时间:2022-03-13 01:54:07
引言:寻求写作上的突破?我们特意为您精选了12篇生物技术应用范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
化学物质是人类社会赖以发展的基础。但人工化合物的大规模制造和使用造成了严重的环境污染,成为被全球普遍关注的严峻问题。众多的人工化合物释放到生态环境中后,微生物还没有足够的时间和充分的环境条件来“进化”其代谢途径,因此表现出有机化合物的难生物降解性。化合物对环境产生的风险(Risk)可由以下的公式来表示,取决于化合物本身的危害度(Hazard)和在环境中的暴露程度(Exposure)。
Risk=Hazard×Exposure
因此,为降低化学物质对环境带来的危害或负担,开发清洁生物生产工艺生产环境友好的化合物具有重要的意义,与此同时必须开发减少化学物质在环境中的暴露程度(浓度和时间),即化合物的生物降解或生物处理技术。随着难降解化合物的污染问题的表面化和人们对环境污染问题认识加深,于上世纪90年代形成了环境生物技术这一学科方向。环境生物技术是生物技术与环境科学和化学工程等领域交叉的学科,是工业生物技术领域的新方向。2002年10月的美国科学杂志(Science)刊登了环境微生物技术的研究特辑,英国的自然生物技术杂志(NatureBiotechnology)于2003年2月刊登了具有芳香化合物降解能力的假单胞杆菌(Pseudomonassp.)作为多样生物催化剂的可能性,近几年,国外还涌现出了大量的有关环境生物技术的书籍,足见环境生物技术研究在国际上已成为重要的前沿研究领域。
本文以利用融合蛋白技术高效生产工业用肝素酶及剩余污泥减量化好氧-厌氧反复耦合废水生物处理技术研发过程为主,介绍工业生物技术在医药化学品、生物能源及环境中的应用研究进展。
1)肝素酶的重组大肠杆菌高效生产、分离耦合及其应用技术研究
肝素酶I(heparinaseI,EC4.2.2.7,商品名Neutralase,Hepzyme,IBEX,加拿大蒙特利尔公司生产)是一种特异作用于肝素(heparin)和类肝素分子的多糖列解酶。肝素酶具有重要的应用价值,肝素酶及其底物多糖肝素之间的相互作用有助于阐明多糖裂解酶的作用机制;肝素酶可以用于解析肝素等复杂粘多糖的结构及其生物学功能;肝素酶可以用于解析人体内的凝血和抗凝血机制;肝素酶可以用于制备具有高效抗凝血作用的低分子肝素;肝素酶还可以用作临床血液肝素化的去除,防止手术后出血。我国是肝素原料的生产大国,开发酶法低分子肝素生产技术具有重要的意义。
商业化的肝素酶I从肝素黄杆菌(Flavobacteriumheparinum)中纯化得到,但表达需要价格昂贵的肝素诱导,同时由于肝素酶II和III的共表达增加了纯化的困难和成本[1]。肝素酶I的基因已被克隆并在大肠杆菌中表达,但产生的都是无活性的包涵体,需要蛋白质复性才能获得有活性的酶[2-4]。
我们利用融合蛋白技术构建了一套大肠杆菌的表达系统,能够高效的表达可溶性的肝素酶I,并同过亲和分离简化了肝素酶的纯化操作。实验研究结果表明在我们的肝素酶表达生产体系中,90%以上的肝素酶I以有活性的可溶性蛋白形式存在,从而省去了复性的操作,降低了操作成本;目前酶活可达16000IUl-1,远远高于肝素黄杆菌的表达水平;通过一步亲和分离,回收的肝素酶纯度达95%以上。同时利用绿色荧光蛋白(GFP)基因,构建了利用荧光快速定量酶活的新方法,而且肝素酶与GFP的融合蛋白有助于肝素酶失活机理的研究。
利用融合蛋白的亲和吸附能力容易实现肝素酶I的定向固定化,使开发高效肝素酶反应器成为可能。通过实验证明融合肝素酶I能够和商品酶一样有效的降解肝素,制备出理想的低分子量肝素(LMWH)。通过控制酶解反应条件,得到了一系列分子量分布范围窄的低分子量肝素(平均分子量在5000-6000)。本研究为肝素酶的工业化生产及其应用奠定了技术基础。
2)好氧-厌氧反复耦合生物反应器处理废水新工艺研究进展
生物技术及应用专业的培养目标,是培养具有从事生物技术应用必备的专业理论知识和较熟练的综合职业技能,适应食用菌、组培苗、发酵产品等生产、基地建设、经营管理、技术服务及相关专业第一线需要的高技能人才。实训基地是培养高技能人才的必要场所,实训基地建设是实现专业培养目标的必要条件。通过实训,培养学生的职业技能,提高学生的实际动手能力。
(二)实训基地建设有利于提升学生就业竞争力,提高就业率
高职院校要保证就业率,就必须提高毕业生的“含金量”,让其成为用人单位心目中的合适人选。建立实训基地,让学生亲身实践无疑是提高其自身“含金量”最有效的方法。在参与实践的过程中,学生能将平时所学的理论知识与实际联系,同时,在实践中体现自身的价值,使学生的学习动机和方向更加明确,从而不断提高自身职业素质,提升就业竞争力。
(三)实训基地建设有利于培养“双师型”教师,提高教学水平
实训基地建设有利于培养“双师型”教师,提高教学水平。教师通过到实训基地锻炼,来提高自身的技术水平和动手能力,同时,教师在生产、管理第一线有利于获取各种最新的技术方法和管理理念,将这些新知识应用于教学,既可以保证知识的更新,又能激发学生的兴趣。
二、高职生物技术及应用实训基地的建设与实践
(一)校内实训基地建设
1.加强实验室建设,改善实验室条件。生物技术及应用专业重视和改善实验条件,加强实验室基本设施的建设,形成完善的实验教学规章制度和科学的运行机制。在学院的大力支持下,投入大量资金,对生物基础实验室、生物类专业实训室,重新装修并添置了不少仪器设备,大大加强了实验室建设。有足够的实验室承担专业基础与专业课的实验实训项目,可用于该专业的教学实验设备数量(800元以上)共610件,总价值237万元,生均10031元。实验开出率达100%。生物类基础实验室2005年8月通过了广西教育厅基础实验室合格评估。
2.加强校内实训基地建设,走“产学研结合”发展之路。广西农业职业技术学院现有校内实训基地5个:生物技术中心、生物技术实训基地(园艺方向)、食品生物技术实训基地、食用菌生产实训场、广西现代农业技术展示中心。主干课程“植物细胞工程”“发酵工艺学”“食用菌栽培”均有实力雄厚的校内实训基地。生物技术实训基地、食品生物技术实训基地,被批准为自治区示范性高等职业教育实训基地。
生物技术中心是一个集科研、生产、教学、技术推广为一体的现代生物技术综合开发中心。该中心初步形成了布局合理化、教职工知识结构专业化、生产科研管理科学化、生产经营规模化和教学实践化的产学研基地,成功开发果树类、经济作物类、药用植物类、观赏植物类等数十个品种,享有较高声誉。由专业教师担任生物技术中心主任,教师在生物技术中心开展科学研究,承担“优质网纹甜瓜组织培养技术研究”等6项科研课题。生物技术中心按教学计划安排学生实习,使其在取得较好的经济效益的同时,提高了教师的业务素质和学生的实践操作技能。
3.加强能力本位实践教学,提高学生综合能力。为了培养学生的实践能力和综合能力,我们非常注重以能力为本位的教学,开展各种形式的实践教学。(1)加强课内实践活动。主干课程理论和实训的比例为1∶1,做到理论与实践的结合。模拟生产实践活动,如食用菌课教师带领学生栽培各种食用菌,由学生自行制种、栽培、销售,既掌握了技能,又获得一定的经济效益。(2)改验证性实验为探索性实验,提高学生动手能力。根据课程的特点,学生在教师指导下,进行探索性实验。例如,在植物组织培养中,培养基不同,植物生长效果也不同。教师在教学中并不直接将这些实验技巧或方法告诉学生,而是指导学生根据所学的理论知识进行探索性实验,最后通过实验和分析得出最佳的方案或结果。(3)利用科研资源丰富实践教学,培养学生创新能力。在生物中心承担的科研项目中,有丰富的实验材料供学生进行实践教学活动。例如,在植物脱毒培养和试管苗增殖培养实验中,让学生参与香蕉、生姜的脱毒与工厂化试管苗快繁培养等项目,对提高学生的知识应用能力和科研创新能力起到了很好的作用。
4.健全实践教学管理规章制度。建立了一整套完整的实验、实训大纲和实习指导书。制定各门课程实践技能考核办法,加强学生实践技能考核。理论教学和实验教学由学校组织实施,生产实习和专业实践与合作办学单位共同组织实施。实训环节的成绩由指导实习的企业参与评定。
(二)校外实训基地建设
1.开展校企合作,实现双方共赢。实训基地建设离不开企业的参与。校企合作、工学交替是高职教育发展的必由之路。生物技术及应用专业通过签订合作办学协议,共建立了15个稳定的校外实训基地。如桂林莱茵生物应用技术有限公司、广西北生集团海玉农业开发有限责任公司、南宁市良风江食用菌生产示范基地等。这些实训基地实力雄厚,足以承担本专业的实训任务。我们每年都会派遣学生到企业进行实践,不少学生在实习期间就被企业选中留用。
关键词:
生物技术;畜牧兽医;应用
1生物技术的内涵及禽类遗传资源的保护
(1)生物技术的内涵。
生物技术又称生物工程,是从20世纪70年代初开始兴起的。一般认为生物技术是以生物学(特别是微生物学、遗传学、生物化学和细胞学)的理论和技术为基础,结合其他基础学科的科学原理,充分运用分子生物学的最新成就,其主要包括发酵技术和现代生物技术。生物技术具有较大的潜在价值,能够为人们带来良好的经济效益和社会效益。
(2)禽畜类遗传资源的保护。
我国畜牧业的历史发展悠久,资源丰富,创造了许多具有独特特色的地方禽畜品种,是禽畜遗传资源最丰富的国家之一。目前所培育出来的地方禽畜品种具有育种能力和免疫力强等优点,但是也存在生长周期长、经济效益低等问题。随着禽畜品种的融合,许多具有地方特色的禽畜数量正在降低,甚至消失。因此为了保护好禽畜类遗传资源,采用现代生物技术已经迫在眉睫。
2生物技术在畜牧兽医领域的应用
(1)应用于禽畜育种。
生物技术运用于动物育种主要采用的是转基因技术、DNA技术和动物克隆技术。之所以将生物技术运用于动物育种是因为传统的育种方式存在孕育周期长和育种质量差等问题,而且随着畜牧业的不断发展,人们对育种品种的质量要求越来越重视。采用生物技术可以大大缩短孕育周期并且可以提升育种的质量。例如可以通过生物技术提取具有特种功能的单个基因或者基因簇插入其他生物的基因中,通过观察对比选择出达到标准的样本。最早将生物技术运用于禽畜育种的国家是英国,通过对禽畜育种的成功实验,让其在各个领域得到了更加广泛的应用,也推动了生物技术在畜牧领域的发展应用。
