卫星通信论文范文

时间:2022-06-24 09:39:45

引言:寻求写作上的突破?我们特意为您精选了12篇卫星通信论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

卫星通信论文

篇1

1.2卫星通信MPLS网络体系MPLS网络体系可以将IP路由的控制和第二层交换无缝地集成起来,是目前最有前途的网络通信技术之一。卫星通信MPLS体系结构分为用户层、接入层、核心层三部分,其中,用户层包括卫星手持移动终端、小型专用局域网用户、其他网络用户等。各结构和网络体系将信息有效绑定、标注和转发,实现卫星的通信功能。

1.3卫星通信的抗干扰技术卫星运行在外太空,电磁环境复杂,统一受到太阳风、强磁暴等空间环境影响,导致出现信息干扰和信息失真,卫星通信的抗干扰技术主要依靠卫星传输链路中不同的抗干扰设备和系统完成其功能,抗干扰设备和系统主要有DS/FH混合扩频、自适应频域滤波、猝发通信、时域适应干扰消除、基于多用户检测的抗干扰、自适应信号功率管理、自适应调零天线、多波束天线、分集抗干扰、变换域干扰消除、纠错编码和交织编码抗干扰技术等。在软硬件共同的作用下阻断电磁干扰、过滤杂波、屏蔽信号污染、实现程序监视等功能。

2卫星通信技术的发展趋势

2.1通信卫星体积的发展趋势通信卫星体积正在向大型化和微型化两个方向发展。其一,各国把通信卫星体积建造得越来越大,以便实现高灵敏和强处理能力。其二,各国推出小型通信卫星,用多颗小卫星组网构成卫星通信网络代替单颗大卫星,具有方便发射和成本低廉等优点。

2.2卫星移动通信技术方兴未艾卫星移动通信是指利用卫星实现移动用户间或移动用户与固定用户间的相互通信。随着频谱扩展、数字无线接入、智能网络技术的不断发展,卫星移动通信在向卫星个人通信方向演进,用手持机可实现方便接入卫星移动通信网,进行卫星移动通信。

2.3卫星互联网技术兴起将卫星通信网络转化为互联网中数据上下交换的链路,可将电话拨号、局域网等其他通信链路作为上行数据链路,还可以将下载和传输作为下行数据链路,利用卫星的特点实现地面随时连接互联网络。

2.4卫星通信向宽带化发展为了满足卫星通信系统用户对大数据量和高负荷的需求,卫星通信技术已向拓展直EHF频段发展,扩大频段的容量,大大减轻现有频谱拥挤现象,减少受电磁现象影响引发的信号闪烁和衰落,提高了卫星的抗干扰能力。使卫星通信部件尺寸和重量大大缩小和减轻,方便卫星搭载更多的通信设备。

2.5卫星通信光通信化发展卫星光通信是利用激光进行卫星间通信,达到降低卫星通信系统设备质量和体积,提高卫星通信保密性等目的。

篇2

1.1基本框架的模块设计思路

对于卫星通信企业来说,卫星通信业务是其最根本的核心产品,卫星通信企业是通过向客户销售卫星通信业务产品,以实现满足客户需求、增加客户价值和公司盈利发展。因此,我们首先选取卫星通信业务为切入点,希望采用价值链分析方法对卫星通信业务产品的全生命周期进行细化分解,力争能够理清、认识、理解各组成环节要素及其相互关系,为基础框架的设计奠定基础。如图1所示,在一个卫星通信业务的全生命周期中,主要包括了前期客户需求调查研究、业务规划、产品设计、能力建设,中期的市场营销、业务开通、服务保障、运行维护,以及后期的业务产品退出或转型升级等各环节要素;另外在其各个环节实施过程中还需要企业人力、财务、质量管理、知识管理、品牌建设等运作管理环节进行基础支撑保障。从图1可以看出,卫星通信业务的全生命周期基本上分为两个阶段,第一阶段为前期卫星通信业务规划和能力建设,其主要完成了由战略和业务目标驱动,进行基础设施建设和形成业务产品或服务能力;第二阶段为中后期的卫星通信业务的运营和服务,主要承担了对业务产品进行运营管理并形成服务能力和产生收益。两个阶段之间相互关联、协同发展。业务规划与能力建设工作是运营与服务工作的前提和条件。只有设计出满足市场需求的业务产品,并能够及时具备能力并推出市场,才能够向客户提供满意的服务和可靠地运营保障;另一方面,运营与服务工作是业务规划和能力建设的实现和发展。业务规划和能力建设工作完成之后,必须通过运营和服务来实现产品销售和客户价值增加,在给客户提供服务的过程中不断发现和挖掘客户需求,并能够及时反馈给业务规划与能力建设进行业务产品的改进、提升和开发,从而形成最令用户满意、最具竞争力的优质服务产品。与此同时,两个阶段的各个环节都需要企业管理来进行支撑和保障。对于运营服务型企业来说,其更加关注运营与服务,所有业务规划与建设以及企业管理工作,都是企业为了通过运营服务产生价值、满足客户需求所需不同层面的服务保障工作。因此,为了在基础框架中突出强调卫星通信业务的规划建设和运营服务支撑的两个关键环节,同时体现出企业管理的基础支撑和保障作用,我们从总体上将卫星通信业务基本框架分为三大模块,即,战略与基础设施模块、运营与服务模块和企业管理模块,如图2所示。

1.2基本框架的层次设计思路

客户的卫星通信业务需求分类多种多样,我们可从市场、产品、资源和组织四个关键因素进行分析研究。客户购买的是卫星通信业务产品,而卫星通信企业的核心基础设施所能支撑的仅是企业向客户提品所需要的资源能力,要想将资源能力转化为客户需求实现,还需要通过卫星通信业务产品进行有效衔接。对于卫星通信企业而言就是对各种卫星通信资源和服务能力进行规划、设计和组装,形成了可以独立计价和运维支撑的业务产品。此外,客户所需业务产品多样,卫星通信服务商还需要结合供应商或者合作伙伴的基础设施资源进行有效组合使用,以发挥核心资源的最大效能和满足客户需求实现。因此,客户需求的实现主要由卫星通信企业的市场、业务、资源和供应商等关键因素协同完成。另外一方面,在基本框架的设计中,我们希望构建起能够面向客户的端到端运营服务支撑体系,即以客户需求为引导,业务实现为手段,资源、供应商和组织管理流程为保障的运营服务体系。主要经过市场需求的挖掘、提炼与转达,业务的开发、集成与实施,调动内外部资源,最终实现业务并反馈给用户的过程,如图3所示。该过程中,输入端是市场,输出端也是市场,形成的是一个从市场到市场的端到端的闭环,从而最终实现为客户提供最为优质和满意的服务。综上所述,为了表明客户需求实现过程中四个关键要素及其之间的相互支撑关系,并强调打造端到端的高效运营服务体系,我们在三大模块基础上,又将卫星通信业务基本框架划分为四个层次,包括市场层、业务层、资源层和供应链层,如图4所示。如图4的层次设计,将市场层放在最高层客户紧邻的第一位,突出强调企业是从客户需求出发,以客户需求为根本依据的理念;逐级向下的各层分别为业务层、资源层和供应链层,充分体现了客户需求实现是通过具体业务来实现,业务产品需要资源提供支撑,最底层的供应商和合作伙伴为企业提供除核心资源以外所需配套资源的各要素协同关系。这种层次设计充分体现出卫星通信企业的以客户为中心为市场服务的运营理念。

