土建结构论文范文

时间:2022-07-15 17:17:59

引言:寻求写作上的突破?我们特意为您精选了12篇土建结构论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

土建结构论文

篇1

??鉴于这一会议的论坛性质,以下仅就会上提出的一些问题及建议作一归纳,提交与会专家考虑并审议。

??

??一、土建结构工程的安全性

??结构安全性是结构防止破坏倒塌的能力,是结构工程最重要的质量指标。结构工程的安全性主要决定于结构的设计与施工水准,也与结构的正确使用(维护、检测)有关,而这些又与土建工程法规和技术标准(规范、规程、条例等)的合理设置及运用相关联。

??

??1.我国结构设计规范的安全设置水准

??对结构工程的设计来说,结构的安全性主要体现在结构构件承载能力的安全性、结构的整体牢固性与结构的耐久性等几个方面。我国建筑物和桥梁等土建结构的设计规范在这些方面的安全设置水准,总体上要比国外同类规范低得多。

??

??1.1构件承载能力的安全设置水准

????与结构构件安全水准关系最大的二个因素是:1)规范规定结构需要承受多大的荷载(荷载标准值),比如同样是办公楼,我国规范自1959年以来均规定楼板承受的活荷载是每平方米150公斤(现已确定在新的规范里将改回到200公斤),而美、英则为240和250公斤;2)规范规定的荷载分项系数与材料强度分项系数的大小,前者是计算确定荷载对结构构件的作用时,将荷载标准值加以放大的一个系数,后者是计算确定结构构件固有的承载能力时,将构件材料的强度标准值加以缩小的一个系数。这些用量值表示的系数体现了结构构件在给定标准荷载作用下的安全度,在安全系数设计方法(如我国的公路桥涵结构设计规范)中称为安全系数,体现了安全储备的需要;而在可靠度设计方法(如我国的建筑结构设计规范)中称为分项系数,体现了一定的名义失效概率或可靠指标。安全系数或分项系数越大,表明安全度越高。我国建筑结构设计规范规定活荷载与恒载(如结构自重)的分项系数分别为1.4和1.2,而美国则分别为1.7和1.4,英国1.6和1.4;这样根据我国规范设计办公楼时,所依据的楼层设计荷载(荷载标准值与荷载分项系数的乘积)值大约只有英美的52%(考虑人员和设施等活载)和85%(对结构自重等恒载),而设计时据以确定构件能够承受荷载的能力(与材料强度分项系数有关)却要比英美规范高出的10~15%,二者都使构件承载力的安全水准下降。日本与德国的设计规范在某些方面比英美还要保守些。一些发展中国家的结构设计多根据发达国家的规范,就如我国解放前和建国初期的结构设计方法参照美国规范一样。至于中国的香港和台湾,至今仍分别以英国和参考美国规范为依据。这里需要说明的是,在其他建筑物的活荷载标准值上,与国外的差别并没有象办公楼、公寓、宿舍中这样大。不同材料、不同类型的结构在安全设置水准上与国际间的差距并不相同,比如钢结构的差距可能相对小些。

????公路桥梁结构的情况也与房屋建筑结构类似,除车载标准外,荷载分项安全系数(我国规范对车载取1.4,比国际著名的美国AASHTO规范的1.75约低25%)与材料强度分项安全系数均规定较低。

????尽管我国设计规范所设定的安全贮备较低,但是某些工程的材料用量反而有高于国外同类工程的,这里的问题主要在于设计墨守陈规,在结构方案、材料选用、分析计算、结构构造上缺乏创新。

??

??1.2结构的整体牢固性

????除了结构构件要有足够承载能力外,结构物还要有整体牢固性。结构的整体牢固性是结构出现某处的局部破坏不至于导致大范围连续破坏倒塌的能力,或者说是结构不应出现与其原因不相称的破坏后果。结构的整体牢固性主要依靠结构能有良好的延性和必要的冗余度,用来对付地震、爆炸等灾害荷载或因人为差错导致的灾难后果,可以减轻灾害损失。唐山地震造成的巨大伤亡与当地房屋结构缺乏整体牢固性有很大关系。2001年石家庄发生故意破坏的恶性爆炸事件,一栋住宅楼因土炸药爆炸造成的墙体局部破坏,竟导致整栋楼的连续倒塌,也是房屋设计牢固性不足的表现。

??

??1.3结构的耐久安全性

????我国土建结构的设计与施工规范,重点放在各种荷载作用下的结构强度要求,而对环境因素作用(如干湿、冻融等大气侵蚀以及工程周围水、土中有害化学介质侵蚀)下的耐久性要求则相对考虑较少。混凝土结构因钢筋锈蚀或混凝土腐蚀导致的结构安全事故,其严重程度已远过于因结构构件承载力安全水准设置偏低所带来的危害,所以这个问题必须引起格外重视。我国规范规定的与耐久性有关的一些要求,如保护钢筋免遭锈蚀的混凝土保护层最小厚度和混凝土的最低强度等级,都显著低于国外规范。损害结构承载力的安全性只是耐久性不足的后果之一;提高结构构件承载能力的安全设置水准,在一些情况下也有利于结构的耐久性与结构使用寿命。

??

??2.调整结构安全设置水准的不同见解

????我国结构设计规范的安全设置水准较低,与我国建国后长期处于短缺经济和计划体制的历史条件有关。但是,能够对土建结构取用较低的安全水准并基本满足了当时的生产与生活需求,而且业已历经了较长时间的考验,这是国内土建科技人员经过巨大努力所取得的重大成就;但是,由于安全储备较低,抵御意外作用的能力相对不足。如果适当提高安全设置水准将有利于减少事故的发生频率和提高工程抗御灾害的能力。国内发生的大量工程安全事故,主要是由于管理上的腐败和不善以及严重的人为错误所致。现在提出要重新审视结构的安全设置水准,主要是基于客观形势的变化,是由于我们现在从事的基础设施建设要为今后的现代化奠定基础,要满足今后几十年、上百年内人们生产生活水平发展的需要,有些土建结构如商品房屋则更要满足市场经济条件下具备商品属性的需要。国内近几年来已对建筑结构安全度的设置水准组织过几次讨论,在如何调整的问题上存在较大的意见分歧,这次科技论坛上同样反映了这些不同的见解:

????1)认为我国现行规范的安全设置水准是足够的,并已为长期实践所证明,而国外就没有这种经验。我国取得的这一成功经验决不能轻易丢掉,在安全度上不能跟着英美的高标准走;安全度高了是浪费,除个别需调整外,总体上不必变动。

????2)认为我国规范的安全度设置水准尽管不高,但在全面遵守标准规范有关规定,即在正常设计、正常施工和正常使用的“三正常”条件下,据此建成的上百亿平米的建筑物绝大多数至今仍在安全使用,表明这些规范规定的水准仍然适用;但是理想的“三正常”很难做到,同时为了缩小与先进国际标准的差距以及鉴于可持续发展和提高耐久性的需要,在物质供应条件业已改善的市场经济条件下,结构的安全设置水准应适当提高。这种提高只能适度,因为我国目前尚属发展中国家。

????3)认为我国规范的安全设置水准应该大体与国际水准接近,需要大幅度提高。这是由于随着我国经济发展和生活水平不断提高,土建工程特别是重大基础设施工程出现事故所造成的风险损失后果将愈益严重,而为了提高工程安全程度所需要的经费投入在整个工程(特别是建筑工程)造价中所占的比重现在已愈来愈低,材料供应也十分充裕。过去的低安全水准只是适应了以往短缺型计划经济年代的需要,但决不是没有风险,如果规范的安全水准较高,曾经发生过的有些安全事故本来是可以避免的,而规范的这一缺陷在一定程度上为“三正常”的提法所掩盖。在建的工程要为将来的现代化社会服务,安全性上一定要有高标准。低的安全质量标准在参与将来的国际竞争中也难以被承认,即使结构设计的安全设置水准能够提高到与发达国家一样,由于我们的施工质量总体较差,结构的安全性依然会有差距。

??

??3、结构设计规范的概率可靠度设计方法

????自1984年国家建委和国家建设部颁布了建筑结构设计统一标准以来,我国的建筑结构设计规范已从80年代末期起抛弃了传统的多安全系数设计方法,从而统一采用以概率理论为基础的可靠度设计方法;其它的工程部门如公路、铁路、港口、水利的结构设计规范也正在或计划作这样的转变。我国规范的可靠度设计方法是参考国际上的相应标准ISO2394并经过国内科技人员努力后得以实施的。将可靠度设计方法用于结构设计规范,在国际学术界内通常被看成是一种发展趋势,但在工程内界则存在不同看法。尽管有了ISO2394,国外却鲜有重要或著名的结构设计规范已直接采用了可靠度设计方法,至今仍采用多安全系数设计方法或称荷载抗力系数法。在我国,对于建筑结构设计规范中的可靠度设计方法以及企图将我国各个行业的各种结构设计规范都用可靠度方法统一起来的做法,虽然工程设计界颇有微词,但学术界持赞成和肯定者是主流,不过仍不时有人对可靠度方法用于设计规范的适用性提出质疑。这次科技论坛上则较为集中地反映了对规范可靠度方法的意见分歧。

????对我国规范的可靠度设计方法持肯定意见的专家认为这是重大的科技进步,可靠度方法对安全度的概率定义要比定值的安全系数更清晰、更科学、更合理,当然概率可靠度设计方法本身尚有不少缺陷,有待进一步修改完善。持相反意见的人则认为,结构设计规范所面向的是类型多样的复杂群体,在安全度上需要考虑的不确定性与不确知性非常复杂,并不是“从统计数学观点出发的概率定义”所能科学描述或处理;规范可靠度方法在我国十多年的实践表明,它并没有给结构设计的安全性带来明显实效,反而造成了安全概念上的某些混乱;对工程技术人员来说,结构的安全度用可靠指标和虚假的失效概率表达后变得更加不可揣摩和模糊不清,不如安全系数那样从安全储备出发的度量方法更为直观和便于处理具体工程的安全问题;现行设计规范中的可靠度方法很不成熟,存在不少根本缺陷;他们认为半概率的多安全系数方法更适用于规范,也不排斥可靠度分析的结果可以作为一种参考,在综合判断安全系数的合理取值时予以考虑。

??

??二、土建结构工程的耐久性

??

????土建结构工程的耐久性与工程的使用寿命相联系,是使用期内结构保持正常功能的能力,这一正常功能包括结构的安全性和结构的适用性,而且更多地体现在适用性上。

??

