混凝土结构设计论文范文

时间:2022-03-02 02:21:42

引言:寻求写作上的突破?我们特意为您精选了4篇混凝土结构设计论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

混凝土结构设计论文

篇1

1前言

预应力结构设计技术的发展,为现代高层建筑向更高、体型更复杂,结构形式更多样、功能更全、综合性更强的方向发展提供了更大的可塑空间。通常可使建筑物在同一竖直线上,上部楼层布置住宅、旅馆,中部楼层作为办公用房,下部楼层作商店、餐馆等。以满足综合性的不同需要。本文所介绍的工程设计是一幢集办公、休闲为一体的高档办公楼。

2工程概况

本工程位于益阳市赫山区,建筑面积31000m2,地上21层,地下一层,总高度为83m。其中一层为大型商场,二层为餐厅,三层为娱乐场所,四层及以上为公寓和办公楼。工程结构形式采用框架一剪力墙结构,裙楼为超长结构,结构平面布置随建筑变化而逐层变化,图1为四层的结构平面图,楼层主、次梁均为预应力混凝土技术。

3结构方案设计

混凝土结构构件在混凝土材料收缩和环境温差的作用下发生的体积缩小变形从而增大结构构件的拉应力,当该拉应力大于构件的极限抗拉强度时,构件即开裂。对此,现行规范中规定框架-剪力墙结构伸缩缝最大为45~55m。本结构纵向长度近159.6m,远超过上述规定,而且6个剪力筒大大增强其中间混凝土楼面水平侧向约束。如增加两道或三道结构伸缩缝,必须采用从基础到顶层增加双梁双柱来实现,这除了增加施工难度和成本之外,还大大影响了使用功能和建筑要求。设计采用预应力技术解决这一结构超长问题,通过对结构施加预应力,在结构中预先产生压应力。使其抵消超长结构在季节温差和混凝土收缩过程中产生的拉应力。理论与实践证明预应力对控制超长结构钢筋混凝土结构裂缝是有效的。

预应力除了可有效控制裂缝的作用之外,其主要作用是能有效抵抗竖向荷载并明显降低构件尺寸。经初算,预应力钢筋混凝土结构8.4m跨主梁的梁高可由原来普通钢筋混凝土主梁的700mm降为500mm,次梁梁高可由600mm降为450mm,16.4m跨主梁的梁高可由1600mm左右降为900mm~

1100mm。这样在保持净层高不变的情况下,每层高度可降低200mm。经综合考虑决定采用预应力方案,使楼层数量在建筑总高不变的情况下增加一层,从而取得显著的经济效果。

为此,在设计中我们针对本工程的结构形式和布置特点,确定了以下主要设计原则:

3.1为有效控制混凝土裂缝以及降低层高,结构纵横两个方向的梁均布置预应力筋;考虑到规范要求,采取有粘结预应力,跨后浇带的锁缝预应力筋采用无粘结预应力。

3.2根据文献[2],混凝土中有效预应力大于0.7Mpa,则可基本避免温度应力导致混凝土开裂。所以间距为2.8m的主次梁均应施加预应力,已达到在板中建立一定预压力避免楼板开裂的目的。

3.3后浇带位置要合理,避免布置在侧向刚度很大的构件周围,以免影响两侧板带的自由收缩。

3.4由于结构复杂,预应力筋数量和形式多样,设计时就必须考虑采取相应的构造和施工措施来避免预应力张拉施工时可能造成混凝土开裂。

4预应力计算

4.1设计重点

a)4~6轴部分结构地下一层至六层纵向均为8.4m跨的框架结构,其中六楼为空中花园,七、八楼中空,到九、十层纵向成为连接两边塔楼的16.4m跨大梁板,其中十层为空中花园。按结构整体计算结果配筋,并对两层柱采取加强措施。另外施工时九层的支撑为两层高,而且后浇带的设置使地下一层至六层的A~C轴和E~F轴以及九、十层A~F轴在后浇带未浇混凝土、锁缝筋未张拉之前形成12.4m的大悬挑结构。所以这些部位结构的支撑均通过认真计算确定并适当加强。