2基本框架各模块的设计

根据前述基本框架结构设计思路,我们对卫星通信业务基本框架各模块进行进一步设计和定义,各模块功能描述如下。战略与基础设施模块设计战略与基础设施模块主要负责指导和支撑运营服务。包括市场战略、资源战略的制定、基础设施规划、基础设施的构筑、产品和服务的开发和管理以及供应链/价值链的开发和管理。其中,基础设施不仅包括空间卫星资源的规划、建造、测控、运营和退役的全生命周期管理,还包括支撑产品运营服务的其他硬资源和软资源,如地面测控系统、客户关系管理、知识共享库,等等。运营与服务模块设计运营与服务模块主要负责客户需求实现和服务保障。包括日常的服务提供、运营支撑准备、质量保障以及销售管理和供应商/合作伙伴关系管理等,其包含所有由客户驱动的直接面向客户的运行和管理工作。组织管理模块设计组织管理模块为完成战略与基础设施模块和运营与服务模块所需进行的公司内部机构组建,包括了任何商业运行所必须的基本的企业或商务支持。

3基本框架各层次的设计

3.1市场层设计

市场层主要包括客户需求挖掘、分析、客户细分、销售和渠道管理、市场营销管理、服务产品和定价管理,以及客户关系管理、问题处理、服务等级协议管理和计费等。在战略与基础设施模块内,市场层提供对企业核心业务产品的规划开发管理,包括制定战略、开发新产品服务、管理现有资源、实施市场及战略等所需职能。在运营与服务模块内,客户关系管理集中考虑客户需求的基础情况和管理。

3.2业务层设计

业务层包括业务的设计开发、业务配置、业务问题管理、质量分析以及业务使用量的计费等。在战略与基础设施模块中的服务开发与管理就是为运营与服务模块提供所需产品或服务能力的规划、开发和建设,它包括服务战略制定、服务的性能管理和评估、确保未来服务需求能力等所必须的功能。在运营与服务模块中业务运行管理聚焦于对客户服务的提供,包括客户需求分析、服务方案设计、和服务保障等客户服务所需的功能性需要。本层的焦点是服务提供和管理,面向客户提供个性化服务。

3.3资源层设计

资源层主要包括基础设施的规划设计、建设和管理,是为支持卫星通信运营服务所需的卫星资源、地面基础设施和软资源等的规划、开发和交付,主要包括卫星资源、卫星测控站、业务监测站、运营服务网络平台、IT系统、知识共享库等,以及新技术的引入与现有资源技术的互相作用、现有资源性能管理和评估,确保满足未来服务需求的能力等所必须的功能。资源管理和运行主要负责卫星资源管控(卫星性能监视、分析和控制)和其他地面基础设资源的运维管理等所有功能性责任,确保各类基础设施资源平稳运转,能够为客户提供所需的端到端服务能力,并直接或间接地响应服务、客户和员工的需求。同时也包括对资源的功能集成、关联和实时数据统计,以便进行信息综合管理和采取提质增效措施。

3.4供应链层设计

供应链层主要包括处理与卫星建造商、设备提供商、集成商和工程服务商等合作伙伴的交互,它既包括基础设施的供应链管理,也包括与供应商和合作伙伴之间关于日常运营的接口管理。

4基本框架的整体设计

综合上述分析,卫星通信业务基本框架模型一方面突出卫星服务商的基础设施规划建设和运营服务支撑的核心重要性,另一方面强调面向客户、聚焦前端提供端到端的服务交付能力,从而我们可以得出卫星通信业务基本框架的整体结构设计,如图5所示。如图5所示,箭头以上半部分代表从卫星通信业务的全生命周期管理和客户需求实现两个维度进行的三个模块、四个层次结构设计思路;箭头的下半部分表示抽象化、可视化的卫星通信业务基本框架结构设计。该基本框架从顶层将卫星通信业务服务商划分为战略与基础设施、运营与服务和组织管理三大模块,并在框架布局上体现出面向客户的服务中战略与基础设施是前提先导,运营与服务是关键实施,组织管理是全过程支撑的运营特点;该框架自上而下的四个层次架构设计,充分体现出卫星通信企业是以客户需求为引导,以业务实现为手段,以资源和供应商为保障的层次递进关系,各层次环环相扣,紧密链接。这种以客户为中心,面向市场的层次设计,确保企业在享用客户需求时更迅速、策略更灵活,大大提供客户满意度,同时能够更优化企业内外部软硬资源的工作效能,以最高效的方式为客户提供最适当的信息服务,真正做到让大市场来主导企业的流程架构。

篇3

2混合算法仿真及其仿真结果分析

混合算法首先基于雨衰模型得出功率补偿的极限阈值,然后根据该阈值将信道的雨衰补偿算法分为两部分:当雨衰值小于该阈值时,运用自适应功率控制算法进行雨衰值估计,再根据估计值相应地增大功率补偿衰减;当估计的雨衰值大于功率补偿极限值时,在功率调整到最大的同时,估计当前信道的信噪比,计算信噪比比值,再通过式(17)进行速率调整。由图2可知,年平均小于0.02%的时间其雨衰值超过34dB,这里设34dB为功率补偿的极限值。

为使可用率达到99.99%,则当雨衰超过34dB时,应适当降低信息速率。同时从图2中可以看出,雨衰超过44dB的时间百分比小于0.01%。由于缺乏Ka波段实测雨衰数据,因此,笔者应用不同频率衰减转换公式,由Ku波段雨衰数据转换成Ka频段的雨衰数据作为雨衰真实值[14,15]。图3显示了2013年5月27日在200min的观测时间内每10s取一个降雨衰减值的雨衰真实时间序列。从图3中可以看到,本次选取的属于雨衰非常大的降雨过程,在[108,145]min时间内衰减较大,最大衰减值可以达到44.67dB,其中雨衰超过34dB的时间占总时段的13.1%。图4为应用自适应功率控制算法所得到的补偿误差曲线。其中模型阶数p=5,已知数据数m=10,Δt=10s。在雨衰超过34dB的时段,功率控制已无法进行跟踪补偿,因此,补偿误差趋于劣化,甚至达到十几分贝。同时,在雨衰速率变化大时,误差也会增大。图5为信息速率随观测时间变化的曲线。