(2)应用于操控禽畜生产。
利用生物技术操控动物的生产主要就是通过生物技术干预动物原有的内在环境系统。通过对这两者的干预,可以使禽畜的机体向人们所希望的方向发展。比如说通过生物技术人工合成的生长激素,可以起到和动物天然生成的生长激素同样的作用。这样就可以促进禽畜生长,并且不会对禽畜产生不良的影响,而且还可以降低禽畜的采食量,起到节约饲料的作用。因为生产的人工激素和动物自身所带的激素是相同的,所以也不会对人类产生不良影响。通过操控禽畜生产,大大提升了禽畜的数量和畜牧业的收入,推动畜牧业向现代化方向发展。
(3)运用于饲料资源的开发和利用。
我国一直存在禽畜类饲料资源短缺的问题,通过将生物技术运用于饲料资源的开发上,扩大蛋白质饲料,提升饲料的营养价值,可以有效地解决这一问题,也可以推动我国畜牧业的发展。通过生物技术将不含或者少含蛋白质的饲料培育成富含蛋白质的饲料是当前需要亟待解决的问题,蛋白质饲料短缺已经是世界性问题。在中国进行单细胞蛋白的生产主要是通过饲料螺旋藻蛋白质以及酵母,而秸秆是我国主要的农作物副产品,通过发酵技术可以将秸秆生产出具有优质粗蛋白的饲料,具有很高的应用价值。
(4)运用于禽畜疫病的预防诊断。
将生物技术运用于禽畜疫病的预防和诊断中效果显著。传统的畜牧养殖都是采用物理化学手法消灭病原,这样具有很大的不稳定性,常常会由于环境不达标等问题导致免疫效果失败。而随着近几年生物技术的发展和基因工程疫苗的进步,将生物工程技术用于禽畜疫病预防的应用越来越多,比如目前开发出来的新型疫苗口蹄疫疫苗、狂犬病糖蛋白亚基疫苗等。将生物技术运用于疫病预防诊断主要就是利用DNA重组技术,提升免疫效果,制备疫苗,比如目前应用于疫病诊断的限制酵分析法和核酸探针法等方法都已经有效地应用在疫病诊断中。
3小结
生物技术是新兴的高科技技术,需要不断地发展和完善,目前的一些技术尚未成熟,仍然需要不断地实验,将生物技术运用于畜牧兽医领域是近几年才提出的,通过生物技术可以对畜牧业的饲料资源、疫病诊断预防和禽畜的育种等方面作出贡献,同时这也是发展畜牧兽医的必经之路。所以随着生物技术的不断发展,将二者有机结合起来,有利于畜牧业的发展。
作者:康文广 单位:吉林省东辽县凌云畜牧兽医工作站
参考文献:
2食品检验中的生物技术
生物技术在日新月异的科技的推动下已经日臻完善并不断实现自我突破,而全球信息化更是推动了生物技术研究成果的大范围推广。
2.1生物传感器技术
利用生物传感器检验食品时,主要以生物技术及相关特性为依据,进一步将信息输入到传感器识别系统,然后再系统分析与识别输入的信息后,将之转化为有效数据、作为食品检验人员了解、分析食品的有效依据而显示出来。生物传感器技术因其具有检验迅速、检验结果精准性高等优势,极易为人们所接受。
2.2生物芯片技术
生物芯片技术作为一种现代化检验技术,是极具典型性的。在食品检验中,生物芯片技术以相关信息技术为基础,应用光导原位合成技术,能较好的完成食品检验并实现对食品品质的判定。在食品检验中,生物芯片技术的优势主要体现在检验速度快、应用范围广,能实现大规模检验,尤其将之用于对部分进出口贸易类商品与高质量的食品检验中更具显著优势。
2.3生物酶技术
酶联免疫检验技术是以酶和免疫学有关理论为基础的现代化检验技术。在食品检验中,生物酶技术能高效、精确、快速的检验到视屏中残留的微量农药并有效排除有毒害成分、微生物污染等,同时还具有灵敏度高、选择性高的优势,为人民群众的餐桌安全提供保障,因此应用十分广泛。
2.4PCR技术
PCR(PolymeraseChainReaction)即聚合酶链式反应,是一种基因的体外扩增法。PCR技术随着分子生物学理论基础及相关技术的进步,已经取得了明显的发展,其精确、微量的优势也更加显著。当前,随着对部分主要食品微生物遗传性质了解程度的加深与认识上的深化,人们也进一步掌握了许多致病菌的遗传背景,PCR技术主要实现某些微生物特异基因的扩增以判定食品是否受到微生物的污染,在食品检验中的优势地位和广阔应用前景也逐渐显示出来。
3生物技术在食品检验中的具体应用
由于物理、化学等传统的食品检验方法存在种种局限性,已经无法充分满足现代食品检验的现实需要,在此背景下人们对生物技术在食品检验中重要性的认识也越发深刻。
3.1有害微生物的检验
食品安全经常会受到有害微生物的威胁,如果得不到有效控制和避免则很有可能危害人体健康。因此,对有害微生物的检验就成为了食品检验中必不可少的环节。通过微生物的生存特征及生理生化特性,生物技术便能判定食品中有害微生物的种类、含量,然后再参照国家法律及行业标准,判断食品中有害微生物的含量是否超标,从而尽可能使有害微生物对人体健康的威胁降到最低。在有害微生物的检验中,PCR技术、酶联免疫技术都应用的十分广泛,而且表现出了良好的性能。
3.2残余农药的检验
农业种植中,农药被广泛应用甚至出现了滥用的情况,导致很多食品尤其是食品原料农药残留严重超标,如果处理不当流入市场,很有可能给购买食用者带来伤害。生物技术在残留农药含量的检测方面实用性很强,已经成为该领域的重要检验手段,其中,酶技术和生物传感器技术的应用最为广泛且效果最好。
3.3成分和品质的检验
食品的成分和品质决定着食品的营养价值。如果个体食用了含有非安全成分或者变质的食品,轻者会导致营养涉入不足,重者很有可能威胁身体健康乃至生命安全。因而,对食品成分及食品品质的检验就成为了食品检验不可或缺的方面。生物传感器技术被广泛的应用于对食品成分以及食品品质的检验中。当前,随着生物检验技术的发展以及在食品检验中的不断摸索,生物传感器技术已经不仅实现了对食品质的检验,同时还能做到对食品的气味检验与分析应用,展现出了更全面、更方便、更高检验率的优势。
3.4转基因食品的检验
转基因技术给食品行业带来了巨大影响,直接表现为转基因食品的上市。合格的转基因食品对人体健康是没有害处甚至有益的,但不合格的转基因食品则会危害人体健康、破坏生态环境,因此对转基因食品地检验是重要的。生物技术对转基因食品的检验主要是检验转基因食品的蛋白质和酶活性。当前,应用于转基因食品检验的生物技术主要有酸检验法、蛋白质检验法等。
引言
随着科学技术的急速进步,尤其是分子生物相关先进理论成果、当代先进技术不断侵入现代生物技术,全面社会需求,生物技术由高新技术代替过去传统技术俨然成为现代生物技术发展的必然。现代生物技术作为一项高新技术,其与医药领域存在着密不可分的联系,现代生物技术发展一方面能够促进医学基础学科发生革命性转变,一方面能够为医药工业开辟出又一片天地[1]。
1现代生物医药的重点领域
1.1肿瘤治疗
世界范围内,肿瘤死亡率在疾病死亡率中有着十分高的占比,每年各个国家用于肿瘤的治疗费用数以亿计。肿瘤属于一种多机制的复杂病症,现阶段依旧采取早期诊断、放疗、化疗等综合方式治疗,疗效并不十分客观,同时会对患者造成极大的痛苦。当前,唯有现代生物医药方可肩负起彻底攻克肿瘤的人类使命,肿瘤治疗着实进入到一个两难的局面。在对肿瘤患者机体癌细胞进行杀死时,同时会危机到患者机体的正常细胞。基于此,现代生物医学提出了导向治疗理论。导向治疗指的是借助抗体寻找靶标,就好似导弹的导航仪,于病灶中有效引入肿瘤药物,从而不至于伤及到其他正常细胞[2]。现阶段,在数百余种开发的现代生物技术药物中,存在一半被用于肿瘤治疗,对肿瘤发病机制研究、抗肿瘤新药研发及现代生物技术均呈现出良好的发展前景。
1.2神经退行性疾病治疗
神经退行性疾病,好比小脑萎缩症、帕金森氏病、脑中风等,势必会愈来愈有赖于现代生物医药的发展。单单美国每年中风患者就超过80万,且死于中风人数达到20万,而治疗此类疾病的有效药物十分有限,特别是治疗不可逆脑损伤方面的药物更是极少,伴随神经生长因子、溶栓活性酶的开发为治疗此类病症带来了希望[3]。
1.3自身免疫性疾病治疗
当前,现代生物医药在治疗自身免疫性疾病中扮演着十分重要的角色。诸多炎症是由机体自身免疫不足造成,好比风湿性关节炎、哮喘、皮肌炎等,全球范围内全年单单用于风湿性关节炎的治疗费用超过千亿美元,治疗此类顽疾的高效基因药物市场前景十分可观。在自身免疫性疾病中,艾滋病(AIDS)是属于对人类危害最大的一种病症,现阶段治疗AIDS仍旧还没有十分有效的特异性药物,但很显然,医药领域已经把攻克AIDS的希望寄托于现代生物技术。
2现代生物技术在医药领域的应用
2.1制取活性物质
在现代医药领域中,医疗环节应用的抗生素、菌体药物及酶制剂等各种类型药物,均是通过微生物发酵而成的,此类微生物发酵产物只不过是不计其数生物活性物质中的几种。一般而言,生物活性物质均是通过液体深层培养法而生成的,一些物质可发挥对生物体内酶活性予以抑制的作用,此类物质即为酶抑制剂,酶抑制剂在医药领域有着十分可观的发展潜力。在现代医药领域中,诸多生理活性物质均可借助现代生物技术得以生成。就好比,在治疗大部分关节炎过程中,体激素往往能够获得满意的疗效,体激素成分中可的松对于风湿性关节炎疗效则更为显著。而醋酸可的松属于以脱氧胆酸为生产的原料,通过32个环节的化学反应合成而来,如若借助黑根霉将黄体转换成11-a-轻基黄体酮,则能够省去多个不必要的化学合成工序,有效提升其收率[4]。
2.2开展基因治疗
自基因角度而言,基因治疗指的是将具备正常功能的基因置换或是增补到部分存在缺陷的基因中,进而实现对基因缺陷予以修复的目的。自治疗角度而言,基因治疗指的是借助导入遗传物质对病患机体细胞基因予以转变,进而实现防治疾病的目的,此种导入基因既可以是与缺陷基因有着对应功能的同源基因,又可以是与缺陷基因不存在关联的治疗基因。在应用现代生物技术开展基因治疗期间,多采用下述两种治疗方式:(1)生殖细胞基因治疗法,即借助现代生物技术对生殖细胞基因表达予以转变;(2)体细胞基因治疗法,即借助现代生物技术对体细胞基因表达予以转变。自理论角度而言,对生殖细胞缺陷予以修复,一方面能够对当代基因缺陷展开治疗,一方面能够保证基因缺陷不至于遗传到下代人细胞基因中。
2.3改进生产工艺