b)如图1所示,十层和十一层17~20/C~G轴之间是一个悬挑大网架,面积为25.2m×33.6m,矢高为一个楼层高度,通过大型预埋件固定在17、18、19、20、E、F、G梁柱节点上。在风荷载的作用下支座对结构产生很大的水平推拉力,十一层G点支座向外拉力最大,为1300kN。为了避免在梁柱节点预埋件处局部混凝土产生过大的集中应力,在预埋件上钻直径20mm的孔,采用无粘结应力筋对预埋件进行锚固,把支座拉力传向远端框架结构。无粘结预应力筋与原结构预应力筋不相干,基本走梁中直线,张拉控制应力为0.6fptk。

c)二十层屋面设置了冷却塔、擦窗机以及沿周边7m高的广告牌。所以本楼层荷载复杂,特别是广告牌支座在风荷载作用下,每个支座最不利弯矩为250kN·m,支座两个支点间距为800mm则支点上下反复集中力约为300KN。支座间距为28m,对于16.8m跨大梁就有5个点落在梁中位置,荷载值很大。

针对以上所述的设计重点难点,预应力设计紧密与建筑、钢结构、设备等专业配合,均采取了相应有效合理的设计措施。

4.2预应力计算标准

材料强度等级:混凝土C40,局部采用杜拉纤维C60混凝土;有粘结和无粘结预应力筋为1860高强低松弛钢绞线,张拉控制应力均为0.75fptk。

本工程采用SATWE以及PREC程序进行抗裂验算以及配筋计算。根据规范要求:结构设计应满足正常使用极限状态、承载能力极限状态以及耐久性的要求。针对结构多样复杂性。对不同情况的构件采取不同的控制标准(见表1)。

所有预应力梁普通钢筋基本采用对称配筋,其受压区高度均小于0.35h0,纵向受拉钢筋折算配筋率均不大于3%,符合规范要求。所有梁均进行两层托一层的施工工况以及楼面自重下一次张拉反拱工况的验算,均未开裂。

5构造设计

5.1后浇带设置

如图1所示,三道后浇带把结构分成长度均为36m左右的四个区段,有效解决了侧向刚度很大的剪力筒约束混凝土楼板自由收缩的问题。混凝土的收缩随时间而增长,初期发展较快,两周可完成全部收缩的1/4,一个月约可完成1/2,三个月完成60%~80%。在后浇带浇筑之前,超长板可视为一种能接近于自由变形的构件,后浇带选择两个月后而且气温低于主体结构浇灌时气温浇灌,考虑竖向结构(柱和墙)的约束影响,可认为此时收缩变形已完成50%。穿越后浇带的锁缝预应力筋在后浇带混凝土达到100%强度时即可张拉。为增强后浇带的抗裂性能,采用比原强度等级高一个等级的膨胀混凝土浇灌。

预应力对于E~F轴段结构从第三层就到17轴为止,则该区段15~16轴之间的后浇带的作用不是很明显。为加快施工进度,从第六层开始把该后浇带取消,预应力筋最长55.4m。同时在16轴与剪力墙之间预留临时施工后浇带,以实现两端张拉和避免拉裂混凝土。同理在C、E轴边板设置200mm宽的临时后浇带,以防止4~6轴间的横向次梁预应力张拉时把内部结构拉裂。

5.2锚具设计

由于荷载和结构形式复杂,预应力梁内的预应力数量种类很多,根据各种组合采用了单孔、4孔、6孔、9孔和12孔等多种型号的锚具。固定端采用了挤压式锚具。因此本工程预应力锚具及相关配筋种类较多。

5.3张拉槽、后浇带构造设计

由于后浇带或梁面张拉槽处需要采用变角张拉技术,而要实现变角张拉的操作,梁面普通钢筋以及箍筋必须有足够的间隔。如设计不作预先充分的考虑,必将带来如截筋而无法补强等施工问题,最终影响工程质量。所以设计时应对构造复杂的地方进行特殊处理,以保证施工质量。

