时间:2022-07-06 00:56:13
引言:寻求写作上的突破?我们特意为您精选了4篇钻采工艺论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
1 概述
刘桥一矿位于安徽省濉溪县境内,煤系地层为华北晚生古生界二叠系下石盒子组及山西组地层,含3、4、6煤及三到四层发育不全的极薄煤线,以单一薄煤层为主,煤层厚度0-1.75,平均厚度0.82m,平均倾角14°,局部可采,为极不稳定煤层。3煤储量主要分布在II46上山采区东翼及六采区,可采储量合计为148.8万吨。
2 采煤工艺选择
根据3煤赋存特点及煤层厚度特征,我矿3煤采用钻采采煤工艺,边掘边采,掘进与钻采平行作业的方式施工。前方掘进工作面至少超前钻采工作面80米,钻机采用乌克兰生产的薄煤层三轴螺旋钻机,采用独头单向钻采。钻采顺序为前进式钻采至迎头。该机先在巷道下帮沿煤层倾向向下进行钻采,钻采完后再退回调头在巷道上帮沿煤层倾向向上进行钻采,该机适用于煤层厚度为0.5m-0.9m,煤层倾角-15°-+15°,煤层走向倾角小于8°的各种硬度的煤层。
2.1 落煤方法
①落煤方式
即一台螺旋钻机布置在运输顺槽中,向煤层打钻,钻头割煤,螺旋钻杆掏煤,煤直接落在运输巷的刮板输送机上运出。该机一次采宽2.0米,三轴联动钻杆1.54米一节,钻机本身自动接杆,达到设计采深或遇断层时,推出钻杆,螺旋钻机整体前移,预留0.8±0.2米煤柱后开始下一循环钻采。
②螺旋钻机正常钻进
设计钻采长度:钻采从运输巷设计位置处开始运行,从顺槽上帮向上钻采,钻采深度最大85米,平均80米,螺旋钻机以2.0m/min的速度向上钻采,直至达到设计深度。
2.2 设备配置
①螺旋钻
螺旋钻机选用乌克兰制薄煤层三轴螺旋钻机,其主要技术参数如下:
钻高625/725/825
钻宽2.0m
钻深上山方向85m,下山方向40m。
电机功率220kw
钻进速度0-1.0m/min
②运输设备
刮板输送机一部: 型号为SGW—40T
电机功率: 40kw
运输能力:150t/h
中间顺槽尺寸:1500mm×630mm×180mm
链速:0.92m/s
③运送和安装钻具的设备
单轨吊车一部,起吊速度为3m/min,运行速度为20m/min,起吊高度为3m。
④辅助运输设备
SGW---40T型转载机和STJ800/2×40型皮带和SD—150F型皮带运煤。
2.3 生产能力
按一个螺旋钻采工作面布置,工作面每班钻进30m,每天钻进深度90m,钻孔高度0.65m,实际采高1m ,钻孔宽度为2.0m,钻煤时采储率为0.95,则:
W=L×S×H×r×C=90×2.0×1×1.46×0.95=250T
式中W---日产量,t/d;
L---日钻进深度,m/d;S---钻孔宽度,m;H---钻孔高度,m;r---煤层视密度;
C---采出率×95%; 则年生产能力=350×250=8.75万吨
3 巷道布置
根据3煤赋存状况,可充分利用II46上山采区及六采区生产系统运料,排矸,运煤。减少了掘进巷道工程量,在3、4煤层间距较大的地点可设一临时垂直煤仓进行连接,煤仓高度即3、4煤层间距。
4 顶板控制
由于3煤无直接顶,老顶以中细砂岩为主,平均厚17.5m,钻采面采宽1.905m,煤柱宽0.5m,顶板来压及下沉量不明显,故钻采工作面采用不支护方式。正常工作时期,在工作面钻孔钻采完备后,在钻孔口以里0.3m 处支设3棵φ×H =180mm×650mm的优质木点柱,上方戴规格为长×宽×厚=400mm×200mm×40mm的木柱帽(柱帽沿倾斜使用),并用木栅栏加紧打牢,软底处加穿规格为1500mm×250mm×40mm的大木鞋。木点柱严禁支在浮煤、浮矸上。