现如今,我国已设立了国家基因资源库、生物样本库及蛋白质库,将各式各样化学药物制剂技术、基因重组治疗性抗体、大规模培养、基因治疗等作为关键,通过一些大规模企业构建健全医产学研密切相融的新药研发体系。在应用基因工程技术改进药物生产工艺期间,其能够起到提升菌种生产性能和水平、简化工艺改善收率、优化工业生产菌种及极大降低生态污染等作用。世界范围内生物制药市场中基因工程药物已经占据很高的份额,有着高成长、不易攻破壁垒及极佳市场潜力等特点。自上世纪90年代以来,我国基因工程药物复合增速超过5层,平均毛利率高达80个百分点[5]。基因工程药物包括单抗、重组蛋白及新型疫苗等,近些年借助基因技术改进亚欧无生产工业、生成高产菌株的实例不断增多。
2.4单体克隆
单体克隆抗体一经问世,便得到医药领域专家、学者的热切关注,其不仅具备可标准化、质地均一、反应灵敏等优势特征,还能够展开大规模大批量的工业化生产。现如今,市场上已有数以百计的单抗治疗制剂、单抗诊断试剂,且还存在诸多单抗治疗制剂正在被开发。单抗偶合物能够展开机体定位诊断,有效促进肿瘤、心脑血管疾病等病症诊断工作的开展。单抗偶合物一方面能够促进机体肿瘤定位,一方面能够展开导向治疗,强化肿瘤治疗药物的细胞毒性功效,降低不良反应及用于杀死机体肿瘤细胞等。此外,单抗简易家庭诊断药物,好比糖尿病诊断药物、妊娠诊断药物等逐步在市场中推广,简易诊断法作为一种时展趋势将逐步由医院转至家庭。
3结束语
总而言之,现代生物技术在医药领域的广泛应用,为人类增强体质、攻克病魔做出了不可磨灭的贡献。在预防、诊断和治疗影响人类健康的重大疾病方面也起到了关键的作用,基于此形成的生物医药产业是截至目前现代生物技术最为庞大的应用领域。
参考文献
[1]臧秀兵.浅谈生物技术在现代医药行业的应用[J].科技创新与应用,2012(27):32-32.
[2]黄金会,罗浩原.基于生物技术在现代医药行业的应用分析[J].生物技术世界,2015(9):155-155.
[3]王可炜,羊芳明.现代生物技术在中医药创新发展中的应用和挑战[J].按摩与康复医学(下旬刊),2011(36):34-35.
食品分析是食物营养评价和食品加工过程中质量保证体系的一个重要组成部分,它始终贯穿于食物资源的开发、食品加工与销售的全过程。随着人们生活水平的提高,特别是我国加入W TO后,我国食品走向世界的关税壁垒将逐渐被技术壁垒所取代,一方面,食品的功能性和安全性将越来越受到重视,对其分析精度和检测限的要求越来越高;另一方面,作为食品生产企业和政府监管机构,对食品品质的控制则要求能实现现场无损检测和快速检测,而对分析精度和检测限的要求则相对较低。因此,食品分析技术正向着省时、省力、廉价、减少溶剂、减少环境污染、微型化和自动化方向发展。现对近年来在食品分析中出现的新生物技术作一简单介绍。
1、生物芯片技术
主要特点及其在食品分析中的应用。生物芯片技术具有可实现样品分析过程的连续化、集成化、微型化和信息化等特点,目前已应用于食品卫生检验、食品毒理学研究、分子水平上阐述食品营养机理和转基因食品的检测等多个领域。基于生物芯片在用于基因表达分析及蛋白质检测方面具有无可比拟的优越性,结合了多门学科中的高新技术,因此,其优越性将会日趋明显,预计将会成为未来食品安全检测分析中的生力军。
2、生物传感器技术
2. 1、基本原理
生物传感器是指把用固定化的生物体成分(酶、抗原、抗体或激素 )或生物体本身的细胞、细胞器、组织和器官等作为敏感元件的传感器。生物传感器技术是建立在细胞固定化和酶固定化技术基础之上的,它以生物分子去鉴别被测物,然后将生物分子所发生的物理变化或化学变化转化为相应的电信号并予以放大输出,从而得到相应的检测结果。
2. 2、主要特点及其在食品分析中的应用
由于生物传感器具有结构简单、体积小、响应速度快、样品用量少、可反复使用、灵敏度高、特异性好、不需要对被测组分进行分离和测定时不需另加试剂等特点,所以使用方便,有利于现场快速检测,故用生物传感器作为检测装置时主要应用在糖类、氨基酸类、有机酸和Vit等食品成分分析上,在食品添加剂 (亚硫酸盐、亚硝酸盐、甜味素和过氧化氢 )的分析、食品中细菌和病原菌的检测、食品鲜度的检测、食品滋气味及成熟度的检测等领域中也有应用。在未来知识经济发展中,生物传感器技术是介于信息技术和生物技术之间的新增长点,正逐渐变为在线检测的主要手段,在食品分析中有着广泛的应用前景。
3、免疫分析技术
3. 1、基本原理
免疫分析技术是指利用抗原抗体间的特异性反应为基础,结合各种定量信号方法来对某种物质进行定性或定量测定的一种技术,是一类高灵敏度、高特异性检测技术的统称,广泛应用于各行业。该类技术的基本原理相同,仅标记物质不同,最终测定所发出的信号不同。根据文献报道,具有推广价值或已广泛应用的有放射免疫分析、荧光免疫技术、酶联免疫检测技术、发光免疫分析技术、免疫电镜技术和胶体金免疫标记技术等。
3. 2、主要特点及其在食品分析中的应用
免疫分析技术具有高特异性、高灵敏性、操作简便安全无污染、干扰小和再现性好等特点,现已广泛应用在食品中微生物 (如沙门氏菌 )的检测、食品中的抗生素和激素的检测、食品中的真菌毒素检测、食品中的除草剂和杀虫剂等农药残留检测、食品中的营养素 (如蛋白质 )的检测等项目,市场上已有部分商品化的试剂盒供应。目前几乎所有的常用兽药都建立了免疫检测方法,大部分已成功的运用在动物性食品中兽药残留的检测,随着分析技术自身的优势和方法上的不断完善,尤其是制备更加特异的单克隆抗体或功能更加完备的重组单链抗体,以及免疫传感器技术和芯片技术的日臻完善,免疫分析技术在食品安全快速检测领域将发挥愈来愈重要的作用。
4、酶法分析技术
4. 1、基本原理和方法
酶分析法在食品分析中的应用主要有两个方面:一是以酶为分析对象,根据需要对食品加工过程中所使用的酶和食品样品中所含的酶进行酶的含量或活力的测定;二是利用酶的特点,以酶作为分析工具或分析试剂,用于测定食品样品中用一般化学法难于测定的物质。随着技术的发展,现已出现多酶偶联测定法、利用辅酶作用或抑制剂作用测定法、通过酶反应循环系统的高灵敏度测定法、酶标免疫检测法和放射性同位素测定法等新方法。
4. 2、主要特点及其在食品分析中的应用
与其它分析方法相比,酶法分析最大的特点和优点就是它的特异性强,对样品不需要进行复杂的预处理。此外,由于酶的催化效率高,酶反应大多比较迅速,故酶法分析速度快。酶法分析已应用在食品中葡萄糖的定量分析、食品中无机金属离子的测定、食品中Vit的测定、食品中农药残留的检测、食品中嘌呤和核苷酸的检测及食品中毒素检测等领域,并且酶法分析正朝着方便快速等方向发展,如将酶制成酶电极,直接测定,省去试剂配制和标准曲线的制作等步骤。目前已实际应用在分析中的酶电极有L -氨基酸氧化酶电极、过氧化物酶电极和脲酶电极等。
5、结束语
随着生物技术的发展,人们已逐步认识到生物技术在食品分析中的重要作用。生物技术检测方法以其自身独特的优势在食品分析中显示出巨大的应用潜能,其应用几乎涉及到食品分析的各个方面,包括食品的品质评价、食品的质量监督、生产过程的质量监控及食品科学研究等,尤其是它能够对许多过去难于检测的成分进行分析。目前由于各种条件的限制,生物技术在食品分析中的应用还不普及,随着科学技术的不断发展,在不久的将来,生物技术在食品分析中将占有越来越重要的地位。
根据2005年《缅甸农业生物技术》报告,目前在生物安全和转基因食品或转基因衍生食品的管理方面,缅甸还没有相关的国家政策和指导方针。生物安全政策是一个能够明确表述国家发展政策和配置优先权的法律,包括针对生物技术。缅甸已加入东南亚国家联盟(AssociationofSoutheastAsianNations,ASEAN)生物安全框架协议,也承诺实施卫生和植物检疫措施,并实行流通商品转运过程中的ASEAN框架协议。然而,一些法律条文(例如杀虫剂法、植物害虫检疫法和动物健康和发育法)也直接或间接与生物安全问题相关。目前,缅甸还没有与种子相关的法律条文,缅甸农学院正在就林业、畜牧业和渔业起草相关的法律。尽管没有相关转基因食品商业化和很少的转基因作物栽培方面所适用的规章制度,但是缅甸很有可能从邻国(特别是中国和印度)进口种子(也可能是转基因种子)[5]。
缅甸生物技术研究与应用现状
1水产病害生物防治技术
这些年,国内水产养殖规模扩大。但是,一些病毒病、细菌病的感染,严重制约水产集约化发展。而抗生素药物的滥用,导致这些致病菌源的耐药性增强,以往的适用药剂久治难愈。就此,迫切需要一种生态环保型的防病措施加以替代。为此,生物技术应用而生,虽然还处于研发阶段,但是很多技术上的优势,让我们看到了降药残、抗耐药性的曙光。用于水产病害防治的生物技术,主要是借助生物基因重组、反义核酸、反义核酶等技术而改变水产动物的抗病性,以起到降低病害、提高产量、获得高效益产出的目的。从生物防治的应用效果来看,展现出这些技术优势:减少化学药剂使用量,降低药物残留,节约生产成本。降低耐药性,有效抑制致病菌源的扩散蔓延。有利于生态环保,为消费者提供绿色、无公害水产品。有利于保护生态环境,响应构建生态环保社会的响应。
2螃蟹病害影响因素
不同其他水产养殖,螃蟹养殖要获得高产高效,需要注意的事项更多。这些细节一旦疏忽,将会造成严重的病害威胁。
2.1水质问题
螃蟹生活在水中,对水质的要求更高。尤其池塘中养蟹,水体必须做出处理,否则会为病害感染创造条件。其一,定期组织消毒。消毒常用漂白粉、生石灰,在杀灭致病菌的同时,能确保水体洁净卫生。其二,投放腐殖质肥料。池塘中加适量腐殖质,主要用作肥料。达到水体变青绿色,证实养分充足。
2.2生存环境
生存环境除水质,还有居住和活动场所。螃蟹营养储备源自水中,多数以水草为食源,泥沙仅仅能辅助消化。螃蟹一般居住在较为潮湿的环境内,对于生长环境的水质有较高的要求,养殖螃蟹时应对养殖环境的水质做好清洁工作,布置适量较为茂盛的水草,使螃蟹能够小范围的活动,并围绕着产生很多昆虫、小鱼、小虾等等,会使螃蟹的生存环境更加健康,生态系统更加完善,对避免各种病害效果不错。
3生物技术在螃蟹养殖病害防治上的应用
3.1基因重组用于增强抗病性