在梁后浇带处或梁面张拉槽处,先按张拉变角块所需的空间以及尽量少断钢筋的原则排好普通钢筋,对割断钢筋采取增加相应搭接筋进行补强。后浇带及梁面张拉槽处张拉端的详细构造设计(见图2和图3)。

5.4张拉顺序设计

根据本工程的结构设计特点,张拉各个区域分开进行,先张拉次梁,后张拉主梁。这主要由于先张拉主梁(特别是与次梁垂直的主梁),有可能会由于主梁反拱抬起未张拉的次梁,而导致后者的开裂。预应力筋张拉顺序如下:

a)先沿着一个方向张拉纵向次梁,再返回张拉纵向主梁;

b)沿一个方向张拉横向主、次梁;

c)横向主梁由于中间16.4m跨所配的预应力筋比两边两短跨多,必须先张拉贯通全50.4m梁的预应力筋,在两边短跨梁内建立起预压力,再张拉中间其余预应力筋。否则必定把两边短跨梁拉裂。

6结语

经各方共同努力,本工程施工进展顺利,经观察没有发现结构裂缝,质量优良。工程实践表明:

6.1采用预应力技术和合理布置后浇带是解决超常结构混凝土开裂的有效途径。

6.2在高层中,施加预应力能起承受主要竖向荷载而降低构件尺寸的作用。所以在保持总高度不变的情况下,采用预应力方案可以增加建筑物层数,从而取得显著的经济效益。

6.3预应力结构配筋计算应根据实际情况而定,对同一幢建筑中的不同构件,同一个构件的不同工况都应采取相应不同的设计标准。

6.4预应力结构设计应全面、深入考虑合理的构造设计和恰当的施工方法、顺序,这有利于指导施工各方配合,保证施工进度和工程质量。

参考文献:

[1]混凝土结构设计规范.GB50010-2002.

[2]美国混凝土协会规范.AC1318.

篇2

1.前言

从传统的观念来看,钢筋混凝土结构具有很多优点,它有良好的物理力学性能、取材容易和造价可观的优点,但它最为显著的特点主要耐久性,混凝土本身的耐久是毋庸置疑的,虽然钢筋容易发生腐蚀,但是有混凝土的保护层的包裹,钢筋不能和空气接触,钢筋不会发生锈蚀,所以钢筋混凝土结构的使用寿命是相当长的。所以成为了世界工程建筑使用最广泛的结构形式。当然这只是从传统的观念来看的,但从科学的角度来看,这是不符合科学的探索观点的,正是由于人们收传统观念的影响,只片面了考虑的混凝土的耐久性,忽视了混凝土结构的整体耐久性,并且很多地区属于地震多发段,地震对其的危害相当的大,所以抗震性也不容忽视,特别是高层建筑中,抗震性尤为重要,越是楼层高,高楼层的顶部在受到地震作用时侧向位移也越大,就更容易发生坍塌的危险。本文主要从混凝土结构的耐久性和抗震性来分析设计中的一些值得注意的问题。

2.混凝土结构的耐久性

虽然混凝土结构存在的很多的优点,但是也存在一些内部因素和外部因素对混凝土结构的耐久性产生影响。

2.1内部因素。内部因素首先便是混凝土的自身问题,混凝土内部存在碱性的水化物,当大气环境里的CO2侵入混凝土内部时,会使得混凝土中的这些碱性水化物与CO2发生中和反应,也就是使得pH值下降,俗称混凝土的碳化过程。这个过程会让混凝土急剧收缩,导致混凝土开裂,加上碳化也会破坏钢筋外表面的氧化膜,使得钢筋容易锈蚀,发生危险。提高混凝土的强度等级的,使得内部孔隙率降低,混凝土内部更加的密实,提高了抗渗透性能,减缓了外部有害物质的入侵。值得注意的是当混凝土中加有碱活性的骨料的时候,在露天潮湿环境下,碱与骨料里的活性颗粒会产生反应,混凝土表面也会产生裂缝,加速侵蚀性物质的入侵破坏。再者的内部因素便是钢筋本身的影响,当混凝土有裂缝存在且较大的时候,钢筋肯定会受锈蚀,经过锈蚀的钢筋体积会膨胀,将混凝土保护层胀裂,又加快了钢筋的锈蚀。钢筋锈蚀后,钢筋的有效受力面积减小,相对应的强度会降低,致使结构承载力削弱。另一方面,锈蚀后的钢筋抗滑移的能力也会降低,很可能使得结构发生滑移破坏。时间越长,结构出现承载力问题会加大,有时甚至会突然断裂的脆性破坏,十分危险。所以影响混凝土耐久性的根源就是混凝土自身的碳化和钢筋锈蚀。