这里假设信道的(m,σ2)=(4.5,0.5),信息速率为2.048Mbit/s,其中I^o的值可通过仿真自适应功率补偿后信道的误码率曲线得到,其值为18dB。从图5中看到,雨衰大时,速率频繁调整,最低速率为256kbit/s,可保证一般的数据通信需求。图6为采用混合算法后得到的跟踪补偿误差曲线,可以看出,该算法有效地减小了雨衰较大时的补偿误差,使其几乎全部在±1dB以内,最大补偿误差约为1.6dB。图7为信道的误码率仿真曲线。从图7中可以看到,降雨在无补偿的情况下,信道的误码率很大,但在功率控制补偿后,误码率明显减小。同时,图7还给出了运用混合补偿算法后的误码率曲线,相比较于只应用功率控制技术的方法,其误码率小很多,且在信噪比达到18dB时,误码率小于10-7。

篇4

二、民用航空使用频率规划

(Ku/Ka/L频段可应用范围)依据《中华人民共和国无线电频率划分规定》,民用航空无线电频率使用和业务主要分为:1)制式无线电台是指为确保航空器的安全,在制造完成时必须安装在其上的无线电设备。2)非制式无线电台是指制式无线电台以外的无线电台。如:机载客舱卫星通信电台。3)航空移动业务是指在航空电台和航空器电台之间,或航空器电台之间的一种移动业务。营救器电台可参与此种业务;应急示位无线电信标电台使用指定的遇险与应急也可参与此种业务。4)航空电台是指用于航空移动业务的陆地电台。在某些情况下,航空电台也设在船舶或海面工作平台上。卫星通信在民用航空应用中又主要划分为驾驶舱(前舱)和客舱(后舱)。驾驶舱(前舱)通信需要高度完整性和快速响应的安全和正常通信,属于卫星航空移动(R)业务,主要分为空中交通服务部门用于空中交通管制、飞行情报与报警的安全相关通信,以及航空器承运人进行的、会影响到空中运输的安全、正常和效率的通信[航空运行管理控制通信(AOC)]。民航局《航空公司运行控制卫星通信实施方案》中推荐使用的卫星通信系统有海事卫星通信系统、铱星系统和Ku卫星系统。客舱(后舱)通信是为航空承运人的私人通信[航空行政通信(ACC)]服务,以及公众通信[航空旅客通信(APC)]。目前在国际上使用的客舱(后舱)通信系统主要有海事卫星通信系统、Ku卫星系统及Ka卫星系统。具体使用频率规划如表1所示。

三、民用航空的卫星通信网络运营系统现状

1.卫星网络与资源目前国际民航驾驶舱(前舱)卫星通信多使用的是L和S频段卫星通信系统,采用卫星移动通信使用的L、S频段。而卫星移动通信系统的建设是一项复杂的系统工程,国内尚无自建的商用卫星移动通信系统投入运行。国内正在使用或准备使用的商用卫星移动通信系统都是由国外运营商提供的服务。国外商用卫星移动通信系统主要包括:海事卫星系统(Inmarsat)、铱星系统(Iridium)、全球星ICO系统(Globalstar)、亚洲蜂窝卫星系统(ACes)和Thuraya等。具体所用卫星移动通信系统具体所用频率范围如表2所示。在客舱(后舱)卫星通信应用方面,中国卫通集团公司目前拥有12颗在轨卫星,可以提供以覆盖中国及周边地区的Ku频段卫星通信服务资源,并计划在2015年,达到拥有15颗以上在轨卫星。在卫星频率资源使用上将形成C、Ku与S、L、Ka频段相结合,固定广播通信卫星与移动广播通信卫星结合,覆盖范围广、用途多样的卫星空间段资源体系。中国卫通现有运营在轨卫星情况如表3所示。考虑到航空运输飞行国际、国内航线的特点,从卫星资源的服务能力来看,尤其是至今我国没有自主可管可控,用机驾驶舱(前舱)卫星通信的L和Ka频段卫星网络系统;即使是Ku频段卫星,目前我国自主运营的卫星服务能力,不论是覆盖范围,还是轨道频率资源,也远远不能适应满足我国航空市场发展卫星通信需求。这既是对我国卫星通信运营服务提出的挑战,更是开拓卫星通信服务业务的机遇和发展应用潜力。

2.用户终端设备由于我国在这方面应用起步晚,再加上用于航空领域的准入门槛制约,目前用于驾驶舱(前舱)卫星通信的L频段终端系统设备,以及用于后舱(客舱)卫星通信的Ku和Ka频段终端系统设备,全部是由国外厂商提供,几乎全面占领我国终端系统设备市场。民航飞机上卫星通信设备的制造门槛很高,除了要遵循现行技术标准,还要得到国际有关机构认可,为了国家信息安全的需要,国内厂商在这一领域还需要努力追赶,有所作为。驾驶舱(前舱)卫星通信的L频段终端系统设备主要有:霍尼韦尔,柯林斯,泰雷斯公司等。后舱(客舱)卫星通信的Ku和Ka频段终端系统设备主要有:Row44,Panasonic,GoGo,Aerosat等。后舱(客舱)卫星通信终端天线系统如图4所示。的通信系统多数是高频和甚高频通信系统,卫星通信的应用多是使用铱星系统,海事卫星,Globalstar,Thuraya,ACeS等卫星系统,以及与这些卫星系统相配的L频段在轨卫星系统的终端设备。驾驶舱(前舱)卫星通信终端设备如图5所示。

3.网络运营和用户业务管控从国家战略安全考虑,在航空运输飞行网络运营和用户业务管控方面,更需要建立可管可控的航空卫星通信网络运营和用户业务管控系统。系统网络运行管理主要是负责管理、监控和维护机载通信全系统,实时对全网系统涉及卫星、地面网络和终端设备等工作状态进行管理、监控,实时对运营网络中业务用户使用情况,进行本地或者远程、监控、维护和计费结算等管理,对网络运营和业务运营数据进行存储、备份管理,对网络运营中出现的包括卫星系统、终端设备和用户使用等问题,进行实时分析排查,及时警示和问题预先发现等必要的日常维护,保障全网络系统运行安全正常。民航卫星通信业务横跨通信信息传输服务和民用航空飞行运输服务,在相关系统设计规范、业务运营管理、设备准入等方面,必须同时满足国家对民航飞行安全,信息通信网络传输安全,信息内容安全和数据存储安全规定要求。民航卫星通信涉及国家信息安全,有必要在网络运营和用户业务管控方面在满足国家相关法规要求前提下,做到完全自主,实现业务运营可管可控。

篇5

北斗卫星通信系统的主要特点体现在抗雨水能力强,具备高可靠性和低功耗且简单维护的特点,再加上是由我国自主独立研发,因此在信息的保密性和安全性方面都更有保障。另外其多元化的不同制式能够实现和水情测报系统的无缝集成。特别是水情自动测报系统更加注重短通信的数据传输,而这一点正是北斗卫星通信系统所特有的优势。这个系统的工作频段主要有L/S/C,其频段范围较宽,所以在信息传输方面拥有其独特的优势。

