全意识不够,综合操控技能水平偏低等因素引起。

1.2加强水利水电工程电气施工安全管理的主要内容

在水利水电工程施工全过程中,承包企业应该结合工程特性,组织专业技术人员从施工临时用电安全、施工现场安全用电管理、危险源识别与防护等方面,在建立完善的安全管理制度体系的基础上,认真落实各项安全防护措施,对施工全过程的安全管理采取动态监督,严格执行和监督检查各项安全管理条例和措施体系,并制定相应的事故应急预案,确保水利水电工程安全可靠、节能经济的建设发展。

2、水利水电工程施工电气常见的不安全因素

2.1施工现场环境因素

由于水利水电工程施工周期较长、工程技术复杂,通常位于较为偏僻的山区,加上受到工程区地质环境、流域水文气象、工程移动等诸多因素的共同影响,会对工程施工用电安全带来较大的安全隐患。如:在施工过程中,风吹、日晒、沙尘、洪水、人为破坏等,均可能引起施工用电系统或电气设备发生失灵、大面积停电、漏电、短路等事故,造成严重的施工临时用电安全事故发生。

2.2施工电气安全管理不完善因素

由于受“重施工、轻管理”,“重质量进度、轻安全成本”等固有施工管理意识的影响,一些水利水电工程承包企业项目负责人通常对于施工质量和进度较重视,忽略施工安全用电管理,相应存在施工临时用电安全管理制度不完善、没有设立专门用电安全管理岗位、施工用电安全技术人员素质水平偏低等问题,相应施工临时用电安全防护水平偏低。另外,在施工过程中,安全用电管理制度没按照规范要求认真落实,执行力和监督检查力度不够,电气施工中存在较多的技术和管理隐患。不重视安全用电的检测和检修维护记录,加上项目部安全用电管理经费的不到位,是的一些分项分部工程的临时用电系统安全防护体系不到位,给工程电气施工埋下较大的安全隐患。

2.3临时用电系统不规范因素

在施工临时用电组织设计编制过程中,没有严格按照《施工现场临时用电安全技术规范》(JGJ46-2005)要求,由专门的电气专业技术人员进行编制。临时用电系统设计过程中,没有按照TN-S系统要求,设置独立的保护零线;没有做到“三级配电、三级保护”;没有严格执行“一机一闸一箱一漏”防护体系;三级配电箱间的漏电保护额定电流不匹配,存在“误动、拒动、越级跳闸”等问题;供电线路敷设不规范,埋深或搭接长度不符合要求;线路保护过于简单,无法保障施工工地现场的安全用电。用电管理人员安全意识不高、责任感不强、综合操控技能水平偏低等人为因素,也大大影响水利水电工程施工现场的安全用电水平。

3、提高水利水电工程施工电气安全防护水平的措施

3.1建立完善的施工用电安全管理制度、加强安全管理意识

要保证水利水电工程施工电气具有较高的安全防护水平,首先要建立科学完善的安全管理制度,有效落实各种安全防护制度、组织结构和人员配置,并在施工全过程中进行全程监督,确保制度措施按照设计要求具有较高的执行力和落实度。要根据《施工现场临时用电安全技术规范》(JGJ46-2005)、漏电保护器安装和运行(GB139552-92)等国家或企业规范要求,认真编制施工临时用电设计方案,确保施工临时用电具有较高的科学性、可行性和经济性。加强岗前安全教育培训,要组织相应安全操控技能培训和用电事故分析,加强现场施工作业人员的安全用电意识,使其充分了解到安全用电的重要性和掌握安全用电操控技巧,减少或杜绝人为误操作的习惯性违章行为发生,确保水利水电工程施工用电安全。

3.2加强施工电气机具安全的动态检测管理

在水利水电工程施工前和施工全过程中,应按照国家相关技术规范和安装使用要求,对电气施工中的电气机具的电气性能进行综合检测(包括:耐压能力检测、漏电检测、绝缘性能检测等),只有电气、机械性能均满足工程施工需求时,方能进入施工现场。另外,还需要在施工全过程中,定期对施工机具设备的电气、机械性能进行综合检测。对于检测资料,应按照相关要求进行分类管理,避免电气设备和机具存在“带病”作业问题,提高施工现场用电安全。