2.2外部因素

影响混凝土结构耐久性外部重要因素便是外界环境的影响。《混凝土结构设计规范》规定:

“一类:室内干燥环境;永久的无侵蚀性静水浸没环境

二类a:室内潮湿环境;非严寒和非寒冷地区的露天环境;非严寒和非寒冷地区与无侵蚀性的水或土壤直接接触的环境;寒冷和严寒地区的冰冻线以下的无侵蚀性的水或土壤直接接触的环境

二类b:干湿交替环境;水位频繁变动环境,严寒和寒冷地区的露天环境;严寒和寒冷地区的冰冻线以上与无侵蚀性的水或土壤直接接触的环境

三类a:严寒和寒冷地区冬季水位冰冻区环境;受除冰盐影响环境;海风环境

三类b:盐渍土环境;受除冰盐作用环境;海岸环境

四类:海水环境

五类:受人为或自然的侵蚀性物质影响的环境。” [1]

根据混凝土结构耐久性的调查,一类环境中设计使用年限为50年的质量安全基本可以保证。而一类环境中大部分使用年限超过了100年的都是一些纪念性建筑,数量上相对来说很少。一类环境中使用年数在70到80年的混凝土结构基本符合要求,这些构件的混凝土立方体抗压强度在15N/mm2 [2]。所以,在设计时,在一定程度上提高混凝土的强度等级并且定期维护,可以使混凝土结构的使用年限适当增加;

第二、三类的环境情况有些复杂,设计时要规定水灰比并适当提高混凝土的强度等级,提高密实性以降低混凝土的渗透性,设计时要采用环氧涂层钢筋,这种钢筋就是普通的光圆钢筋和带肋钢筋表面喷涂环氧树脂,有很强的耐腐蚀性,注意构造上不能有积水。可以适用于潮湿环境的工业与民用房屋、桥梁、码头等一些钢筋混凝土结构;(下转第505页)

(上接第503页)

第四、五类环境下的混凝土结构的耐久性应该符合有关的标准规定。

3.混凝土结构的抗震性

当地震发生时,作用时间极短,破坏力极大,而建筑本身结构也十分复杂,当其遇到地震力作用的时候,其破坏形式和破坏过程也是相当的复杂,如果仅仅依靠结构的计算设计是片面的,是不能够满足在地震作用时结构的实际受力状态需要的,所以抗震性的问题不能仅仅依赖结构计算设计,还要重视结构抗震的概念设计。概念设计就是在有利于提高结构抗震性的基础上,对结构进行全面合理的宏观控制。对于这样的设计思路我们就应该注意下面几个问题:

3.1合理场地选择。场地是影响结构抗震性的一个重要的因素,如果场地地形复杂,依靠工程措施是很难弥补复杂地形的缺陷的。所以选择场地的时候应该进行详细的勘察,弄清楚地质情况,避开软弱土层,容易滑坡,易液化等这样的不利地段,若不能避开就采取有效的措施,如用桩基础,加强基础的刚度和整体性等。

3.2合理选择建筑体型。在选择建筑体型的时候,不要选择太复杂的建筑体型,复杂的建筑体型没有直接明确的传力途径,不利于分析结构的内力,很难找到薄弱部位,特别是有凸起凹进的地方容易产生应力集中的现象,在地震时最容易产生破坏,所以一般最好采用圆形、方形等对称的建筑体型,受力均匀,布局合理,方便进行内力以及位移分析,美学上也有良好的视觉观。