随着螺旋钻采煤机不断前移采煤,要随时观测运输巷的围岩变形情况。当巷道压力变大,变形严重时,及时打锚索加强支护,锚索间排距300 mm×300mm,长度6.0m,安设在巷道拱顶,防止冒顶或影响钻采工作。运输巷采用猫网作永久支护。在钻孔口以上或以下0.3m处支设3棵φ×H =180mm×650mm的优质木点柱支护顶板。
5 通风
钻采工作面通风方式是利用2×15kW局部通风机供风。
6 该工艺与传统工艺相比的优点
①在采煤面实现无人操作,安全生产。
②降低伤亡事故和职业病患者。
③可以在螺旋钻具上安装三种不同直径的钻头625mm、725mm、825mm,增加在不同厚度煤层上的采收率。
④实现薄煤层采煤,其中包括从平衡的和保护煤柱上采煤,这样增加采煤量,并降低其在矿藏中的损失。
⑤只采煤不采矸石,采出煤质好。
⑥由于不需要支撑,从而节约了大量的木材。
⑦在相同条件下,与传统工艺相比矿工的工作效率提高一倍以上。
⑧由于留煤柱,代替了支护,降低了采煤成本,由于煤柱的存在,也减少了顺槽等巷道的回收费用。
⑨在顺槽中的设备维护、维修方便,避免了重体力劳动。
⑩人工工效提高,采煤机每班需6人操作,并且大大地减轻了 工人的劳动强度。
7经济效益
以我矿II362钻采面为例:
储量 8.75万吨,井巷工程 600米 (II362运输巷)费用 270万元;
螺旋钻采煤机 1台520万元,辅助设备 136万元;
人工工资/年72万元(2500元/月),电力消耗/年42万元;
其他消耗/年 100万元 ,计1140万元,预计销售收入 2625万元
本次研究及试验对象是辽河油田高3624区块的高3-6-021井。通过对高3624区块岩性、裂缝发育特征及其分布走向、储层物性等方面进行细致研究,确定钻孔方位、钻孔数量、钻孔深度、注酸类型和数量、注蒸汽量,观察联作措施后的效果,对效果进行评价。
1 水力喷射钻孔技术介绍
目前,辽河油田水力喷射钻孔技术的工艺原理:连续油管连接铣刀钻具,入井进行套管开窗,然后连续油管连接喷射工具入井进行油层喷孔的工艺,喷嘴为反冲自进设计。喷嘴工作方式为单射流破岩,非水力机械联合破岩方式,其优点是:结构简单、控制简便、成功率高、钻孔长度可达100米。
水力喷射钻孔技术从施工工序上可分为:
(1)自然伽玛校深;(2)陀螺定向;(3)套管开窗;(4)钻水泥环;
(5)油层喷孔。每孔施工时间约为15h,每孔施工周期内,连续油管下井3次,测井1~2次。
2 高3624区块开发现状2.1 高3624砂砾岩油藏介绍
试验油井位于辽河油田高3624区块,高3624区块构造上处于辽河西部凹陷西斜坡北端高升油田莲花油层鼻状构造北端,是一个南、东、西三面受断层夹持的由西南向北东倾没的断鼻构造,高点埋深1600m。构造类型为纯油藏,油层埋深1600~1850m,油层分布主要受砂体分布控制,为一构造岩性油藏。储层岩性以厚层块状砂砾岩为主,夹薄层泥岩。据高3624井最初试油成果,原始地层压力17.5MPa(油中1800m),1750m深度温度56℃。通过观察井测压情况可知,目前地层压力在7MPa以上,试验井附近压力10MPa左右。
2.2 区块开发现状
按开发方式划分,高3624块可分为两个开发阶段:即常规开采和蒸汽吞吐开采阶段,目前全块转为捞油生产。1988年8月~1998年9月,高3624块开始蒸汽吞吐开发,至1998年9月蒸汽吞吐有效期结束,共吞吐23口井、74井次,平均单井吞吐轮次4.9轮,累计注汽22.0693×104t,阶段产油13.9057×104t,阶段产水3.7228×104m3,阶段采出程度1.81%,吞吐油汽比0.63,阶段回采水率16.9%。1998年10月~2005年12月,由于吞吐效果较差,1998年10月后该块不再进行蒸汽吞吐开采,2003年12月全块转为捞油生产。2006年1月~目前,为采取压裂改造和高压注汽提高区块储量动用阶段,开采难度逐年加大,急需改善传统开采方式,提高单井产能。