以往螃蟹病害的防治,对消毒剂、抗菌素的依赖较大。此类药物的频繁使用,一方面影响水产养殖环境;另一方面造成病原微生物的耐药性。为避免此类问题的问题,可尝试借助病毒蛋白基因重组技术,加载到合适的载体中,而后注射到螃蟹常食用食物中,以增强其抗病体质,确保螃蟹养殖的稳定性和安全性。
3.2生物反义技术用于病毒病的控制
螃蟹养殖生产中,病毒病的危害较大,借助水平传播和垂直传播,能殃及整个螃蟹池。在病毒病的控制中,生物反义技术的作用显著。该项技术的作用原理,利用反义核酸技术和反义核酶技术,对病毒原核细胞和真细胞进行基因操作,以抑制病毒的合成和复制,有效控制螃蟹病毒病的传播。作为一种新型的生物控病技术,其用于螃蟹病毒病的防控功效是不容置否的。但是,还需要不断的完善,以扩大病毒病防控的应用范围。
3.3转基因用于增强免疫力
螃蟹养殖生产期间,在例行消毒、投药预防等工作时,或多或少在水体中会形成药物残留,久之会造成机体的某些病理病变。出于病防重于治的考虑,可借助转基因技术,提前在螃蟹体内注射特定启动因子的外源基因,使着病毒反义RNA序列提前得以表达,这样后期病毒内侵后的复制将受阻,而起到控制病害的目的。自长远角度考虑,该项技术对螃蟹养殖的病害防控是很有效的,但是当前还没有得到大面积的推广应用。
3.4基因工程苗用于预防接种
中图分类号:S531;Q789 文献标识码:A 文章编号:0439-8114(2016)11-2721-06
DOI:10.14088/ki.issn0439-8114.2016.11.001
Application of Modern Biotechnology in Ipomoea batatas Breeding
YANG Han1,CHAI Sha-sha2,SU Wen-jin2,LEI Jian2,WANG Lian-jun2,SONG Zheng2,LIU Yi3,YANG Xin-sun2
(1.College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;2. Institute of Food Corps, Hubei Academy of Agricultural Sciences, Wuhan 430064, China;3. Agronomy College, Yangtze University, Jingzhou 434023, Hubei, China)
Abstract:The modern biotechnology has overcome the difficulties which could not be solved in the past in Ipomoea batatas breeding.Mutation breeding, cell engineering, molecular markers,genetic engineering etc., are playing very important roles in Ipomoea batatas breeding for high yield, good quality,resistance to diseases and pests and other characteristics.The research and utilization of mutation breeding, cell engineering,molecular markers and genetic engineering in Ipomoea batatas breeding are reviewed in this paper.
Key words:Ipomoea batatas; modern biotechnology; breeding; mutation breeding; cell engineering; molecular marker; genetic engineering
甘薯(Ipomoea batatas)属旋花科甘薯属,为一年生或多年生蔓生草本,是中国的重要粮食作物、饲料作物和新型生物能源作物,具有极高的经济价值。甘薯含有60%~80%的水分,10%~30%的淀粉(支链淀粉含量高,易被人体消化吸收),5%左右的糖分,还富含人体必需的多种维生素(VA、VE、VB1、VB2、VC等)、氨基酸(赖氨酸含量较高)、蛋白质、脂肪、膳食纤维以及钙和铁等多种矿物质。甘薯中的活性化学物质(脱氢表雄酮)可以抑制癌症和预防癌细胞增殖[1]。因此,培育出高产、稳产、优质的品种及各类不同用途和种类的品种如食用、加工用、饲料用、茎尖菜用等[2]具有非常重要的现实意义。但是由于甘薯的高度杂合性、杂交不亲和性、遗传资源匮乏、遗传基础狭窄、优异近缘野生种利用困难和病虫害、病毒病危害严重[3],极大地制约了甘薯的生产和发展。但传统育种模式周期长,品种改良进度缓慢,难以满足发展需求。生物育种是目前应用推广最为迅速的技术,它突破了传统育种的局限性,有利于加速培育高产、优质、抗逆、广适的新品种。本文重点介绍近年来几种主要生物技术,包括诱变育种、细胞工程、分子标记辅助选择育种和基因工程在甘薯育种中的发展与应用。
1 诱变育种
甘薯是一种无性繁殖作物,其自然变异和人工诱变产生的变异,是甘薯育种重要的变异来源,因此诱变育种一直是甘薯育种的一条重要途径,也是发展比较早的一种技术。
在自然条件下,由于外界环境的变化和遗传结构的不稳定性,植物本身会发生自发突变,但是这类突变发生的频率较低。自然变异突变体的选择、鉴定是甘薯种质创新的主要途径。张连顺等[4]从抗薯瘟病的闽抗329中选育出了兼抗蔓割病、藤蔓旺盛的闽抗330,张永涛等[5]、李培习等[6]分别从高抗根腐病的徐薯18芽变体中选育出了兼抗茎线虫病的临选1号和富贵1号。
辐射诱变的方式包括χ射线、60Co处理、80 Gy γ射线处理、搭载返回式卫星进行空间诱变处理等。但诱发突变的方向难以控制,有利突变频率不够高。通过辐射诱变育种加以多年筛选获得了比较好的品种如较徐薯18高抗黑斑病的品系农大601[7]和抗线虫扩展、薯皮色同质、干物率高、食味优、高胡萝卜素突变体及淀粉类型和紫色素类型育种材料[8]。
化学诱变具有专一性强、突变频率高,突变范围大的特点,为多基因点突变,诱变后代的稳定过程较短,可以缩短育种年限。Luan等[9]用EMS处理鲁薯8号愈伤组织,并通过离体筛选,获得3个耐盐突变体株系(ML1,ML2,ML3)。王凤保等[10]用0.05%秋水仙素和2%二甲基亚砜混合水溶液处理秦薯1号甘薯种子,选育出高产、高淀粉、低β-淀粉酶活性、高蛋白质、高铁、早熟的短蔓型甘薯新品种短蔓3号。王芳等[11]用0.5% NaN3处理澳大利亚Au1990sp紫甘薯的胚性细胞团,选育出品种适应性广、产量高、品质佳、抗性强的甬紫薯1号。
2 细胞工程
甘薯细胞工程主要有体细胞胚发生、原生质培养、细胞悬浮培养、茎尖分生组织培养等,在种质资源创新、新品种选育和脱毒苗工厂化生产等方面具有广阔的应用前景。目前主要通过茎尖诱导体细胞胚胎的植株再生。利用甘薯茎尖培养诱导得到胚性愈伤后,通过液体振荡悬浮培养可以迅速增殖,利用农杆菌介导、基因枪、电激等方法研究甘薯的遗传转化。在此过程中,常常会出现自发变异,通过对这些突变体进行筛选,也可以用于甘薯新品种选育[12]。
甘薯容易侵染的病毒和类病毒种类较多,加上甘薯属于无性繁殖作物,病毒能够在植株体内不断增殖积累,使甘薯病毒病的危害逐年加重,造成了大幅度的减产。利用甘薯茎尖病毒含量低或不带病毒的特点,通过茎尖分生组织培养可以生产甘薯无毒苗。脱毒甘薯增产效果显著,根茎叶生长旺盛,光合效率高,抗逆能力强[13]。经检测确定为不带病毒的组培苗可以进行快繁和原种生产。
3 分子标记辅助选择育种
分子标记在甘薯遗传育种中的应用是利用标记将不同甘薯品种DNA序列上的多态性体现出来,可利用其进行种质鉴定、基因定位、遗传图谱构建和辅助育种等并最终应用到生产实践中。在作物遗传改良过程中,形态标记、细胞学标记和同工酶标记等已很难满足对它们的基因组进行更详细研究的需要。随着分子生物学的发展,产生了多种基于DNA多态性的分子标记技术,在甘薯育种中应用较多的是RAPD、AFLP、ISSR、SCAR和SNP等。
3.1 构建甘薯分子遗传图谱
由于甘薯的遗传背景较复杂,对甘薯基因组的研究较滞后,分子标记的数量和种类相对匮乏,分子遗传图谱的构建要落后于水稻、玉米等作物。Kriegner等[14]在2003年用AFLP技术构建了首张甘薯遗传连锁图,632个母本标记和435个父本标记分别排列在Tanzania的90个连锁群和Bikilamaliya的80个连锁群上,共定位了1 100个AFLP标记,平均遗传距离为5.9 cM。随着甘薯栽培种转录组测序的完成和分子标记技术的发展,李爱贤等[15]在2010年利用SRAP标记构建了漯徐薯8号和郑薯20连锁图谱,漯徐薯8号的81个连锁群由473个SRAP标记组成,总图距为5 802.46 cM,标记间距为10.16 cM,郑薯20的66个连锁群由328个SRAP标记组成,总图距为3 967.90 cM, 标记间距为12.02 cM。Zhao等[16]在2013年利用AFLP和SSR标记构建了徐781(高抗茎线虫病)和徐薯18(高抗茎线虫病)的连锁图,徐薯18的90个连锁群含有1 936个AFLP和141个SSR标记,总图距为8 184.5 cM,标记间距为3.9 cM;徐781的90个连锁群含有1 824个AFLP和130个SSR标记,总图距8 151.7 cM,标记间距为4.2 cM。这也是到目前为止标记密度最高、基因组覆盖率最广的甘薯栽培品种分子标记遗传图谱。
3.2 绘制指纹图谱,鉴定甘薯品种
甘薯是一种无性繁殖作物,其品种数量多、同种异名、同名异种的情况比较普遍,在甘薯的生产过程中容易出现品种间混淆的情况,使得品种鉴定困难,影响品种的改良和育种。随着分子生物学的快速发展,DNA分子标记技术已成为指纹图谱构建和品种鉴定的主要方法。指纹图谱能够在分子水平上鉴别生物个体之间的差异,可以有效克服形态和生化上的局限性,是甘薯品种鉴别的重要工具,在生产实践上具有重要意义。
