高电压技术论文范文

时间:2022-01-26 13:30:56

引言:寻求写作上的突破?我们特意为您精选了12篇高电压技术论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

高电压技术论文

篇1

二、设计防雷保护

防雷技术是否完善能够关系到整个电力系统能否正常运行,是电力系统维护的重要部分。我们需要实施防雷结构设计,针对不同的电力系统结构,解决雷电打击的问题。防雷保护需要把握好不同装置之间的搭配运行,借助于各类防雷装置引进防雷技术,并且工作人员需要借助于不同的施工技术维护高压输电线路。①屏蔽保护。借助于计算机装置性能,在设计保护方案时做好各方面的检测处理,重点屏蔽外来的干扰信息,保护电力系统设备。②设备保护。防雷保护需要依赖各种相关的设备,特别是计算机装置。所以需要电力系统工作人员每隔半个月左右需要对所有设备进行全面的检修,工作人员需要及时处理装置出现的问题,如果不能维修好及时更换装置,保持装置的可用性,增强防雷效果。③接地保护。接地就是通过接地装置将设备的某一部分通过与土地连接,是世界上最古老的安全保护措施,接地装置可以把高压输电线路上的强电压、强电流引入地下,达到防雷保护。

三、选择合适的横担

选择横担非常重要,一般要根据现场具体条件分别考虑导线的粗细、导线的根数、档距的大小。选择的导线的过粗、导线的根数过多、档距太大,就会浪费材料;选择的导线的过细、导线的根数过少、档距的太小,不符合相关标准,会有潜在的隐患。通常在单相线路习惯用∠50×5×500或∠50×5×800型横担,在三相四线制线路中选择∠50×5×1500型横担,在选择横担时,既要考虑档距和导线截面,还要考虑气候条件和架设导线的根数等因素。一般气候条件正常的情况下,档距在标准范围之内,导线在50mm2以下,应该选择∠50×5×500,∠50×5×800或∠50×5×1500型号的横担。如果档距过大或者导线截面在50mm2及以上,恶劣的气候之下,应该选用∠63×6型横担。

四、输电线路的智能化设计

将现代先进的计算机技术、传感技术、网络技术同物理电网结合起来,形成新型智能化的高压输电线路。为了高压电网的稳定性、安全性、经济性和高效性,高压输电线路必须实现智能化的高压电网。智能高压电网具有:经济、安全、稳定、兼容、可靠、高效等优点,主要强调让电网具有自我恢复和自我预防的自愈功能,及时发现和解决故障隐患,快速进行自我恢复或者隔离故障,掌握电网的运行状态,避免事故的发生。

篇2

其主要是利用钻机来进行钻孔,当钻机达到要求的深度时,则利用高压泥浆泵的高压射流来对周围的土体结构进行破坏,同时再不断的将钻杆进行旋转提升,并在此过程中利用特殊喷嘴来向周围土体中高压喷射固化浆液,使其浆液与土体达到有效的固化,从而形成一定性能和正式成立的固结体,增加土体的强度和稳定性。

(2)固结体形成什么样的形状

这是与喷射流的移动方向有紧密联系的,因为在喷射过程中,通常会采用旋转、定向和摆动三种喷射方式,这样就会导致在旋喷情况下形成旋喷柱,这对于提高地基的抗剪强度,加固地基都具有良好的作用,而且可以对于地基土变形的情况有较好的改善作用,特别是当上部具有较大荷载时,具有良好的承载作用,不至于变形或是受到破坏。而利用定喷时固结体则会呈现壁状,而摆喷则会形成厚度较大的扇状,这对于地基的防渗作用都具有非常好的效果,可以有效的确保边坡的稳定性,进一步改善地基土的水力条件。

2高压喷射灌浆工艺

2.1原材料

在灌浆施工时,需要确保浆体达到良好的可泵性和保水性,所以通常都会在施工前对浆体进行必要的处理和养护,使其保持立方体的模型持续七天,然后还要对其进行抗压力度检查,确保其符合灌浆时对浆体的要求。同时在施工过程中,为了有效的避免浆体出现干缩的现象发生,则需要将矢量的膨化剂加入到浆液中,有效的改善浆体干缩情况的发生。

2.2定位技术

对喷灌位置的确定时需要利用定位技术进行,同时还要严格遵照施工图纸,对施工中各种参数进行充分的考虑,利用定位技术找准防渗墙的位置,还要错开固有的钢筋位置,并做好标记,等一切工作准备就绪后,检查后与符合标准要求,即可以进行钻孔作业。

2.3钻孔技术

在灌浆施工中,对钻孔有一定的限制。首先,不管是直孔,还是孔壁,都应该有较高的笔直性和足够的均匀度;其次,在施工中,需要有一个合理的程序,这就要求必须严格按照规范进行操作。例如灌浆流程要从前到后依次开展,需注意后一钻孔作为前一钻孔的检查孔,应借助压水实验来检查钻孔的吸水量,如果吸水量符合规定,后续孔的灌浆工作便可省去。此外,在灌浆施工开始前,需要做一些清理工作,将钻孔或裂隙中的岩粉彻底冲洗掉,以维持其干净性。常用冲击钻进行钻孔,按规定标准,钻头和钢筋的直径差应控制在5mm左右。

2.4插管

钻完孔后,按照设计好的深度将注浆管及时插入地层,此环节通常和钻孔是连在一起的,即每钻完一个孔,就须将喷射管插入,输送压缩空气,接着将浆泵打开,持续30s送浆,然后将钻杆拔出。插管时为避免喷射管的喷嘴被泥沙堵塞,可将插管和射水工作同时进行,如果压力过大,可能会出现射塌孔壁的情况,因此,水的压力尽量保持在1MPa以内。

2.5喷浆

喷浆要遵循自下而上的顺序,且需要结合土质、地下水等因素综合考虑,对喷浆的流量、压力及提升速度进行适当调整。有时需进行二次喷射,即在上次喷射形成的浆土混合物上进行喷射,喷射流遇到的阻力比上次喷射要小,二次喷射有利于增加固体的直径。喷浆完成后,对套筒、拉杆等进行清洗,以便下次使用。

2.6检查

灌浆工作结束后,要做的就是检查工作,必须对施工质量做一个严格且全面的检查,而且大概要维持一个月左右。比如说检验灌浆区的钻孔,就要做好压水实验,通过对岩心胶的观察来确定其施工质量是否符合规定要求。

3水利工程高压喷射灌浆施工中质量控制

3.1位置

首先必须按照指定的设计要求来布设防渗墙。那么,墙的厚度要和设计的要求一样,子距一般为2.0m、有效半径和摆角分别是1.8m和15°,另外,升速度一般为10cm/min。喷嘴型号为2mm,气嘴7mm,水压为29.4~34.3MPa,空气压735kPa。

3.2测压管的四周必须要用黄沙来做漏层

规定管口为2英寸的PVC管,管底1.1m高为透水部分,外用400g/m2土工布包裹。

3.3在水泥的使用材料上必须要经过严格的质量控制

需要专业的人员进行现场取样后特意地送往检测部门在进行检验复试,那么,需要往水泥材料里添加外用剂的时候,也必须经过试验后才能明确要掺进的量度。

3.4钻孔在经过严格的检验之后才能进行孔内和缝面冲洗

将孔口敞开用风和水一次进行清洗,将风(水)管插入孔底,风(水)反复冲洗,直至回清水后即可结束。

3.5灌浆

由于裂缝两边的混凝土在灌浆压力的作用之下会产生有害的变形,在进行灌浆施工时应布置好一起对裂缝进行监测,另外,在施工灌浆技术时的工序应保持先浅到深、一侧向另外一侧、右下至上来进行,另外,在灌浆施工结束的标准是单孔吸浆率趋于零之后,灌注20~30min,想要防止因为窜孔而破坏喷射注浆的固结体,就必须要分序进行喷射施工工艺。

篇3

前言

在高压电气的试验过程中,电力设备电压等级和地点、时间都存在着一定的差异,因此,在高压电气试验中,很容易造成设备电压的变化,这样就会对电气设备安全性带来一定的威胁,因此,针对存在的问题我们提出相应的应对措施。