3 水力喷射钻孔与蒸汽吞吐联作方案
试验井高3-6-021井储层岩性以厚层块状砂砾岩为主,夹薄层泥岩,分析试验井与邻井同产层生产情况,认为试验井目标储层剩余油较多,结合水力喷射钻孔设备参数性能指标,分析在该试验井应用是可行的,决定进行水力喷射钻孔与蒸汽吞吐联作措施工艺试验。利用该技术喷射钻孔的定深、定向、钻深可控的优势来提高微裂缝钻遇率,改善稠油蒸汽吞吐井产层受热环境及渗流条件,扩大产层受热吞吐半径,实现周围死油区稠油得到动用,达到增加原油产量、提高单井产能的措施目的。
3.1 水力喷射钻孔方案3.1.1?钻孔层位
筛选高3624块的某一口油井为试验井,该井位于区块中部,生产层段岩性为砂砾岩。油层物性较好,平均孔隙度21.9%,平均渗透率967×10-3μm2。碳酸岩含量极少。粒度中值为0.44mm,但分选较差,平均分选系数为1.94。为近物源浊流砂体沉积的特征。Ⅴ砂体储层以砂砾岩为主,平均孔隙度为22.69%,平均渗透率1282.65×10-3μm2;Ⅵ砂体储层以砂砾岩为主,平均孔隙度为19.92%;平均渗透率867.92×10-3μm2。
3.1.2?钻孔位置
根据地层倾角、倾向以及油井井斜数据,确定钻孔方位主要沿平行地层等高线方向,这种方法适合油层上下较厚的油层,孔轨迹在同一个油层延伸,同时根据油层厚度和实际钻孔深度进行钻孔方位微调,从该井测井曲线对比综合分析L5+6层位的2#、3#两个层钻孔增产效果会更好。
?3.1.3?钻孔方位
通过分析试验井与邻井同产层生产情况,认为试验井24.6o、221o方位剩余油较多,优选为该试验的钻孔方位。
3.1.4?布孔数量
该井所选2#小层为物性较好的含油层段,单层厚度56.6m,3#小层厚度13.4m,2#小层布孔密度为1孔/7.07m,3#小层布孔密度为1孔/13.4m,设计对2个小层完成9个钻孔,自下而上逐孔实施。
3.1.5?钻孔长度
考虑小层单层厚度较厚,井间距较长,产层无底水,井间距离170m,因此,设计钻孔长度为100m。
3.2 防膨酸化蒸汽吞吐方案3.2.1?防膨方案
粘土稳定剂由有机聚季铵、非离子表面活性剂及无机物复合而成。
(1)按处理半径计算,按照处理半径2.4m计算,药剂浓度1%,施工剂量24.4t。
(2)按注汽量计算
设计注汽量按3000t,防膨剂使用浓度按1%计算,则试验井防膨剂用量为30t。
(3)施工要求:正注粘土防膨剂30t,正替清水10m3,压力控制在20MPa。3.2.2?酸化解堵方案
(1)药剂用量:酸化药剂的主要成分为有机酸、盐酸、氟盐、缓蚀剂和表面活性剂等。酸化目的层为2#:3#小层,井段1651.5-1722.0m,厚度70m/2层。通过酸化,解除近井油层污染,恢复或提高地层渗透率,增加油井产能。设计向井中注入多氢酸解堵处理液185t,正替顶替液10t,排量0.6~1.5m3/min,泵压不得超过20MPa。
3.2.3?注蒸汽方案
预热地面管线10分钟,然后转入正式注汽,以较低参数注一小时,逐步提高注汽参数。采用高压小炉注汽,设计注汽量3000t,油层吸汽能力约7~9 t/h,注汽速度:192 t/ d,注汽强度:27.5t/m。
4 现场试验与效果
4.1 现场试验
5 结论
细致的地质分析、创新的联作思路、缜密的施工设计、科学合理的联作工艺选择是高3-6-21井现场试验成功的基础与保障。