目前用来作DNA指纹图谱的标记主要有RAPD、SSR、ISSR、AFLP、SRAP等。Arthur等[17]应用RAPD标记分析在美国8个州种植的甘薯品种“Jewel”的无性系,发现其中5个的多态性谱带在7.1%~35.7%之间,表明RAPD标记可以检测无性系中的变异。王红意等[18]研究表明通过RAPD标记产生的指纹图谱可以将30个中国甘薯主栽品种分为3类。罗忠霞等[19]采用EST-SSR标记,利用2对引物将52份甘薯品种区分开,建立了52份甘薯品种的指纹图谱。季志仙等[20]利用ISSR技术对不同引物获得的指纹图谱进行了分析,发现利用2对引物即可将供试的17份甘薯品种区分为4类。蒲志刚等[21]利用AFLP技术通过五对引物构建出47个品种南瑞苕的指纹图谱,将其分为5类。张安世等[22]利用SRAP技术通过2对引物构建出22种甘薯品种的DNA指纹图谱,将其分为7类,随后又利用ISSR技术通过3对引物将22种甘薯品种分为4类[23]。
3.3 甘薯基因定位和DNA分子标记辅助选择育种
甘薯许多重要的农艺性状如块根产量、品质(淀粉含量、胡萝卜素含量)、抗病性(茎线虫病、根腐病和黑斑病)等都属于多基因控制的数量性状,在甘薯分子连锁图谱的基础上,对重要农艺性状进行QTL定位,进而克隆相关性状的主效基因,是甘薯育种研究的重要方向。DNA分子标记辅助选择育种具有方便、快捷、准确等特点,且较少受季节、发病条件、发育条件、鉴定方法等因素的限制,可以在低世代进行早期选择,更适合目前育种的需要。目前该技术已广泛应用于甘薯的育种研究中。
Ukoskit等[24]利用甘薯易感根线虫病品种与抗根线虫病品种杂交,用760个RAPD引物对2亲本和F1分离群体进行分析,筛选出1个抗根线虫病的基因。柳哲胜[25]用RAPG法和改进的SSAP技术对农大603和徐薯18的基因组进行抗茎线虫病相关基因的分析,结果显示由片段54设计的引物在抗病和感病品种之间扩增出多态性带,推测片段54是与甘薯抗茎线虫病有关的RGA(Resistance gene analog),并得出甘薯MIPS基因可能与甘薯抗茎线虫病有关。周忠等[26]对高抗茎线虫病的徐781和高感茎线虫病的徐薯18的后代进行抗病性鉴定和RAPD分析,得到与抗茎线虫病基因相连锁的RAPD标记OPD0l-700,经证明,该标记可作为甘薯抗茎线虫病辅助育种的分子标记,并在甘薯育种尤其是抗病品种选育中发挥较大的作用。王欣等[27]利用对高抗亲本徐781和高感亲本徐薯18的F1分离群体的161个品系进行OPD01-700的克隆和测序,成功地将OPD689标记转化为SCAR标记,初步验证结果与田间鉴定结果基本一致,初步建立了甘薯抗茎线虫病育种分子标记辅助选择技术。袁照年等[28]以金山57×金山630的杂交F1分离群体为材料,按F1单株抗性分群,建立薯瘟病抗病池和易感池,分别以其为模板进行RAPD分析,结果显示其中S213-500在抗感池和易感池间显示多态性,可以作为抗Ⅰ型薯瘟基因的连锁标记,在鉴定甘薯抗I型薯瘟病方面具有应用价值。苏文瑾等[29]在已有的高抗根腐病品种徐薯18与高感品种胜利百号F1分离群体抗性鉴定的基础上,采用分离群体混合分析法(BSA)与AFLP技术相结合,发现显性标记Eco(45)-Mse(45)与感病基因连锁,对甘薯抗根腐病的遗传改良具有指导意义。蒲志刚等[30]以南薯88等12个抗感黑斑病品种为材料,建立了甘薯黑斑病的AFLP分子标记体系,并用该体系找到了与甘薯抗黑斑病紧密相关的特异性DN段,为甘薯抗黑斑病分子标记辅助育种奠定了基础。
吴洁等[31]利用甘薯高淀粉品种绵粉1号和甘薯低淀粉品种红旗4号杂交F1代分离群体采用SRAP分子标记,将1个与淀粉含量相关的QTL定位到绵粉1号遗传图的第三连锁群上。蒲志刚等[32]利用甘薯高淀粉品种绵粉1号与甘薯低淀粉品种红旗4号杂交F1代分离群体,在绵粉1号遗传图的第二连锁群上检测到E1M7-2可作为淀粉的临近QTL。李爱贤等[33,34]以高淀粉、低胡萝卜素含量的甘薯品种漯徐薯8号和低淀粉、高胡萝卜素含量的甘薯品种郑薯20杂交得到的F1分离群体,采用SRAP分子标记的方法在父本郑薯20的Z31连锁群上检测到1个与淀粉含量相关的QTL,并检测到17个与甘薯β-胡萝卜素含量相关的QTLs,其中10个定位在郑薯20图谱上,7个定位在漯徐薯8号图谱上。
3.4 甘薯转录组测序和分子标记的开发
转录组测序(RNA-seq)操作简单,不局限于已知的基因组序列信息,可获得低丰度表达基因,具有通量高、灵敏度高、成本低及应用领域广等优点。转录组研究是基因功能与结构研究的基础和出发点,利用新一代高通量测序,能够快速全面地获得某一物种目标细胞在某一特定状态下的全部RNA序列的信息,例如发现新转录本、了解基因的表达量、挖掘单核苷酸多态性(SNP)、结构性变异等[35]。目前,测序技术已成为分子生物学研究中最常用的技术。相比于其他作物,甘薯的基因数据资源极少,这给甘薯的分子生物学研究带来极大的不便。Gu等[36]应用Illumina的RNA-Seq技术对不同的甘薯组织与发育阶段进行高通量的转录组测序,通过对甘薯的转录组从头组装、基因注释和代谢通路分析,得到了大量重要的转录本信息,如淀粉合成、抗盐、抗旱、转座子和病毒等相关基因。Tao等[37]利用Illumina数字基因表达(DGE)标签分析甘薯的7个组织的转录组的差异,鉴定出大量的差异和特异表达的转录本,主要涉及病毒基因组的基因表达方式、淀粉代谢、潜在耐逆性和抗虫性等方面。
转录组测序的高通量特点使分子标记的大规模发掘得以实现。基于转录组测序开发的分子标记主要为SSR和SNP。Wang等[38]采用同样的方法获得56 516个unigenes,基于与已知的蛋白序列的相似性搜索,总共鉴定发掘出114个cDNA的潜在的SSRs。Xie等[39]通过对紫薯转录组的高通量测序,获得58 800个unigenes,发掘出851个潜在的SSRs。SNP是基因组中最普遍的遗传变异,有着分布广、数量多、遗传稳定性高、密度高、易于实现分析自动化等诸多优点,是构建遗传图谱、完成分子标记辅助育种的一种非常重要的遗传标记,新一代的高通量测序平台为SNP位点的检测提供了强有力的技术支持。许家磊[35]在淀粉含量、薯干产量和茎线虫病抗性差异明显的徐781和徐薯18的Illumina RNA-seq测序结果中已获得1 386个SNP候选位点的基础上,发现Tetra-primer ARMS-PCR可以检测出SNP分子标记,可以用于甘薯SNP分子标记的开发。苏文瑾等[40]利用简化基因组测序技术(SLAF-seq)对300份甘薯种质资源的大群体测序,通过生物信息学分析进行系统设计,筛选特异长度的DN断,构建SLAF-seq文库后高通量测序,通过软件分析比对,获得260 000个多态性SLAF标签,在多态性SLAF标签上共开发得到795 794个群体SNP位点。
4 甘薯基因工程
1983年世界首例转基因植物培育成功,标志着人类用转基因技术改良植物的开始,至今已有120多种植物转基因获得成功。近年来基因工程技术在农业作物育种领域已经取得成功并逐步推广,基因工程技术已成为普及应用最快的先进农作物改良技术之一。基因工程技术是提高作物产量和改良作物品质的有效途径,给人类带来巨大的社会和经济效益。相对于其他作物,甘薯基因工程的研究起步较晚。自1987年以来,许多学者陆续报道把抗性基因nptII和标记基因Gus转入甘薯,成功地获得了转基因的愈伤组织、芽或再生植株,为进一步转化目的基因改良甘薯积累了经验[41]。近年来,在应用基因工程提高甘薯蛋白质或淀粉含量、改善蛋白质氨基酸组成或淀粉组成、提高甘薯抗虫及抗逆性等方面取得了较大进展。
4.1 甘薯品质改良的基因工程
甘薯品质改良主要集中在淀粉、蛋白质和胡萝卜素方面。Shimada等[42]构建了编码甘薯淀粉分支酶的IbSBEII基因的dsRNA干扰载体并通过农杆菌转化进入甘薯基因组,转基因植株的淀粉具有较高的直链淀粉含量。Otani等[43]通过RNA干扰技术抑制甘薯淀粉粒附着性淀粉合成酶I(GBSSI)基因的表达,培育出不含直链淀粉的转基因甘薯植株。Takahata等[44]通过抑制淀粉合成酶Ⅱ(SS Ⅱ)的表达改变支链淀粉的结构降低甘薯淀粉的糊化温度。Santa-Maria等[45]从海栖热袍菌中克隆了一个编码极端嗜热α-淀粉酶的基因,通过根癌农杆菌介导的转化获得的转基因植株在80 ℃具有自发处理淀粉为可发酵糖的能力。
罗红蓉等[46]用根癌农杆菌介导获得了含人乳铁蛋白基因(hLFc)的甘薯抗性愈伤组织,为获得具有转人乳铁蛋白基因的甘薯材料奠定了基础。高峰等[47]获得了转玉米醇溶蛋白的转基因甘薯植株。脂联素(Adiponectin)具有抗炎、增加机体对胰岛素敏感性和降糖、抗动脉粥样硬化的作用。Berberich等[48]利用根癌农杆菌介导的转化获得表达Adiponectin cDNA的转基因甘薯植株。Kim等[49]利用RNAi沉默CHY-β基因,可以增加甘薯中的β-胡萝卜素的含量和类胡萝卜素含量。
4.2 甘薯抗病虫的基因工程
甘薯病毒、病虫害严重影响产量。Kreuze等[50]研究利用靶向编码SPCSV(甘薯褪绿矮化病毒)和SPFM(甘薯羽状斑驳病毒)序列复制酶的内含子剪接的发夹结构的RNAi策略通过根癌农杆菌转化甘薯,转基因植株对SPCSV和SPFMV的抗性显著增强。Muramoto等[51]的研究表明,转大麦αHT基因的甘薯植株的叶片和块根表现出对黑斑病菌的抗性。蒋盛军等[52]用根癌农杆菌介导法将OCI(水稻巯基蛋白酶抑制剂基因)导入甘薯品种栗子香中获得了转基因植株,对转基因甘薯植株对甘薯线虫病的抗性进行了初步研究。
[43] OTANI M,HAMADA T,KATAYAMA K.Inhibition of the gene expression for granule- bound starch synthase I by RNA interference in sweet potato plants[J]. Plant Cell Reports,2007, 26(10):1801-1807.