??1、土建结构工程的耐久性现状

????大多数土建结构由混凝土建造。混凝土结构的耐久性是当前困扰土建基础设施工程的世界性问题,并非我国所特有,但是至今尚未引起我国政府主管部门和广大设计与施工部门的足够重视。

????长期以来,人们一直以为混凝土应是非常耐久的材料。直到70年代末期,发达国家才逐渐发现原先建成的基础设施工程在一些环境下出现过早损坏。美国许多城市的混凝土基础设施工程和港口工程建成后不到二、三十年甚至在更短的时期内就出现劣化;据1998年美国土木工程学会的一份材料估计,他们需要有1.3万亿美元来处理美国国内基础设施工程存在的问题,仅修理与更换公路桥梁的混凝土桥面板一项就需800亿美无,而现在联邦政府每年为此的拨款只有50~60亿美元。另有资料指出,美国因除冰盐引起钢筋锈蚀需限载通行的公路桥梁已占这一环境下桥梁的1/4。发达国家为混凝土结构耐久性投入了大量科研经费并积极采取应对措施,如加拿大安大略省的公路桥梁为对付除冰盐侵蚀及冻融损害,钢筋的混凝土保护层最小厚度从50年代的2.5cm逐渐增加到4cm、6cm直到80年代后的7cm,而混凝土强度的最低等级也从50年代的C25增到后来的C40,桥面板混凝土从不要求外加引气剂、不设防水层到必须引气以及需要设置高级防水胶膜并引入环氧涂膜钢筋。而我国遭受盐冻侵蚀地区的公路桥梁在耐久性设计方面至今仍无明确要求,对混凝土保护层和强度的要求仅为2.5cm与C25,与上面提到的加拿大50年代水准一致。国内按这种标准设计的一座大桥,建成后仅8年,由于盐冻侵蚀,现已不得不部分拆除重建。

????我国建设部于80年代的一项调查表明,国内大多数工业建筑物在使用25~30年后即需大修,处于严酷环境下的建筑物使用寿命仅15~20年。民用建筑和公共建筑的使用环境相对较好,一般可维持50年以上,但室外的阳台、雨罩等露天构件的使用寿命通常仅有30~40年。桥梁、港工等基础设施工程的耐久性问题更为严重,由于钢筋的混凝土保护层过薄且密实性差,许多工程建成后几年就出现钢筋锈蚀、混凝土开裂。海港码头一般使用十年左右就因混凝土顺筋开裂和剥落,需要大修。京津地区的城市立交桥由于冬天洒除冰盐及冰冻作用,使用十几年后就出现问题,有的不得不限载、大修或拆除。盐冻也对混凝土路面造成伤害,东北地区一条高等级公路只经过一个冬天就大面积剥蚀。我国铁路隧道用低强度的C15混凝土作衬砌材料,密实度和抗渗性差,不耐地下水与机车废气侵蚀,开裂与渗漏严重;对几个路局所辖的隧道进行抽样调查表明,漏水的占50.4%,其中1/3渗漏严重,并导致钢轨等配件锈蚀以及电力牵引地段漏电,影响正常运行,而1999年颁布的铁路隧道设计规范仍未能对隧道的耐久性问题采取适当的对策,如适当提高混凝土的最低强度等级和在混凝土中掺入化学纤维等。

????耐久性问题的严重性和迫切性在于我们许多正在建设的工程仍未吸取国际和国内的大量惨痛教训,还沿着老路重蹈覆辙。一些北方城市新建成的立交桥和高速公路桥,仍没有在材料性能和结构构造等方面采取必要的防治冻融和盐害的综合措施。甚至大型工程如2000年投入运行的珠海莲花跨海大桥,其主体结构在浪溅区仍采用不耐海水干湿交替侵蚀的C30混凝土与3~4cm厚的保护层厚度。

????有专家估计,我国“大干”基础设施工程建设的还可延续20年,由于忽视耐久性,迎接我们的还会有“大修”20年的,这个可能不用很久就将到来,其耗费将倍增于当初这些工程施工建设时的投资。

????使混凝土结构的耐久性问题进一步加剧的原因有:

????1)由于混凝土的质量检验习惯上以单一的强度指标作为衡量标准,导致水泥工业对水泥强度的不适当追求,使水泥细度增加,早强的矿物成份比例提高,这些都不利于混凝土的耐久性。我国对水泥质量的检验在强度上只要求不低于规定的最低许可值,而国外则同时还要求不高于规定的最高值,如果强度超过了也被认为不合格,这种要求还有利于水泥产品质量的均匀性。

????2)工程施工单位不适当地加快施工进度,尤其是政府行政领导对工程进度的不适当干预。混凝土的耐久性质量尤其需要有足够的施工养护期加以保证,早产有损生命健康的概念同样适用于混凝土。国内媒体上大加宣传的所谓几个月就修成一条大路、建成一座大桥、或盖成一幢高楼的工程以及抢工献礼工程,很可能就是今后注定要花掉更多资金进行大修的短命工程。提前完成合同规定施工期的在国外要被罚款,因为意味着工程质量有遭到损害的可能。

????3)环境的不断恶化,如废气、酸雨,我国的酸雨面积已超过国土的30%。

????当前迫切需要进行的工作是尽快编制桥梁、隧道、港工等基础设施工程耐久性设计的技术条例,修订补充现行规范中对结构耐久性的要求。首先需要明确的是各种基础设施工程的设计工作寿命,在重要工程的设计文件中必须有使用寿命的要求和论证。当前在建的众多工程在耐久性上之所以仍然沿着重蹈覆辙的道路走,很重要的一个原因是工程设计施工技术人员在耐久性上没有可资遵循的新依据。更为严重的是现行规范中的有些条文,本身就对耐久性有害。为了提高混凝土耐久性,在混凝土中合理使用粉煤灰、矿渣等矿物掺合料是重要的技术手段,国外有的规范甚至规定在桥梁等混凝土结构中必须加入粉煤灰等掺合料,而我国的铁路混凝土桥隧施工规范仍在明文禁止使用。此外,工程技术界还存在长期形成的一些过时的看法,对改善混凝土的耐久性能造成阻力。例如,顾虑会影响混凝土强度而不愿使用引气剂,而引气本应作为改善混凝土耐久性和工作性的常规手段;又如,希望加大水泥用量来保证混凝土强度,而尽可能低的水泥用量本应是提高混凝土抗裂和耐久性能的重要途径。

????在修订规范的耐久性要求上,交通部于2001年颁布的港工混凝土结构防腐蚀技术规范已为其它土建工程行业起到较好的示范作用。我们一方面要参照国内外已有的资料和经验,尽快编写出相应的设计施工技术文件以应急需,另一方面则要安排系统的研究项目,加大耐久性研究工作的支持力度;混凝土结构的耐久性是当前国际上结构工程学科最为重要的前沿研究领域之一,而我国在这一方面相当落后。混凝土的耐久性研究离不开原材料和环境等特定条件,需要考虑本国的特点,是不能完全依赖国外研究成果的。

????重视混凝土结构的耐久性也是可持续发展的需要。生产混凝土所需的水泥、砂、石等原材料均需大量消耗国土资源并破坏植被与河床,水泥生产排放的二氧化碳已占人类活动排放总量的1/5~1/6,而我国排放的二氧化碳量已居世界第二。我国现在每年生产5亿多吨水泥,与之相伴的是年耗20多亿方的砂石,长此以往实难以为继。延长结构使用寿命意味着节约材料,而耐久的混凝土一般又应是水泥用量较低和矿物掺合料(工业废料)用量较高的混凝土,所以耐久的混凝土正适应环境保护的需要。国际上对桥梁、隧道等土木工程的设计工作寿命多为100年,有的如英国为120年。考虑到耐久性不足所造成的巨大经济损失和资源浪费,国际上近年来有要求将这些工程的最低工作寿命进一步延长的趋势,如提出城市环境中的桥梁至少应有150年。

??

??2.土建结构工程使用阶段的正常检测与维护

????结构耐久性和使用寿命的概念,与使用阶段的检测、维护和修理不能分割,对处于露天和恶劣环境下的基础设施工程来说尤其如此。为了保证结构安全性和耐久性,一些工程在建成后的使用过程中,应该进行定期检测和维护。我国有结构工程的设计规范与施工规范,但没有如何使用的规范。有些工程倒塌事故,例如最近四川宜宾的南门大桥发生桥面坍落事故,就是因为桥面结构与主拱之间的吊杆在连接处发生锈蚀,如果有定期的检测要求,这样的事故很有可能避免。有些国家对于结构的损坏可能导致公众安全的建筑物与桥、隧等公共工程,强制规定必须定期检测;即使是建筑物的玻璃幕墙和外墙面砖等建筑部件,因其坠落后容易伤及公众,也有强制定期检测的要求。我国由于施工管理水平和事故操作人员的素质相对较差,质量控制与质量保证制度不够健全,规范对结构安全与耐久性的设置水准又相对较低,已建的工程中往往存在较多隐患,所以更有必要从法制上确定土建工程的正常使用和定期检测的要求。对于土建结构工程的安全质量,虽然政府已作出了设计与施工的责任单位和个人需对其“终身负责”的规定,但是这种要求执行起来缺乏可操作性。要将结构安全质量事故减少到最低程度,还应以预防为主,通过例行检测及时发现问题。

????现在国内有大量土建工程因步入老化期需要诊治,也有大量已建的违章工程需要评估,更有许多工程发生病害需要诊断和加固,各地已涌现了不少从事土建工程诊断、治理与加固的队伍,并有蓬勃发展成为一种新兴行业的趋势。出现问题和病害以后再来治理固然重要,但是我们应该更加强调预防。对于在役土建工程的检测和评估,要建立相应的法规和标准,要有从业人员的注册和从业机构的资质认证制度,在管理体制上予以规范。

????从国家对公共工程建设的投资和对工程设计的要求来看,需要有工程整个使用期限即全寿命费用支出的论证。只注意工程项目建设的一次投资支出,很少考虑工程建成后需要正常维护与修理的长期费用,不但可能损害工程使用寿命和正常使用功能,而且经济上算总账会很不合算。在发达国家,由于新建工程少,用于维修的费用往往更为主要,英国1978年的土建维修费上升到1965年的3.7倍,1980年的维修费占当年土建费用总支出的2/3。我国虽是发展中国家,现在正大兴土木,可是过去建成的大量工程已经或过早老化。国内40%公路桥梁的桥龄已大于25年,加上进入90年代以后交通量猛增,超载严重,以往的设计标准又低,路、桥的维修问题十分突出。由于养护维修费用得不到保证,造成工程安全隐患并在以后需要支出更多的大修费用。在土建工程的投资上,希望有关部门能加大已建工程维修的费用。

????为加速路桥等公共工程建设,国家现在鼓励投资公司出资并给以一定期限如30年的经营收入作为补偿。如果对重要土建工程有必须进行定期检测与评估的法规,就能保证这些工程在一定期限后归还国家管理和经营时的良好功能,对于设计工作寿命为100年的桥梁,至少还可正常使用70年,而不至于30年到期后国家接收的已是一个破旧的工程。

??

??三、技术规范的作用与管理

??

????这次科技论坛对于土建结构工程技术规范的定位、作用与管理也进行了讨论并提出了一些看法。

????长期以来,受计划经济体制的影响,我们往往视技术规范为法,将规范的具体规定和要求等同于法律条文来对待。技术规范或规程,与各种技术条例、技术要求、工法、指南等技术文件一样都是技术标准,本身不具有法律作用,只当工程各方(业主、设计、施工企业)认同作为设计与施工的依据并在契约的基础上,才能作为法律仲裁的依据。将技术问题法制化并强制执行,不利于技术进步和创造性的发挥,反而容易成为推卸责任的借口。当然,政府部门从国家和公众的整体利益出发,需要在安全、环保等重大原则上对土建工程的设计施工提出必须满足的最低要求并制定相应的法规,但法规一般并不需要提供如何达到这些要求的具体技术途径和方法,后者是技术标准的任务。政府也可以原则认可或批准某些重要的技术规范或其中某些内容使用。

????土建工程有着强烈的个性,需要工程技术人员针对具体特点去解决设计与施工问题。所以规范作为技术标准宜强调其指导性而不是强制性。如果规范条文看作为一般意义上的法律条文,就有可能束缚设计施工人员的主动创造性并阻碍新技术的应用。。我国土建工程在结构设计上与国外相比的最大差距就在于方案与技术上的创新,这与以往过分强调规范的法律地位从而形成所谓“结构设计就是规范加计算”的倾向不无关联。我国的技术规范在编写风格上也有模仿法律的倾向,极少提及使用者需要注意规范可能存在的某些不足之处或允许并鼓励使用者在某些问题上可以另辟蹊径。如果在设计施工中要取代规范中已经落后过时甚至有害的技术规定,则无异于违法行为。相反,只要墨守规范,即使出了事故,就可不负法律责任。这样就在客观上降低了对工程技术人员的业务技能要求与职责要求,不利于提高我国建筑企业和从业人员的素质以及参与今后的国际竞争。为了消除这些负面影响并杜绝钻规范条文的空子进行偷工减料,应有必要建立这样的共识并作出规定,即遵守了规范条文并不意味着就可免除法律责任。国外有些规范就是这样规定的。