3.3合理选择结构体系。结构体系应该保证有足够的承载力分布和刚度,并在此基础上还有足够的延性。一般来说结构的承载力和刚度是分不开的,刚度越大,则承载力也越大,结构的延性可以吸收很多地震时产生的能量,可以产生较大的变形不让结构在地震时产生突然的破坏,给人员安全撤出留下了足够时间。为了更好的提高抗震性能结构所用的材料也要符合相关的抗震要求。

4.结语

总之,虽然在进行混凝土结构设计的时候需要考虑的问题很多,但是混凝土结构的耐久性和抗震性是必须要考虑的问题,把握好这两个问题的关键,可以减少很多的工程事故,提高工程质量,提高工程的安全系数,保障人员的生命与财产安全。

【参考文献】

篇3

高校对课程设计的要求一般为一人一题,但是由于学生人数多,设计任务书资料不足,难于真正实现人手一题。导致产生两方面的问题,一是教师在同一届学生中多采取分组方式开展不同结构类型的课程设计,在同一组内只是对部分参数做一定修改,计算过程和步骤完全相同,学生无需考虑结构布置或经济性等要求,缺乏对学生创新意识和能力的培养;二是教师在下届学生课程设计时会继续使用上一届使用过的题目,命题更新不够,致使学生会搜集上届学生的课程设计成果进行单纯模仿或直接抄袭,学生无法通过课程设计来了解当前相关技术的最新动态,与社会生产发展中的实践环节脱节。长此以往,学生便无法真正掌握结构设计方法,更无益于培养分析问题、解决问题的能力。

1.2课程设计图纸计算大多采用软件,不利于学生基本技能的培养

随着计算机技术普及,各大高校在土木工程教学中大多都开设了CAD、SoliWorks、PKPM、midas等用于提高制图及计算的效率,同时有助于学生很好地与工程实际应用相结合,然而在教学中,过多地采用计算机软件进行辅助设计,学生只知道按照软件提示步骤操作获取最终结果,但对其内在的制图和识图方法、规范依据等却不熟悉甚至不去思考,导致工作中经常出现对于实际工程中的明显错误判断不出,图纸识别不准确等问题,不利于培养学生的基本技能。

1.3考核评价体系不合理,缺乏对设计过程的控制

混凝土结构课程属于专业基础课程,课时量大,理论授课占用时间较长,课程设计基本在学期末,学生此时面临多门课程的期末考试,迫于对课程设计成绩的追求,学生大多数会需找往届模板,或照抄别人的成果交差。由于教师对课程设计成绩的评定多以设计成果作为唯一依据,也有高校采取了抽查答辩等方式进行,但是忽视对学生设计过程的监管,缺少平时考核,日常检查也不严格、不规范,最终给定的成绩也不科学,甚至出现抄袭者的成绩反倒高于自行完成者的成绩,评定不够客观和公正,课程设计成果的质量自然无法保证。

2教学方法改革

2.1课程设计命题工程化、多元化,切实增加学生设计自由度

课程设计命题不能只是要求学生做简单的虚拟设计,应该密切联系现行的工程规范依托已建或在建项目资料编制多元化的课程设计题目,同时在任务书的编写上可以适当放宽约束条件,给学生自由选择和发挥的空间,从而激发学生设计的积极性和主动性。具体做法:一是学校应该充分发挥校内外实习基地(设计院、工程单位)的作用,大量收集工程背景资料、设计图纸等为教师开展课程设计命题提供依据;二是教师应该根据该课程设计的大纲要求科学编写任务书,充分体现一人一题的要求,同时已知条件可适度放宽,让学生自由选择和发挥,引导学生独立思考、解决“实际问题”;三是由教研室组织相关教师对拟开展的任务书进行认真审定,包括设计内容、深度、工作量、成果评定方式等,然后下发至学生开始设计。通过这种方式可切实提高课程设计科学性和工程应用性,为学生后续工作奠定良好的基础。