[44] TAKAHATA Y,TANAKA M,OTANI M. Inhibition of the expression of the starch synthase II gene leads to lower pasting temperature in sweetpotato starch[J].Plant Cell Reports,2010, 29(6):535-543.
[45] SANTA-MARIA M C,YENCHO C G,HAIGLER C H. Starch self-processing in transgenic sweet potato roots expressing a hyperthermophilic α-amylase[J]. Biotechnology Progress,2011, 27(2):351-359.
[46] 罗红蓉,张勇为,张义正.根癌农杆菌转化甘薯高频获得抗性愈伤组织的研究[J].四川大学学报(自然科学版),2002,39(增刊):21-24.
[47] 高 峰,龚一富,林忠平.根癌农杆菌介导的甘薯遗传转化及转基因植株的再生[J].作物学报,2001,27(6):751-756.
[48] BERBERICH T,TAKAGI T,MIYAZAKI A. Production of mouse adiponectin,an anti-diabetic protein,in transgenic sweet potato plants[J]. Journal of Plant Physiology,2005,162(10):1169-1176.
[49] KIM S H, AHN Y O,AHN M J. Down-regulation of β-carotene hydroxylase increases β-carotene and total carotenoids enhancing salt stress tolerance in transgenic cultured cells of sweetpotato[J]. Phytochemistry,2012,74:69-78.
[50] KREUZE J F, KLEIN I S, LAZARO M U. RNA silencing-mediated resistance to a crinivirus(Closteroviridae) in cultivated sweetpotato(Ipomoea batatas L.) and development of sweet potato virus disease following co-infection with a potyvirus[J]. Molecular Plant Pathology,2008,9(5):589-598.
[51] MURAMOTO N, TANAKA T, SHIMAMUR A. Transgenic sweet potato expressing thionin from barley gives resistance to black rot disease caused by Ceratocystis fimbriata in leaves and storageroots[J].Plant Cell Reports,2012,31(6):987-997.
[52] 蒋盛军,刘庆昌,翟 红.水稻巯基蛋白酶抑制剂基因(OCI)转化甘薯获得转基因植株[J].农业生物技术学报,2004,12(1):34-37.
[53] BIAN X F, XIE Y Z, GUO X D. Research advance on molecular mechanism of abiotic and biotic stress resistance in sweet potato[J]. Agricultural Science and Technology,2014, 15(6):901-906.
[54] 阮 龙,高正良,陈义红.干旱耐逆基因(HS1)转化甘薯获得转基因植株[J].激光生物学报,2010,19(4):552-556.
[55] 闫 会.表达Cu/ZnSOD和APX的转基因甘薯植株的再生与耐盐性评价[D].北京:中国农业科学院,2013.
[56] 李建梅,邓西平.干旱和复水条件下转基因甘薯的光合特性[J].水土保持学报,2007,21(4):193-196.
[57] 王 欣,过晓明,李 强.转逆境诱导型启动子SWPA2驱动Cu/Zn SOD和APX基因甘薯(Ipomoea batatas(L.)Lam.)耐盐性[J].分子植物育种,2011,9(6):754-759.
[58] 成雨洁,伍小兵,邓西平,等.干旱胁迫下转基因甘薯块根膨大期水分利用效率和生理代谢特征[J].西北植物学报,2012,32(11): 2255-2263.
[59] KIM S H, AHN Y O, AHN M J. Down-regulation of β-carotene hydroxylase increases β-carotene and total carotenoids enhancing salt stress tolerance in transgenic cultured cells of sweetpotato[J].Phytochemistry,2012,74:69-78.
[60] KIM Y H,KIM M D,PARK S C. SCOF-1 expressing transgenic sweetpotato plants show enhanced tolerance to low-temperature stress[J]. Plant Physiology and Biochemistry,2011,49(12):1436-1441.
现代生物技术即生物工程,是以分子遗传学为核心的现代生物科学技术,它采用先进的科学原理和工程技术手段,按照人们预先的设计,对生物材料进行加工、改造和模拟生物及其功能,为人类生产有益的生物制品、培育优良生物品种或提供社会服务的新兴技术领域。生物工程的内容比较广泛,我的论文主要从细胞工程、基因工程和作物诱变育种等几个方面阐述现代生物技术在育种中的应用:
一、细胞工程育种
细胞工程育种是指用细胞融合的方法获得杂种细胞,这种细胞具有高度分化的能力。对于高度分化的植物细胞仍有发育成完整植株的能力,保持着细胞的全能性。根据这个原理近几年发展起来一项无性繁殖的新技术――植物组织培养技术。
组织培养技术的具体过程是在无菌条件下,将植物器官或组织(如芽、茎尖、根尖或花药)的一部分切下来,放在适当的人工培养基上培养。这些器官或组织就会进行细胞分裂,形成愈伤组织。在适当的光照、温度和一定的营养物质与激素等条件下,愈伤组织开始分化,产生出植株各种组织和器官,进而发育成一棵完整的植株。它的特点是取材少,周期短,繁殖率高,且便于自动化管理。这种技术在花卉方面已经广泛应用并取得可观的经济效益。
二、基因工程育种
基因工程育种主要指转基因技术育种,是采用生物工程技术将一种生物基因嵌入另一种生物中。到目前为止,植物基因工程已经在很多方面有了深入的发展,下面介绍几种基因工程育种的方法。
(一)品质育种。
品质育种主要是以小麦、水稻、玉米等谷类作物为材料加以培育的,因为大多数谷类作物籽粒蛋白质所含氨基酸不够平衡,人体及饲养业所必需的赖氨酸、色氨酸、蛋氨酸等均较缺乏,所含蛋白质的数量及质量已不能适应日益增加的需要及食品加工业发展的要求。经过科学家们的精心研究,目前已经培育出来的有高产作物、促进健康的食品、生物改良新饲料、含抗疾病物质农作物、特种转基因棉花和玉米等。
(二)抗性育种。
生物技术在农作物育种和抗病抗逆方面的作用在进行作物品种改良时,主要是是通过增强作物对害虫或环境条件(例如干早或土壤盐渍)的抵抗力、或是通过开发更高产的植物来增加作物的产量。目前已经培育的抗性作物有抗虫作物、抗病毒作物、抗盐碱作物、抗旱作物、抗寒作物等。
(三)固氮育种。
有些细菌具有固定游离氮的能力,特别是生长在豆科植物根部的根瘤菌能有效地将游离氮转变可被作物直接吸收利用的氮。后来发现有近百种固氮微生物能通过固氮酶完成的。所以人们正致力于把其基因转移到其它作物上去,并分离出一些有利于硝盐吸收和利用的基因,这将大大提高肥料的吸收和利用。
三、诱变育种
人工诱变是指利用物理因素(如X射线、γ射线、紫外线、激光等)或化学因素(如亚硝酸、硫酸二乙酯等)来处理生物,使生物基因突变。用这种方法可以提高突变率,创造人类需要的变异类型,创造人类需要的变异类型,从中选择、培育出优良的生物品种。
我国在农作物诱变育种方面也取得了可喜的成果,培育出了数百个农作物新品种。这些新品种具有抗病力强、产量高、品质好等优点,在农业生产中发挥了巨大作用。例如四倍体葡萄、四倍体番茄、含糖量高的三倍体无子西瓜和甜菜等。
另外还有一种太空育种,也叫空间诱变育种,就是将农作物种子或试管种苗送到太空,利用太空特殊的、地面无法模拟的环境如使种子产生变异,再返回地面选育新种子、新材料,培育新品种的作物育种新技术。太空育种具有有益的变异多、变幅大、稳定快,以及高产、优质、早熟、抗病力强等特点。
四、DNA分子标记辅助育种技术
DNA分子标记辅助育种技术,是通过利用与目标性状紧密连锁的DNA分子标记对目标性状进行间接选择的现代育种技术。该技术对目标基因的转移,不仅可在早代进行准确、稳定的选择,而且可克服再度利用隐性基因时识别难的问题,从而加速育种进程,提高育种效率。与常规育种相比,该技术可提高育种效率2-3倍。由于其明显的优越性,该技术已引起了发达国家的高度重视。技术的关键是与重要农艺性状紧密连锁的DNA分子标记的鉴定。