????企图不断加强技术规范的强制性来解决屡禁不止的工程事故,不是解决问题的有效途径。现在,有关主管部门将建筑结构设计规范中的部分条文抽出来,明确列为强制性条文,同时规定各个设计单位完成的设计,须通过有关部门或其授权委任的其他企事业设计单位的审查,而审查的主要内容就在于对照规范强制性条文的要求,其任务已类似于执法;这种做法是否明智似可商榷。我国土建工程事故频繁的原因,主要在于管理不善,特别是管理环节上的腐败;其次是施工操作人员素质低,又难以短期解决;过分强调规范的地位与作用,未能建立与规范配套的完整标准体系,比如缺乏指南、工法等更为详尽具体的技术文件,可以用来指导和规范设计与施工的各个具体环节,也有一定的关系。从设计角度看,出现事故主要不是由于没有按照规范强制性条文的规定,而是方案性的错误或忽略主要的设计条件;也有一些工程则因过去的设计标准过低,耐久性不足,在使用过程中又缺乏应有的例行检测而导致失效。其实,要做到设计规范强制条文的要求最为容易,为此请专业人士审查似无必要。重要的工程设计应规定请专业单位全面审核,其要点也应在结构方案、构造方法与计算分析的原则上。从结构设计的国家规范中抽出的强制性条文不免支离破碎,个别条文的规定也不一定适合某些地区和某些工程的具体特点,反而造成麻烦。

????我国幅员广阔,各地经济发展很不平衡,技术力量悬殊,环境条件各异,客观上要求规范能给设计人员更多灵活性,少一些强制性,这样才能更好地在规范的指导下,根据工程的特点和具体条件去解决问题。总之,在规范标准上,要摆脱计划经济年代遗留下来的过分强求统一、较少考虑个性和缺乏实事求是灵活性的倾向。要提倡和鼓励各省市编制地方性规范,在工程的安全性和耐久性标准上,可有不同的设置水准。比如上海、北京、广州这些大城市应该高些,在抗震防灾要求上,更应区别对待。全国性的规范订得愈详细,其适用性可能变得愈差,造成的混乱也可能愈多;特别象岩土工程那样的规范更是如此。

????技术标准中的强制性越多,也意味着政府有关部门在具体技术问题上需要承担的责任越重,而这些本来不该是政府部门的职责。规范中的要求是最低要求,在安全设置水准上,政府需要干预的也应是保证公众安全的最低要求。对于土建结构的抗震设计,政府有关部门至今仍规定任何部门和个人不得随意提高抗震的设防标准(建抗586号文件)。事实上,如将商品房的抗震设防烈度提高1度,抗震能力可提高约1倍,而增加的房屋造价相当有限,在众多城市中可能仅及居民用于室内装修费用的几分之一。政府的这一规定无异于限制居民只能购置抗震安全质量标准最低的房屋,如果发生地震造成损害,有关部门如何解释?

????规范等技术标准的管理体制亟待改善。建国以来,由政府部门负责统管并指定有关企事业单位分别承担每本规范编写和修订工作的做法已越来越不能适应当前的形势,有些在经费和人力上得不到保证,平时基本上没有专门人员去搜集了解规范使用中的问题并及时修改补充规范条文;面对新的结构型式、新的材料和新的工艺,规范的过时条文不但成为推广新技术的阻力,而且有被误用或盲目套用而造成工程质量安全事故。

????发达国家有关土建结构工程的规范及与之配套的各类技术标准多由行业协会或专业学会编制及管理,规范的翻新周期短,不象我们要长达10年以上。我国的学会与协会重复设置,分工不明,并且至今还依附于某一政府部门,基本上只起到政府职能部门非官方代言人的作用,距离独立和富有活力的健全机构还差的很远,如何发挥这些机构在技术标准编写和管理中的作用也是值得探讨的一个问题。建议随着改革的深入,整顿合并有关的学会、协会,加强其职能,并逐渐成为技术标准编制管理的主体。

??

??四、准备提交政府有关部门考虑的建议

??

????为了改善我国土建结构工程的安全性与耐久性,这次论坛中提出了以下建议供政府有关部门考虑,:

??1、桥梁、隧道、道路、港口等基础设施工程的混凝土结构耐久性,已是当前亟待采取措施应对的重大问题。否则,一些工程的正常使用功能和安全性将得不到有效保证,我国的现代化建设和国民经济会蒙受巨大损失,并将给生产和公众生活带来长期困扰。

????建议国家建设部、交通部、铁道部主管土建工程设计标准的部门,能对工程的耐久性要求作重点审查,明确土建工程的设计应有最低使用寿命的要求,重要工程的设计文件中应有正常使用寿命和耐久性设计的独立章节与论证;

????建议国家自然科学基金委员会能在今后一段时期内对混凝土工程耐久性的基础理论研究给予重点支持;

????建议国家安全生产监督管理局为在近期内编订有关法规标准给以立项资助;

????建议中国工程院土木水利建筑学部在其咨询研究项目中,联络国内有关专家,促进土建结构耐久性设计指导性技术条例的编制。

??

??2、土建工程使用过程中的安全性,应有定期的检测和正常的维护修理加以保证。对于重要土建工程,我国尚无必须进行安全检测的法规。在基础设施工程的投资上有重新建、轻维修的倾向,不利于工程寿命和投资效益。

????建议对桥、隧等重要公共基础设施和公共建筑物,在其使用期内实施强制性的定期安全检测。为此,需要制定法规,编制相应的技术标准;对于土建结构工程的检测与评估,需要建立从业人员的注册制度和从业机构的资质认证与监管体制。凡属已建工程的安全诊断也可一并归入这一行业。

??建议政府有关部门在桥、隧、道路等土建基础设施工程投资上,根据需要,加大工程维修费的比例。

??

篇2

鉴于这一会议的论坛性质,以下仅就会上提出的一些问题及建议作一归纳,提交与会专家考虑并审议。

结构安全性是结构防止破坏倒塌的能力,是结构工程最重要的质量指标。结构工程的安全性主要决定于结构的设计与施工水准,也与结构的正确使用(维护、检测)有关,而这些又与土建工程法规和技术标准(规范、规程、条例等)的合理设置及运用相关联。

1.我国结构设计规范的安全设置水准

对结构工程的设计来说,结构的安全性主要体现在结构构件承载能力的安全性、结构的整体牢固性与结构的耐久性等几个方面。我国建筑物和桥梁等土建结构的设计规范在这些方面的安全设置水准,总体上要比国外同类规范低得多。

1.1构件承载能力的安全设置水准

与结构构件安全水准关系最大的二个因素是:1)规范规定结构需要承受多大的荷载(荷载标准值),比如同样是办公楼,我国规范自1959年以来均规定楼板承受的活荷载是每平方米150公斤(现已确定在新的规范里将改回到200公斤),而美、英则为240和250公斤;2)规范规定的荷载分项系数与材料强度分项系数的大小,前者是计算确定荷载对结构构件的作用时,将荷载标准值加以放大的一个系数,后者是计算确定结构构件固有的承载能力时,将构件材料的强度标准值加以缩小的一个系数。这些用量值表示的系数体现了结构构件在给定标准荷载作用下的安全度,在安全系数设计方法(如我国的公路桥涵结构设计规范)中称为安全系数,体现了安全储备的需要;而在可靠度设计方法(如我国的建筑结构设计规范)中称为分项系数,体现了一定的名义失效概率或可靠指标。安全系数或分项系数越大,表明安全度越高。我国建筑结构设计规范规定活荷载与恒载(如结构自重)的分项系数分别为1.4和1.2,而美国则分别为1.7和1.4,英国1.6和1.4;这样根据我国规范设计办公楼时,所依据的楼层设计荷载(荷载标准值与荷载分项系数的乘积)值大约只有英美的52%(考虑人员和设施等活载)和85%(对结构自重等恒载),而设计时?菀匀范ü辜芄怀惺芎稍氐哪芰Γㄓ氩牧锨慷确窒钕凳泄兀┤匆扔⒚拦娣陡叱龅?0~15%,二者都使构件承载力的安全水准下降。日本与德国的设计规范在某些方面比英美还要保守些。一些发展中国家的结构设计多根据发达国家的规范,就如我国解放前和建国初期的结构设计方法参照美国规范一样。至于中国的香港和台湾,至今仍分别以英国和参考美国规范为依据。这里需要说明的是,在其他建筑物的活荷载标准值上,与国外的差别并没有象办公楼、公寓、宿舍中这样大。不同材料、不同类型的结构在安全设置水准上与国际间的差距并不相同,比如钢结构的差距可能相对小些。

公路桥梁结构的情况也与房屋建筑结构类似,除车载标准外,荷载分项安全系数(我国规范对车载取1.4,比国际著名的美国AASHTO规范的1.75约低25%)与材料强度分项安全系数均规定较低。

尽管我国设计规范所设定的安全贮备较低,但是某些工程的材料用量反而有高于国外同类工程的,这里的问题主要在于设计墨守陈规,在结构方案、材料选用、分析计算、结构构造上缺乏创新。

1.2结构的整体牢固性

除了结构构件要有足够承载能力外,结构物还要有整体牢固性。结构的整体牢固性是结构出现某处的局部破坏不至于导致大范围连续破坏倒塌的能力,或者说是结构不应出现与其原因不相称的破坏后果。结构的整体牢固性主要依靠结构能有良好的延性和必要的冗余度,用来对付地震、爆炸等灾害荷载或因人为差错导致的灾难后果,可以减轻灾害损失。唐山地震造成的巨大伤亡与当地房屋结构缺乏整体牢固性有很大关系。2001年石家庄发生故意破坏的恶性爆炸事件,一栋住宅楼因土炸药爆炸造成的墙体局部破坏,竟导致整栋楼的连续倒塌,也是房屋设计牢固性不足的表现。

1.3结构的耐久安全性

我国土建结构的设计与施工规范,重点放在各种荷载作用下的结构强度要求,而对环境因素作用(如干湿、冻融等大气侵蚀以及工程周围水、土中有害化学介质侵蚀)下的耐久性要求则相对考虑较少。

混凝土结构因钢筋锈蚀或混凝土腐蚀导致的结构安全事故,其严重程度已远过于因结构构件承载力安全水准设置偏低所带来的危害,所以这个问题必须引起格外重视。我国规范规定的与耐久性有关的一些要求,如保护钢筋免遭锈蚀的混凝土保护层最小厚度和混凝土的最低强度等级,都显著低于国外规范。损害结构承载力的安全性只是耐久性不足的后果之一;提高结构构件承载能力的安全设置水准,在一些情况下也有利于结构的耐久性与结构使用寿命。

2.调整结构安全设置水准的不同见解

我国结构设计规范的安全设置水准较低,与我国建国后长期处于短缺经济和计划体制的历史条件有关。但是,能够对土建结构取用较低的安全水准并基本满足了当时的生产与生活需求,而且业已历经了较长时间的考验,这是国内土建科技人员经过巨大努力所取得的重大成就;但是,由于安全储备较低,抵御意外作用的能力相对不足。如果适当提高安全设置水准将有利于减少事故的发生频率和提高工程抗御灾害的能力。国内发生的大量工程安全事故,主要是由于管理上的腐败和不善以及严重的人为错误所致。现在提出要重新审视结构的安全设置水准,主要是基于客观形势的变化,是由于我们现在从事的基础设施建设要为今后的现代化奠定基础,要满足今后几十年、上百年内人们生产生活水平发展的需要,有些土建结构如商品房屋则更要满足市场经济条件下具备商品属性的需要。国内近几年来已对建筑结构安全度的设置水准组织过几次讨论,在如何调整的问题上存在较大的意见分歧,这次科技论坛上同样反映了这些不同的见解:

1)认为我国现行规范的安全设置水准是足够的,并已为长期实践所证明,而国外就没有这种经验。我国取得的这一成功经验决不能轻易丢掉,在安全度上不能跟着英美的高标准走;安全度高了是浪费,除个别需调整外,总体上不必变动。

2)认为我国规范的安全度设置水准尽管不高,但在全面遵守标准规范有关规定,即在正常设计、正常施工和正常使用的“三正常”条件下,据此建成的上百亿平米的建筑物绝大多数至今仍在安全使用,表明这些规范规定的水准仍然适用;但是理想的“三正常”很难做到,同时为了缩小与先进国际标准的差距以及鉴于可持续发展和提高耐久性的需要,在物质供应条件业已改善的市场经济条件下,结构的安全设置水准应适当提高。这种提高只能适度,因为我国目前尚属发展中国家。

篇3

2使用PKPM软件在设计准确性中应注意的问题

2.1结构平面辅助设计软件PMCAD的应用1)交互式结构模型的建立。结构模型中的全部数据都可以参数的形式输入到软件中,并且还可以在三维模式中显示其构件的尺寸以及构件所承受的荷载。在输入过程中一定要保证每一项数据的正确性,满足结构力学、材料力学的模型,确保数据的合理性。值得重视的是:不同的作用荷载以及材料的尺寸应设置在不同的层面,荷载偏心的形式应当尤为注意要在软件上显示,重视在偏心距出现后对于承重墙以及圈梁等梁式结构连续性的影响。在操作过程中,若是已经出现了两个以上的层面,此时在对某一层面的编辑过程中就要注意禁止对任何一个层面进行整体上的移动,因为所有的偏心设置坐标都是以原点为基础,某一层面的移动会是图纸上反映的层面出现整体偏差。在软件上进行建筑结构的组装时必须是要按照自下而上的顺序进行。填充墙在输的过程中要注意只能按照梁的输入形式进行,并且该填充墙的输入只能以梁上荷载形式来进行。并且输入的数据必须是标准值。2)PK文件的生成。就气体结构而言,需要由梁的数据输入之后形成墙梁的连续PK数据文件,气体结构墙体在没有进行抗震验算时梁上是不需要输入荷载的。而底框砖房与气体结构存在很大的差异,不能利用框架梁生成连梁的PK数据文件,不然框架上荷载的生成过程中会出现遗漏的问题。此时软件中出现的pk数据文件还需要在一定的程度上尽心操作,并经调整系数换算,不然文件打开后会使得梁上荷载会与标准值出现较大的偏差,导致在结构配筋的过程中出现支座钢筋偏大而跨中钢筋偏小的问题。

2.2平面框排架计算及绘图软件PK的应用1)框架绘图。在计算的过程中往往会出现结果表明梁柱属于超筋,在这个时候可以选择绘图,但是要注意在这样的数据下做出的图纸是不正确的,此时图纸显示的配筋可能与计算的结果存在较大的差异,原本的超筋在此时说不定就是适筋甚至少筋。此时文件数据都需要做出相应的调整才能绘出正确的图纸。2)柱的轴心压力荷载是输入柱的信息时一个十分重要的部分,PK软件是以柱的最大配筋率来确定柱是否超筋,因此软件显示的数据并不能确保所选柱的截面一定就是适合的。

2.3独立基础及条形基础设计软件JCCAD的应用在利用软件进行地基计算的过程中,相关的设计工作者不能忽视两个方面的问题:1)基础的反作用力分布和基础徐变的改善方式;2)基础以上结构刚度的确保问题。有关的建筑法规以及建筑章程明确指出,基础反作用理想化为直线分布时,计算的过程中应当乘以一定的调整系数。若将地基看作是弹性介质并理想化为弹性模型时,此时上部结构的刚度就是计算过程中应当首要考虑的因素。1)对于气体结构:砖混荷载是经过PMCAD按照设计规范计算出来的荷载值为主要依据。2)对于框架结构:一般以PK荷载为基础,并与经TAT、SATWE计算后的组合荷载作为分析依据进行确定。

篇4

2现代建筑结构中智能土木结构的应用

2.1智能传感元件在现代建筑结构中的应用

土木工程中通常会在建筑结构中粘贴或者是埋入一些传感元件来对建筑物进行健康检测,在确保检测结果正确性的同时,还要对建筑物的稳固性和安全性进行更为确切检测和评价,获取最为精准的数据,从而对建筑物的命运做出判决,进行维修或者是直接报废。对于一些比较重大的土木工程建筑来说,由于其结构的修建时间比较长,设备相对来说都比较陈旧,传统传感器并不能够适应这种内部环境,这个时候选择高性能的传感器检测结构健康是十分有效的。利用智能材料、光纤等制作成传感器并且应用于土木工程的发展历程当中已经具有了划时代的意义,使得土木工程的发展史开辟出了全新的篇章。

2.2建筑工程健康监测的具体实施过程

智能土木结构在建筑工程的结构损伤和健康检测方面都起到了十分重要的作用。在土木工程当中,建筑物的检测通常会采用目测的方法,除此之外还会利用到声发射、超声波以及X射线等无损性的检测,利用这种方法能够有效杜绝很多弊端,在建筑物的内部结构中出现了破损情况,或者是建筑物的实时动态都能够得到准确检测,在满足了人们对建筑整体了解的需求之上还能够保证检测效率和检测准确率。比如说当建筑物发生了损伤,内部就会出现裂纹,这些裂纹在外部力量的作用下会加大损伤的力度,并且会以声速扩散,而这些都会被特殊材料制成的传感元件所感知到,让相关的工作人员能够更加及时准确地掌握整个建筑物的内部情况,对建筑物进行更为及时的整体规划,采取一些措施来避免建筑物事故的发生。

2.3现代建筑节能支持

智能土木结构不仅仅为普通建筑提供了安全检测的功能,还能够为智能建筑提供节能技术,并且已经在实际中得到了逐步的推广使用,建筑师们也在此基础上提出了节能建筑的概念。所谓节能建筑其实就是在设计和建造的过程中,均尽量采用节能型的材料和器具,利用智能土木结构使得建筑本身具备监测控制能力,随着外部环境的变化而适当地做出调整,把建筑的自身能耗降低到最低的水准。智能土木结构为现代建筑节能提供的技术支持能够更好地实现绿色建筑,更加有利于环境友好和可持续发展。

3智能土木结构提升策略

3.1提高智能传感的技术

传感元件的应用是绝对离不开传感技术,所以提高智能传感技术已经是势在必行的了。从仿生学的角度来看,传感器就像是建筑物自身的感受器官,要想提高智能传感技术就必须要从传感技术的系统性入手,提高传感器的处理、感知、识别的能力,并且在这个基础上要提高传感器系统的灵敏度和可靠性,实现整体传感技术智能化。在建筑工程当中,传感元件要保证不影响建筑外形结构,要同建筑材料形成较好的相容性,把对建筑物的影响尽可能地降低到最低的水平,提高建筑物当中信号的抗干扰能力。

3.2发展智能控制集成

智能控制系统是一个相当于人类大脑神经中枢的最高级部分,这不仅仅取决于运动系统和感觉系统的运行程序,还担负着整个脑神经的高级功能运转。在土木工程的内部安装集控系统中,能够对一些强降雨和风暴做出迅速的应急,尽可能地降低损失,因此,相关建筑人员应该重视对于智能控制集成的开发和利用。例如说,在一些强台风的天气,各地方都会重视安全预警,而智能建筑中发展集成控制就能够更加及时地对整个环境进行控制,确保整个建筑的安全。

篇5

2裂缝控制的意义和标准

建筑的结构设计建立在构件的强度极限承载力的基础之上,而建筑工程的使用标准则是由混凝土裂缝控制的。近些年的研究表明。建筑物中混凝土裂缝是不能避免的,但是能够有效的减少混凝土裂缝的存在。对于一般的民用以及工业建筑而言,小的混凝土裂缝对于建筑的日常使用是没有危险的,只有一定宽度的裂缝才会对建筑物的使用造成较大的影响与危害。因此,在设置混凝土裂缝控制标准时,不能够将混凝土裂缝的标准控制过严,同时还要考虑到地震等对于建筑物的影响。不管是预应力混凝土结构还是混凝土结构,其中存在的裂缝都会减小建筑结构的刚度,降低结构的耐久性。裂缝控制是指通过现有的建筑技术与措施控制建筑物中裂缝的大小,使其不会对建筑的正常使用造成影响。在建筑工程中,对于混凝土裂缝的控制主要表现在两个方面。即设计和施工两个阶段。在设计方面对于裂缝的控制是指通过构造措施以及相关计算降低混凝土裂缝高于限度值的可能性。而在施工方面对裂缝的控制则是指在是施工过程中采取一定的施工措施以及相关技术降低建筑物中有害裂缝的产生。文章主要从建筑结构设计方面对混凝土裂缝进行分析,从而减少混凝土裂缝对于建筑物的损害。

3混凝土裂缝产生的原因分析

从建筑结构设计方面进行分析,产生混凝土裂缝的原因主要有以下几个方面:首先,由于对于建筑结构的计算不够准确,设计中涉及到的构件厚度不足,配筋数量也不够充足,由于此种原因导致的板缝的产生会影响到建筑的结构,直接导致建筑物安全问题的产生。其次,在设计过程中,没有对建筑物会受到的装修荷载以及使用荷载进行准确估计,导致设计的建筑物受力远远小于建筑物的实际受力,导致建筑物中混凝土的开裂。以上两种原因都是由于在建筑结构设计中对建筑的受力分析有误而导致的,因此而导致的混凝土裂缝会对建筑物的结构造成较大的危害。而在目前的建筑结构设计中,还会出现另外一个极端的现象,那就是设计人员过于担心在施工过程中有偷工减料情况的存在,在进行结构设计的时候,对于混凝土的强度等级计算会高出一个等级。这样一来看似楼板十分安全,但其实混凝土的强度等级过高会为建筑带来负面的影响,因为混凝土强度越高,混凝土的水化热就会越大,从而使得混凝土产生有害性裂缝的可能性大大增加。有的设计人员还会考虑到施工方面而降现浇楼盖的混凝土强度与建筑中的梁柱取为一致的。这样做的危害在于建筑的实际受力与设计时的受力相去甚远,因此会导致在真正的运用过程中,建筑中混凝土的受力远远大于设计受力,从而导致混凝土裂缝的产生。另外,在设计的过程中,对于温度应力的重视可能不到位,因此,在隔热层以及保温层等方面没有良好的设置,导致混凝土会因为温度的变化而产生开裂。或是出现伸缩缝设置不够合理的情况,在温度应力以及收缩应力的双重作用之下,混凝土很容易产生开裂。楼盖边缘的约束的加强也会导致混凝土的开裂。混凝土楼板如果能够进行自由的变形与收缩,混凝土内部不会产生应力。因此,也不会有裂缝的产生,但是由于楼盖边缘的约束有所加强,因此,混凝土的收缩变形以及温度导致的变形都会大大增加,从而导致在混凝土楼板的中部产生的最大的约束应力大于了混凝土所能承受的抗拉强度,使得混凝土产生裂缝。有的建筑结构设计人员在砖混的结构中采用了现浇混凝土的方式进行楼盖的浇筑,出于抗震方面以及建筑结构方面的考虑,通常会将墙边的支座按照简支梁进行近似的估算。而建筑中混凝土楼板的实际受力却与估算结果不一致,如果混凝土楼板的跨度比较大的时候,在板顶的支座处会产生一定的裂缝,有时楼板的边角以及中央都会出现收缩裂缝。另外,如果在建筑结构设计中忽略了建筑中边角柱以及构造柱对于建筑的影响,则会增大混凝土可能产生的裂缝。