2.2采取手工设计为主,软件验证为辅的方式开展课程设计

为杜绝学生电子文本相互抄袭的问题,该课程设计可要求学生对于结构设计及施工图纸手工绘制,教师严格按照制图规范标准进行检查,对于不符合要求的图纸全部返工;设计计算书要求学生先采取手工计算,然后利用软件进行验证。通过这种方式,既可以提高学生对基本计算公式和规范的应用能力,又可以加强学生对基本制图、识图能力及三维工程形构件能力的培养,真正达到理论结合实际的目的。

2.3充分体现课程设计教师主导作用,加强过程监控

教师的实践能力直接决定学生课程设计的质量和效果,因此,任课教师必须要具有丰富的工程实践经验,且熟悉现行规范。为提高课程设计质量,教师必须要积极投入到学生的设计当中去,并起到主导作用,教师每天进行集中答疑,以便及时发现问题,对于共性问题采取集中讲解,个别问题单独解释,这样既可以保证课程设计质量,又可以检查和督促学生的设计进度,真正达到课程设计大纲对人才培养的要求。

2.4改革课程设计成果评价机制,正确处理成绩与效果的关系

课程设计的成果评价应该改变传统的以设计成果作为唯一依据的评定方式,坚持以“考核只是手段,学习效果才是目的”的原则,充分考虑教师在指导过程中掌握的信息,既要保证对设计过程中表现积极,成果完整可靠的学生给予高分评价,又不挫伤部分成果欠佳学生的积极性,而是将最终反映出的问题必须反馈至学生,同时要求学生限时改正,最终给予合理的成绩评定。因此,成果评价可采取学生自评、互评、教师讲评和抽查答辩相结合的方式进行,并结合教师平时指导记录,科学设定各环节的分值比例,以实现该课程设计成果评价的客观、公正。

篇4

Abstract: along with the rapid development of high buildings, multilayer reinforced concrete frame structure is more and more widely used in construction. In the reasonable height and layer, frame structure can provide larger building space, the layout flexible, fit a variety of technology and use function requirements. But, in the frame structure design, still exist some practical problems, the following this paper of multilayer reinforced concrete frame structure design in the paper analyses the problems in the research and provide the reference for colleague.

Keywords: civil engineering; High-rise buildings; Structure design; Hot issues

中图分类号:[TU208.3] 文献标识码:A 文章编号

1、钢筋混凝土框架结构设计方法的综述

自钢筋混凝土框架结构在土木工程中出现以来,随着生产实践的经验积累和科学研究的不断进步,钢筋混凝土框架结构的设计方法在不断的发展和完善,先后经历了容许应力设计方法、破损阶段设计方法和极限状态设计方法。容许应力法以线弹性设计方法为基础,要求在使用荷载作用下构件截面的应力不大干容许应力,截面应力按线弹性设计方法求出,容许应力是用材料的强度除以安全系数求得。容许应力法仅考虑材料的弹性性质,容许应力取值也无科学依据,框架结构设计是否安全可靠无法用实验来验证。破损阶段法以塑性设计方法为基础,要求在使用荷载作用下构件截面的内力不大于破坏时内力除以某一安全系数,破损阶段法使构件有了总的安全度的概念,可以说它开创了一个新局面。但它仍存在一些重大的缺点:只保证了构件的强度,但却无法了解构件正常使用是否满足要求;安全系数取值仍须经验,并无严格科学依据;单一安全系数不能对不同荷载、材料、构件区别对待,从而正确地度量框架结构的安全度。极限状态法是破损阶段的发展,它规定了框架结构的极限状态,并把单一安全系数改为三个分项系数,即荷载系数、材料系数和工作系数,从而把不同荷载、材料、构件区别对待,使构件具有比较一致的安全度。

从本质上讲,破损阶段设计法和极限状态设计法中的承载力极限状态设计所依据的都是极限强度设计方法。极限强度设计方法的基本原则是求出截面破坏时的极限承载力,然后控制截面在使用荷载作用下的内力不大于破坏时的极限承载力除以某个考虑安全的系数。系数可用单一系数,即破损阶段法;也可用分项系数,即极限状态法。随着可靠度设计方法的发展,安全系数的取值已经从传统的定值设计法发展到今天的半概率设计法,又在向近似概率设计法发展,使框架结构设计的极限状态设计方法向更完善、更科学的方向发展。但是,只有框架结构的极限承载力得以准确评估后,框架结构安全系数更为精确、科学的取值才会更有意义,框架结构安全度才能得到充分保证。