总之,现代生物技术取得的进展,促进了作物育种的进程。在育种过程中需要分子生物学家和育种工作者两者紧密结合,作到优势互补。分子生物学家需要育种工作者提供更新、更好的作物品种作受体,同时育种工作者需要分子生物学家提供从其他种的动、植物(如细菌、微生物等) 中克隆本品种中没有的抗病、优质、高产等优良性状基因,来改良作物品种。从事常规育种的科技工作者也可将转基因作物中的优良性状基因,通过杂交手段转育到当地丰产的主栽品种中,培育适合当地的丰产、抗病、优质的农作物新品种并应用于生产。
参考文献:
[1]黄大,基因工程正在开辟植物病虫害防治的新途径。 植物保护,1999, (1) :33~36。
[2]沈桂芳,苏宁, 农业高新技术产业化发展趋势。 生物技术通报,2001 , (1) :1~5。
目前在黄瓜育种中,广大科研工作者利用生物技术结合常规育种方法,创新了一大批含有优异基因的黄瓜育种材料,培育出多个丰产、优质、多抗品种。生物技术在黄瓜遗传育种上的应用非常广泛,下面介绍在这方面已取得的一些重要进展。
2分子标记技术在黄瓜遗传育种中的应用
2.1黄瓜基因的分子标记
开展基因分子标记研究是进行分子标记辅助选择育种、分离和克隆基因的基础。“十五”期间,我国科研工作者建立了适合黄瓜的RAPD、AFLP和SSR标记的优化反应体系,并对黄瓜的多个基因进行了分子标记。
钱忠英等[2]优化的黄瓜RAPD反应体系为:PCR程序94 ℃预变性3 min,94 ℃变性30 s,37 ℃复性30 s,72 ℃延伸2 min,循环40周,最后72 ℃延伸7 min为佳;模板DNA的适宜浓度为2.5~5 ng/μL,引物浓度为0.6 mol/μL,dNTPs浓度为0.25 mmol/L,Mg2+浓度为1.875 mmol/L。张桂华等[3]建立了适合黄瓜的AFLP反应体系:在50μL酶切连接体系中,取300 ng基因组DNA进行双酶切和接头连接,然后取4μL酶切连接产物进行预扩增,预扩增产物稀释30倍后,采用“2+3”选择性扩增引物组合用于选择性扩增可以得到很好的扩增效果。葛风伟[4]等摸索了适宜黄瓜的SSR反应体系,认为在25Μl PCR反应体系中,Mg2+的最适浓度为0.2 mmol/L;dNTP最适浓度为0.2 mmol/L;反应体系中Taq聚合酶宜加入1U,引物应加入30 ng;DNA最适浓度为5 ng/μL。另外,刘殿林[5]、张正奇[6]、孙敏[7]等也对黄瓜基因组DNA提取方法和RAPD反应体系进行了探索。
基因分子标记方面,陈劲枫等[8]利用RAPD技术获得了黄瓜全雌性特异的片段B111000。娄群峰等[9]筛选得到了与黄瓜全雌性F基因连锁距离为6.7 cM的AFLP标记TG/CAC234,并将该标记转化为SCAR标记SA166。张桂华等[10]找到2个与白粉病抗病相关基因连锁距离为5.56 cM的AFLP标记,目标片段的大小分别为238 bp和236 bp。张素勤等[11]研究并获得了与控制黄瓜霜霉病和白粉病的感病QTLs均紧密连锁的显性AFLP标记:E25M632-103。该标记从分子水平说明黄瓜霜霉病和白粉病的某个感病QTLs是连锁的。丁国华[12]筛选得到与抗霜霉病基因dm连锁不十分密切的CsRGA3标记。在dm和CsRGA3之间还检测到黄瓜白粉病抗病基因pm的存在,显示了dm和pm存在连锁关系。国艳梅[13]筛选到的AFLP标记E4M6和E5M5,分别与黄瓜营养部分苦味基因Bi连锁,距离15.0 cM;和不苦基因bi连锁,距离18.8 cM。顾兴芳等[14]找到了与黄瓜果实苦味基因Bt紧密连锁的两个显性AFLP标记E23M662-101和E25M652-213,与Bt的遗传距离分别为5 cM和4 cM,且位于Bt两侧。Thomas等[15]以WⅡ983G×Strait8的55个F2+代个体和Iudm1×Strait8的90个F2+代为研究群体,从960对RAPD引物产生的135个多态性标记中筛选出5个与黄瓜霜霉病基因(dm)紧密连锁的标记:G14-800、X15-1100、AS5-800、BC519-1100和BC526-1000。
2.2黄瓜遗传图谱的构建与基因定位
1994年,Kennard等[16]以G421×H-19获得的F2+群体为材料,构建了一张总长为766 cM的遗传图谱,该图谱由10个连锁群组成,包含了58个位点标记,2个位点之间的平均距离为(21±8)cM。同时利用种间杂交GY14×PⅡ83967获得F2+群体构建了含有70个位点,10个连锁组群,总长480 cM的连锁图谱。1997年,Serquen等[17]以G421×H219杂交的100个F2+株系为试材利用RAPD技术构建了一个含有80个位点的连锁图谱,包含了77个RAPD标记,3个形态标记,分为9个连锁组群,整合长度628 cM,平均标记间隔7.8 cM。
2000年,Danin-Poleg等[18]以GY14×PⅡ83967为材料,用SSR标记技术构建了黄瓜的遗传图谱,将14个SSR标记定位到8个连锁组群中,整合图谱总长为783.2 cM,并发现其中有9个标记与甜瓜相同。Bradeen等[19]利用Joinmap软件,以G421×H219的杂交后代群体为研究对象,整合出含有10个连锁群,255个标记,总长为538.6 cM的遗传图谱,平均标记间隔为2.3 cM。又以GY14×PⅡ83967为材料,构建了一张包括了15个连锁组群,197个标记,整合图谱长度为450.1 cM的黄瓜遗传图谱。Park等[20]利用对番木瓜环斑病毒(PRSV-W)和南瓜花叶病毒(ZYMV)敏感的“Straight8”和对PRSV-W、ZYMV有抗性的TMG1(TaichungMouGua)的F6代重组自交系(RLs)为材料,构建了包含353个位点,12个连锁组群的连锁图谱。Fazio等[21]采用G421×H219获得的171个RLs和216个F2+单株构建了包含14个SSR标记、24个SCAR标记、27个AFLP标记、62个RAPD标记、1个SNP标记和3个重要形态学标记(雌性,有限生长和小叶),分为7个连锁组群,总长为706 cM的遗传图谱。Young等[22]以黄瓜抗病毒和感病毒的亲本组成的重组自交系进行AFLP、RAPD、RFLP标记,并构建了353个位点的黄瓜图谱。
“十五”期间,我国科研工作者构建了2张黄瓜遗传图谱,其一是张海英等[23]利用黄瓜重组自交系为作图群体,构建的包含9个连锁组群,共有234个分子标记的连锁图谱,其中包括141个AFLP标记、4个SSR标记和89个RAPD标记,覆盖基因组长度727.5 cM,平均图距3.1 cM。应用该图谱对控制黄瓜耐弱光的数量性状基因(QTL)进行了研究,将影响叶面积增长量的5个QTL分别定位在LG1、LG7和LG9连锁群[24]。其二为李效尊等[25]利用F2+代群体,构建的包含77个SRAP标记和79个RAPD标记的遗传图谱,分属4个大的连锁群和5个小的连锁群,总长度1110.0 cM,平均间距为13.7 cM。并将侧枝基因(lb)定位在一个大的连锁群上,其两侧标记是OP-Q5-1和OP-M-2-2,与lb的间距分别是9.3 cM和15.9 cM;将全雌性基因(f)定位在一个小的连锁群上,其两侧标记是OP-Q5-2和BC151,与f的间距分别是13.8 cM和13.6 cM。
2.3分子标记在黄瓜亲缘关系和遗传多样性上的研究
分子标记技术以其准确性高、速度快、周期短而较多地应用于黄瓜种质亲缘关系分析和种质资源多样性检测方面。利用RAPD标记进行研究的报道有:张海英等[26]分析了华北型与欧洲温室型品种的杂交后代的遗传漂移情况,进行了初步的遗传分析以及F2+个体的基因型分析。刘殿林等[27]分析了39份黄瓜材料的遗传差异,不同材料间的遗传距离(D)在0.0642~0.592之间,并根据遗传距离,按UWPGA法进行了聚类分析。夏立新等[28]计算出黄瓜亲本间分子遗传距离,研究了田间园艺性状与分子遗传距离间各种相关曲线的相关系数。陈劲枫等[29]对黄瓜属的22份材料的亲缘关系进行了研究,聚类分析为2群:CS群(黄瓜、西南野黄瓜及野黄瓜)和CM群(甜瓜、菜瓜、野生小黄瓜及非洲角黄瓜)。庄飞云等[30]也将23份材料按亲缘关系聚类为黄瓜、近缘野生种、种间杂交种和甜瓜亚属种4类。李锡香等[31]分析了66份黄瓜种质基因组DNA,将供试种质分为8个组群。另外,利用RAPD标记可以从分子水平上探测黄瓜亲本自交系与其杂种F1代的遗传差异[32]。
AFLP技术也经常用在亲缘关系和遗传多样性研究上面。王志峰等[33]利用AFLP技术对包括80份山东黄瓜地方品种和24份其他地区品种的遗传亲缘关系进行了研究,聚类分析结果显示:山东黄瓜地方品种与日本品种和欧美品种分属不同类群或亚类群,山东地方品种分为8组,各组内生态类型基本一致。AFLP分析计算出15份密刺类黄瓜品种的遗传距离在0.033~0.686之间,聚类分析分为8类,新泰密刺和山东密刺遗传差异较小,与长春密刺遗传差异较大[34]。李锡香等[35]以8对引物对70份不同来源的野生和栽培黄瓜种质基因组DNA进行AFLP分析,将供试种质聚类为3大种群:西双版纳黄瓜组群、印度野生黄瓜组群和栽培黄瓜组群。Zhuang等[36]用RAPD和SSR分析黄瓜野生种、半野生种的亲缘关系,二者的遗传分析结果具有很高的协调性,二者遗传距离的相关系数为0.94。
另外,李俊英等[37]发现在不同黄瓜品种的线粒体中存在类质粒分布的差异,其存在有一定随机性,不同品种中的同一种类质粒间具有同源性。
2.4黄瓜基因的克隆与表达