4混凝土裂缝的有效处理措施

在进行混凝土裂缝的处理时,除了加强设计人员的安全责任意识之外,更重要的是在进行建筑结构设计时,加强设计人员对于混凝土裂缝的重视。另外,设计人员采取的结构形式一定要科学合理,为了保证其合理性,要在建筑结构设计前建立严格的审查制度,严格防止建筑结构设计中对混凝土裂缝的忽视。首先,在选择建筑混凝土时,一定要按照建筑的功能与需求进行混凝土的选择。如果混凝土的强度过低,则会对建筑的质量造成影响,而混凝土强度过高,会为建筑带来负面的影响,因为混凝土强度越高,混凝土的水化热就会越大,从而使得混凝土产生有害性裂缝的可能性大大增加。不能为了简便施工而将楼板的混凝土强度的等级与建筑中梁柱的强度等级取为同一等级,更好的做法应该是对混凝土收缩的量进行减少,此外对于混凝土中水泥的用量以及外加剂的用量都提出具体的要求。如果建筑设计中,对于楼板的周边约束是有必要的加强,那么与此同时还要加强构造钢筋,以防止由于楼板所受到的约束应力的增大而导致的混凝土的裂缝的增大,对建筑结构造成影响。为了防止楼板的边角产生斜裂缝,可以在楼板的边角外侧的上下两层中都设置一定数量的钢筋,需要注意的是增加的钢筋长度一定要超过混凝土楼板长度的三分之一。另外在建筑结构的设计中,需要合理设置建筑的保温层以及隔热层,并且保证保温层隔热层使用的材料以及厚度都是科学合理的。在建筑结构中一般都会设置温度伸缩缝抵消温度变化会对混凝土产生的影响。因此温度缝的设置需要足够的合理,才能避免温度对混凝土产生裂缝等的影响。

篇6

土木工程是建造各类工程设计的科学技术的统称,其主要内容不仅包括设计、维修、施工等技术类活动,也包括房屋、道路、管道、桥梁以及电站和港口等一系列工程建设对象等,在工程项目建设中极为重要。现阶段,经多项工程项目研究发现,土木工程建筑的结构设计中仍存在诸多问题,不仅影响工程施工进度,甚至可威胁到建筑项目的安全性,后果严重。要想解决这一问题,需重视并有效设计土木工程建筑结构,防治以往结构设计中存在的重点问题,以增强工程施工安全性,保证工程项目施工的顺利开展。

1 土木工程建筑结构设计中存在的主要问题

1.1工程选址问题

工程选址是开展土木工程建筑项目的基础,与其结构设计关系密切,这就需要项目负责人员积极做好选址工作,保证工程项目结构设计的科学性与有效性。但是现阶段,许多土木工程并不重视选址问题,甚至有些工程项目的建设方单纯依赖于风水或迷信等,做不到科学选址,不仅可影响到项目结构设计效果,严重者工程施工后期甚至可造成坍塌等,破坏性较大。

1.2基础结构设计问题

土木工程建筑的基础结构是其重要组成部分,不仅与上述1.1中的工程选址联系紧密,而且与工程施工方案也具有一定的联系,而施工方案的选择则是项目工程结构设计中的一项重要问题,目前许多土木工程施工方案的制定均无法完全实现其原有的结构设计要求,尤其是基础结构,其稳定性与强度均未达标,严重影响工程结构设计效果与实际施工质量。

1.3房屋建筑中承重柱与构造柱的区别问题

一般来讲,在土木工程项目施工中,为了增强房屋建筑的抗震性能,需科学地对柱梁构造进行合理的结构设计,避免形成裂缝,以提高施工质量。但是在实际操作中,许多结构设计者对承重柱和构造柱认识不清,有的设计者甚至会把承重柱设计方式插入至构造柱结构设计中,导致构造柱的有些设置丧失原有根基,一旦发生强震,工程结构可发生剧烈沉降,且裂缝还会导致建筑物倒塌。同时,有些工程结构设计将承重柱截面面积设计太小,当受到外力时,梁柱易发生开裂,影响工程质量。

1.4环境因素影响问题

在对土木工程建筑进行结构设计时,不仅需要考虑其耐久性与安全性,还需考虑工程施工地的土壤温度与水土酸碱度等相关环境因素,但是部分建筑工程项目往往忽略这些关键内容,导致结构设计仅限于理论中,当实际施工时易发生安全事故,危害性较大。

2 对土木工程建筑结构设计的建议

2.1施工前测量工程地基

工程施工前,可先采用计算机与GPS技术对工程地基进行科学测量、核算,确保工程施工的可行性与安全性。同时在高楼作业时需快速发展管理信息系统MIS技术,并结合计算机以辅助CAC科技,完善高楼建筑施工系统及其相应的管理体制,在减少经济投入的基础上,保证建筑质量。

2.2结合力学知识,于工程建筑结构设计中融入施工工艺

当前环境下,随着先进科学技术研究的逐渐深入与施工技术的不断革新,传统的结构设计已经无法满足目前土木工程建筑项目施工的需要,所以在现阶段的工程施工中,结构设计人员需在传统施工技术的基础上,增添新元素,充分结合力学知识,并将先进的施工工艺融入至结构设计过程中,不断更新设计方法,防治工程质量问题。

2.3选用适当的建筑材料

现阶段,由于建筑材料市场在不断发生变化,材料的利润逐渐减小,同时人们日常生活水平逐渐提升,社会大众对房屋建筑质量的要求越来越高。这种情况下,土木工程建筑也迎来了新的挑战,施工材料是土木工程建筑的基础原料,所以其建筑材料的选用十分重要,可在施工过程中有选择性地选用安全性较高的新型材料,以保证工程项目的施工质量。

2.4充分应用先进科学技术

21世纪是新知识经济的时代,土木工程建筑也要随之发展,保持与时俱进,就目前情况来看,土木工程建筑行业中已经出现了许多新型的高科技产品以及绘图工具等,均大大提升了工程建筑结构性能,且科学、精准的设计施工图纸能够有效减小施工误差,减少意外情况,同时还可优化工程项目施工的结构设计,增强其可行性与安全性。另外,在工程项目进行施工时,还需增强施工信息化建设,科学管理结构设计程序,选用适当的施工材料,并把握合理的施工进度,提前做好工程预算工作,保证工程施工的顺利进行,以尽量缩短工期,保障施工质量。

篇7

2建筑结构混凝土设计的主要原则

2.1把握侧向力在混凝土结构设计过程中,侧向力对建筑物结构的形变、内力有直接影响,同时与建筑项目的工程造价密切相关。侧向力主要是指水平地震作用以及风的作用,不管是高层还是低层建筑,都需要承受自重、雪载等垂直荷载的作用,并且需要承受风力、地震等水平力。对于低层混凝土结构,其在水平荷载的影响下位移以及内力较小,这个时候几乎可以忽略不计。而在多层建筑结构中,由于受到的水平荷载作用逐渐增强,这个时候水平荷载等就成为最重要的影响因素之一,需要作为主要控制点。

2.2要求较好的延性与低层建筑相比,高层建筑的内部结构更为柔和,在地震等水平力的作用下变形更大。建筑物的抗震能力与建筑结构的变形能力以及承载力这两个因素密切相关。在进入塑形阶段后,为了保障建筑物具有较好的变形能力,避免高层建筑在大的地震中倒塌,就需要在符合混凝土结构刚性的前提下,运用科学合理的混凝土设计理念,并通过完善的构造措施,来提高整个建筑结构的变形能力,尤其需要注意建筑物的薄弱部位,保障整个结构有很好的延性。因此,在混凝土结构设计时应该综合考虑多方面的因素,保障设计的科学合理,让其具有良好的强度以及延性。

2.3要求合适的刚度目前高层建筑越来越多,随着高度的增加建筑物的侧向位移也将逐渐增加。因此,在高层建筑的混凝土结构设计过程中,不仅需要保障混凝土结构良好的强度,也应该保障其具有合适的刚度,混凝土结构的自振频率等应该符合要求,在水平力的作用下结构的层位移也应该控制在适宜的范围内。

2.4整体性原则建筑结构混凝土的总体设计原则,就是要求建筑物的每个组成部分形成一个整体,并对整体的结构以及功能等进行全面分析研究,保障整体与部分之间相互制约、相互依存,进而实现建筑结构系统的正常运作。

3建筑结构混凝土设计的关键点

3.1混凝土结构的耐久性设计混凝土自身的质量与混凝土结构的耐久性有直接关系,在设计过程中改变混凝土的密度,并对混凝土的渗透压等进行调节,就可以有效减缓混凝土被侵蚀的速度,同时混凝土的耐久性与混凝土的水灰比、强度等级等因素也有关系。在混凝土的实际应用中,氯离子对其中的钢材具有很强的腐蚀性,因此应该根据工程所处环境的不同,注意控制环境中氯离子的浓度。同时由于混凝土中含有大量碱性骨料,如果建筑工程所处的环境比较潮湿,混凝土结构内部的活性离子与碱会发生反应,这样容易导致混凝土出现裂缝,进而加快混凝土被侵蚀的速度。如果混凝土出现的裂缝较大,在裂缝内部也可能出现腐蚀性物质,并导致混凝土中的钢材被腐蚀。上述这些因素均会导致钢筋的腐蚀速率加快,导致混凝土的保护层裂开并剥落,出现锈蚀后钢筋的接触面积会逐渐减少,这也导致混凝土结构的承载力逐渐降低。另一方面钢筋出现锈蚀后,其抗滑能力会逐渐下降,也给建筑结构埋下了安全隐患。因此,在建筑结构混凝土设计过程中需要综合考虑承载力问题,避免出现混凝土的脆性破坏。由此可见,对混凝土的耐久性进行深入研究尤为重要。

3.2混凝土结构的抗震性设计发生地震后建筑物的两个主体力量间将发生分配,因此在混凝土设计时需要考虑到建筑物主体结构在不同时期刚度的变化情况,对于钢筋混凝土材料,设计时可以选择混凝土剪力墙作为建筑的主体结构,并将钢筋混凝土作为建筑物的一个主要抗侧应力结构。如果出现往复式地震,处于塑性阶段的建筑物会出现墙体裂缝,这个时候结构的刚度将迅速下降,而刚度出现退化会导致框架的剪应力增加。一般来说,建筑物钢筋混凝土框架结构的弹性形变较大,比混凝土墙体的弹性好的多。在遇到较大的地震时,尽管建筑物的抗震能力比塑性阶段低,其中的钢筋混凝土框架会吸收大部分弯矩与水平剪应力。因此,为了保障建筑结构的基本“裂缝”需求,同时把握钢筋混凝土框架的水平部分,有效提高建筑物地基的承载能力,就需要应用相应的工艺措施让混凝土结构具有较高的变形能力,以此保障建筑物具有较好的抗震性。

3.3遵循强柱弱梁的理念在混凝土结构设计时遵循强柱弱梁的理念,在出现地震作用时,如果只是梁被破坏,并不会影响建筑物的整体运作,可能只是部分结构失去工作能力,但如果柱被破坏,那么整个建筑物将会倒塌。因此,柱的作用是十分关键的。近年来,我国发生了多处地震,设计人员应该注意对建筑结构的抗震设计。首先,在设计过程中对柱的轴压比加强控制。根据相关工程的统计数据,柱的轴压比一般需要控制在0.9%以下。同时需要加强柱截面、边柱的强度,并对柱进行加密箍筋设计,保障配筋率在1%以上。

篇8

中图分类号:TU375文献标识码:A文章编号:

引言:

随着我国经济的飞速发展,城市面貌日新月异,一栋栋高楼大厦拔地而起。随之建筑功能的不断丰富,新颖的造型,致使工程设计越来越复杂,但目前的设计周期普遍偏短,也使设计文件中普遍存在某些质量问题,应该引起我们的重视。

1.地基与基础设计过程中存在的问题

1.1柱下独立基础带梁板式的地下室底板设计中,地下室底板设计中,容易忽视因建筑物沉降所引起的附加应力的影响。因为实际上整个地下室底板与柱下独立基础在上部荷载作用下,将会一起发生沉降变形,共同受力,如未考虑因此产生的附加应力,对底板而言是偏于不安全的,有可能会导致地下室底板承载能力不足而开裂。尤其对于采用天然地基的情况时,其影响则更为显著。对于总沉降量较小的工程,可考虑在地下室底板与持力层之间采取褥垫处理措施,当然,是否采用,还要综合考虑其他因素。另外,对于地下水位季节性变化较大的地区,应考虑高低两种不同水位对地下室底板的不同影响,求出包络图,再做配筋设计。

1.2天然地基锥体独立基础设计问题,有的基础设计锥体斜面坡度大于1:3,该锥体部分砼很难振捣密实,现场施工往往是砼自然堆上,采用铲子或抹灰刀拍捣成形,其锥体部分的砼很难达到设计强度要求。因此建议优先采用阶梯形独立基础,利于施工,才能更好地保证施工质量。

1.3柱下独立基础之间的拉梁,如同时又是首层维护墙的承重梁的时候,不应该再简单地按拉梁进行设计。而且在考虑荷载时,要考虑梁上皮以上土扩散角之内的土重。

1.4对于有地下室的建筑,当地下水位较高时,在室外地坪之下的结构部分,外轮廓形状应尽量简洁,这样有利于建筑防水的施工。尤其对于柱下承台的形式,更为明显。此时,由于柱下承台的影响,基槽地模形状很复杂,有很多的阴阳角和放坡,即加大了防水施工的难度,有加长了施工时间,都不利于保证质量,并且还增加工程造价。对于这种情况下,我建议大家考虑反承台法,即统一地下室底板和承台的下皮标高相同,承台需要加厚部分向上作,然后地下室内部作滤水层和覆土等地面做法。这种做法的优点是,基槽地模形状很简单,方便施工,利于施工质量得保证,同时也缩短了施工时间。并且,内部的覆土重量也平衡掉了部分作用在底板上的水浮力,减小配筋,这种自相平衡的思路最科学。同时也提高了建筑物的抗倾覆能力。

1.5地下室底板和外墙配筋计算时,往往假设条件与实际情况不符。例如地下室外墙配筋计算:有的工程外墙配筋计算中,凡外墙带扶壁柱的,不区别扶壁柱尺寸大小,一律按双向板计算配筋,而扶壁柱按地下室结构整体电算分析结果配筋,又未按外墙双向板传递荷载验算扶壁柱配筋。按外墙与扶壁柱变形协调的原理分析,其外墙竖向受力筋配筋不足、扶壁柱配筋偏少、外墙的水平分布筋有富余量。建议:除了垂直于外墙方向有钢筋砼内隔墙相连的外墙板块或外墙扶壁柱截面尺寸较大(如高层建筑外框架柱)之间外墙板块按双向板计算配筋外,其余的外墙宜按竖向单向板计算配筋为妥。

2.结构计算与分析

在结构计算与分析阶段,如何准确,高效地对工程进行内力分析并按照规范要求进行设计和处理,是决定工程设计质量好坏的关键。由于新规范的推出对结构整体计算和分析部分相当多的内容进行了调整和改进,因此,结构工程师也应该相当地对这一阶段比较常见的问题有一个清晰的认识。

2.1结构整体计算的软件选择。目前比较通用的计算软件有:SATWE、TAT、TBSA或ETABS、SAP等,但是,由于各软件在采用的计算模型上存在着一定的差异,因此导致了各软件的计算结果有或大或小的不同。所以,在进行工程整体结构计算和分析时必须依据结构类型和计算软件模型的特点选择合理的计算软件,并从不同软件相差较大的计算结果中,判断哪个是合理的、哪个是可以作为参考的,哪个又是意义不大的,这将是结构工程师在设计工作中首要的工作。否则,如果选择了不合适的计算软件,不但会浪费大量的时间和精力,而且有可能使结构有不安全的隐患存在。

2.2是否需要地震力放大,考虑建筑隔墙等对自振周期的影响。该部分内容实际上在新老规范中都有提及,只是,在新规范中根据大量工程的实测周期明确提出了各种结构体系下高层建筑结构计算自振周期折减系数。

2.3振型数目是否足够。在新规范中增加一个振型参与系数的概念,并明确提出了该参数的限值。由于在旧规范设计中,并未提出振型参与系数的概念,或即使有该概念,该参数的限值也未必一定符合新规范的要求,因此,在计算分析阶段必须对计算结果中该参数的结果进行判断,并决定是否要调整振型数目的取值。

2.4多塔之间各地震周期的互相干扰,是否需要分开计算。一段时间以来,大底盘,多塔楼的高层建筑类型大量涌现,而在计算分析该类型高层建筑时,是将结构作为一个整体并按多塔类型进行计算,还是将结构人为地分开进行计算,是结构工程师必须注意的问题。如果多塔间刚度相差较大,就有可能出现即使振型参与系数满足要求,但是对某一座塔楼的地震力计算误差仍然有可能较大,从而便结构出现不安全的隐患。

2.5非结构构件的计算与设计。在高层建筑中,往往存在一些由于建筑美观或功能要求且非主体承重骨架体系以内的非结构构件。对这部分内容,尤其是高层建筑屋顶处的装饰构件进行设计时,由于高层建筑的地震作用和风荷载均较大,因此,必须严格按照新规范中增加的非结构构件的计算处理措施进行设计。

3.梁侧纵向钢筋的配置

3.1由于目前电算程序在结构构件分析时尚不能考虑现浇楼板对梁扭转的影响,而是由程序给出一个梁扭距折减系数,合理选用梁扭距折减系数对控制梁的扭距是很重要的,一般情况可取0.4-0.6。

3.2对跨度较大的次梁支承于主梁上时,次梁的支承端会对主梁产生较大的扭距,这时可在电算程序中指定该次梁的端支座为绞接。这种方法对解决梁在受剪扭情况下的超筋超限是非常有效的。

3.3有时虽然做了以上调整,但梁的抗扭纵筋面积仍然较大。此时应将抗扭纵筋面积分摊一部分到梁的四根角筋,其余部分面积按梁侧腰筋设置,梁腰筋直径仍以Φ12~Φ16为宜。

4.混凝土施工方面出现的问题

为满足结构承载的要求,节约工程造价,通常在结构设计中对上、下柱或柱与粱扳的混凝土选择不同强度等级,然而未对结构的点区域的混凝土强度作出明确说明。按施工规范要求,当梁柱的混凝土强度等级不同时,节点处应按强柱弱梁的原则,节点区域的混凝土强度等级应与柱相同。采用强度较高的混凝土,在梁柱交汇处侧面设垂直施工缝是不符合规范要求的,混凝土浇筑时,应按图在梁柱接头周边用钢网或小板定位,并先浇筑梁柱接头的混凝土,随后浇筑梁板混凝土,这样既不便于施工,其质量也得不到保证。因此,在结构设计时应作综合考虑,根据实际情况将柱与梁板选择相同的混凝土强度等级,以方便施工。

5.结语

对于建筑钢筋混凝土框架结构的施工,有关规范虽已有详细规定,但仍有若干问题没有明确具体作法。这些问题在规范条文中没有具体规定,也往往易被忽视,给工程质量留下隐患。

参考文献:

篇9

中图分类号:tu37 文献标识码:a

随着改革开放以来我国国民经济整体的迅速发展,国内各个行业都得到了巨大的发展,整体的行业水平稳步提高,其中,建筑行业的提升水平是比较快的,建筑行业的发展带来了建筑形式,建筑技术,建筑材料等的多元化变革,其中钢筋混凝土因为安全系数高,抗震性能好等诸多优点而使用广泛,其中高层建筑发展更为迅速,设计思想也在不断更新,结构体系日趋多样化,建筑平面布置与竖向体型也越来越复杂,这就给高层建筑结构分析和设计提出了更高的要求。如何高效、准确地对高层结构体系进行内力分析,是结构工程师设计高层建筑结构时需要解决的重要课题。本文通过对高层建筑结构设计过程中经常遇到的问题进行分析,为高层建筑结构设计提供计算方法及理论依据。

1 建筑设计

建筑不同于普通商品,尤其是高层建筑,很多因为是地理标志性建筑。什么是高层建筑呢?10层及10层以上或房屋高度大于28m的住宅建筑和房屋高度大于24m的其他高层民用建筑。在建筑外观上,我们应该多选择一些新颖的建筑样式,同时又要注意其抗震设计、抗风设计等基础要素。但是建筑也不能盲目的标新立异,结构上应该选择规则性强一些的,不论是平面或者立体都应该尽量遵循这个原则。而且建筑在弹性设计上,尽量要满足延展性的需求。这种概念设计的强调是对建筑师的必须要求,建筑设计师一定要重视各种规范规定,千万不要陷入只管设计不管计算的误区。

2 结构设计

2.1 剪力墙底部加强部位墙厚的确定

抗震设计时,剪力墙的底部加强部位包括底部塑性铰范围及其上部的一定范围,其目的是在此范围内采取增加边缘构件箍筋和墙体横向钢筋等必要的抗震加强措施避免脆性的剪切破坏,改善整个结构的抗震性能。《高建筑混凝土结构技术规程》jgj3-2010(下简称《高规》)7.1.4条规定,抗震设计时,一般剪力墙结构底部加强部位的高度可取墙肢总高度的1/10和底部两层二者的较大值。部分框支剪力墙结构底部加强部位的高度应符合《高规》10.2.2条的规定,底部加强部位的高度应从地下室顶板算起,当结构计算嵌固端位于地下一层底板或以下时,底部加强部位宜延伸到计算嵌固端。《建筑抗震规范》gb50011(以下简称<抗规》)及《高规》规定了剪力墙底部加强部位墙厚的取值。其中,考虑到高层建筑结构的重要性,《高规》对墙厚的取值规定得更为严格。一般情况下,高层建筑结构底部加强部位的剪力墙截面厚度k取法如下:一、二级抗震等级时取层高或剪力墙无支长度的1/16,并且满足bw≥200mm;三、四级抗震等级时,k取层高或剪力墙无支长度的1/20,并且满足k≥160mm。但对于墙底轴力较小且结构层高相对较高的剪力墙而言。其截面厚度按上述方法取值则显得不是很经济合理。因此具体工程设计时,剪力墙截面厚度bw可适当减小但必须按下式计算墙体的稳定性。

公式中:q为作用于墙顶组合的等效竖向均布荷载设计值;ec为剪力墙混凝土弹性模量;t为剪力墙墙肢截面厚度;lo墙肢计算长度。

2.2 结构的超高问题

在抗震规范与高规中,建筑物的高度控制是非常严格的,而在新规范中这一点重新进行了界定,除了将原来的限制高度设定为a级高度的建筑外,增加了b级高度的建筑。因此,所以在进行设计的时候一定不可以超越其应属范围,b级建筑物就应该控制在b级规定范围之内,一旦超过了,那么无论是设计还是施工都要全部进行重新设定。在现实情况中这类问题曾经出现过,结果导致审查时难以通过。

2.3 短肢剪力墙的设置问题

短肢剪力墙使用虽然具有一定的的作用,但是在使用数量上一定要严格参照规范,《高规》7.1.8规定抗震设计时,高层建筑结构不应全部采用短肢剪力墙,b级高度高层建筑以及抗震设防度为9度的a级高度层建筑,不宜布置短