1.2北斗卫星技术下的水情自动测报站的主要构成

北京市的北斗卫星技术下的水情测报站的主要构成包括了四个方面。第一是北斗通信模块。主要选择的是用户终端。该北斗卫星的用户终端主要有天线设备和主机设备两种,而且这两种设备的终端体积也相对较小,且操作比较简单,安装维护工作也非常容易。其主要信号的传送机制是通过瞬间突发的模式,这样也能够有效的降低用户终端的功耗。而且也能够支持环境恶劣的野外水情测报。第二是测试中心的终端机。测试中心一般远离监测中心,所以需要通过遥测的方式来实现。这种终端机能够和不同的传感器进行连接,并支持不同的数据通信模式。北京的水文测试中心的遥测终端就支持北斗卫星通信,同时也支持了GSM通信和GPRS通信等。并能够根据信号的变化自动切换,从而保障遥测数据能够及时的反馈到监测中心。第三就是前端的传感器。这些传感器主要有涉及到测报水情的相关数据需求,包括了水位传感器和雨量传感器以及水质、水位等传感器等。第四就是电源。电源主要选择的是密封的蓄电池,并能够通过太阳能板进行充电,这样能够具有一定的环保性。另外这些电池还具有自动启动和切断的装置,只有在发送数据的时候才会启动,从而提升蓄电池使用寿命,并节省用电。

1.3北斗卫星通信链路分析

北京市某地北斗卫星的通信链路构成主要包括了北斗卫星以及网管中心。这个链路的功能就是对水情测报站的数据进行备份以及进行查询和下载。

1.4北斗卫星的监测中心

北斗卫星的监测中心自然是这个水情测报系统的核心,主要有由卫星指挥型终端以及数据接收端和数据库等构成。这个监测中心是所有数据的交汇点。同时也是控制中心。第一是卫星接收终端。主要具备兼收功能和通播功能以及全信道锁定以及大数据处理功能。同时还包括了内置的电池。第二就是接收数据服务器。这是专门集中管理数据的重要设备。具备两个信道来进行接收。其中第一个信道主要是连接互联网,通过互联网来进行数据接收。第二个信道则是通过卫星系统。在北京某地的水情测报系统,这个信道就是和北斗卫星通信系统进行实时的数据接收。这个数据也能够通过RS232串口来接收。第三就是水情数据库。当数据接收服务器接收到各种途径获得数据之后,就会对这些数据进行解码和分析,然后将水情数据录入到水情数据库中,从而为各种水情的应用提供服务。第四是数据应用服务器。这个服务器主要是对水情数据进行处理和存储以及统计报表等。另外监测中心能够将指令或者某一个执行动作信息发到各地的遥测站点,或者指定某个遥测站点进行发送。

1.5北斗卫星自动测报的软件设计

北斗卫星自动测报的系统软件主要包括两个部分。其一是控制测站的软件。在北京的水情自动测报系统中,主要是有北斗卫星监控中心以及遥测站点形成一对多的传输关系。遥测站将感应信息通过卫星传输到监控中心,然后监控中心反馈收到信息。而这些遥测站点会根据相应的反馈信息进行相应的处理,或者转入休眠,抑或是重新要求遥测站点进行收集数据。其二就是软件系统的处理。这是系统软件的关键部分,能够对遥测站点传输的数据进行多元化的处理,从而为相应的使用人员提供多种的水情服务,有助于提升当地的水情观测水平。

1.6通信机制的设计应用

北京的水情自动测报系统的通信机制设计的关键在于解决了通信频度控制问题以及信息格式的设计问题两种。其一是通信频度的控制策略。基于北斗卫星通信系统的收费标准要比移动的GSM以及全球卫星定位系统的GPRS的费用都要高出不少,根据北京市场大概要高出5倍多。因此在发送信息策略上和普通的移动遥测站的数据传输策略要尽心差异化。只有在出现明显差异的水情数据时,才会性发送。根据北京的通信费用,每次传输为0.5元。因此北京的遥测站点设置传输策略为每小时传输一次。如果没有发生变化,如没有下雨,每天在早晨8点发送一次平安数据报。这样就能有效的降低信息的传输次数,节省了传输费用。其二就是在信息格式设置上,北斗卫星通信系统可以设置的短字节有43字节数和70字节数以及98字节数三种,字节数越大,那么单次的传输内容就越多,因此费用也就越高。由于水情数据相对较为复杂,而且为了提升数据的准确性,在北京的水情自动测报系统上,就采用了98字节数进行传输,所以每次的传输价格在1元。

篇6

2电机的选型及计算

2.1主天线电机选型及计算

2.1.1天线转台加/减速时所需要的力矩式中:W为天线直径;L为天线宽度方向到回转轴的距离;I为天线相对于转轴的转动惯量;m为天线的总质量;θ为天线倾角。

2.1.2转台在风载荷下产生的颠覆力矩(按照天线迎风面最大算)风载荷(20m/s)作用于雷达的最大作用力:式中:ρ为空气质量密度(取1.2kg/m);υ为平均风速(20m/s);Cx为风力矩系数(取1.2);A为天线风阻反射面积(πR2θ)。考虑到交流伺服电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩稳定等特点,选择韩国麦克彼恩交流伺服电机作为主天线方位和俯仰驱动电机,电机参数如表1所示。

2.2极化电机选型及计算极化电机主要用来驱动馈源极化轴。本天线系统采用波纹喇叭作为馈源,重量轻,约5kg左右,且极化轴对速度要求严格;而步进电机转动角度精确,转角和转速不受电压波动和负载变化影响,能实现快速启动、停止、反转和改变转速,因此选型为步进伺服电机,其参数如表2所示。

3卫星通信伺服控制算法

为了实现天线高精度指向卫星,本天线伺服系统采用了粗精对准相结合的方式进行对星,即先利用预设的卫星位置计算出天线理论指向角,实现天线的粗对准;再通过监测信标接收机输出的AGC电平信号强度,实现天线的精对准。

3.1天线粗对准控制算法天线粗对准控制算法即天线理论指向角的计算,这包括天线俯仰角E、天线方位角A和馈源极化角P的计算。设天线所处地理位置的经度为φ1,纬度为θ,静止卫星所在经度为φ2,经度差φ=|φ|1-φ2,可计算出天线方位角A、天线俯仰角E和馈源极化角P。计算公式为。在天线粗对准过程中,将目标卫星的轨道信息(卫星的在轨经度)输入伺服控制单元,利用GPS接收机测得天线所在地的经纬度信息。伺服控制单元进行姿态解算后得到天线对准目标卫星所需要的方位角、俯仰角和极化角,然后驱动各电机运动以实现对卫星的搜索。在对星的过程中同时要利用姿态传感器不断检测天线波束的实际指向信息,得出天线实际角度和理论角度的差值,伺服控制单元根据这些差值驱动天线的方位、俯仰和极化方向的电机不断转动,通过不断地比较,驱动天线最终指向卫星。在天线转动的同时还要不断采集信标接收机输出的AGC电平值的大小,该值也作为一个反馈信号反馈至伺服控制单元,判断该值与预设电平门限值的大小。当采样的电平值大于该门限值后,结束粗对准状态,进入精对准状态;否则,则需继续转动天线进行对准。