水力喷射钻孔改变了传统射孔完井蒸汽腔的形态,扩大了蒸汽与地层的直接接触面积,扩大了蒸汽腔的波及体积,无论是近井地带还是远井地带均更有效的利用了蒸汽的热能,并且可在一定程度上解决因储层非均质性造成的储层动用不均的困扰。
水力喷射钻孔的成功应用可突破传统意义上的射孔完井方式,有望引起新一轮的完井方式的变革
水力喷射钻孔与蒸汽吞吐措施联作工艺技术可有效解决因近井地带污染与堵塞导致的注汽困难的难题,实现了蒸汽吞吐井间剩余油挖潜以及油井产量的提高,为辽河油田稠油开采提供新模式、新方法。
参考文献
[1] 李根生,沈忠厚.高压水射流理论及其在石油工程中应用研究进展.石油勘探与开发[J].2005,(02):96-99
[2] 袁建民,赵保忠.超高压射流钻头破岩实验研究[J].石油钻采工艺,2007,(04):20-22
[3] 孙晓超.水力深穿透水平钻孔技术的研究.大连理工大学硕士学位论文[D],2005
论文摘 要:随着海洋石油的大力开发,钻井技术的研究至关重要,本文主要阐述海上钻井发展及现状,我国海上石油钻井装备状况,海洋石油钻井平台技术特点,以及海洋石油钻井平台技术发展分析。
1 海上钻井发展及现状
1.1 海上钻井可及水深方面的发展历程
正规的海上石油工业始于20世纪40年代,此后用了近20年的时间实现了在水深100m的区域钻井并生产油气,又用了20多年达到水深近2000m的海域钻井,而最近几年钻井作业已进入水深3000m的区域。图1显示了海洋钻井可及水深的变化趋势。20世纪70年代以后深水海域的钻井迅速发展起来。在短短的几年内深水的定义发生了很大变化。最初水深超过200m的井就称为深水井;1998年“深水”的界限从200m扩展到300m,第十七届世界石油大会上将深海水域石油勘探开发以水深分为:400m以下水域为常规水深作业,水深400~1500m为深水作业,大于1500m则称为超深水作业;而现在大部分人已将500m作为“深水”的界限。
1.2海上移动式钻井装置世界拥有量变化状况
自20世纪50年代初第一座自升式钻井平台“德朗1号”建立以来,海上移动式钻井装置增长很快,图2显示了海上移动式钻井装置世界拥有量变化趋势。1986年巅峰时海上移动式钻井装置拥有量达到750座左右。1986年世界油价暴跌5成,海洋石油勘探一蹶不振,持续了很长时间,新建的海上移动式钻井装置几乎没有。由于出售流失和改装(钻井平台改装为采油平台),其数量逐年减少。1996年为567座,其中自升式平台357座,半潜式平台132座,钻井船63座,坐底式平台15座。此后逐渐走出低谷,至2010年,全世界海上可移动钻井装置共有800多座,主要分布在墨西哥湾、西非、北海、拉丁美洲、中东等海域,其中自升式钻井平台510座,半潜式钻井平台280座,钻井船(包括驳船)130艘,钻井装置的使用率在83%左右。目前,海上装置的使用率已达86%。
2我国海洋石油钻井装备产业状况
我国油气开发装备技术在引进、消化、吸收、再创新以及国产化方面取得了长足进步。
2.1建造技术比较成熟海洋石油钻井平台是钻井设备立足海上的基础。从1970年至今,国内共建造移动式钻采平台53座,已经退役7座,在用46座。目前我国在海洋石油装备建造方面技术已经日趋成熟,有国内外多个平台、船体的建造经验,已成为浮式生产储油装置(FPSO)的设计、制造和实际应用大国,在此领域,我国总体技术水平已达到世界先进水平。
2.2部分配套设备性能稳定海洋钻井平台配套设备设计制造技术与陆上钻井装备类似,但在配置、可靠性及自动化程度等方面都比陆上钻井装备要求更苛刻。国内在电驱动钻机、钻井泵及井控设备等研制方面技术比较成熟,可以满足7000m以内海洋石油钻井开发生产需求。宝石机械、南阳二机厂等设备配套厂有着丰富的海洋石油钻井设备制造经验,其产品完全可以满足海洋石油钻井工况的需要。