3.3加强施工全过程电气安全管理

在进行水利水电工程施工电气安全管理过程中,要结合工程特性合理辨识工程中可能存在的安全危险源,并针对不同的危险源制定相应的安全防护体系。要保障施工电气机具相应指标在人体安全耐受范围(人体耐受电压为36V,漏电电流为36mA)。对于超出人体安全的机具设备,应采取穿戴绝缘衣物、增加绝缘隔离层等技术手段进行处理。优选满足施工实际需求和工程特性的成套供配电设备,以适应各种用电环节需求,便于维护管理。要动态检测漏电保护器、断路器等继电保护装置的动作性能,确保出现用电故障后,保护设备能准确动作切除故障。要叮嘱和监督操控人员安全要求进行安全操作,避免安全用电事故发生。

篇9

1.2分析范围及论证范围团山水库分析范围为石梁河全流域(流域面积239km2)及受水区绥阳县中心城区退水所涉及的洋川河全流域(流域面积126km2),共计365km2;取水水源论证范围为石梁河团山水库坝址以上流域(流域面积14.7km2);取水影响论证河段为团山水库库区河段(河长约2.84km,库区面积约0.42km2)、团山水库坝址至石梁河河口区间河段(河长25.3km),共计河长28.1km;退水影响范围主要为洋川河绥阳县城污水处理厂退水口至下游河口区间长9.7km河段。

1.3区域水资源状况及其开发利用分析分析范围内主要河流有团山水库所在河流石梁河、工程受水区绥阳县中心城区退水所涉及的洋川河。石梁河系芙蓉江右岸一级支流,属长江流域乌江水系,全流域面积239km2,主河道全长32.2km,主河道加权平均坡降为11.9‰,流域形状系数0.231,多年平均径流量15000万m3。洋川河系洛安江左岸一级支流,全流域面积126km2,河长28.9km,主河道平均比降11.8‰,流域形状系数0.151,多年平均径流量7900万m3。分析范围内已建成灌溉水库工程2处,小型引水灌溉工程42处,提水灌溉工程30处。灌溉面积22182亩(其中水田20339亩,旱地1843亩)。分析范围内水资源总量22900万m3,现状开发利用水量1786万m3,水资源开发利用率7.80%;耗水量1079万m3,占水资源总量的4.7%。分析范围内水资源开发利用程度一般,水资源具有一定开发利用潜力,为促进区域经济发展,有条件和必要对石梁河水资源进行进一步的开发利用。

1.4取用水合理性分析城市生活用水方面:绥阳县城市生活用水量预测主要根据《室外给水设计规范》(GB50013-2006)采用分类预测法进行预测,远期规划水平年(2030年)采用180L/(人•d);供水管网损失10%;未预见水量按10%考虑;水厂自用水量按总用水量的5%计。由于县城工业用水单独考虑,故上述所取定额符合一般城市生活用水规律。农田灌溉用水方面:根据当地灌溉习惯结合现状灌溉渠系实际情况,下游农田灌溉P=80%保证率灌溉用水定额水稻取320m3/亩、玉米56.4m3/亩、辣椒45.9m3/亩、油菜59.3m3/亩基本合理。用水总量控制指标方面:绥阳县现状用水量1.787亿m3,2015用水指标1.812亿m3、2020用水指标1.985亿m3、2030用水指标2.041亿m3,分别比现状增加0.025亿m3、0.198亿m3和0.254亿m3,团山水库供水量仅0.0599亿m3,而且主要是用于绥阳县城生活用水,符合《遵义市实施最严格水资源管理制度指标方案》对用水总量控制指标的要求。

1.5取水水源论证团山水库坝址以上流域面积14.7km2,多年平均径流量922万m3,经长系列调节计算,团山水库坝址处流域水资源量可满足团山水库设计供水量599万m3/a(P=95%城市供水588万m3/a、P=80%农田灌溉用水10.8万m3/a)的要求。至规划水平年(2030年)上游流域内用水较现状增加耗水量仅占来水量的0.03%。因此,团山水库工程取水在水资源量方面是可靠的。根据坝址河段水样水质检测结果,现状水质能满足集中式供水水源地和农田灌溉水质要求。取水口以上流域内无工矿企业,主要污染源为少量农田灌溉用水退水,农村生活用水基本无退水,今后水质下降的可能性不大。取水口以上流域今后将划为水源地保护区,农田灌溉用水退水量将进一步削减,同时严禁新设排污口等活动,取水水源水质可得到保障并有改善的可能。取水口河段具备成库建坝的地形地质条件,同时取水口的设置也能够满足水库泥沙淤积需求和取水量的需求,且坝址下游农田灌溉用水今后由团山水库生态放水管一并下放,管道尺寸满足放水要求,取水口设置合理可行。