3.2天线精对准控制算法天线完成了粗对准后,天线进入能收到信号的范围,但是收到的信号强度较弱,距离信号最强指向还有一定的角度差。为了使信号接收效果达到最佳,需进行天线精对准。在这一阶段,需在粗对准后的位置附近结合信标接收机的输出电平AGC的大小变化做微动精确跟踪,最终找到信号最强(AGC电平值最大)的位置作为对准卫星的目标位置。天线精对准控制算法图如图4所示。

篇7

2卫星通信网入侵检测系统的实现

2.1入侵检测系统的体系结构

入侵检测是检测计算机网络和系统以发现违反安全策略事件的过程。如图2所示,作为入侵检测系统至少应该包括三个功能模块:提供事件记录的信息源、发现入侵迹象的分析引擎和基于分析引擎的响应部件。CIDF阐述了一个入侵检测系统的通用模型,即入侵检测系统可以分为4个组件:事件产生器、事件分析器、响应单元、事件数据库。

2.2入侵检测系统的功能

卫星通信网络采用的是分布式的入侵检测系统,其主要功能模块包括:(1)数据采集模块。收集卫星发送来的各种数据信息以及地面站提供的一些数据,分为日志采集模块、数据报采集模块和其他信息源采集模块。(2)数据分析模块。对应于数据采集模块,也有三种类型的数据分析模块:日志分析模块、数据报分析模块和其他信息源分析模块。(3)告警统计及管理模块。该模块负责对数据分析模块产生的告警进行汇总,这样能更好地检测分布式入侵。(4)决策模块。决策模块对告警统计上报的告警做出决策,根据入侵的不同情况选择不同的响应策略,并判断是否需要向上级节点发出警告。(5)响应模块。响应模块根据决策模块送出的策略,采取相应的响应措施。其主要措施有:忽略、向管理员报警、终止连接等响应。(6)数据存储模块。数据存储模块用于存储入侵特征、入侵事件等数据,留待进一步分析。(7)管理平台。管理平台是管理员与入侵检测系统交互的管理界面。管理员通过这个平台可以手动处理响应,做出最终的决策,完成对系统的配置、权限管理,对入侵特征库的手动维护工作。

2.3数据挖掘技术

入侵检测系统中需要用到数据挖掘技术。数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。将数据挖掘技术应用于入侵检测系统的主要优点:(1)自适应能力强。专家根据现有的攻击从而分析、建立出它们的特征模型作为传统入侵检测系统规则库。但是如果一种攻击跨越较长一段时间,那么原有的入侵检测系统规则库很难得到及时更新,并且为了一种新的攻击去更换整个系统的成本将大大提升。因为应用数据挖掘技术的异常检测与信号匹配模式是不一样的,它不是对每一个信号一一检测,所以新的攻击可以得到有效的检测,表现出较强实时性。(2)误警率低。因为现有系统的检测原理主要是依靠单纯的信号匹配,这种生硬的方式,使得它的报警率与实际情况不一致。数据挖掘技术与入侵检测技术相结合的系统是从等报发生的序列中发现隐含在其中的规律,可以过滤出正常行为的信号,从而降低了系统的误警率。(3)智能性强。应用了数据挖掘的入侵检测系统可以在人很少参与的情况下自动地从大量的网络数据中提取人们不易发现的行为模式,也提高了系统检测的准确性。

篇8

2信号处理

通过监控软件完成,为了不占用更多的主线程资源,监控软件分别建立两个独立的线程CThreadBeacon信标机线程类和CThreadModem调制解调器线程类,通过这两个线程的通信处理载波的关闭与开启。当确定天线进入遮挡区后,CThreadBeacon信标机线程根据当前的信标强度和调制解调器载波发射的状态,发送打开或关闭载波的消息给CThreadModem线程。CThreadModem线程主要有两个作用,一是读取调制解调器当前的参数,明确设备的工作状态,二是负责接收由CThrea-dBeacon线程发送过来的消息,根据消息的具体内容,向调制解调器发送相应的控制指令。车载站在载波发射的行进中,如遇到高大的货车或小面积的建筑遮挡瞬间遮挡时,这时关闭载波是不必要的,故在信标机线程中,设定当遮挡超过10s后发送关闭消息给调制解调器线程,进而关闭载波发射。同样在离开遮挡区超过5s后发送开启消息给调制解调器线程,进而开启载波发射。具体流程见图1“载波自动关闭流程图”。

3实现过程

软件以visualc++6.0作为开发编译环境,在基于对话框的应用程序界面中,运用多线程串口通信编程和SNMP网络编程方法,利用线程间通信机制,完成载波自动关闭功能。软件启动时,建立CThreadBeacon线程并启动运行,运用串口通信编程,在InitInstance函数中,初始化串口参数,线程中使用定时器,频率为300ms,按照通信协议格式,以查询方式读取信标强度,经过适当处理后,以浮点数显示在监控界面上,范围是0~10,根据浮点数的大小,来判定天线是否进入遮挡区,如当信标强度小于3时,确定天线进入遮挡区,再以PostThreadMessage的方式发送消息给CThrea-dModem线程。建立CThreadModem线程,运用SNMP网络编程,在In-itInstance函数中,初始化调制解调器SNMP相关参数,创建两消息响应函数OnGetParam_Modem用来获取设备当前状态,和OnSetParam_Modem用来接收由CThreadBeacon线程发送过来的消息,根据消息的附加参数和当前调制解调器的状态,确定发送关闭或开启载波的指令。

篇9

2运营管理平台的实现

2.1开发环境的选择程序代码的编译环境为MicrosoftVisualC++2008,它可以高效开发Windows应用,尤其是Office的应用,数据库采用MySQLSever5.0,其使用的SQL语言是用于访问数据最常用的标准语言,它有着速度快、体积小、代码开源等特点,特别时候想节约成本的中小型企业[4]。另外还需要具有FTP上传及下载功能的传输工具LibCURL。

2.2数据同步算法设计2Mbps专用池在线时间的计算是本平台的核心部分。2Mbps专用池是一种总带宽为2Mbps的捆绑复用模式,同属于一个池的通信机,只要有一台在线就记为该池在线,只有当所有通信机都下线才记该池下线,该算法属于递归调用,具体计算过程如图2所示。