2 钢筋混凝土框架结构设计时正确选取结构参数

2.1 选取设计基本地震加速度

《建筑抗震设计规范》3.2.2条中规定:抗震设防烈度为Ⅶ度时,设计基本地震加速度值分别为0.1g和0.15g两种,抗震设防烈度为Ⅷ度时,设计基本地震加速度值分别为0.2g和0.3g两种,这与89旧规范差别较大。计算中应严格注意地震区的划分,选取正确的设计基本地震加速度值,这一项对地震作用效应的影响极大。

2.2 地震力振型组合数

对于较高层建筑,当不考虑扭转耦联时,振型数应不小于3;当振型数多于3时,宜取为3的倍数,但不能多于层数;当房屋层数不大于2时,振型数可取层数,对于不规则建筑,当考虑扭转耦联时,振型数应不小于9;结构层数较多或结构刚度突变较大时,振型数应多取,如结构有转换层,顶部有小塔楼等,振型数应大于12或更多,但不能多于房屋层数的3倍;只有定义弹性楼板且按总刚分析法分析, 有必要时才可以取更多的振型。

2.3 结构周期折减系数

框架结构由于填充墙的存在,使结构的实际刚度大于计算刚度,计算周期大于实际周期,因此,算出的地震作用效应偏小,使结构偏于不安全,因而对结构的计算周期进行折减是必要的,但如果折减系数取得过大也是不妥当的。对于框架结构来说,采用砌体填充墙时,周期折减系数可根据填充墙的材料及数量选取0.6~0.7;砌体填充墙较少或采用轻质砌块时,可取0.9;无墙的纯框架,计算周期可以不折减。

2.4 梁刚度放大系数

结构设计计算软件的输入模型均为矩形截面,未考虑因存在楼板形成T型截面而引起的刚度增大,造成结构的实际刚度大于计算刚度,算出的地震剪力偏小,使结构偏于不安全,因此计算时应将梁刚度进行放大,放大系数中梁取2.0,边梁取1.5为宜。

3 框架结构构造配筋

3.1 框架外挑梁配筋

由于占地面积的限制,使用功能的要求或结构上的原因,工程上常在框架的梁端设计挑梁。由于框架梁的荷载与外挑梁的实际荷载值不同,因而框架梁与外挑梁的断面尺寸会有所不同,而有的设计人员在绘图时只是将框架梁上的某些主筋向外挑梁延伸,殊不知有些主筋根本无法伸进挑梁,这些差错一般在施工时才会暴露出来,但为时已晚。许多钢筋已截断成型,这不仅影响了施工进度,而且也造成了不必要的损失。框架梁外挑梁下常设置钢筋混凝土柱。在柱的内力和配筋计算中,有些设计人员对其受力概念不清,误认为此为构造柱,并且其配筋为构造配筋,悬臂梁也未按计算配筋,这样有可能导致水平荷载作用下承载力不足,为事故的发生埋下隐患。

3.2 框架边柱柱顶配筋

对于框架结构的高层建筑,水平荷载对结构的倾覆力矩以及由此在竖向构件中所引起的轴力与建筑高度的平方成,正比;顶点位移与建筑高度的4次方成正比,水平荷载是结构设计中的控制因素,框架顶层的风荷载较大,而屋面结构荷重传给边柱的轴向总力比楼层边柱总力要小,显然柱顶有大偏心问题顶层边柱节点出现轴向力对截面重心的偏心距大于0.5倍的柱截面高度(e0>O.5h)。根据框架结构的构造要求,横梁上部钢筋应全部伸入柱内,且伸过横梁下边;柱内一部分钢筋伸到顶端,另一部分钢筋伸到横梁内,其根数依据计算确定且不少于2根,设计人员在图中经常容易将边柱柱角的钢筋弯入梁内,对这类问题,缺乏实践经验的工程技术人员不易立即发现,而要等施工时才会察觉。问题的症结在于柱宽大于梁宽,柱角的纵筋要完全伸入梁内是办不到的,对这种差错应引起设计人员的重视。