1.6取水和退水影响分析团山水库取水对区域水资源量虽有一定影响,但按多年平均径流量的10%(0.029m3/s)下放生态流量,对区域水资源及下游河道的生态影响较小。水库下游有农田灌溉工程,灌溉设计流量为0.021m3/s,下游灌溉用水量由生态放水管统一下放,对下游农田灌溉取水影响不大。同时,建议在初蓄期积极引导灌区群众进行适度水改旱,尽可能减少灌溉用水量,确保水库尽早正常蓄水,正常发挥效益。团山水库工程在建设期其污废水按退水处理方案处理达标后排入石梁河,坝址河段枯季情况下接纳排放的污废水后悬浮物(SS)、五日生化需氧量(BOD5)、化学需氧量(COD)浓度均小于《地表水环境质量标准》(GB3838-2002)Ⅳ类水质要求。施工期对河道水功能区造成一定影响,但该影响将随着施工的结束逐渐减弱直至消失。运行期影响较大的绥阳县中心城区城市用水退水。退水影响的洋川河属“洛安江绥阳遵义县保留区”,由于纳污河流洋川河退水口来水量较大,只要对城市用水产生的污废水处理达到《城镇污水处理厂污染物排放标准》(GB18918-2002)“一级标准A标准”后排放,退水对水功能区的影响较小,加之影响河段无其他用水户取水,故绥阳县中心城区城市用水退水对水功能区和第三者的影响不大。

1.7水资源保护措施项目建设过程中,要对生产废水和生活污水采取有效措施处理后达标排放,严禁将污废水直接排入河道;作好水土保持工作,对弃渣进行妥善处理,对项目施工造成的地表恢复植被[6]。对水库大坝、泵站及库尾河段进行水质监测,遇异常情况要查明原因并报告当地水行政主管部门,同时停止供水并采取措施即时解决。水库蓄水前,必须对淹没区进行库底清理,以免蓄水后淹没区内植物腐烂、农厕中粪便等造成二次污染。水库管理站修建化粪池处理生活污水,污水经处理后用于浇灌农田和绿地,生活垃圾拟与当地生活垃圾一同处理。加大水土保持工作力度,植树种草、对库区25°以上坡耕地实行退耕还林、坡改梯等水保工程,缓解库内泥沙淤积,逐步恢复库区库周生态环境的同时,提高水库自身运行年限。合理安排水库蓄水计划,通过下泄一定流量等措施来减小水库蓄水和运行对下游河段生态环境和农田灌溉的影响。建立一个自上而下的水资源保护领导小组,主要负责水库在运行过程中,实施水资源保护的领导、管理和监督实施工作。配合涉及县、乡、村对负责范围内水资源保护措施实施情况进行监督管理,搞好工程水资源保护工作。

篇10

2水利水电工程弃渣场水土保持措施

2.1应用锚固技术

锚固技术的主要用处是在边坡的加固与治理上,因为锚固技术使用简洁,操作方便,并且不会对原有的岩体造成损坏,因此在生产过程中得到广泛应用。在实际的水利水电工程施工中,假如使用预应力锚索中的胶结式接头,则后期需要采用张拉形式来解决缺陷问题。一般情况下,预应力锚固的构成是锁体和内外锚头,使用起来极为方便,摆脱了传统的陈旧设计模式。在我国科技技术的迅猛发展下,水利水电工程得到更深层次的探究,尤其是针对边坡水土的防治方面,无粘结的锚索技术得到开发应用。这项技术设立诸多防腐层,也生成了单一到来回循环的变化模式,浆料冻结后的操作会减少施工中不必要的工序,对于最后的生产效果作用明显。

2.2采用填盖坝体边坡的方式预防雨水渗透

雨水会对边坡造成不同程度的滑坡现象,滑坡过程中诸多雨水会快速渗入土质内部,又相继加大滑坡的程度。所以,采用填盖坝体的方式可以及时将黄泥填补在底面,防止出现更大程度的渗透。此外,应对边坡本身存在的漏缝进行填补,必要时要进行尼龙加盖。一旦出现很大程度的滑坡现象,就需要对整个边坡进行尼龙加盖,防止雨水进一步渗入对边坡坝体造成更大的危害。对于新疆等土质特殊的边坡地区,一旦出现水流失现象,就需要采用碾压式的的沥青填堵设计方案,这样一来,一旦雨水渗透进去,对坝体水质的污染也能降到最小。但是,在进行沥青碾压的过程中,要保证心墙处于垂直状态,在最底部要形成弧形的状态连接,以此来保障边坡或坝体基础存在的高度稳定性。与此同时,心墙的细化数据也应控制在一点二米左右,坝体河床的宽度尽量限制在十二米左右,以此来保证防渗体和基岩之间高度的相关性。