肢剪力墙,不应采用具有较多短肢剪力墙的剪力墙结构。当采用具有较多短肢剪力墙的剪力墙结构时,应符合下列规定:(1)在规定的水平地震作用下,短肢剪力墙承担的底部倾覆力矩不宜大于结构底部总地震倾覆力矩的50%;(2)房屋适用高度应比本规程表3.3.1-1规定的剪力墙结构的最大适用高度适当降低,7度、8度(0.2g)和8度(0.3g)时分别不应大于100m,80m和60m。短肢剪力墙是指截面厚度不大于300mm、各肢截面高度与厚度之比的最大值大于4但不大于8的剪力墙。

2.4 基础设计

在地基基础设计中要注意地方性规范的重要性问题。由于我国占地面积较广,地质条件相当复杂,作为国家标准,仅仅一本《地基基础设计规范》无法对全国各地的地基基础都进行详细的描述和规定。因此,作为建立在国家标准之下的地方标准,地方性的“地基基础设计规范”能够将各地方的地基基础类型和设计处理方法等一些成熟的经验描述和规定得更为详细和准确。所以,在进行地基基础设计时,一定要对地方规范进行深入地学习,以避免对整个结构设计或后期设计工作造成较大的影响。

3 计算与分析

3.1 计算模型的选取

对于常规结构,可采用楼板整体平面内无限刚假定模型;对于多塔或错层结构,可采用楼板分块平面内无限刚模型;对于楼板局部开大洞、塔与塔之间上部相连的多塔结构等可采用楼板分块平面内无限刚,并带弹性连接板带模型;而对于楼板开大洞有中庭等共享空间的特殊楼板结构或要求分析精度高的高层结构则可采用弹性楼板模型。

3.2 抗震等级的确定

对常规高层建筑,与主楼连为整体的裙楼的抗震等级不应低于主楼的抗震等级;对于地下室部分,当地下室顶板作为上部结构的嵌固部位时,地下一层的抗震等级应与上部结构相同,地下一层以下的抗震等级可逐层降低一级,但不低于四级,地下室中超出上部主楼相关范围且无上部结构的部分,其抗震等级可根据具体情况采用三级或四级。

结语

钢筋混凝土高层结构作为现代化城市发展的一种客观成果,引领着我国建筑行业整体的发展水平。在设计方面,钢筋混凝土高层结构一定要充分考虑到各种潜在的因素,既要让建筑漂亮美观大方,也要注意建筑的安全性能,毕竟后者是所有建筑的立足之本。在做好相关工作的基础上,希望我国的建筑水平能迎来更好的发展。

参考文献

篇10

【摘要】混凝土是非均匀材质所合成的一种建筑材料,其所表现出的物理力学特性往往是与其材料自身构成有直接关系。而在实践操作的过程中进行计算混凝土温度以及其收缩的应力时,常常选择的是当量温差、弹性模量、极限伸值以及松弛系数等指标加以参考。

【关键词】凝土结构;温度收缩;裂缝控制;理论

混凝土的收缩过程主要包括温度的收缩过程、碳化的收缩过程以及干燥的收缩过程。其中,温度收缩过程主要是指混凝土温度变化所产生的收缩,其值为 T。碳化收缩的过程主要是混凝土的水泥石中氢氧化钙(Ca(OH)2)与空气当中二氧化碳(CO2)所反应后生成的碳酸钙,并且其也同时反应生成了一定的水,这时又有水分不断地发生蒸发致使混凝土出现了收缩现象。所谓干燥收缩就是指混凝土水泥发生的水化过程(通常混凝土中的水大约在其20%左右),在这一过程中将会产生变形,这种变形与温湿度的变化或者外荷载上的因素是没有关系的,通常将此称作为“自生变形”。一般情况自生变形的值范围为 2.5-3.5 x 10-5。其中 80%左右的水分在不断地蒸发后引起混凝土体积发生收缩,一般情况下值的范围大约在 3.24x 10-4。碳化收缩与自生变形”上的收缩在值上有着一定的区别,为了计算过程中的简化,并能保证计算上的相当准确,我们的做法是仅取温降收缩以及混凝土结构中的水分蒸发所造成的结构收缩这两项。目前,我们通过文献以及实践研究已经知道,对于混凝土结构收缩产生的原因是非常复杂的,其与外在的诸多条件都有着一定的相关性。在国内外的相关研究的资料中的是在标准的状态下所获得最终的收缩值,表达式中的 表示的是经验的系数,一般是取 0.1; 所代表的是浇筑混凝土之后,到计算时所用的天数;考虑各种非标准状态下修正的系数。 在混凝土的结构中其水分的蒸发会引起一定性的收缩,这种收缩现象的过程多是由外至内逐渐形成。往往因温度变化的不均匀原因也造成了收缩的变形不均匀出现。同时,在混凝土结构中也将发生应力的变化,最终就导致了混凝土结构的裂缝出现。基于上述问题,我们在温度应力的计算过程中必须要考虑收缩等相关因素。并且,为了我们能方便加以进行计算工作,可把收缩的变形值进行转换,一般是换算成“收缩当量温差”,也就是收缩引起的变形等同于同样的变形温度差代表的是任意龄期混凝土收缩的当量温度差(℃); 所代表的是混凝土线性的膨胀系数研究中,我们发现混凝土在浇筑初期,其结构处于升温的阶段中,形态是可塑的,气逆弹性的模量也非常小。同时,变形所引起的混凝土结构温度的应力非常小,基本上是完全可以忽略。但,经过数次的浇筑,其混凝土上的弹性模量是随着浇筑时间的流逝而快速地变大。此时,往往由于混凝土的变形变化所引起了温度应力的随其弹性模量变大而显著上升现象。鉴于此问题,我们必须要考虑其弹性模量变化规律,这样我们才能更加准确地加以计算。目前,借鉴与国内外的相关资料,在混凝土的结构弹性模量的计算

混凝土的极限拉伸值,极限的拉抻值往往决定了混凝土的抗裂能力高低。从我国目前的相关研究资料内容来看,其混凝土的极限拉抻值表现出的是离散性上很大,其往往会受诸多的因素所影响。因此,在考虑改善建筑物中的混凝土非均质性,以及我们要提高混凝土极限拉伸值而言,对于每一个具体的工程来讲都必须进行综合性的因素考虑。数据显示,在混凝土极限拉伸值上与配筋有着较大的关系,这一问题也在大量的工程实践过程中得到了证明。也就是说合理配筋能够可以极大地提高混凝土抗裂性性质。目前,国内外在配筋后的混凝土极限拉伸值。钢筋混凝土结构在荷载的作用下不仅会发生弹性的变形,而且还会随着时间流逝出现徐变,也就是所谓的非弹性变形。我们知道发生徐变是有利于增强混凝土在极限变形上的能力的。原因就在于计算混凝土的过程时,也就是计算混凝土的抗裂性,我们必须要将松弛这一个非常关键的因素考虑到我计算的过程进去。实践证明,在加荷的过程中,混凝土的龄期将会影响混凝土的松弛程度,一般而言是龄期越早、徐变所引起混凝土的松弛程度也将越大。除此之外,我们还烦心在同样的应力作用时间上,其长短都会导致其发生不同的变化,有时时间上越长松弛的也就越大。对于温度应力的计算上时,一般所使用的混凝土松弛系数用 s(t)加以表示:即由徐变导致的温度应力松弛程度。 计算大体积混凝土的温度,其主要的目的就是为了防止其出现表面裂缝的产生,通过控制混凝土的温度差加以实现有效的控制。通常,我要计算的内容主要由绝热温度、内部实际温度和表面温度等。所以,我们可以说实际的建筑项目过程中,混凝土结构内部温度是一种以不稳定的状态存在,其先是从低到高,之后再由高到低的不断地变化着。而当外界的各种影响温度的因素消失之后,混凝土结构内温度将基本恒定。混凝土结构的周边媒介种类是相对比较复杂的,这就给我们进行精确地计算带来一定的麻烦,我们在不同的龄期对混凝土结构的内部实际温度计算也将因此而变得繁琐。这里的 代表的是龄期在 t 时混凝土的内部实际温度(℃) 通常,我们在计算地基板以及长墙的约束应力时往往是假定地基的刚,如果假定的地基属于无限刚性,那么结构尺寸上将不影响混凝土的温度收缩所表现出的最大控制应力。推导长条形混凝土的结构物在地基上的计算公式,适用于矮墙、薄板,

一般说来是混凝土的墙高与板厚、长度之间的比为小于等于 0.2 的情况时,往往认为其是均匀受力的,也就是说该工程的实际浇筑过程中可以将其误差加以忽略。如果 H/L>0.2,则不能使用该假设条件,也就是受力上不能均匀,其产生的误差也较大。而高墙所承受的最大约束应力是在约束的边上,当离开的约束边的方向是向上的,那么其应力将会迅速地降低。实践证明,约束的作用仅仅会影响到约束边的附近小范围的区域。在半无限长的墙体边缘上,其干扰区间的基本范围在 0.38 至 0.46L。当然,为了我们能方便的加以计算,会把 0.4L 作为混凝土结构的水平拉应力在低至零时的影响范围。把问题尽量简化,将高度不均匀且承受应力不均匀的墙体,按等效作用理论,统一承受均匀应力的墙体所代替,替代者是受均匀应力值。计算时取不均匀受力值中最大值作为标准值。这样,均匀应力的墙体高度必将是低于真实的墙体。相反,如果我们的假定不是真实的,那么地基所采用的就是非刚性的假定。从墙式的结构上、现浇的底板裂缝的调查分析结果上来看,裂缝的分布存在着规律和结构尺寸相关联性。相关混凝土的力学理论中给我所提供了假定,地基的接触面同混凝土的结构在剪应力和水平变位的成线性比例,通常是用以下的数学公式加以表达: 主要的内容是阐述混凝土结构问题收缩裂缝的控制理论,具体上从4 个方面加以阐述:首先是对混凝土在物理上所具有的力学特征加以了剖析,该部分涉及到了收缩的温度差、模量问题、伸缩值问题以及拉伸值问题等;其次介绍了裂缝温度、收缩应力、宽度等计算的公式;考虑水平应力边界条件的温度应力计算公式以及裂缝间距,推广已有的混凝土裂缝控制理论。同时,本章也运用了控制理论对(B)地铁名典 C1 栋住宅(C)地铁名典 D2 栋住宅的工程进行了实例分析。

篇11

中图分类号:F407.22文献标识码: A

一.引言

随着我国经济的快速增长,石化工程建设在近些年取得较大发展。在石化工程建设过程中,对工程质量影响的因素较多,存在施工风险,施工中如果不加以重视,将导致工程质量不符合设计要求,难以达到工程设计标准。如何认识石化工程建设的质量通病,是防治质量事故的基础措施。了解质量通病,防治质量事故,才能提高施工水平,确保工程质量。

二.石化工程建设质量通病的认识与防治

1.石化工程土建结构工程质量问题。

我国的石化工程土建结构中,混凝土结构占据多数。在我国建成的石化工程土建工程中,普遍存在建成后短时间内出现质量问题,结构质量问题的出现大大减少了石化工程的使用寿命。由于钢筋混凝土结构的保护层抗渗性差、密实度差、厚度较薄,在钢筋混凝土结构中,往往出现混凝土开裂或钢筋锈蚀的现象。大约在工程完工30年后,石化工程土建结构由于受到地下水或环境的影响,出现开裂及渗漏现象,破坏结构稳定性。

石化工程中土建结构工程质量主要包括土建结构的安全性和耐久性。石化工程土建结构的安全性主要同土建结构的维护、检测、工程施工质量、工程设计规范紧密相关,安全性的最终目标是避免土建结构出现结构破坏或倒塌。为了确保土建结构安全性,在设计中要体现结构的整体牢固性、结构构建承载能力的安全性和结构耐久的安全性等安全设计。而石化工程土建结构的耐久性主要包括结构的安全性和结构的适用性,在石化工程土建结构中,表面混凝土耐久抗损能力相对较强。