3.3 框架梁、柱箍筋配置

根据《建筑抗震设计规范》第6.3.3条及6.3.8条规定,工程习惯上常取的粱、柱箍筋加密区最大间距为100mm,非加密区箍筋最大间距为200mm。电算程序信息中通常也内定梁、柱箍筋加密区间距为100mm,由设计人员根据规范确定箍筋直径和肢数。当框架梁中由于种种原因纵向钢筋超筋时,梁端适当加大抗剪承载力对结构抗震非常有利,这也是当梁端纵向受拉钢筋配筋率大于2%时,规范规定梁的箍筋直径应比最小构造直径增大2mm的原因。对于框架柱,当框架内定柱加密区箍筋间距为100mm时,在某些情况下,亦可能因非加密区箍筋间距采用200mm引起配箍不足。这里需要指出的是,梁、柱箍筋非加密区配箍验算时可不考虑强剪弱弯的要求,即剪力设计值取加密区终点处外侧的组合剪力设计值,并且不乘以剪力增大系数。

4 多层框架结构设计要求

4.1 强柱弱梁节点设计

这是为了实现在罕遇地震作用下,让梁端形成塑形铰,柱端处于非弹性工作状态,而没有屈服,但节点还处于弹性工作阶段。强柱弱梁措施的强弱,也就是相对于梁端截面实际抗弯能力而言柱端截面抗弯能力增强幅度的大小,是决定由强震引起柱端截面屈服后塑性转动能否不超过其塑性转动能力,而且不致形成“层侧移机构”,从而使柱不被压溃的关键控制措施,柱强于梁的幅度大小取决于梁端纵筋不可避免的构造超配程度的大小,以及结构在梁、柱端塑性铰逐步形成过程中的塑性内力重分布和动力特征的相应变化,因此,当建筑许可时,尽可能将柱的截面尺寸做得大些,使柱的线刚度与梁的线刚度的比值尽可能大于1,并控制柱的轴压比满足规范要求,以增加延性。验算截面承载力时,人为地将柱的设计弯矩按强柱弱梁原则调整放大,加强柱的配筋构造。梁端纵向受拉钢筋的配筋不得过高,以免在罕遇地震中进入屈服阶段不能形成塑性铰或塑性铰转移到立柱上。注意节点构造,让塑性铰向梁跨内移。

4.2 强剪弱弯剪力墙设计

为了提高抗震墙的变形能力,避免发生剪切破坏,对于一道截面较长的抗震墙,应该利用洞口设置弱连梁,使墙体分为小开口墙、多肢墙或单肢墙,并使每个墙段的高宽比不小于2。所谓弱连梁,是指在地震作用下各层连梁的总约束弯矩不大于该墙段总地震弯矩的20%;连梁不能太强,以免水平地震作用下某个墙肢出现全截面受拉,这是比较危险的。但是,考虑到耗能,连梁又不能太弱,连梁弱到成为一般小梁时,墙肢就变成单肢墙,而单肢墙的延性很差,仅为多肢墙的一半,且单肢墙仅具有一道抗震防线,超静定次数少,在地震作用下是很不利的,目前,有许多设计人员将结构中门洞连梁、窗洞连梁都改为截面高度极小的二力杆件,这对结构抗震是很不好的。在实际设计中,对连梁的刚度都要进行折减,这是因为剪力墙的刚度一般都很大,在水平力作用下,剪力墙中的连梁会因为很大的内力而超过截面允许值,可靠的办法是让这些连梁先屈服,要使连梁能形成塑性铰而不发生脆性破坏,连梁首先就必须满足强剪弱弯的要求,对连梁的刚度进行折减实际上就是降低其抗弯能力。

免责声明:以上文章内容均来源于本站老师原创或网友上传,不代表本站观点,与本站立场无关,仅供学习和参考。本站不是任何杂志的官方网站,直投稿件和出版请联系出版社。
友情链接
发表咨询 加急咨询 范文咨询 杂志订阅 返回首页