2.3平台的实现流程及内存分配Sever端程序首先备份、更名上一次使用的GAC记录文件、带宽更改记录文件,然后登录FTP服务器下载最新的GAC记录文件和带宽更改记录文件,再登录MySQLSever建立各数据库与母表,同时导入GAC记录文件和带宽更改表,建立通信机分立带宽更改表,选出本轮数据同步需要更新的GAC记录,根据需要进行掉线情况过滤并进行通信机分立上下线计算及2Mbps专用池上下线计算,最后编译时间戳记录文件LastUpdate.ini并断开MySQL连接。该段程序用于描述时间的数据类型time_t实际为_int64的64位整数,time_t变量初始化时必须调用time(0)赋值为当前时刻的“历史秒”,即从1970-01-0100:00:00到当前时刻历经的秒数。tm是一个结构体,包含若干计时单位的序数(年序数以1900年为0、月序数以1月为0、日序数以1日为1),用于记述相对于从1900-01-0100:00:00到当前时刻历经的时间。计算两笔GAC记录时间差的方法是:从GAC记录中读出的时间字符串赋值给tm结构体变量,调用mktime()函数将两个GAC记录时间的tm结构体变量记述的时刻分别转化为time_t变量,再调用difftime()函数将两个time_t变量的差值计算出来。VC用于处理时间的数据类型丰富多样,选择适当的数据类型和处理函数可以事半功倍。MYSQL_RES和MYSQL_ROW是MYSQLAPI内置的数据类型。MYSQL_RES类型变量担负了SELECT存储语句查询结果的任务。MYSQL_RES类变量在使用完成后需调用mysql_free_result()进行内存回收,而在实际开发中,根据上下文不一定能判定一个MYSQL_RES类型变量初始化(或经上一次内存回收)后是否被使用过,而如对初始化后未经使用的MYSQL_RES类型变量进行内存回收,可能会引发错误导致程序异常退出。经权衡,决定在开发中放弃对MYSQL_RES类型变量回收内存的设计,牺牲一定的空间换取可靠性。MYSQL_ROW类型变量实际是二维指针,使用时要特别注意SE-LECT语句的查询结果究竟有多少列,如果越界访问使得该二维指针超出查询结果的列数,会导致程序异常退出。Client端可以查询数据库,选出在指定时段内归属欲结算项目的通信机列表,同时查询在指定时段内欲结算项目的有效租用合同,接着结合计时计费结果的框架将查询的上下线结果填入表格,并按带宽小计时长计入临时数据库表便可完成计时计费结果文件。最后让VisualC++程序控制Word自动化客户端生成用星确认表,这里要通过使用OLE-DB(ObjectLinkingandEmbeddingDatabase)技术,它提供了对包括对关系数据库和非关系数据库在内的所有文件的统一接口。自动化客户端可以理解为模拟人工进行的编辑操作,对编辑目标文档需要进行的操作序列,可逐条列出,然后分解成每一个键入(或点选,拖动)的操作,几乎每一个分解操作,都对应了自动化客户端程序的一行指令。自动化客户端的性能卓越,可以在一两秒内完成数十页含表文档的编辑工作。Office的自动化客户端编程中,最常遇到COleVariant和CComVariant两种数据类型:COleVariant类是对VARIANT结构的封装,当对象构造时首先调用VariantInit进行初始化,然后根据参数中的标准类型调用相应的构造函数,并使用VariantCopy进行转换赋值操作,当VARIANT对象不在有效范围时,它的析构函数就会被自动调用,由于析构函数调用了VariantClear,因而相应的内存就会被自动清除。CComVariant提供了很多构造函数来对VARI-ANT能够包含的多种类型进行处理。CComVariant没有提供针对VARIANT包含的各种类型的转换操作符,必须直接访问VARIANT的成员并且确保这个VARIANT变量保存着期望的类型。

2.4平台实现界面介绍根据如上所述对平台的设计思想和方法,利用MFC分别实现出了人机交互的Sever端和Client端,其界面如图3-4所示。Sever端除了选择系统类别、开始结束时间功能,主要还能实现清空数据库、开始同步数据及暂停、备份、还原等功能。Sever端正常都是在运行状态的,未遇故障时是不停运的。Client端中首先要输入用户信息、设备信息、项目信息及租用信息,利用“新建”和“删除”按钮可添加或删除这些信息。在界面的左边有搜索功能,只要输入设备信息、项目信息或租用信息的关键词就可在下面的列表框里显示出相关的信息。按钮“导入带宽信息”实际就是导入上文所说的带宽更改记录文件,导入成功后便可实现右下角的计时计费功能,把结果以Excel表格形式生成到指定路径下,还能同时生成Word版用星确认表。

篇10

1.2硬件电路功能模块根据功能模块划分,实际电路分为5个模块:CPU接口电路模块、串口通信模块、键盘控制模块、液晶驱动模块及PIN开关切换控制模块。①CPU接口电路模块CPU接口电路主要完成电路的控制。电路主要包括晶振电路、外部复位电路、JTAG接口电路及电源指示电路。设计中采用AVR公司的ATMEL6450单片机,此类单片机拥有68个双向I/O口,同时具有64K字节的Flash,2K字节的EEP-ROM,4K字节的RAM,满足设计需求。②串口通信模块串口通信模块用来完成单片机与计算机的通信,实现计算机在远控模式下对整个切换网络的控制,选用MAX1482器件完成双工通信。③键盘控制模块设计中选用74C922键盘控制集成电路模块,运用12个键组合完成所有的设置功能,采用中断方式实现与单片机的数据交换和控制。④液晶驱动显示模块液晶显示模块选用LCM128645zk模块,该模块主要特点是内带8000多GB1/2中文汉字字库液晶显示模块,串行/并行两用接口。设计中采用并行传输模式,由指令位(DLFLAG)来选择8-BIT或4-BIT接口,单片机配合(RS,R/W,E,DB0..DB7)完成传输动作。⑤PIN开关切换控制模块PIN开关采取自主研制,选用吸收式PIN开关改善端口驻波。通过单片机的3个I/O管脚直接控制单刀6掷开关,单刀3掷开关则是先通过74HC139译码器译码,然后通过74LS04后作为中频PIN开关的控制信号。

2软件设计

2.1软件结构设计智能切换单元的软件部分[10]通过对中/射频切换单元和射频设备定期轮询[11],经串口或网口从硬件获取数据信息,将提取到的状态信息进行分析、统计综合、决策,根据优先级策略控制切换单元和射频设备的参数,完成监控和切换。单片机作为控制核心,通过中断完成相关功能。不断查询中断口是否有信号输入,从而触发不同动作。单片机控制的主流程及中断子程序流程如图3所示。监控机通过不断轮询射频设备的工作状态,验证在线设备是否故障。在线设备故障时,监控机根据备用设备的优先级选择设备,同时向单片机发出状态调整信号,完成设备倒换后,监控机会对故障进行记录和压缩,以备用户查询。在线设备正常工作时,监控机继续轮询设备工作状态。