2.3深海油气开发装备研制进入新阶段目前,我国海洋油气资源的开发仍主要集中在200m水深以内的近海海域,尚不具备超过500m深水作业的能力。随着海洋石油开发技术的进步,深海油气开发已成为海洋石油工业的重要部分。向深水区域推进的主要原因是由于浅水区域能源有限,满足不了能源需求的快速增长需求,另外,随着钻井技术的创新和发展,已经能够在许多恶劣条件下开展深水钻井。虽然我国在深海油气开发方面距世界先进水平还存在较大差距,但我国的深水油气开发技术已经迈出了可喜的一步,为今后走向深海奠定了基础。
3海洋石油钻井平台技术特点
3.1作业范围广且质量要求高
移动式钻井平台(船)不是在固定海域作业,应适应移位、不同海域、不同水深、不同方位的作业。移位、就位、生产作业、风暴自存等复杂作业工况对钻井平台(船)提出很高的质量要求。如半潜式钻井平台工作水深达1 500~3 500 m,而且要适应高海况持续作业、13级风浪时不解脱等高标准要求。
转贴于
3.2使用寿命长,可靠性指标高
高可靠性主要体现在:①强度要求高。永久系泊在海上,除了要经受风、浪、流的作用外,还要考虑台风、冰、地震等灾害性环境力的作用;②疲劳寿命要求高。一般要求25~40 a不进坞维修,因此对结构防腐、高应力区结构型式以及焊接工艺等提出了更高要求;③建造工艺要求高。为了保证海洋工程的质量,采用了高强度或特殊钢材(包括Z向钢材、大厚度板材和管材);④生产管理要求高。海洋工程的建造、下水、海上运输、海上安装甚为复杂,生产管理明显地高于常规船舶。
3.3安全要求高
由于海洋石油工程装置所产生的海损事故十分严重,随着海洋油气开发向深海区域发展、海上安全与技术规范条款的变化、海上生产和生活水准的提高等因素变化,对海洋油气开发装备的安全性能要求大大提高,特别是对包括设计与要求、火灾与消防及环保设计等HSE的贯彻执行更加严格。
3.4学科多,技术复杂
海洋石油钻井平台的结构设计与分析涉及了海洋环境、流体动力学、结构力学、土力学、钢结构、船舶技术等多门学科。因此,只有运用当代造船技术、卫星定位与电子计算机技术、现代机电与液压技术、现代环保与防腐蚀技术等先进的综合性科学技术,方能有效解决海洋石油开发在海洋中定位、建立海上固定平台或深海浮动式平台的泊位、浮动状态的海上钻井、完井、油气水分离处理、废水排放和海上油气的储存、输送等一系列难题。
4海洋石油钻井平台技术发展
世界范围内的海洋石油钻井平台发展已有上百年的历史,深海石油钻井平台研发热潮兴起于20世纪80年代末,虽然至今仅有20多年历史,但技术创新层出不穷,海洋油气开发的水深得到突飞猛进的发展。
4.1自升式平台载荷不断增大
自升式平台发展特点和趋势是:采用高强度钢以提高平台可变载荷与平台自重比,提高平台排水量与平台自重比和提高平台工作水深与平台自重比率;增大甲板的可变载荷,甲板空间和作业的安全可靠性,全天候工作能力和较长的自持能力;采用悬臂式钻井和先进的桩腿升降设备、钻井设备和发电设备。
4.2多功能半潜式平台集成能力增强
具有钻井、修井能力和适应多海底井和卫星井的采油需要,具有宽阔的甲板空间,平台上具有油、气、水生产处理装置以及相应的立管系统、动力系统、辅助生产系统及生产控制中心等。
4.3新型技术FPSO成为开发商的首选
海上油田的开发愈来愈多地采用FPSO装置,该装置主要面向大型化、深水及极区发展。FPSO在甲板上密布了各种生产设备和管路,并与井口平台的管线连接,设有特殊的系泊系统、火炬塔等复杂设备,整船技术复杂,价格远远高出同吨位油船。它除了具有很强的抗风浪能力、投资低、见效快、可以转移重复使用等优点外,还具有储油能力大,并可以将采集的油气进行油水气分离,处理含油污水、发电、供热、原油产品的储存和外输等功能,被誉为“海上加工厂”,已成为当今海上石油开发的主流方式。