为了提高石化工程土建结构的耐久性和安全性,在施工中要严格控制施工材料的质量,对材料的进场检验、采购调查等要严格落实,严守施工操作规范,确保结构构建的承载能力。除此之外,要积极开展自主研发工作,根据工程实际情况,利用新工艺、新技术、新材料,提高工程质量。施工中利用回弹法、射线法等检测手段,加强对土建结构强度的系统性检测,提高混凝土结构抗开裂、抗渗漏、抗剥蚀的能力。

2.石化工程建筑电气质量问题。

在施工过程中,对厚壁钢管进行对焊连接时,容易在钢管内部产生结瘤现象,当线缆穿过时,结瘤容易破坏线缆的绝缘层。焊接薄壁钢管则容易烧穿,将此种钢管埋入混凝土架构内部后,容易渗入浆水,导致管道内部堵塞,造成线缆无法穿过。同时由于石化工程的特殊性,其照明器具不同于一般建筑,器具的型号、规格及安装基本要求都有严格的规定,而很多时候,都被设计人员和施工人员所忽略,形成安全隐患。

当代建筑的电气工程不单单是点亮电灯、埋管穿线如此简单,其中包括了大量的现代电气设备的安装和使用。在石化工程中,建筑电气的质量是衡量工程建设水准和安全性的关键指标。随着建筑智能化的发展,石化工程建筑电气质量同时提高了对电气工程的要求。由于石化企业具有的易燃易爆、有毒有害等特殊环境,确保建筑电气和电气设备的安全、有效的运行是保障石化工程稳定的关键因素。

对石化工程的建筑电气工程质量管理,主要在控制施工过程,要将质量管理贯穿到施工所有环节中。在施工准备阶段,要进行全面的质量控制。建筑电气技术人员要熟悉设计图纸,要仔细分析设计上存在的问题,提出可行的改进方案,确保工程具有正确的指导方向。在施工中,要严格遵守操作规范和流程要求,在关键岗位设置技术人员操作,特殊岗位要求执证上岗。施工单位要对施工人员进行培训,提高施工人员的技术水平。

3. 石化工程项目防雷接地施工质量问题

在很多石化工程中,建筑物顶部设置了高度超过接闪器的金属物,但该金属物体并没有同避雷带网相连接,此外,还有较多的石化单位在建筑物顶部的接闪器上缠绕了电线,形成了雷击隐患。一旦遭受雷击,此类线路成为雷电波侵入的线路,容易造成不可估量的损失。

石化工程建筑接地防雷是工程中较为容易忽视的问题,由于其造成的重大破坏,在施工中要加以重视。石化建筑顶部要和避雷带网保持可靠的连接,缠绕在接闪器上的电线要设置对应的钢管,并进行埋地,避免造成雷击侵入。化工建筑物顶部的避雷带和避雷针以及建筑顶部的其他金属物体要同化工装置连接成为一个整体的电气通路,要于避雷引下线保持可靠的连接。通过此种方式,确保石化建筑的防雷性能。

三.结束语。

石化工程建设质量对于后期使用影响较大。在施工中要提高土建结构的稳定性和安全性,科学合理的安装建筑电气系统,严格按照相关法律法规和行业规范,提高建筑防雷能力。施工中落实质量检验制度,验收操作规程,防止出现质量事故,提高工程质量。

参考文献:

[1] 王振平 石油化工建设工程质量监督管理体制研究 [学位论文]2009 - 北京化工大学:项目管理

[2]张佐 浅析石化建筑工程施工管理的重点[期刊论文] 《中国石油和化工标准与质量》 -2011年8期

篇12

中图分类号:TU2文献标识码: A

土建结构的安全设计长期以来都是设计者们研究的重点,对于土建结构工程而言,要想保障施工顺利进行,首先要确保土建的结构安全,避免在施工中或是交付后发生坍塌现象。土建工程的质量安全主要由设计阶段以及施工阶段两者相互作用来保障的,同时也关系到结构使用的标准化,像超载或是二次施工等行为。另外,设计安全也关系到土建工程设计相关法律法规实施的有效性。要想加强设计规范化,必须先了解设计中存在哪些问题。

一、 土建结构存在的问题

1. 材料设计

在土建结构的材料规划方面,设计人员往往会忽略规范条例中的某个要求,造成材料使用不规范现象发生。例如在对混凝土的设计方面,其截面在未到达某一标准时,混凝土的强度需要乘上相应系数。否则在较小的截面设计中,混凝土构件会产生较大的强度损失。另外,在 4.1.2 规定中,明确指出当土建设计使用钢筋混凝土的时候,,其强度应该在 C15 以上,这一条款也对应了 4.1.3 中不列入 C10的设计值标准。设计人员在此方面存在问题在于对这一条款的理解方面,即当混凝土是作为垫层的时候,能否使用 C10 标准。这个问题在很长一段时间都是一个具有争议性的话题,一些设计人员将垫层混凝土设计为 C10 的时候,会遭到工程监理人员的质疑,而改为 C15 又会造成资金上的浪费。

2. 间距设计

土建结构的重点就在于对构造的设计。在设计中,伸缩缝之间的间距设计成为了设计过程中争议极大的话题。在规范标准中,要求在屋面没有设计隔热层是间距保证在半米之内。但就我国现有建筑来看,仍旧存在许多建筑设置了伸缩缝还是出现温度裂缝的状况。这一问题出现的主要原因在于现如今土建结构建造工艺的改善,以及昼夜温差引起的材料变化。

3. 保护层厚度设计

在厚度设计方面,目前使用的设计规范在土建结构耐久程度上有了更高的要求。但是由于厚度的增加,土建基础会与水产生接触。混凝土长期在水的浸泡下,其强度会很快下降,影响到土建工程的安全性。在实际设计中,设计人员也会故意将这一问题忽略。虽然保护层的厚度增加了,但建筑基础的耐久力下降,对土建结构的影响更大。

4. 荷载取值方面

在对屋面的可变荷载取值方面,设计人员应该在进行充分调研之后再展开取值,保障取值范围的准确性。但在现实设计中,设计人员有时会将不同屋面结构的建筑一统取值来设定,严重影响了结构的稳定性。例如屋架与拱面结构的建筑在内力感应方面十分敏感,因此在取值上要比一般结构的屋面更加谨慎,并且考虑到积雪等情况对其荷载的影响。

二、 土建结构的优化设计

1. 材料选择优化

之前提到,土建结构在材料的选择上存在一定争议,其争议主要表现在混凝土强度方面。在设计上,基础层垫的设计在混凝土强度方面应设定一个标准,让工程监理人员与设计人员有一个共同的标准来进行混凝土标准的设置。实际上,基础层垫的混凝土在强度上只需要达到 C10 等级即可,使用 C15强度的混凝土会造成资源上的浪费。对等级上的分歧主要是由对规定理解的不明确引起的。在规范4.1.2 中,对强度的标准值的应该是会钢筋混凝土的设定,而不是基础层垫方面的规定。垫层的混凝土并不是钢筋混凝土,其存在的目的是要保护基土的稳固性,让其在施工中不会因为施工设备运行产生的震动造成结构上稳定程度的损坏。因此基础层垫只要保障基土的稳固即可,这一功能的生效只要使用 C10 强度的混凝土就能够有效完成。 在相关规定中,已经对不同等级强度的混凝土

在轴心抗压强度上进行的值的设定。其中规定,当轴心受压截面直径在 0.3 m 以内的时候,混凝土强度设计的值在标准上应该乘上 0.8 的系数,否则若是直接使用原有强度,会造成强度缺陷。这条注释在规定上的字号偏小,因此容易被设计师们忽略,在设计时不会乘上 0.8 的系数。乘上系数的原因是当截面面积减小的时候,混凝土构件在强度上的缺陷在损失上会加大。

2. 砌体结构设计优化

对结构进行优化设计需要综合考虑地下防尘与防潮设计,对砌体进行要求目的在于保障结构能够持久使用。例如在潮湿的环境中,砂浆要求在 M7.5以上,堆砌所用的砖要求在 MU15。这项要求已经在规定中明确指出,但部分设计人员仍将标准设定为M5 的砂浆与 MU10 的砖体,这种做法不利于砌体的长久使用。另外,对砂浆以及砖的要求不仅用于地下结构。地面上潮湿环境也同样适用,像卫生间等地。

3. 结构构造优化

伸缩缝是为了减少墙体裂缝而设置的,就像桥梁建筑一样。混凝土在使用一段时间后会因为外界温度的变化产生膨胀或是紧缩,造成墙体开裂。在土建设计中,已经规定了伸缩缝的最大间距,设计师们应根据建筑所处位置以及周围环境合理设定伸缩缝宽度。

4. 保护层厚度

保护层的厚度与所用混凝土的耐久程度是紧密联系的,设计人员若是发现在设计中基础会接触到水,可以将该部分的混凝土强度要求提高,保障该部位混凝土不会因为长期浸水提早报废。同时,基础的保护层厚度应该要比原有设计稍多一点。例如原有设计为 25 mm,可以将其改为 30 mm。

5. 结构荷载取值优化

荷载在设计值上一般是永久组合值的 1.5 倍左右,设计师们在取值方面容易错误的将设计值作为永久组合值来使用。这样一来,地基变形在没有超过设计值的情况下也会被判断为不满足要求,从而可以加大基础的底面积与深度,造成材料使用上的浪费。在设计时,设计师应该知道并不是进行屋面全跨布置时产生的内里就一定是最大的。在进行半跨式设计时,建筑受到的可变荷载往往更大,对结构稳定性的影响也更大。所以,设计人员除了需要对全跨进行取值范围界定之外,还应对半跨式结构受到的应力进行分析,并计算大致范围。在具体展开设计时,需要以最危险的情况作为取值来设计,保障土建结构的稳固。另外,在积雪荷载的分析方面,应该区分全跨情况下,积雪均匀分布与不均匀分布的影响;半跨式情况下,积雪均匀分布的几种情况,以此来保障屋面结构的安全性。

6. 技术规范的作用与管理

土建工程有着强烈的个性,需要工程技术人员针对具体特点去解决设计与施工问题。所以,规范作为技术标准,宜强调其指导性而不是强制性。我国土建工程在结构设计上与国外相比的最大差距就在于方案与技术上的创新,这与以往过分强调规范的法律地位从而形成所谓“结构设计就是规范加计算”的倾向不无关联。这样就在客观上降低了对工程技术人员的业务技能要求与职责要求,不利于提高我国建筑企业和从业人员的素质以及参与今后的国际竞争。笔者认为,有关主管部门应将建筑结构设计规范中的部分条文抽出来,明确列为强制性条文。要提倡和鼓励各省市编制地方性规范,在工程的安全性和耐久性标准上,可有不同的设置水准。发达国家有关土建结构工程的规范及与之配套的各类技术标准多由行业协会或专业学会编制及管理,规范的翻新周期短。建议随着改革的深入,整顿合并有关的学会、协会,加强其职能,并逐渐成为技术标准编制管理的主体。

技术标准;对于土建结构工程的检测与评估,需要建立从业人员的注册制度和从业机构的资质认证与监管体制。凡属已建工程的安全诊断也可一并归入这一行业。建议有关部门在桥、隧、道路等土建基础设施工程投资上,根据需要加大工程维修费的比例。

三、 结语

土建结构设计应该严格遵循我国出台的各项法规,设计人员在研读法规时要仔细,明确标准的适用范围。在设计前,要把握好建筑所处环境以及地理位置,以保障土建结构的设计质量。

参考文献:

友情链接