1 高压电气试验理论综述及重要性

1.1 概念

针对高压电气设备运行的可靠性,高压电气试验是对其进行检测及考核的一种重要手段。其中,电气试验进行的考核试验以对电气设备的绝缘预防性为主,排查阻碍电气设备安全运行的危险因素是试验的根本目的。将高压电气试验引进到电力系统电力设备的接线考核,在关于保障高压电气设备的运行绝缘性能及安全性能等方面具有重要作用,可有效维护整个电力系统的安全性能。

1.2 高压电气试验发展动向

随着国内电网规模工程的逐渐扩展和我国经济社会建设,电力系统设计中使用的电力设备也跟着时代的步伐在不断的发展,逐渐体现出小巧轻便的特征和高技术性特征,它一般具备较高的自动化水平以及抗干扰能力。这要求高压电气试验必须进行相关方面的技术革新,才可适应新型电气设备的安全性考核。我国高压电气试验发展近几年来取得较好的成果,科学技术的不断进步与先进设计经验的不断引进为高压电气试验提供了技术基础,电气试验诊断技术,即与高压电气试验技术相适应的技术,也得到了充分的发展,在高压电气试验中,电力变压器故障专家诊断系统的应用也越来越广泛。

1.3 高压电气试验的重要性

所谓高压电气试验就是对电气设备进行绝缘预防性的试验,是保证电力系统正常运行的一项重要工作,同时在电气设备监督工作中也占有非常重要的地位。电气试验的工作就是考核电气设备的绝缘情况以及电气的参数是否同负荷标准,是否能适应系统的安全运行,对于电力系统的发展有着极其重要的推动作用。

在高压电气设备中,绝缘体的材料同电气设备的使用寿命有着直接的关系,同时与电力能否稳定运行、发生事故的几率都有着不可分割的联系,因此检测绝缘体对电气设备的使用寿命的评估起到非常重要的作用,也是对设备进行安全性评估的一项重要依据。

绝缘体的性能包括电气性能、热稳定性、化学稳定性以及机械性能,所谓预防性试验也就是针对上述性能来进行检测的试验性检测;通过预防性试验能够对绝缘体的性能进行全方位的评估,同时也可以使用计算机对技术参数进行分析,预测出未来的发展形式,然后以指导性的策略进行维护和修理,提高设备运行的稳定性和安全性。

2 高压电气试验过程中存在的问题

2.1 测设备接地的问题

设备接地主要是由于高压电气试验被测设备出现的问题,如果高压电气试验中出现接地不良、电阻过高等问题时,都会产生严重的消耗,从而影响到高压电气的稳定性。电压互感、电压耦合器、电容器等器件都是易产生接地的设备,且他们与电力线路是密切相连的,它是保证电力线路正常运行的,接地问题的出现会导致感应电压的产生,相当于并联一个电阻,进而产生器件损耗问题,这样不但会影响高压电气试验结果,还会对电力运行稳定性带来一定的影响。

2.2 滤波器接地问题

滤波器是高压电气试验的核心器件,出现滤波器的接地故障会产生测量精度与测量安全的问题,使滤波器的通信端子电压与电流互感器电压,电容器电压与滤波器电压发生耦合,进而使电容器介质出现过度损耗。还有一些滤波器接地问题是因为测量操作时没有闭合滤波器接地线路,出现滤波器接地短路影响高压电气试验的效果。

2.3 避雷器引线的问题

避雷器引线的检查和测定是高压电气试验的关键环节,如果电力网避雷器引线出现错误断开或电阻过大,将会造成高压电气试验过程中大量的漏电,不但影响高压电气试验的精确性,也会造成高压电气试验的危险性。一些高压电气试验过程中将避雷器引线私自拆除,这会影响到高压电气试验的漏电量,出现电力泄露的问题,影响高压电气试验的安全和准确。

3 加强高压电气试验的应对措施

3.1 做好高压电气试验的准备工作

在高压电气试验的实际操作之前,要组织相关的技术人员对高压电气试验的相关区域进行初步检查,重点对作业区、线路和设备进行初检,设定高压电气试验停电范围,为建立科学的高压电气试验设计方案打下基础。此外,要计划高压电气试验使用的机械设备,准备高压电气试验的工具和仪表,做到对高压电气试验充分的前期准备,要检验高压电气试验所需的机械设备确保试验的效率,要检验高压电气试验所需的工具仪表确保试验的准确性,从外部条件方面打下精确、安全高压电气试验的基础。同时要针对高压电气试验的特殊性和技术性展开相关的学习和培训,重点对核心技术、安全问题、质量要点进行强调,避免高压电气试验过程中技术与安全隐患的积累,有效提升高压电气试验的质量。

3.2 严格遵守高压电气试验的操作规范

高压电气试验具有高危险性的特点,特别是高压电气试验在范围上具有跨度大的特征,相关的信息传输受到各类客观因素的影响,因此必须坚持规范性的操作,使高压电气试验各过程和主要环节落实在基础的要点之上,这样才能实现高压电气试验的安全目标与设计目标。在实际的高压电气试验过程中要求工作人员在试验过程中,务必要严格遵守高压电气试验相关的操作规范和流程,充分做好高压电气试验的技术与安全准备,确保高压电气试验中一切工作次序都是按照高压电气试验工作和电力运行的规章制度进行。在高压电气试验开始前,首先要调查高压电气试验操作人员对基本环节和基本情况的把握情况,在确保电源断开并得到许可的前提下才可以开始试验,在高压电气试验过程中,务必遵守高压电气试验和电力工作相关的规章制度,建立起高压电气试验的相关规章,杜绝在未得到操作人员许可的前提下仅凭个人经验便开始试验的错误行为。要建立严格的保证措施,确保高压电气试验过程的安全性,从而保证高压电气试验的顺利进行。要建立技术应用的体系,落实高压电气试验的技术与管理责任,将高压电气试验的风险控制在最低,做到对高压电气试验质量的保障。

3.3 做好设备接地引线环节的规范操作

在高压电气试验过程中,要从测量的安全性和准确性两个方面高度重视高压TA和TV的二次绕组,确定其某一个端子是处于接地状态的,而且无接触不良的现象。此外要特别注意设备引线接地环节的关键作用,要控制设备绝缘带的电阻值,要选种大容量的万用表展开对高压电气试验设备的策略,避免发生短路和电击。要避免接地和引线出现断路,防止绝缘电阻全部加在介质身上,进而在提高高压电气试验安全的同时,确保高压电气试验结果的精确性和完整性。

4 结束语

电力系统当前正面临经济和社会建设的外部需要,电力事业发展的内部改革的双方面压力,讲求系统建设,确保系统工,实现系统发展成为核心的目标与任务。在电力系统的建设和运行维护中要重视高压电气试验的功能和作用,要结合高压电气试验的实际,对高压电气试验实际操作中的问题展开分析、总结和研讨,制定以技术体系为骨干,以电力实际操作为平台,全新的高压电气试验的理论与结构机制,在规范高压电气试验细节的同时,达到对高压电气试验质量的保障。

篇4

 

随着社会经济的飞速发展,居民和各类企业对供电质量和可靠性的要求日益提高,从改善电能质量和节约人力方面比较电压无功优化自动控制装置具有不可比拟的优势,已逐步取代原来通过值班员手动调节档位和投切电容器来调整电压的方式,在维系电力系统稳定中的作用已充分展示出来。论文参考,自动化。电压无功优化自动控制装置由大量的数据采集、数据计算、数据传输、数据控制、程序执行元件组成,通过一系列自动化技术将其功能整合在一起,因此,了解电压无功优化自动控制中的自动化原理对于研究电压无功优化自动控制有着十分重要的作用。为此本文着重分析了电压无功优化控制中的自动化技术。

一、自动控制系统的结构

(一)调压方式

无功优化控制系统设计在设置母线电压限定范围后,自动对高峰负荷时段、低谷负荷时段的电压值进行适当调整,以保证在合格范围内的电压满足逆调压方式。论文参考,自动化。当电压超出额定范围时,则与同级和上级变电所的电压进行比较,然后判断出应该调节同级还是上级变电所的主变档位。