4.4更大提升能力和钻深能力的钻机将得到研发和使用
由于钻井工作向深水推移,有的需在海底以下5000~6000m或更深的地层打钻,有的为了节约钻采平台的建造安装费用,需以平台为中心进行钻采,将其半径从通常的3000m扩大至4000~5000m,乃至更远,还有的需提升大直径钻杆(168·3mm)、深水大型隔水管和大型深孔管等,因此发展更大提升能力的海洋石油钻机将成为发展趋势。
1 海上钻井发展及现状
1.1 海上钻井可及水深方面的发展历程
正规的海上石油工业始于20世纪40年代,此后用了近20年的时间实现了在水深100m的区域钻井并生产油气,又用了20多年达到水深近2000m的海域钻井,而最近几年钻井作业已进入水深3000m的区域。图1显示了海洋钻井可及水深的变化趋势。20世纪70年代以后深水海域的钻井迅速发展起来。在短短的几年内深水的定义发生了很大变化。最初水深超过200m的井就称为深水井;1998年“深水”的界限从200m扩展到300m,第十七届世界石油大会上将深海水域石油勘探开发以水深分为:400m以下水域为常规水深作业,水深400~1500m为深水作业,大于1500m则称为超深水作业;而现在大部分人已将500m作为“深水”的界限。
1.2海上移动式钻井装置世界拥有量变化状况
自20世纪50年代初第一座自升式钻井平台“德朗1号”建立以来,海上移动式钻井装置增长很快,图2显示了海上移动式钻井装置世界拥有量变化趋势。1986年巅峰时海上移动式钻井装置拥有量达到750座左右。1986年世界油价暴跌5成,海洋石油勘探一蹶不振,持续了很长时间,新建的海上移动式钻井装置几乎没有。由于出售流失和改装(钻井平台改装为采油平台),其数量逐年减少。1996年为567座,其中自升式平台357座,半潜式平台132座,钻井船63座,坐底式平台15座。此后逐渐走出低谷,至2010年,全世界海上可移动钻井装置共有800多座,主要分布在墨西哥湾、西非、北海、拉丁美洲、中东等海域,其中自升式钻井平台510座,半潜式钻井平台280座,钻井船(包括驳船)130艘,钻井装置的使用率在83%左右。目前,海上装置的使用率已达86%。
2我国海洋石油钻井装备产业状况
我国油气开发装备技术在引进、消化、吸收、再创新以及国产化方面取得了长足进步。
2.1建造技术比较成熟海洋石油钻井平台是钻井设备立足海上的基础。从1970年至今,国内共建造移动式钻采平台53座,已经退役7座,在用46座。目前我国在海洋石油装备建造方面技术已经日趋成熟,有国内外多个平台、船体的建造经验,已成为浮式生产储油装置(FPSO)的设计、制造和实际应用大国,在此领域,我国总体技术水平已达到世界先进水平。
2.2部分配套设备性能稳定海洋钻井平台配套设备设计制造技术与陆上钻井装备类似,但在配置、可靠性及自动化程度等方面都比陆上钻井装备要求更苛刻。国内在电驱动钻机、钻井泵及井控设备等研制方面技术比较成熟,可以满足7000m以内海洋石油钻井开发生产需求。宝石机械、南阳二机厂等设备配套厂有着丰富的海洋石油钻井设备制造经验,其产品完全可以满足海洋石油钻井工况的需要。
2.3深海油气开发装备研制进入新阶段目前,我国海洋油气资源的开发仍主要集中在200m水深以内的近海海域,尚不具备超过500m深水作业的能力。随着海洋石油开发技术的进步,深海油气开发已成为海洋石油工业的重要部分。向深水区域推进的主要原因是由于浅水区域能源有限,满足不了能源需求的快速增长需求,另外,随着钻井技术的创新和发展,已经能够在许多恶劣条件下开展深水钻井。虽然我国在深海油气开发方面距世界先进水平还存在较大差距,但我国的深水油气开发技术已经迈出了可喜的一步,为今后走向深海奠定了基础。