2.3应用大面积混凝土碾压技术

通过采用功率较大的型号,符合机能较多的现代化及其对边坡混凝土进行分层次浇筑,以此来加固水土。国内的水利水电项目工程一般都建立在枢纽位置,项目工程宏大,采用这种大面积混凝土碾压技术可以快速完成预期目标,并且质量效果达到预期标准。例如:在对混凝土进行搅拌的过程中,搅拌物几乎没有落下的可能性,并且保持了原有的那份干硬质地,做工效果自然很好。分层铺料的操作方式加快了完工速度,使得碾压的过程不必拘泥于传统的混凝土材料。但是,即便两种混凝土本质一样,但依旧存有诸多实际分配上的差异。比如说:在碾压混合物的混凝土使用条件上,一般使用的是粘稠状物质,需要根据使用性需求对其进行合理的震动和碾压举措。只有混凝土之间的空间压缩到最小,才能保证边弃渣场边坡的硬度。特别需要重视的是,在所有的碾压过程中,对于碾压段之间部门的重视程度,将直接影响到后期整个水利水电工程水土保持的稳定和持久性。

篇11

1.1提升监督管理效应

水利水电工程的施工维修需要技术含量较高技术的支持。因此,水利水电工程要逐渐将工程设备的提升重点放在改进工程设备的技术水平上面,并运用最科学的检测技术对工程设备进行检测维修,保证水利水电工程实施具备良好的技术条件,以加强水利水电工程实施效率。水利水电工程施工要依据国家法律法规,同时结合工程施工情况来制定相关管理制度,如《电厂及变电站通讯中断事故处理办法》等,对已制定制度进行相应修改与完善,以确保符合工程实际管理情况。同时以管理制度为规范在施工工程中时刻加强运行管理。为了更好的实现水利水电工程项目施工管理预期的投资以及建设目标并且真正意义上发挥出投资的基本效应,应当加监督效应管理,这一点相当关键,只有全面的实现了对监督机制的合理控制才能够很好的避免工作中出现突破工作限额的情况,并且更好的实现设计以及施工等项目的完善,为更好的实现物力以及人力财力的管理奠定坚实基础,保证企业的最佳效益,并且为企业获取最佳的社会效益奠定坚实基础。所以在实践之中还应当加强水利水电工程项目施工管理中造价管理以及控制,加强全过程的监督,以更加健全的思想和更加成熟的理念不断的实现相关项目的创新与改革。

1.2加强技术的组织

在水利水电工程实施过程中要对工程技术进行分级管理,即建立场站、班组、车间技术管理系统。施工技术组织在水利水电工程当中具有不可比拟的作用,因此要在工程施工期间经常开展技术交流,组织施工技术人员针对施工问题展开分析,并建立全面技术组织管理制度,确保工程强大的技术支持。在施行全面的管理体制改革之后,我国当前水利水电工程项目施工管理工作之中的管理思想和政策相当明确,并且在当前的发展环境趋势影响之下,相关人员的管理制度也将得到不断的健全和全面的完善,相关水利工程维护的经费渠道将全面的拓展,这一点对于保证施工的质量奠定了坚实的基础。

1.3加强进度和评价管理

施工合同中已明确了项目的开工和竣工日期,是水利水电工程施工项目进度控制的标准,而整体施工目标是根据施工项目各分部分项目工程的进度来制定的,并在具体施工过程中进行适当调整,以实现施工进度的管理。相关管理人员应对施工人员、原材料、工程造价等资源进行有效配置,保障水利水电工程的高效率施工。从而与预计的进度计划进行比较,通过分析实现工程项目的进度调整,保证在工期时间内完成水利水电工程项目的建设。

篇12

【关键词】

水利水电;电气;节能

1.水利水电工程电气节能设计现状概述

水利水电工程建设过程中,节能设计是十分重要的环节,特别是在社会生产用电及居民用电需求不断提升的背景下,节能设计所产生的效应也就愈加显著。尽管我国水利水电工程节能设计水平较以往有所进步,但在某些环节上依然暴露出一定问题,具体表现为以下几个方面[1]:(1)规章制度有待健全。水利水电工程电气节能实际设计过程中,由于缺乏规范性文件引导,且相关制度并不完善,造成电气设计质量无法统一。(2)节能产品及设备质量有待提升。部分施工企业为了自身利益,使用一些质量不合格的节能产品或设备,导致节能效果低下、节能水平不能达标,无法充分发挥节能作用。(3)节能意识有所缺失。部分设计人员缺乏节能意识,过于注重施工需求及工程效益,忽视了节能设计的重要性,导致节能设计出现漏洞。直至工程完成后,才发现由于节能设计缺陷所带来的用电不便。综合来看,水利水电工程节能设计还有待完善,无论是在技术还是管理上都应该给予重视。