(二)调整策略

电压无功优化自动控制包含两个方面,分别是电压优化和无功优化:

1、电压优化

当母线电压超上限时,首先下调主变的档位,当不能满足要求时才切除电容器;当母线电压超下限时,首先投入电容器,当不能满足要求时再上调主变档位,总之要确保电容器最合理的投入。

2、无功优化

当系统电压保持在限定范围内后,通过系统的自动控制,决定各级变电所电容器的先后投入,使得无功功率的流向最平衡,最能提高功率因数。

二、自动化数据采集、计算和传输

作为一个自动控制系统,全面的数据采集是整个控制过程最关键的一部,其采集数据的精度和安全直接影响整个系统的精度和安全。论文参考,自动化。一个完善的无功优化自动控制系统应该能实时自动的从调度中心、各监控站采集电网电压、功率、主变档位、电容器运行状态等数据并能确保当遥测遥信值不变时不与SCADA系统进行数据传输,减少系统资源占用。

在采集到实时数据后,过往的自动控制系统都是通过“专家系统”对数学模型进行简化和分解,然后利用潮流计算和专家系统等方法进行求解。随着自动化技术的高速发展,自动控制系统能够突破优化计算难于寻找工程解的难题,采用模糊控制的算法,充分考虑谐波,功率因数摆动,电压波动和事故闭锁等因素,通过一系列精密芯片的配合计算出使电网电能损耗最小的变压器档位、电容器投入量和电网最优运行电压以供控制部件执行。

系统在数据传输上使用只与内存交互数据而不存取硬盘的内存数据库技术,既提高了数据的存取速度,又节省了硬盘使用。为了提高传输效率,系统还会根据传输数据的类型和要求的不同,自动采用不同的传输协议:使用TCP/IP协议传输大量的重要数据,使用UDP协议传输少量的广播数据。在数据传输准确度方面,子站在接受到数据后会自动向主站发送反校信号,以验证所受数据的准确性。

三、系统的自动控制

电压无功优化控制的基本过程如下:首先是主站控制系统进行电压无功计算,然后把计算得到的各级变电所的功率因数、电压的区域无功定值结果通过光纤通道传达至各级变电所的电压无功控制系统。各级变电所的控制系统周期性的把本站的功率因数、电压和接收到的定值结果比较,以判断是否越限。

为了保证电网损耗最低,主站的控制系统要不断跟紧电网运行方式的变化,随时计算出最新的区域无功定值结果并传达至各级变电所的电压无功控制系统。由于主站的控制系统计算最初的区域无功定值时需要一定的时间,这就会造成各级变电所从启动控制系统至接收到第一个信号间有一个时间段,系统定义这段时间内的定值是按照本地系统运行的。论文参考,自动化。

当主站系统遇到特殊情况(如有影响电网拓扑结构的遥信变位发生)时,能够即时撤销子站控制系统当前正在执行的区域无功定值。子站控制系统即以本地无功定值运行,待再次受到主站重新计算的定值时才转以新定值运行。论文参考,自动化。子站控制系统实时监视主站的定值下传通道是否正常,通信异常时,立即改为执行本地定值,直至通道恢复正常。论文参考,自动化。

四、系统自动化的安全保证

目前国内的一些系统仅仅只做到了一层闭环控制,安全可靠性根本无法保证。而随着自动化技术的发展,最新的系统则是采用主站和子站同时的双层实时闭环反馈控制结构。实验证明由于采用了双层实时闭环反馈控制结构,当运行中发生用户定义的需要闭锁的异常事件时,控制系统能够立即执行闭锁,符合电网结构和调度运行特点,适合各种大小电网的安全可靠运行,能更有利地保证提高电网的电能质量,其具体的安全策略如下:

自动估算电网电压,使电容器平稳投切,避免出现振荡;自动估算电压调节后的无功变化量,使主变档位平稳调整,避免出现振荡。

当需要调节的变电所的主变并联运行时,为了避免出现其中一台主变频繁调节的情况,首先调节据动率较高的那台主变的档位。应对于主变和电容器出现的异常情况,系统能够自动减少主变档位调整次数,使设备寿命增加,电网安全得到保证。当遭遇设备异常时,系统自动闭锁,而且必须人工手动来解除封锁。具体的异常情况有:电容器或主变档位异常变位;系统需要采集的数据异常;系统数据不刷新。特别的当发生10kV单相接地时,系统自动闭锁电容器的投切。为避免采集到的数据不准确,系统采用同时判断遥测数据和遥信数据的方式,提高了采集数据的准度。

五、结论

本文通过对电压无功优化控制系统的浅要介绍,分析了其包含的自动化技术,从一个侧面反映了我国电力系统自动化科技的发展,也展现了电力行业专业人才的卓越才能。本文对电压无功优化控制系统从设计思想,系统构成方面进行的论述,可作电力专业的教辅材料,也可供电压无功优化控制装置设计和运行参考。

参考文献

篇5

磁电随机存储器优于现有技术的主要优点是它耗能极低,同时密度大、读取和写入速度快、不挥发,不用加电也可保存数据(这类似于硬盘驱动器和闪存条,但速度要快得多)。

当前,磁性内存的技术基础是自旋转移矩,利用了电子(自旋体)的电荷和磁特性,以电流移动电子,向内存写入数据。尽管自旋转移矩与其他内存技术相比有诸多优势,但其电流写入机制仍须消耗一定能量,即写入数据时会产生一定热量。其存储能力受到数据物理距离的限制,即写入信息所需电流的限制。这种低位能力拉高了比特成本,从而限制了自旋转移矩技术的应用。

在磁电随机存储器中,加州大学洛杉矶分校的研究小组用电压取代电流来写入数据。这样就无须用导线移动大量的电子,而只须利用电压(电势差)即可开关磁位,向内存写入信息。这样计算机内存产生的热量就大为减少,节能效率提高10到1000倍。此外,内存密度可提高5倍,在同样的物理空间内能存储更多的位信息,从而降低了比特成本。

该研究负责人为加州大学洛杉矶分校电气工程系教授王康,成员还有论文第一作者、电气工程研究生胡安· G·阿尔扎泰以及加州大学洛杉矶分校—国防高级研究计划署非挥发逻辑项目经理、电气工程助理研究员佩德拉姆·哈利利。

哈利利说:“以电压控制纳米级磁体的能力是磁学研究中令人兴奋、快速增长的领域。这一工作为下列研究提供了新思考:如何以电压脉冲控制开关方向,如何不用外部磁场就能确保设备正常工作,如何把它们整合成高密度存储器阵列等。一旦做成商品,磁电随机存储器相对现行其他技术的优势不仅表现在能量散失少上,还表现在能使磁阻随机存储器极为密实,这也很重要。由于成本低、性能高,磁电随机存储器可以挺进以前为成本和性能所困的新的应用领域。”

阿尔扎泰说:“最近首款自旋转移矩—磁阻随机存储器(STT-RAM)商用芯片问世,它也为磁电随机存储器的推广打开了大门,因为它们的设备原料和制造工艺十分相似,后者既可兼容STT-RAM当前的逻辑电流技术,又减缓了能量和密度的限制。”

名为《纳米级磁穿隧接面的电压开关控制》论文介绍了上述研究成果,在12月12日于旧金山召开的美国电气和电子工程师协会国际电子设备2012年会上进行了宣读,该年会是“半导体和电子设备领域突破性成果的杰出论坛”。

磁电随机存储器采用了称为受电压控制的磁绝缘体结点的纳米级结构,数层摞在一起,其中有两层是磁性材料,一层磁场方向固定,另一层可通过电场加以控制。特殊设计的设备对电场很敏感。当施加电场时,两个磁层间就产生了电位差,即电压。电压可通过在各层表面聚积或消除电子,向内存写入信息。

篇6

 