2.2各功能模块设计软件模块主要分为串口数据通信、数据传输与存储、综合处理和设备状态显示4个模块。①串口数据通信模块通过串口服务器与被控设备通信,以轮询的方式采集各设备的上报数据,并发送控制命令。②数据传输与存储模块该模块将接收到的设备上报数据进行解封装,提取出设备状态参数,将其保存并传递给综合处理模块进一步处理;将综合处理模块发出的设备控制命令封装后送至串口数据通信模块。③综合处理模块综合被控设备的状态参数,分析得出系统配置状态,将所有状态信息传送至设备状态显示模块。手动模式下,处理用户的各种操作,完成用户管理、设备控制命令发送和日志记录查询等功能;自动模式下,当检测到在线射频设备故障时,按优先级策略控制切换单元实现切换,并设置备份射频设备频率和衰减等参数,完成自动切换功能。射频设备切换优先级策略如表1所示。④设备状态显示模块将各种信息(系统配置状态和设备状态参数等)以图形化的方式显示在软件的各功能界面上。

3切换策略和逻辑关系

3.1切换策略①射频设备切换策略3站射频设备之间切换需建立正确的切换机制[12],避免“竞争-冒险”而导致系统崩溃。默认情况下,各地球站射频设备都将一台设为备用,此设备的优先级最高。平时管理中,A站对应射频设备1和射频设备2,B站对应射频设备3和射频设备4,C站对应射频设备5和射频设备6。当A站主用1出现故障时,倒换优先级2为最高,另外2站的备用设备也设置响应的优先级。每一台设备对于3个站都具有不同的优先级,如表2所示。②本控/远控切换策略从本控状态切换至远控状态后,键盘按键(除设置键)不起作用;从远控状态切换至本控状态后,串口进行有选择性地执行指令,仅对查询命令回应当前状态。

3.2切换的逻辑关系①联动切换逻辑关系切换矩阵是实现射频设备倒换的关键部分,矩阵中3个单刀6掷中频PIN开关和3个单刀6掷射频PIN开关依据逻辑关系进行动作,实现射频设备的主备切换,如表3所示。M1、M2和M3分别表示3个站中频单刀6掷PIN开关6个管脚的某一个,N1、N2和N3分别表示3个站射频单刀6掷PIN开关6个管脚的某一个,要保证射频设备正常倒换,中频和射频PIN开关要实现联动。②交叉切换逻辑关系在一般情况下,智能切换单元进行联动切换,各站终端设备始终和各站射频设备配合使用。但在特殊情况下,需要各站终端设备与射频设备交叉使用,交叉使用的切换逻辑如表4所示。

篇11

1.2海外应急通讯机制在全球经济一体化的影响下,世界各国之间的交流明显增多,海外应急通讯需求也在不断的增加。例如,海地地震的发生。针对该种情况的发生,国家外交、能源、水利水电等大型企业都应当适当的建立海外应急通信机制。在海事卫星的利用上应当对以下问题进行重点考虑。首先,应当在海外组织配带便于携带的承载终端及相应的配套装备,以便在紧急事件发生时为移动通信提供保障。其次,应当在常驻的机构及组织中部署专线,同海事卫星进行网络互连,确保传输通道的可靠和稳定,并成功的将通信网络延至海外。最后,建立合理的网络通信化系统,系统应当合理的将短信、位置、视频、音频等功能进行集成,提供本体和远程一体化解方案。

1.3改善海上航空应急方案网络技术的进步推动了海事卫星的在航空领域上在通信上的发展,同时因为海事卫星在遇到危险后具有安全通信的功能,航空领域的通信的优先级为海事卫星中的最高级。航空领域通信的安全性为海事卫星在航空领域的通信安全提供了有利的支持。目前,在世界各国的推动下,海事卫星在能够完成原有的任务的基础上,对网络宽带进行了完善和优化,实现了在技术上的进一步创新,实现了在语音上的双向优先级呼救,并成功的将其应用到了带宽的终端中,同时在安全服务中加入了IP数据业务,并且建立了热备模式“海上安全数据服务器”;“远程会话”功能主要用于对海上应急工作进行协调;提高在飞行过程中对重要数据的传输能力,从而提高飞机的报告系统与通信地址能够被更好的利用。目前海事卫星正在加快将航空宽带和海洋宽带纳入到ICAO和GMDSS安全通信体系之中,这样在一定程度上也提高了应急通信能力[4]。

1.4完善地面应急通信方案海事卫星应急通信网络目前已经在我国的许多行业中得到了应用,并且取得了不错的效果,但在网络利用上的解决方案尚且不足。一方面为了确保宽带在使用上需要具有一定的稳定性,因此在接入方式上应当发展专网接入。从南极科考、四川汶川大地震等重大事件中对海洋卫星通信的应用案例中可以看出相关部门与政府部门利用专网接入的形式同海事卫星进行连接,这样海事卫星则可以独自享用带宽,在数据传输上的可靠性、稳定性、安全性都将会得到进一步的提高。另一方面对海事卫星的终端进行应用,建立现场延伸解决方案。合理的对SIP、甚高频、IP技术和协议进行应用,从而科学的将海事卫星设备、专用设备、无线设备联系到一起,确保组与组、端到端、现场同异地能够顺利的开展,同时应当利用现代的科技手段不断的提高现场通信中组合性、移动性,从而实现异地和现场的移动指挥,提高医疗救助、公共通讯、救灾抢险等应急能力。

篇12

在中国通信信息产业快速发展过程中,移动通信高速增长。根据信息产业部公布的数字,中国移动电话用户2003年底已达2.69亿户,截至2005年底,移动通信电话用户总数达到3.93亿户。而我国移动通信市场基本上是双寡头垄断竞争格局,竞争主体是中国移动和中国联通两家,虽然现在固话运营商(中国电信和中国网通)推出的“准移动”产品——小灵通,在一定程度上也参与了移动市场的竞争,但其所分享的市场份额和用户规模相对小得多,其对移动市场的影响仍可以忽略不计。

了解我国移动通信的市场结构,挖掘其内在的发展规律,不但会有助于推进移动通信的3G时代的到来,而且也会为世界移动通信产业的发展作贡献。本文运用博弈论原理,对中国移动通信市场的双寡头垄断结构及市场竞争行为进行分析,从而为其培育竞争优势,提高核心竞争力提供理论依据,同时为确定科学有效的市场结构莫定基础。

1中国移动通信市场竞争行为的博弈分析

我国移动通信企业之间的竞争分别经历了进入期的阻挠博弈、成长期的价格博弈和成熟期的差异化博弈3个阶段。下面分别就这3个阶段进行具体分析。

1.1初进入阶段的市场博弈

1994年以后,中国联通进入电信市场打破了原来独家垄断的局面,电信市场上出现了企业竞争,这段时间电信市场上的博弈主要表现为处于绝对支配地位的在位者中国电信总局与弱小的中国联通公司在市场进入与阻挠进入上展开的博弈行为。博弈模型见图1。

这个博弈有两个纳什均衡,即(进入,默许),(不进入,斗争)。由于联通公司由国务院批准成立,进入势在必行。中国电信总局在市场进入博弈中的纳什均衡行为应是默许,但事实上中国电信总局选择的是斗争行为。主要表现在对中国联通公司的市场进入、互联互通实行限制,在号码资源的分配上对联通实行歧视等方面。中国电信总局所以选择(进入,斗争)的博弈行为,其目的显然不只甘于获得纳什均衡下的寡头利润,而是企图以行政措施和不正当竞争手段扼杀联通公司,以期保护垄断利润。这一市场进入未体现纳什均衡的博弈行为一直持续到1998年,联通公司成立3年后,联通的电信业务仍然只限于移动电话和无线电寻呼业务。非正当的市场阻挠,严重影响和制约了联通公司的业务发展。