3海洋石油钻井平台技术特点
3.1作业范围广且质量要求高
移动式钻井平台(船)不是在固定海域作业,应适应移位、不同海域、不同水深、不同方位的作业。移位、就位、生产作业、风暴自存等复杂作业工况对钻井平台(船)提出很高的质量要求。如半潜式钻井平台工作水深达1 500~3 500 m,而且要适应高海况持续作业、13级风浪时不解脱等高标准要求。
3.2使用寿命长,可靠性指标高
高可靠性主要体现在:①强度要求高。永久系泊在海上,除了要经受风、浪、流的作用外,还要考虑台风、冰、地震等灾害性环境力的作用;②疲劳寿命要求高。一般要求25~40 a不进坞维修,因此对结构防腐、高应力区结构型式以及焊接工艺等提出了更高要求;③建造工艺要求高。为了保证海洋工程的质量,采用了高强度或特殊钢材(包括Z向钢材、大厚度板材和管材);④生产管理要求高。海洋工程的建造、下水、海上运输、海上安装甚为复杂,生产管理明显地高于常规船舶。
3.3安全要求高
由于海洋石油工程装置所产生的海损事故十分严重,随着海洋油气开发向深海区域发展、海上安全与技术规范条款的变化、海上生产和生活水准的提高等因素变化,对海洋油气开发装备的安全性能要求大大提高,特别是对包括设计与要求、火灾与消防及环保设计等HSE的贯彻执行更加严格。
3.4学科多,技术复杂
海洋石油钻井平台的结构设计与分析涉及了海洋环境、流体动力学、结构力学、土力学、钢结构、船舶技术等多门学科。因此,只有运用当代造船技术、卫星定位与电子计算机技术、现代机电与液压技术、现代环保与防腐蚀技术等先进的综合性科学技术,方能有效解决海洋石油开发在海洋中定位、建立海上固定平台或深海浮动式平台的泊位、浮动状态的海上钻井、完井、油气水分离处理、废水排放和海上油气的储存、输送等一系列难题。
4海洋石油钻井平台技术发展
世界范围内的海洋石油钻井平台发展已有上百年的历史,深海石油钻井平台研发热潮兴起于20世纪80年代末,虽然至今仅有20多年历史,但技术创新层出不穷,海洋油气开发的水深得到突飞猛进的发展。
4.1自升式平台载荷不断增大
自升式平台发展特点和趋势是:采用高强度钢以提高平台可变载荷与平台自重比,提高平台排水量与平台自重比和提高平台工作水深与平台自重比率;增大甲板的可变载荷,甲板空间和作业的安全可靠性,全天候工作能力和较长的自持能力;采用悬臂式钻井和先进的桩腿升降设备、钻井设备和发电设备。
4.2多功能半潜式平台集成能力增强
具有钻井、修井能力和适应多海底井和卫星井的采油需要,具有宽阔的甲板空间,平台上具有油、气、水生产处理装置以及相应的立管系统、动力系统、辅助生产系统及生产控制中心等。
4.3新型技术FPSO成为开发商的首选
海上油田的开发愈来愈多地采用FPSO装置,该装置主要面向大型化、深水及极区发展。FPSO在甲板上密布了各种生产设备和管路,并与井口平台的管线连接,设有特殊的系泊系统、火炬塔等复杂设备,整船技术复杂,价格远远高出同吨位油船。它除了具有很强的抗风浪能力、投资低、见效快、可以转移重复使用等优点外,还具有储油能力大,并可以将采集的油气进行油水气分离,处理含油污水、发电、供热、原油产品的储存和外输等功能,被誉为“海上加工厂”,已成为当今海上石油开发的主流方式。
4.4更大提升能力和钻深能力的钻机将得到研发和使用
由于钻井工作向深水推移,有的需在海底以下5000~6000m或更深的地层打钻,有的为了节约钻采平台的建造安装费用,需以平台为中心进行钻采,将其半径从通常的3000m扩大至4000~5000m,乃至更远,还有的需提升大直径钻杆(168·3mm)、深水大型隔水管和大型深孔管等,因此发展更大提升能力的海洋石油钻机将成为发展趋势。