0 引 言

我国电网的建设和运行中长期存在的一个问题是无功容量不足和配备不合理,特别是可调节的无功容量不足,快速响应的无功调节设备更少。论文格式。随着全控型电力电子器件GTO,IGBT的发展,一种新型的无功补偿装置―静止无功发生(STATCOM)器发展起来。1976年,美国学者L Gyugyi在其论文中提出了用电力半导体变流器进行无功补偿的各种方案。它的原理和控制方法与SVC有很大不同。论文格式。它是将自换相桥式电路通过电阻和电抗器(包括变压器的漏抗与电路中其他电抗),或者直接并联在电网上,根据输入系统的无功功率和有功功率的指令,适当地调节桥式电路交流侧输出电压的幅值和相位,或者直接控制其交流侧电流就可以使该电路吸收或者发出满足系统所要求的无功电流,实现动态无功补偿的目的。

上世纪90年代初,Tokuo Ohnishi提出了一种将瞬时有功功率、无功功率用于PWM变换器闭环控制系统中的控制策略,随后ToshihikoNoguchi等学者进行了研究并取得了进展[1]。由于电压型STATCOM直接功率控制(DPC)系统具有更高的功率因数、低的THD、算法及系统结构简单等优点,得到国内外学者的关注和研究。本文通过Simulink环境下的仿真模型进行了静态补偿效果和动态响应效果仿真,证明了这种控制策略的可行性。

1 电压定向直接功率控制

现行的国外直接功率控制策略一般分为基于电压定向控制(VOC)的DPC控制[2][3][4]与基于虚拟磁链定向控制(VF)的DPC,本文所讨论的是VO-DPC。

VO-DPC系统采用电压外环、功率内环结构。电压外环起到快速跟踪给定电压的作用。瞬时功率根据检测到的电压ua,ub,uc和电流ia,ib,ic进行计算,得到瞬时有功和无功功率的估算值p、q及三相电压ua,ub,uc在静止αβ坐标中的uα,uβ。p、q与有功功率的给定值pref、无功功率的给定值qref比较后送入功率滞环比较器,输出反映估算功率偏离给定功率的开关信号Sp,Sq,由电压外环设定,qref设定为0,实现单位功率因数。uα,,uβ送入扇形选择器,输出为电源电压矢量所处扇区的信号θn。根据,Sp,Sq,θn在开关表中选择所需的Sa,Sb,Sc,去驱动主电路。

为实现对功率的实时控制和调节,不能采用常规的平均功率计算法,应采用瞬时功率计算。三相电压型STATCOM瞬时功率按式(1)计算。

(1)

瞬时功率检测信号与功率给定值送入定环宽的滞环比较单元,输出相应的比较状态值Sp、Sq。Sp和Sq只有两种状态,即1和0,Sp=1表示期望开关动作能使瞬时有功功率p增加,Sp=0表示期望开关动作能使p减小。Sq=1表示期望开关动作能使瞬时无功功率q增加,Sq=0表示期望能使q减少。把得到的Sp、Sq与扇区选择信号θn一起送

图1 三相VSR DPC系统框图

入开关表,进而确定DPC系统所需的开关状态,即Sa、Sb、Sc的取值。Sp、Sq按下列规则确定[5]

(2)

(3)

式中Hp、Hq为有功和无功功率滞环比较器的环宽。由于采用了滞环控制,因此造成了VSR开关频率不固定,本文按给定值的5%选取,Hp、Hq决定了功率控制精度,亦决定了STATCOM的开关频率。

1)电压空间矢量扇区划分

为实现三相VSR电压空间矢量位置的选择,需将三相电压ua,ub,uc变换成uα,uβ,由uα,uβ确定电源电压矢量u的幅角θ,θ=arctan(uβ/uα),根据θ确定u的位置。将电压空间矢量划分为12个扇区,如图2所示。θn由式(4)确定。例如θ=arctan(uβ/uα)=-30°-0°,说明电压空间矢量u在θ1扇区内。

(4)

图2 DPC系统电压空间矢量划分

2)开关表实现[6][7]

表1 直接功率控制开关表

Sa、Sb、Sc的取值决定于所需的ur,ur为离散值U1U2…U7其值由Sa、Sb、Sc及Udc决定,其模值为:

(5)对STATCOM的拓扑结构,应用KVL,得:

(6)

若忽略交流侧电阻,可得电压矢量方程为:

(7)

进而可得:

(8)

2 STATCOM的仿真分析

2.1静态补偿效果输入交流电压有效值:ea=eb=ec=220V,系统的负载为阻感负载,电阻R=8欧,电感L=22mH,STATCOM的交流侧输入电感L=4mH,直流侧电压为800V,直流侧电容C=1100uF。论文格式。仿真波形如下:

(a)补偿前的电网电压电流 (b)补偿后的电网电压电流

图3 补偿前后的电网电压电流

(a)直流侧电压和补偿后的(b)直流侧电压的放大波形

图4直流侧电压和补偿后的电网电压电流和直流侧电压的放大波形

图3为补偿前后的电网电压电流。图4为直流侧电压的情况,可看出直接侧电压超调很小且调节时间很短,这对于STATCOM的补偿效果是关键的。

2.2动态响应效果仿真参数同上,但在0.08s-0.16s系统的负载变为电阻R=8欧,电感L=44mH。以此来观察在负载突增突减时控制系统的响应情况。仿真波形如下:

(a)补偿前的电网电压电流(b)补偿后的电网电压电流

图5 补偿前后的电网电压电流

(a)直流侧电压(b)直流侧电压的放大波形

图6直流侧电压

(a) 有功功率的跟踪效果(b) 无功功率的跟踪效果

图7 有功功率和无功功率的跟踪效果

图5为补偿前后的电网电压电流,说明直接功率控制系统的动态响应效果很好。图6显示为直流侧电压的情况,图6(b)可以看出负载的突变基本对于直流侧电压没有影响。图7所示的为有功功率和无功功率的跟踪效果,负载突变时有功和无功功率的给定也会发生突变,但跟踪效果并未受影响。

仿真从静态和动态两个角度对系统的补偿性能和鲁棒性进行了验证,仿真中的无功补偿效果及功率环的跟踪效果说明系统具有良好的控制性能。

3 总结

本文通过对VO-DPC系统动静态的仿真,验证了系统良好的动态性能,另外由于功率环只对瞬时有功和无功功率的标量位进行动态比较,具有高功率因数,低谐波等优点。因此,直接功率控制是STATCOM较为完善的控制策略,值得进一步研究。

参考文献:

[1罗安.电网谐波治理和无补偿技术及装备[M].北京:中国电力出版社,2006.

[2] 董云龙,吴杰,王念春,张颖.无功补偿技术综述[[J].节能.2003年第9期.

[3] T.J.E.米勒主编,胡国根译,何仰赞校.电力系统无功功率控制[M].北京:水利电力出版社.

[4] 吴刚,杨明洁.大型水平轴风力发电机的典型控制策略[J].新能源,2000,22(7):39-42.

[5 王承熙,张源.风力发电[M].北京:中国电力出版社,2003.