1.2成长期市场博弈

1998年以后,随着信息产业部的成立,企业间的竞争逐渐趋于平等,中国联通公司在政府政策允许下,通过低价策略获得后动优势,迅速扩张市场份额,使得中国移动通信市场出现了双寡头垄断的局面。中国联通为了尽快地降低平均成本和收回投资,就通过降价策略来吸引争取更多的用户以尽快提高市场收益,而中国移动为了不失去已有的市场份额和利益,不得不加入降价的行列,由于两个移动通信企业提供的服务具有很大的相似性和替代性,这就使得它们陷入了不断降价的囚徒困境怪圈。博弈模型见图2。

在该博弈中,移动和联通都有两个可能的策略:降价和不降价。就移动而言,无论联通的选择如何,降价都是它的最优策略。同样联通的最优策略也是降价。因此该博弈的一个纳什均衡就是(降价,降价),此时移动和联通的收益分别是5和1,行业总收益为6。从上面的博弈矩阵我们可以看出,如果联通和移动都不降价,那么二者的收益将会是7和3,总收益为1O,显然是帕累托优于纳什均衡。但是中国移动和中国联通就如两个没有条件串供的囚徒一样,双方都清楚地明白,如果双方达成一致,形成协议定价,共同瓜分市场,在双寡头的市场形势下,必将获得最大的经济利益。但是,这种协议注定是脆弱的,由于担心会被对方“出卖”,这种协议很快就会被打破。如1999年,山东联通和山东移动为了解决旷日持久的降价大战,于同年l1月签署了带有协议性质的公约,但仅在两个月之后,山东联通对资费进行大调整,山东移动也适时应战,仅存在两个月的协议就这样宣告破产,价格战继续进行。由此可见,在有限次重复博弈之后,移动和联通仍然会一直采取降价策略,不断地陷入“囚徒困境”。

菩名的伯川德模型指出:只存在有两个企业的伯川德博弈中,如果两者边际成本为常数且相等,所生产的产品具有完全替代性即产品是同质的,并且企业考虑的竞争策略是其产品或服务价格而不是其产量,则存在着唯一的纳什均衡,即产品或服务的价格等于其边际成本,企业的利润等于零。在我国移动通信市场上,当中国联通的价格下浮幅度恰好能弥补两运营商产品质量的差异性时,竞争的均衡结果将导致价格不断下降,最终等于其边际成本。这较好地解释了我国移动通信市场上价格竞争的囚徒困境。

1.3成熟期的市场博弈

虽然价格战是市场竞争的客观需要,对培育市场有着重要的作用。但是恶性价格战是得不偿失的,它不仅大大降低了行业利润率,造成国家税收锐减,国有资产大量流失,而且影响到整个电信产业的健康发展,严重削弱了电信产业未来发展的推动力。要使移动电信企业在激烈的市场竞争中能够尽可能地逐步摆脱这种轮番降价的囚徒困境,实现企业之间的理性竞争,移动通信运营商应该从低层次的价格竞争,转向差异化战略。差异化战略是指企业通过提供独特的产出特性以及技术、品牌形象、附加特性和特等来强化产品(服务)特点,增加消费者价值,使得消费者愿意支付较高价格的战略。

伯川德悖论的一个决定性假设是两个企业提供的产品和服务是相同的,价格成为用户购买和企业出售的唯一决定变量。解开这一悖论的办法之一是引入产品的差异眭,如果两个企业提供的服务并不是完全具有替代性的,此时消费者面对的是互有差别、多样化的市场细分服务,价格就不再是用户唯一感兴趣的变动系数,还有许多非价格因素。这样的服务差异化就有效地防止了恶性价格竞争。因此要使现在的移动通信企业摆脱这种囚徒困境,必须要提供差异化的互有区别的服务给用户。豪泰林模型指出:均衡价格:平均生产成本+产品的差异量。在平均生产成本一定的情况下,企业间提供的产品差异越大。均衡价格就越高,从而利润就越大。原因在于产品间的替代性随着差异性增加而降低,企业垄断能力便增强,这样导致竞争越来越弱,从而均衡价格将更接近于垄断价格,企业实现利润最大化。

低层次的价格竞争类似于博弈论中的“零和博弈”,仅仅在相互竞争的企业和消费者之间进行利益的重新分配。“零和博弈”是一种完全冲突的博弈类型,博弈各方的总得益是一定值,一方所得必是一方的所失。如果考虑到由此带来的低效率及对未来的不利影响等因素,低层次的价格竞争甚至很可能是“负和博弈”,博弈各方的总得益在减少。差异化战略则属于“正和博弈”,它通过实行差异化更好地满足消费者的需要,创造出新的价值、新的利益,博弈各方的总得益随着市场蛋糕的扩大明显增加。此时的博弈模型见图3。

这个博弈存在唯一的纳什均衡就是(不降价,不降价),但二者的收益都增加了r,整个行业的收益也增加了2r,整个市场的蛋糕被同时做大了。现在应该是一个差异化战略的时代,没有差异化,就失去了竞争力。实施差异化战略,是移动通信市场螺旋式上升发展,逐渐走向成熟的必然趋势。

2中国移动通信市场差异化策略

2.1技术差异

电信是一个技术迅猛发展的行业,采用先进的技术提升网络质量,提供更新更优的服务以适应差异化、多层次的市场需要,不仅能培养企业的核心竞争力,形成不易被对手效仿的更加持久的竞争优势,而且能创造出新的市场需求。中国移动在未来的3G时代,通过大量的技术投入获得在某一技术领域的竞争优势,其实施差异化营销就会事半功倍。

2.2品牌差异

品牌上的竞争已经成为一个焦点,用户对运营商品牌和服务(产品)品牌的忠诚度成为竞争的核心。好的品牌有助于监督和提高服务产品质量并能开发新的产品和新的市场。培养用户对品牌的忠诚度,可以减少用户对价格下降的敏感性。要通过主品牌和细分品牌的宣传实现用户对不同品牌价值认知的差异,另外还要积极寻找新的市场,实现准确的品牌定位,才能最终实现差异化策略。

2.3产品差异

中国移动和中国联通这两大移动运营商都已经认识到语音业务市场可以开发的资源已经不多了,目前数据业务的需求剧增,成为移动通信新的利润增长点,也是市场发展的方向。移动增值业务和移动数据业务在移动通信市场竞争中发挥着越来越重要的作用。3G网络的高速数据传输和多媒体特征将大大拓展移动通信的应用。会促成移动数据业务的大爆发,为差异化战略的实施提供了舞台。

友情链接