2.电气节能设计相关原则分析

水利水电电气节能设计过程中,应遵循以下原则[2]:(1)尽可能满足环保要求。在节能设计过程中,除了要保证设备达到环保要求,还需要采取相关节能技术。结合实际需要,筛选设计节能设备与节能技术,以有效降低能耗。(2)满足基本功能需求。节能设计时,要充分考虑设备基本功能需求,不能因为追求节能效果而影响到电机正常功能。(3)保持节能设计的合理性。节能设计的本质目的在于节约经济成本,所以在实际设计过程中,要保证节能方案切实合理、科学有效,其前提是节能设备与节能技术达到工程标准。但要切忌为了节能,而忽视设备本身的功能及质量。

3.水利水电工程电气节能相关技术应用

3.1优化配电系统方案

通过优化配电系统,让用电负荷合理分布,保证系统处于最佳运行状态,以此来降低能耗。首先,配电系统设计应尽可能简捷化。同一电压等级的供电系统,其变配电级数应控制在两级以内,通过降低变电级数让电能损耗控制在合理范围内。对供电电压等级进行合理筛选,在不影响设备运行及安全的情况下,尽可能提升电压,以降低损耗[3]。工程主机需对电机启动电流进行控制,避免其对电网产生冲击。其次,根据设备需求及系统整体运行要求,对负荷进行合理分配。结合负荷情况,合理选择变压器数量、容量等,使其与负荷变化相契合。再者,对电缆材料进行合理筛选,保证电缆可满足载流量需求,并根据电流密度筛选导线截面,以降低能耗、损耗。另外,通过无功功率补偿来降低变压器及线路损耗。

3.2投入节能变压器

水利水电工程建设过程中,应推广应用节能变压器,通过节能变压器实现节能降耗,达到节约电能的目的。变压器运行过程中,其空载损耗主要来源于铁损,具体是由于交变的磁力线通过铁芯时产生磁滞及涡流所致。而节能变压器的铁芯为非晶合金铁芯,其排列方式为三相五柱式两行矩形,其中两个旁柱会通过零序磁通,并且磁通不会经过箱体,所以不会产生结构发热损耗,也可一定程度上降低变压器运行噪声;高低压线圈为矩形铜绕组,即便出现偶然短路,也能抵御较大程度的机械应力破坏,避免线圈变形;箱体散热器为冷轧钢板制成,其高低压套管上还带有保护罩,可用电缆接线,并可实现全绝缘保护;采用填充硅油进行热循环,箱体为全密封结构,可在高温环境下正常运行。节能变压器整体空载损耗仅为常规变压器的20%,具有重量轻、噪音低、抗冲击、运作效率高等特征,并具有良好的节能效果,值得推广。

3.3完善照明节能

照明节能设计是水利水电工程电气节能设计的重要环节,通过照明节能可有效降低系统中的光能损失,以充分利用光能。首先,应重视自然光的利用,将自然光与人工照明相结合,达到节能效果。其次,应根据应用环境选择高效光源。例如,在室内操作空间,可采用荧光灯;在车间内部,可采取高频无极荧光灯;技术研究部门则可选用高压钠灯。实际照明节能设计期间,应遵从相关标准(GB50034-2004)[4],优先考虑工程的功能性,再考虑视觉环境与照明效果,以提升生产效率。

3.4加强相关管理工作

通过落实相关管理工作,为水利输电电气节能设计提供一个良性的环境,使其充分发挥作用。首先,设计前,要对工程项目资料进行分类整合,包括水文数据、自然资源、施工条件等方面。通过科学地比选分析,保证电气设备与实际施工环境相契合。其次,要做好招投标管理,通过竞争管理制度预防垄断行为,并可筛选出质量优良施工设计,以提升工程整体质量。再者,要加强设计审查,对设计质量不高或无法满足要求的设计方案进行重新提案,以落实质量管控工作。另外,要加强内部培训工作,让设计人员、施工人员具备良好责任意识,通过培训使其业务能力不断增强,为设计、施工工作具体实施提供保障。

4.结语

水利水电工程电气节能设计是一项综合性的工作,其中涉及到多个环节,需要进行综合性权衡。通过利用节能技术、加强施工管理、优化节能方案,可以降低水利水电工程整体能耗,提升工程效益,为工程良性运作提供保障。

作者:袁聪 单位:永安电力股份有限公司

参考文献

[1]唐平,卢伟丽.浅议水利水电工程电气节能设计[J].水电站机电技术,2015(01):74-77.

友情链接