篇7

永磁同步电动机的定子绕组与一般交流电动机的定子绕组相同, 转子采用永久磁铁, 因此转子磁链(磁通)是恒定的, 电动机方程(电压方程、磁链方程和转矩方程)相对于异步电动机来说都较为简单, 在控制过程中, 磁链的观测模型也不需要进行计算。永磁同步电动机按定子绕组感应电势波形的情况来分类时, 一般可分为:正弦波永磁同步电机(Permanent Magnet Synchronous Motor, PMSM)和梯形波永磁同步电机(Brushless DC Motor, BLDC)。介于前者在现实中应用更为广泛, 本论文主要应用的也是正弦波永磁同步电机。永磁同步电动机具有很多优点, 这些优点也在实际应用中得到了很好的发挥, 例如:根据它谐波少、转矩精度高的特点, 常用于伺服系统和高性能的调试系统;永磁同步电机有转轴上无滑环和电刷的特点, 这也解决了其它电机因电刷而带来的使用寿命问题。与此同时, 永磁同步电动机还具有体积小、功率密度高、转子转动惯量低、运行效率高、调速范围宽等诸多优点。值得注意的是, PMSM是一种强耦合、非线性时变的多变量系统, 这也为其控制工作带来了一定难度, 而加强对其基本构造和工作原理的理解能有助于克服这一问题。

空间矢量控制技术优点众多, 近几年发展非常迅速, 尤其在永磁同步电机中的使用, 更是再次凸显了它的好处。本论文通过对空间矢量控制技术和永磁同步电机的学习及分析, 在熟练掌握相关数学模型的建立和Matlab/Simulink的使用后, 将建立两种不同坐标系变换的数学模型和基于SVPWM控制技术的永磁同步电动机系统模型, 并在Matlab/Simulink环境中进行仿真。最终与理论分析相比较, 验证仿真结果的正确性。

1 控制系统结构模型

根据对永磁同步电机SVPWM控制系统的理解及前期研究, 可得到永磁同步电机空间矢量脉宽调制控制系统设计框图如图1所示。

图1 永磁同步电机SVPWM控制系统设计框图

本控制系统采用的是双闭环控制, 即速度环和电流环, 由图1可看到, 其主要构成为:

三个PI控制器(PIController)、两相旋转(dq)和两相静止坐标系(?琢?茁)坐标变换的变换器(dq/?琢?茁Coordinate Converter)、三相静止(abc)和两相旋转坐标系变换的变换器(abc/dq Coordinate Converter)、逆变器(Inverter)、空间电压矢量调制器(Space Vector Pulse Width Modulation,SVPWM)。

系统运行过程:给电机输入一模拟三相定子电流ia、ib、ic,当传感器检测到这一电流时, 该三相电流通过abc/dq坐标变换器被变换为实际定子的直轴电id和交轴电iq。

参考定子交轴电流i*q通过比对实际转速和参考转速, 再经PI控制器处理后获得。将参考定子直轴电流i*d设为0, 把上述id、i*d、iq、i*q四个变量比较过后交由PI控制器处理, 从而分别产生定子直轴、交轴电压Vd和Vq。将得到的电压量通过dq/?琢?茁坐标转换器处理后输入空间电压矢量调制器, 从而产生一系列触发脉冲, 以控制逆变器, 驱动其产生三相电压, 最终驱动永磁同步电机。

2 控制系统仿真分析

永磁同步电机空间矢量脉宽调制控制系统仿真模型如图2所示, 模型仿真环境为Matlab/Simlink。

图2 基于SVPWM的PMSM控制系统仿真建模框图

如图所示, 系统主要仿真模块为:

坐标转换模块、速度控制器模块、电流控制器模块、矢量控制模块、空间电压矢量控制模块、电压逆变器模块、永磁同步电机模块。

系统部分参数为:总仿真时间为0.3S;系统零时段负载起动转矩TL=5N・m。

(1)速度环闭环时, 系统定子三相相电流、转速、转矩、矢量切换时间、矢量所处扇区响应情况。

图3 转速闭环时SVPWM控制系统转矩响应放大图

图4 转速闭环时电机三相定子电流、转速、转矩、矢量切换时间

和矢量所处扇区响应图

由图4仿真波形, 可以得到结论如下:

a. 系统在0s~0.05s之间转速响应以斜率20000上升,延迟时间Td=0.025s、上升时间Tr=0.046s、调节时间Ts=0.05s, 无超调量, 系统动态响应快。系统起动时, 带动负载速度快, 转速在0.05s内稳定在设定值n=1000r/min。

b. 系统在稳态运行时,0.05s后都进入稳态阶段, 系统稳态输出误差已趋近零, 反应出该模拟系统控制精度较高, 稳态特性良好, 波形与理论分析结果相符, 静态性能稳定。

c.系统起动时,定子起动转矩6.7N・m,系统稳定运行后,定子转矩稳定在设定值5N・m。转矩脉动控制在0.2N・m内,系统运行稳定。

(2)速度环开环时,在系统空载情况下给定幅值为±5A的方波参考交轴电流i*q信号时,系统交轴电流、转速和转矩响应。

由图5仿真波形, 可得出结论如下:

在参考交轴电流±5A切换时, 转矩响应时间为0.00035s, 转矩动态响应快速。波形符合理论分析, 具有较好的动态特性。

3 结束语

本论文通过对矢量坐标变换、逆变器、空间电压矢量脉宽调制等技术的原理分析及建模仿真, 主要设计了一个基于空间电压矢量脉宽调制技术的永磁同步电机控制系统, 并在Matlab/Simulink对其进行仿真模拟。系统设计步骤为:系统构架、模块设计、系统设计和系统仿真结果分析。在这次完成论文的过程中, 我对所学的电力电子技术、自动控制原理、电机与拖动以及控制系统的MATLAB仿真与设计等知识有了更深层次的理解, 并在学习过程中积累了许多宝贵经验。从仿真结果的数据和波形来看, 系统的设计完全符合前期设计要求, 验证了理论的正确性。

参考文献

[1]李静,程小华.永磁同步电机的发展趋势[J].防爆电机.2009, 44(05):17-19.

[2]谭蒂娃.永磁同步电机的发展[J].伺服控制.2010, 22(11):20-22.

[3]唐介.电机与拖动[M].高等教育出版社.2007:32-34.

[4]张佳.变频器的相关研究[J].电气电子教学报.2009, (05):11-15.

篇8

 

变压器运行时,如果电压超过它的最大允许工作电压,称为变压器的过电压。过电压往往对变压器的绝缘有很大的危害,甚至使绝缘击穿。过电压分为内部过电压和大气过电压两种。输电线路直接遭雷击或雷云放电时,电磁场的剧烈变化所引起的过电压称为大气过电压(外部过电压);当变压器或线路上的开关合闸或拉闸时,因系统中电磁能量振荡和积聚而产生的过电压称为内部过电压。变压器的这两种过电压都是作用时间短促的瞬变过程。科技论文。内部过电压一般为额定电压的3.0-4.5倍,而大气过电压数值很高,可达额定电压的8-12倍,并且绕组中电压分布极不均匀,端头部分线匝受到的电压很高。因此,必须采取必要的措施,防止过电压的发生和进行有效的保护。

过电压在变压器中破坏绝缘有两种情况,一是将绕组与铁心(或油箱)之间的绝缘高压绕组与低压绕组之间的绝缘(这些绝缘称为主绝缘)击穿;另一种是在同一绕组内将匝与匝之间或一段绕组与另一段绕之间的绝缘(这些绝缘称为纵绝缘)击穿。由于过电压时间极短,电压从零上升到最大值再下降到零均在极短的时间内完成,因而具有高频振荡的特性,其频率可达100kHZ以上。在正常运行时,电网的频率是50HZ,变压器的容抗很大,而感扩ωL很小,因此可以忽略电容的影响,认为电流完全从绕组内部流过。但对高频过电压波来说,变压器的容抗变成很小,而感抗变成很大,此时电流主要由电容流过,所以必须考虑电容的影响。科技论文。考虑电容影响后,变压器的分布参数电路(见后面图1)。

其中:CFe——绕组每单位长度上的对地电容;C’——高低压绕组之间每单位长度上的电容;Ct——绕组每单位长度上的匝间电容;L’——过电压时绕组每单位长度上的漏电感;R’——绕组每单位长度上的电阻。

下面简单说明两种不同类型过电压产生的原因:

1.内部过电压我市电网中,绝大多数是降压变压器,下面就以降压变压器空载拉闸为例说明内部电压产生的原因

根据变压器参数的折算法可知,把二次侧(低压侧)电容折算到一次侧(高压侧)时,电容折算值为实际值的(1/K2)倍,所以二次侧电容的影响可以略去不计。这就是说,空载时可以忽略二次侧的影响。就一次绕组来说,由于每单位长度上的对地电容CFe是并联的,故对地总电容为CFe=ΣCFe由于一次侧单位长度上的匝间电容Ct是串联的,故它的匝间总电容为Ct=1/(Σ1/Ct)在电力变压器中,通常CFe>>Ct,所以定性分析时,匝间电容的影响也可略去不计。当再忽略绕组电阻R1时,可得空载拉闸过电压时的简化等效电路(见后面图2):其中L1是一次绕组的全自感。把空载变压器从电网上拉闸时,如果空载电流的瞬时值不等于零而是某一数值Ia,这时相应的外施电压瞬时值为Ua。于是在拉闸瞬间,电感L1中储藏的磁场能量为1/2L1i2a,电容CFe上储藏的电场能量为1/2CFeU2a。由于这时变压器的电路是由电感L1和电容CFe并联的电路,故在拉闸瞬间,回路内将发生电磁振荡过程。在振荡过程中,当某一瞬间电流等于零时,此时磁场能量全部转化为电场能量,由电容吸收,电容上的电压便升高到最大值Ucmax。当不考虑能量损失时,根据能量守恒原理有CFeU2cmax= L1i2a+CFeU2a故得上式表明,当拉闸电流和电容上的电压一定时,绕组的电感愈大,对地电容愈小,则拉闸时过电压愈高。电力系统中,拉闸过电压通常不超过额定电压的3.0-4.5倍。

2.大气过电压大气过电压是输电线路直接遭受雷击或雷云放电时,电磁场的剧烈变化所引起的

当输电线路直接遭受雷击时,雷云所带的大量电荷(设为正电荷)通过放电渠道落到输电线上,大量的自由电荷向输电线路的两端传播,就在输电线上引起冲击过电压波,称为雷电波。雷电波向输电线两端传播的速度接近于光速,持续的时间只有几十微秒,电压由零上升到最大值的时间只有几微秒。雷电波的典型波形为曲线由零上升到最大值这一段称为波头,下降部分称为波尾。如果把波头所占时间看成是周期波的四分之一周期,则雷电波可看成是频率极高的周期性波。这样,当过电压波到达变压器出线端时,相当于给变压器加上了一个频率极高的高电压。这一瞬变过程很快,一开始,由于高频下,ωL很大的,1/ωC很小,电流只从高压绕组的匝电容和对地电容中流过。由于低压绕组靠近铁心,它的对地电容很大,(即容抗很小),可近似地认为低压绕组接地。科技论文。可雷电波袭击时,沿绕组高度上的电压分布取决于匝间电容Ct和对电容CFe的比例。在一般情况下,由于两种电容都存在,过电压时,一部分电流由对地电容分流,故每个匝间电容流的电流不相等,上面的匝间电容流过的电流最大愈往下面则愈小,随着电压沿绕组高度的分布变为不均匀,见下图:(图3是过电压波加在变压器两端的电压)从图中可见,起始电压分布很不均匀,靠近输电线A端的头几匝间出现很大的电压梯度,因此,在头几个线匝里,匝间绝缘和线饼之间的绝缘都受到很大的威胁,这时最高匝间电压可能高达额定电压的50-200倍。

3.过电压保护为了防止变压器绕组绝缘在过电压时被击穿,必须采取适当的过电压保护措施,目前主要采用下列措施

3.1避雷器保护

在变压器的出线端装设避雷器,当雷电波从输电线侵入时,避雷器的保护间隙被击穿,过电压波对地放电,这样雷电波就不会侵入变压器,从而保护了变压器。

3.2加强绝缘

除了加强变压器高压绕组对地绝缘外,针对雷电波作用的特性,还要加强首端及末端部分线匝的绝缘,以承受由于起始电压分布不均匀而出现的较高的匝间电压。这种方法效果有限,而且加厚绝缘使散热困难,同时减少了匝间电容,增大了匝间电压梯度。目前只在35kV及以下的变压器中采用。

3.3增大匝间电容

篇9

集成电路发展的见证者

时至今日,由IEEE(国际电气电子工程师协会)举办的ISSCC已经走过了57个年头。集成电路历史上一些里程碑式的创新大都会在ISSCC上首次公布:从1962年仙童公司的TTL(晶体管-晶体管逻辑)电路开辟了数字电路的集成时代,到1968年泰克公司的集成放大器将模拟电路带入集成时代,再到1974年英特尔公司的8位处理器开启了计算普及之门;更不用说多核、高性能CPU、低功耗技术、视频处理器、可编程DSP(数字信号处理器)、WiFi、蓝牙、CCD图像传感器等人们耳熟能详的信息技术。

本次会议设有10个议题:低功耗数字技术、高性能数字技术、存储器、模拟、射频、数据转换器、无线、有线、图像/显示/微电子机械系统/医疗和技术方向。

根据ISSCC公布的论文统计,来自世界多个国家和地区的半导体企业和高校等研究机构共向大会提交了638篇论文,其中有210篇被大会录用。这两个数字分别略高于2009年的582篇和203篇,稍低于2008年的656篇和237篇。从地域上看,北美和欧洲的论文数在国际金融危机最为严重的2008年也处于谷底,分别为78篇和52篇,而今年则达到86篇和59篇。从机构分布上看,在会议上达到或超过4篇的共有15家,其中英特尔以13篇位居其首,而产业界和学术界分别以51%和49%的比例在论文数量上平分秋色。

从注册观众上,今年的观众数量较2009年提高了一成。集成电路产业历来是整个IT产业的风向标,此次会议在论文和观众数量上都有所回升,这对于整个IT产业是个好消息。

我国内地是在2005年、2006年和2008年分别由新涛科技(上海)有限公司、中科院半导体所和清华大学实现了企业、研究机构和高校在ISSCC上论文的零突破。

高性能处理器龙争虎斗

高性能处理器依旧是ISSCC的热门之一,英特尔与AMD、IBM与Sun这两对“冤家对手”,各自在会议上亮出自家的“镇山之宝”。

32nm处理器成为英特尔与AMD比武的擂台。英特尔在其《Westmere:32nm IA处理器家族》的论文中,披露了32nm 处理器Westmere系列的技术细节。Westmere在性能上从45nm处理器Nehalem的4内核/8线程提升到6内核/12线程,L3 缓存从8MB提升到12MB,晶体管数量则从7.31亿个增加到11.7亿个。得益于32nm制程技术,6个内核的Westmere的芯片面积(240mm2)甚至略小于4个内核的Nehalem(262mm2)。Westmere还在电源输入端引入了反谐振电路和LC滤波器,以降低电源噪声对QPI总线和DDR时钟的干扰。

AMD没有出现在ISSCC统计的论文达到或超过4篇的统计名单中,它在《32nm SOI CMOS下实现的x86-64内核》的论文中介绍了未来AMD 32nm处理器内核的一些特征:采用SOI技术,主频超过3GHz,单个内核的功耗控制在2.5W~25W之间。

在RISC处理器上,IBM了性能较之上代产品POWER 6有近5倍提升的处理器POWER 7,这种计算性能的大幅提升,在当今处理器的更新换代中还是罕见的。POWER 7拥有8个内核,每个内核含4个线程。POWER 7采用45nm SOI工艺,它将原有外置的L3缓存集成到芯片上,每个内核拥有4MB的L3缓存,整个芯片的L3缓存高达32MB,芯片面积为467mm2。

被Oracle纳入旗下的Sun在会上介绍了UltraSPARC家族的下一代产品的技术特征:采用40nm制程、16内核、128线程。这一信息的披露给UltraSPARC的用户带来些许的安慰,但Sun能否将其付诸实施,那还要Oracle说了算。

英特尔还在会上介绍了采用SoC(片上系统)技术的48内核处理器Message passing。这款被称之为“SCC”(单芯片云计算)的处理器,除了在数据吞吐方面独具匠心外,其工作频率和电压分别设有28档和8档,可以分别独立调节,从而有效地降低了功耗。

综观高端处理器设计,各家都有自己的独门绝技,而各家共同关注的依旧是在降低功耗的同时通过增加内核数量来提升整体性能。

低功耗处理器跨越1GHz门槛

与高端处理器将对性能的追求放在首位不同,降低功耗成为低功耗处理器的第一诉求。如今,伴随着智能手机、消费电子产品以及其他嵌入式应用的发展,性能的提升已经成为低功耗处理器亟待解决的问题。

以未来智能手机的需求为例,它要求具有主频到达GHz量级,高达100Mbps的数据传输率,而且智能手机的总功耗应该限制在1W水平上。通常,功耗和计算性能如同鱼与熊掌一样不可兼得。于是,一些创新的技术被引入低功耗处理器的设计之中。

英特尔在本次ISSCC上介绍了一种采用45nm工艺的自适应处理器原型。这种处理器内核应用错误诊断和错误恢复电路,实现了降低电压和提高主频两个目的,该处理器在0.8伏这个超低的、接近门限电压的工作电压下,性能提高了22%。与此同时,该芯片1.3GHz的主频也使得低功耗处理器的主频突破了1GHz的门槛。

篇10

中图分类号:F407.61 文献标识码:A 文章编号:

一.引言

随着经济的发展,科学技术的不断进步,通讯技术和计算机技术不断得到提高,电力系统的自动化水平也不断提高,越来越多的计算机、RTU以及一些其他的自动化设备被应用到电力系统中,我们指导微电子设备的工作电压只有几伏,工作电流十分微弱,正是如此其对外界的干扰抵抗十分弱。再加之,由雷电带来的瞬变磁场十分强,对于微电子器件产生的干扰很大,严重的甚至直接损坏微电子设备,给电力系统带来损失。近几年,尽管电力企业在不断的采取措施加强对电力系统的防雷保护,但是雷害事故还是时有发生,所以加强电力系统防雷措施的研究和探讨还是十分必要的。

二.对于雷电侵入波产生的过电压的保护措施

一般而言,电力企业对于雷电侵入波产生的过电压的保护是通过避雷器以及避雷针来实现的,这两者相配合的实现了对进线段的有利保护,效果比较好。通过对进线段的保护,可以利用其阻抗限制雷电流幅值,以及利用其电晕衰耗来达到降低雷电波陡度的目的,再在进线段上安装避雷器,通过避雷器的作用可以使得电流不超过绝缘配合所要求的数值,这样就可以有效的实现第一道防雷。

三.对于UPS过电压的保护措施

感应雷或沿电源线进入室内的雷电侵入波会使电源电压急骤升高,从而导致UPS及后接设备损坏。有些UPS中尽管装有压敏电阻,但还是很难保护自己及后接微电子设备。对电源,可靠有效的防雷方法是采用四级保护。每一级用三极气体放电管,将大的雷电限制到后续保护系统可允许的范围;第二级用限流模块;第三级用压敏电阻;第四级用TVS管,使输出的箝位电压达到规定的要求。采用上述四级保护后,UPS或被保护电源一般不会因雷击而损坏。

四.对于载波机过电压的保护措施

载波机遇雷击易损坏的部分通常为电源盘、用户话路盘及高频电路盘。高频电路盘上通常装有放电管,具有一定的耐雷水平;电源部分可采用上述电源过电压保护方式;用户话路盘由于铃流电压与通话电压不一致需要在保护装置设计上精心考虑,使之在两种不同电压下均能有效的地保护用户话路部分最好的办法是将保护器件置于载波机内,考虑到实际情况,外置保护模块应设计考虑得周全一些。为了有较好的防雷效果,我们在防雷时可以使用Modem、程控交换机通信线、用户话路盘以及信号线来实现四级保护,同时可以安装自动报警装置。

五.接地电阻与屏蔽

1.接地。合理的接地设计是整个电力系统防雷措施中的重要组成部分。一般会有构筑物接地、配电系统及强电设备接地、计算机自控系统接地等三种接地方式,因此,科学设计,使得这三种接地方式之间互相配合,有助于大大降低雷击通过接地网络对系统的毁坏。以计算机自控系统为例,一般采用系统工作接地、直流工作接地、安全保护接地等几种接地方式。在防雷措施中,要根据实际情况,将各种接地方式合理的组合,使得接地电阻值最小,取得最佳的效果。防雷接地是为防雷保护需要而设,以降低雷电流通过时的地电位升高,因此良好的接地是防雷中至关重要的一环。接地电阻值越小过电压值越低。因此,在经济合理的前提下应尽可能降低接地电阻。 在接地时要尽量的减低电阻,可以通过以下方法:深埋式接地极,如地下较深处的土壤电阻率较低,可用深井式或深埋式接地极;填充电阻率较低的物质或降阻剂。如附近有可以利用的低电阻率物质可以因地制宜,综合利用;敷设水下接地装置,如杆塔附近有水源,可以考虑利用这些水源在水底或岸边布置接地极,可以降低接地电阻,提高泄流能力。

2.屏蔽。为了达到减少雷电电磁干扰的目的,主控楼、通信机房的建筑钢筋、金属地板均应相互焊接,形成等电位法拉第宠。设备对屏蔽有较高要求时,机房六面应敷设金属屏蔽网,将屏蔽网与机房内环行接地母线均匀多点相连。架空电力线由站内终端杆引下后应更换为屏蔽电缆;室外通信电缆应采用屏蔽电缆,屏蔽层两端要接地;对于既有铠带又有屏蔽层的电缆应将铠带及屏蔽层同时接地,而在另一端只将屏蔽层接地。电缆进入室内前水平埋地10m以上,埋地深度应大于0.6m;非屏蔽电缆应穿镀锌铁管并水平埋地10m以上,铁管两端应良好接地。若在室外入口端将电力线与铁管间加接压敏电阻,防雷效果会更好。

六.综合性防雷措施

1.建立健全科学合理的整体防雷系统

从整个电力系统而言,要做好防雷措施,首先要从整体上做好防雷规划,从内到外,做到防雷措施的全面覆盖。整体而言,外部可以安装避雷针,接闪器等,避免雷电直接打击输配电线路或者是相关的线缆配电箱等基础设施,引起火灾或者事故。同时,内部要做好电磁屏蔽、等电位连接、共用接地系统和浪涌吸收保护器等一些子输配电系统,通过它们可以将引人建筑物内的浪涌电压和浪涌电流泻放到大地,并将其钳位在一定的电压范围内,以完善地保护电气设备。从整体上做好防雷规划,内外覆盖,这是采取具体防雷措施之前的基础性工作。

2.实施多级保护措施,做好配电系统的防雷

电力系统自动化是保证整个电力系统功能正常运转的关键部分,而输配电系统也是容易遭受到雷电袭击的部位之一。因此,做好配电系统的防雷措施,是整个防雷系统中的重要环节。虽然目前大多都会在配电系统的进线处安装避雷器,避雷带等防雷器件,但是,经过很多次实践证明,单一的防雷措施或者是防雷器件难以真正保障配电系统的正常运转,当雷击降下时候,建筑物的自控设备的电源机盘依然会受到电击而产生损坏。在对配电系统防雷时候,要据实际情况做好多级防护措施。在具体的工作中我们要加强对地网的改造,我们可以在容易受到雷击的部位安装ZGBZ-Ⅱ型载波机过电压保护器、DGBZ-Ⅱ型电源过电压保护器、MGB-Ⅰ型Modem过电压保护器和XGBZ-Ⅱ型信号线过电压保护器。通过工作实践证明了其作用是十分有效的。

七.结束语

我们必须要充分的认识到电力系统自动化防雷工作的必要性,但是与此同时我们所研究的防雷措施只是小小的一部分,对于整个电力系统自动化防雷工作而言它不能解决所有的问题,而整个电力系统防雷以及安全是一项复杂艰巨的任务,而且可以肯定的说在今后的工作中我们还将遇到各种各样的问题和难题,我们在遇到这些问题的时候,必须正确看待,从实际情况出发具体问题具体分析找出适合的解决方法。同时我们在工作的过程中要不断的积累经验,不断的学习探讨新的技术措施,不但的将得出的新方法以及新技术运用到实际工作中去,相信防雷工作一定会提到一个更高水平。

参考文献:

[1]谢思寿 10KV输电线路雷击的防雷措施及其效果 [期刊论文] 《城市建设理论研究(电子版)》 -2012年8期

[2]高新智 仇炜 韩爱芝 李景禄 陈国盛 针对某35 kV配电线路防雷问题的探讨 [期刊论文] 《高压电器》 ISTIC PKU -2010年4期

[3]何文旭 农村电网输配电线路防雷措施 [期刊论文] 《重庆电力高等专科学校学报》 -2005年3期

篇11

主管单位:国家电网公司

主办单位:国网电力科学研究院;中国电机工程学会

出版周期:月刊

出版地址:湖北省武汉市

种:中文

本:大16开

国际刊号:1003-6520

国内刊号:42-1239/TM

邮发代号:38-24

发行范围:国内外统一发行

创刊时间:1975

期刊收录:

CA 化学文摘(美)(2009)

CBST 科学技术文献速报(日)(2009)

Pж(AJ) 文摘杂志(俄)(2009)

EI 工程索引(美)(2009)

中国科学引文数据库(CSCD―2008)

核心期刊:

中文核心期刊(2008)

中文核心期刊(2004)

中文核心期刊(2000)

中文核心期刊(1996)

中文核心期刊(1992)

期刊荣誉:

中科双效期刊

联系方式

篇12

中图分类号:F407.6 文献标识码:A 文章编号:

一.前言

改革开放以来我国经济实现了腾飞,科技不断的进步,高压电气设备应用越来越多且作用越来越大,比如最具代表性的就是电气化铁路的普及。因此高压电气设备的运行状态已经深刻的影响到了人们的生活。本文所说的在线检测是一种比较新型的检测方法,其原理是利用高压作为检测的电压,但是高压必须是运行中的高压,采用这种方法对高压电气设备进行在线检测,了解其性能。这种在线检测是在不停电的状态下进行的,这样可以有效的减少对对设备运行的干扰。不仅效率高而且还可以准确的掌握设备的性能状态,提高设备的安全性和稳定性。当前的在线检测技术大量的采用了高科技技术,利用高科技技术能够有效的提高检测速率和准确性,使我国的高压电气设备在线检测技术更上了一个台阶。

二.电气设备高压测试

高压电气设备主要包括高压熔断器、高压隔离开关、高压负荷开关、高压断路器、高压开关柜和电力变压器等。电气设备高压故障的产生原因有很多,通常包括控制回路电器老化损坏、性能下降、保护失准、误动作;控制电源电压严重下降、元器件误动;控制纷路受潮、破损、老化击穿短路;负载及电缆绝缘下降、击穿短路;严重超载热击穿短路等。

三.高压电气设备检测技术

1.绝缘检测与诊断

电力系统中的高压熔断器、高压隔离开关、高压负荷开关、高压断路器、高压开关柜和电力变压器等高压电气设备,其首要任务是安全可靠的运行,任何故障的发生,都会影响到企业生产的正常进行,甚至给国民经济造成巨大的损失。目前,绝缘故障的发生是高压电气设备的多发故障,因此,绝缘检测与诊断是电力设备检测中最重要的方面。对设备进行绝缘检测与诊断则是其中必不可少的试验项目,以下几种情况均必须进行试验:

①对于高压电气设备的制造厂,必须对其生产的所有原材料、产品定型和出厂进行试验。其目的是检验新的高压电气设备是否符合有关的技术标准规定。

②对于正在运行中的电气设备,则需要定期进行全面的预防性试验,电力设备以及电缆的现场试验最重要的是耐压试验。

③对于大修后的设备进行绝缘试验,其目的是判定设备在维修、运输过程中性能是否发生变化,是否出现绝缘损伤,以及修理部位的质量是否符合原来的标准。

2.在线检测技术。

随着技术的进步,我国高压电器逐渐普及,其高压电气设备正在向着高电压以及高容量的趋势发展,为了保证设备的正常运行,所以为了适应技术的需要在线检测技术才应用而生。这项技术是科研人员长期研究的结果,学者在研究时发现:在高压电气运行的状态下,对其绝缘状态进行实验检测,是一种有效反映电气设备绝缘状态的科学方法,这就是本文所探讨的在线检测法。需要强调的是这种检测是在不断电的状态下进行的,实施证明试验是在运行的电压下实施,是行之有效的方法,也是以后绝缘检测技术发展的趋势,有良好的发展前景。

高压电气设备在线检测技术具有的优点

①这种检测方法在不停电的状态下进行,检测时设备可以正常的运行,这样可以减少停电对客户的影响,节省了人力物力,大量的减少了工作量,提高了安全度,具有很强的优越性。

②在检测时可控性强,可以针对需要随时做出调整,有效提高检测的灵敏度,缩短了检测周期,提高了检测的有效性。

③通过在线检测,可以得到大量的检测数据,并且及时的对数据进行分析,为检测提供了客观依据。不仅仅提高了可靠性还为企业节约了成本。

斯二十一世纪是信息时代,计算机网络技术有了飞速的发展,且使用范围十分广泛。当前的高压电气设备在线检测工作与计算机网络相结合,大大提高了检测速率和准确性。

3.在线监测技术

我们知道在当前对于高压电气设备维修多半还是采用的定期检修方法,这种方法是带电检测方法,是对离线检测的升级方法,将监测技术升级为在线的检测,也就是带电的检测,这样的话在监测的工程中,电器设备是正常运行的,不会影响到设备的正常工作,其相对于在线监测技术离线监测技术还是有很多不足的地方需要我们改正,其不足主要表现在两个方面:

①离线检测检测时设备不能工作,影响了设备的效率,造成停工,必须承担停工素损失。

②离线监测具有盲目性,目标不明确,导致设备可能存在隐患,有太多的不稳定因素。

四.高压测试要求

1.对测试平台的要求

①测试平台应选择一个员工常规工作行动的地方,测试区用清晰的图案标识,上面标明“危险—高压勿近!”等警示信息。建立测试平台,除了警示标志外,还应装置一个可以关掉所有电源的开关。

②只能用不导电的工作桌或专用工作台做测试。把测试者与被测产品之间的任何金属物体移开。没有与DUT 接触的其他金属物体全部接地。在测试区用绝缘的安全垫垫在地面上,使操作者与地面隔离,如果仪器可以通过遥控开关操作,可考虑两个开关同时控制。耐压测试仪必须良好接地。

2.测试操作要求

面放好绝缘垫,并在测试前认真设备检查。检查仪器的各个连线是否有破损等,如果有则不能进行测试,必须先进行维修;如果仪器完好,则将0.7 MΩ标准电阻的一端连接耐压仪的地线;接通电源,将仪器、报警漏电流设定在5 mA;开启仪器,用测试棒击标准电阻另一端,调整电压在3 410~3 590 V 内仪器发出报警,则判定该仪器处于正常工作状态,若不在3 410~3 590 V范围内仪器自动报警,则仪器工作不正常。

七.结束语

当代的高压电气设备的在线检测技术,是电气设备检测技术的一大突破,它克服和完善了传统检测方法的不足,加之当今是信息时代,计算机网络技术高度发达,计算机网络技术与在线检测技术的有效结合,更加强有力地促进了我国在线检测技术的发展。在线检测技术能够非常及时的检测出高压电气设备运行过程中出现的各种故,是我国电网系统正常运行的得力保证,但是其检测技术也存在一些瓶颈,相信通过不断的努力探索,高压电气设备的在线检测技术会越来越完善。

参考文献:

[1]刘平甘 陈洪波 刘凡紫外检测技术在电力系统中的应用及其展望 [会议论文],2009 - 中国电机工程学会高电压专业委员会2009年学术年会

[2]吴栩 冯鹏英 高压电气设备的在线检测技术 [期刊论文] 《中国房地产业》 -2011年8期

[3]张川 刘乃涛 贺福敏 李林 李成龙 高压电力设备的在线绝缘检测技术 [会议论文],2011 - 中国石油和化工自动化第十届年会

[4]曾晓晖 聂端 基于绝缘在线检测技术的状态维修 [期刊论文] 《中国农村水电及电气化》 -2005年9期

[5]陈伟球 在线检测技术可行性分析 [期刊论文] 《中小企业管理与科技》 -2009年31期

友情链接