黄瓜基因克隆有多篇报道。康国斌等[38]克隆得到了在黄瓜冷敏型品种低温锻炼异表达基因的cDN段(ccr18),大小为639 bp。在基因组中以单拷贝或低拷贝形式存在。ccr18基因与黄瓜低温锻炼相关,与拟南芥染色体IIIBAC库中的F14P3基因组序列具有88 %的同源性。白吉刚等[39]扩增出黄瓜生长素结合蛋白基因(ABPl)cDN段,大小约为800 bp,该基因在开花前1 d的子房中表达信号较弱,在授粉后2 d、4 d和6 d的幼果中表达增强。丁国华等[40]利用简并引物从黄瓜基因组DNA中分离得到15条同时具有特征保守域结构的NBS类型抗病基因同源序列(RGA),翻译产物与许多抗病蛋白有较高的同源性。
牛林海[41]克隆了黄瓜HMG(high mobility group proteins)基因,并认为该基因是单拷贝,具有组织特异性表达,在根中表达最强。叶青静[42]测定了黄瓜果实组织中的与细胞分裂相关的精氨酸脱羧酶(ADC)基因cDNA序列(约1.83 kb)、与细胞膨大有关的扩张蛋白基因cDNA序列(约786 bp)以及一条酸性转化酶的cDNA全长序列(约2.25 kb)。李志英[43]获得了正常和“花打顶”黄瓜之间的2个差异片段所在基因的全长cDNA序列,分别定名为CUATP和CuADC。“花打顶”植株中CUATP的表达明显减少,而CuADC表达量增加。梅茜[44]构建了黄瓜幼果的cDNA文库,得到139个表达序列标签(ESTs),其中有97条与已知基因高度相似,36条为低度相似序列,在GenBank中未找到匹配同源序列的ESTs为6个。娄群峰[45]从中国弱雌性黄瓜中克隆出了全长为1024 bp的ACC合酶基因,包含6个开放阅读框,不同生态型黄瓜中ACC合酶基因序列保守性很强。不具有性型特异性,但在植株不同部位表达程度存在明显差异。
2.5黄瓜杂种纯度及品种指纹图谱分析
黄瓜种子纯度鉴定的常规方法是根据田间表现性状进行鉴定,后来发展为利用同工酶的方法,但二者都有一定的缺陷。利用分子标记技术鉴定黄瓜种子纯度,可以在苗期甚至种子阶段进行,高效快速、稳定可靠。克服了传统田间检验要根据植株园艺性状进行而导致的费时、费力等缺点。但相关报道比较少。
王和勇[46]研究表明,黄瓜不同组织器官的DNA对RAPD扩增无影响,均可获得一致的指纹图谱,并建立了种子纯度鉴定的RAPD的反应体系。孙敏[47]等通过RAPD标记鉴定和分析了黄瓜品种真实性,也建立了适宜黄瓜种子纯度鉴定的RAPD指纹图谱。金红等[48]研究了抗除草剂基因在黄瓜杂种纯度快速鉴定上的应用,摸索出田间抗性鉴定和室内种子抗性鉴定的除草剂临界浓度,建立了一套在种子发芽阶段或2片真叶期进行黄瓜杂交种纯度鉴定的新技术。
2.6分子技术鉴定黄瓜病害
王惠哲等[49]以感病组织和健康组织总RNA为模板,进行cDNA合成和PCR扩增,对75份黄瓜病毒病样本进行了检测,结果从感病组织中扩增出与预期的425 bp大小一致的目标片段,而健康组织无此扩增产物;29份材料检测到TMV,检出率达38.67 %。同样的方法,也检测到黄瓜上的西瓜花叶病毒2号(WMV22)[50]。李淑菊等[51]利用RT-PCR对黄瓜病毒毒原种类进行检测。陈洁云等[52]用同样技术明确了ZYMV和CMV是浙江及其周边地区侵染葫芦科植物最主要的病毒种类,夏季CMV普遍发生,ZYMV主要发生在秋季。
3黄瓜组培技术与单倍体和三倍体培养
利用对黄瓜离体组织的培养,通过愈伤组织和胚状体两条途径均可获得再生植株。何晓明等[53]建立了子叶及下胚轴离体培养体系,通过愈伤组织分化出的不定芽获得再生植株。郭德章等[54]将分离纯化的黄瓜子叶原生质体,培养于mKM8p液体培养基中,原生质体可持续分裂至愈伤组织形成。当再生的愈伤组织直径达0.5~1.5 cm时,及时转入改良的MS附加不同生长激素的培养基上诱导分化及再生,结果产生大量体胚并再生成植株。
不少报道对黄瓜组织培养的影响因素做了探讨。侯爱菊等[55]认为外植体类型、基因型及植物生长调节剂对诱导黄瓜直接器官发生有显著影响,子叶节是最佳的外植体类型。杨爱馥等[56]研究认为愈伤组织诱导阶段和胚胎发生阶段分别采用9 %和6 %的蔗糖浓度,可促进体细胞胚胎发生;胚诱导培养基中添加6-BA 0.5 mg/L,以及愈伤组织诱导阶段甘露醇与蔗糖配合使用,可提高体细胞胚胎发生率。梅茜等[57]研究表明,苗龄和ABA是影响子叶分化形成不定芽的显著因素;加入适量的AgNO3可改善黄瓜愈伤组织的质地、促进芽的形成。与曹利仙等[58]试验结果相同。郭德章等[54]认为Ca2+浓度对黄瓜原生质体的稳定和细胞分裂有重要影响。李云等[59]研究后认为赤霉素处理离体黄瓜子叶不能诱导花芽分化,萘乙酸的促进作用不明显,激动素KT1.0诱导花芽分化的频率最高。但周俊辉等[60]认为l/2 MS培养基中附加0.10 mg/L 6-BA能显著提高离体黄瓜子叶的开花率,White培养基中附加2.00 mg/L的KT开花率也有明显提高。相同浓度的L-丙氨酸和L-酪氨酸均明显促进黄瓜子叶开花,而甘氨酸对黄瓜子叶开花则有一定的抑制。
在黄瓜单倍体和多倍体培养方面,杜胜利等[61]在国内首次建立了一整套通过未受房离体培养产生黄瓜单倍体植株的技术体系,再生频率达25 %。雷春等[62]通过射线辐射花粉授粉并结合胚培养从3个基因型中获得了单倍体植株。陈劲枫等[63]研究了异源三倍体黄瓜的离体繁殖的培养基配方最佳的不定芽诱导培养基为:MS + 6-BA 2.2 mg/L和MS + 3.0 mg/L KT + 0.2 mg/L NAA,然后丛生芽在MS + 0.2 mg/L 6-BA的培养基上伸长大约10 d后取整齐一致的芽在1/2 MS + 0.2 mg/L 6-BA培养基上生根。
4黄瓜遗传转化体系建立及基因工程改良
基因工程技术是现代生物技术改良作物品种的关键技术之一,在农业生产中有着广泛的应用前景。可应用于黄瓜上的转基因方法有农杆菌介导法、基因枪法、花粉管通道法和电激法等,目前以农杆菌介导法为主要方法。近几年来,广大科研工作者研究和建立了黄瓜高效遗传转化体系,并通过农杆菌介导将CMV-CP、CBF3、Cor15A、Chi、Glu、CTB/CS3、RS等基因导入黄瓜基因组。
陈峥等[64]的研究表明,在共培养的菌液中添加乙酰丁香酮,明显提高外植体的愈伤组织诱导率;延长农杆菌与外植体的共浸染时间至40 min,外植体的存活率和出芽率显著提高。姚春娜等[65]试验表明,超声波处理可以明显提高农杆菌对外植体的转化频率。侯爱菊等[66]建立了一套黄瓜遗传转化体系,适宜的选择压力为卡那霉素30 mg/L。金红等[67]也对影响遗传转化体系的因素进行了摸索。于静[68]、孙兰英[69]、赵隽等[70]均认为子叶节是黄瓜遗传转化体系的最佳外植体,最适宜的芽诱导培养基为MS + 6-BA 0.5 mg/L;子叶节预培养1~2 d,在添加6-BA 0.5 mg/L、乙酰丁香酮100μmo1/L,pH 5.2的MS培养基上进行培养,遗传转化效率最高。利用TDZ从子叶节上诱导出再生芽,效果优于BA。
金红等[67]将抗除草剂基因bar导入到黄瓜子叶中,获得落地转化株系。邓小燕等[71]构建成植物表达载体Pbinp-35S-CBF3。通过农杆菌介导转化黄瓜子叶,获得了具有卡那霉素抗性的黄瓜再生植株。张兴国[72]等也将冷cbf3基因和corl5a抗寒基因导入黄瓜基因组,创制出耐寒黄瓜新材料。白吉刚等[73,74]将拟南芥生长素结合蛋白基因转化黄瓜,获得的转基因植株单性结实能力增强。通过黄瓜离体子叶不定芽再生体系,陈丽梅[75]和林建丽[76]已分别将荧光素基因(luc)、ATT1基因和花生白黎芦醇合酶(RS)基因导入黄瓜,获得了阳性转基因植株。柏锡[77]获得了转组织型纤溶酶原激活剂基因的黄瓜植株。张国广[78]将来源于菜豆的几丁质酶(Chi)基因和克隆自烟草的β-1,3-葡聚糖酶(Glu)基因导入3个基因型的黄瓜基因组中。侯爱菊[66]、孙兰英[69]和杨成德[79]也利用农杆菌介导法将菜豆几丁质酶基因导入黄瓜。
5存在问题及展望
黄瓜有7对染色体,染色体组总长度750~1 000 cM,高饱和的分子连锁图应具有7个连锁群。目前构建的遗传图谱相对不饱和,整合后的连锁图谱虽然密度增加,但是不能覆盖整个基因组。被定位到图谱上的分子标记不多,与重要性状紧密连锁的标记就更少。因此,仍需对黄瓜分子标记进行研究,找到与性状紧密连锁的标记,为分子标记辅助育种和基因的定位克隆奠定基础。黄瓜组织培养以二倍体的研究居多,单倍体和多倍体的研究较少,黄瓜单倍体组织培养的技术在国内仍未成熟,黄瓜转基因技术也还停留在研究阶段,与实际应用还有相当差距,今后尚需进一步研究。
参考文献
[1] 姜健.生物技术在农业发展中的应用[J].农业与技术,1999,19(3):8-11.
[2] 钱忠英,蔡润,潘俊松,等.黄瓜RAPD体系的优化与应用[J].上海交通大学学报(农业科学版),2003,21(3):208-213.
[3] 张桂华,杜胜利,鞠秀芝,等.黄瓜AFLP反应体系的建立[J].华北农学报,2004,19(2):10-12.
[4] 葛风伟,张海英,陈青君,等.黄瓜SSR反应体系的建立[J].华北农学报,2004,19(2):5-9.
[5] 刘殿林,杨瑞环,哈玉洁,等.黄瓜基因组DNA提取与RAPD分析[J].华北农学报,2002,17(4):9-12.
[6] 张正奇,邹敏芬,熊劲芳,等.黄瓜DNA的提取研究[J].湖南大学学报(自然科学版),2003,30(6):31-33.
[7] 孙敏,乔爱民,王和勇,等.黄瓜DNA提取及其RAPD-PCR反应体系的优化[J].种子,2004,23(6):9-14.
[8] 陈劲枫,娄群峰,余纪柱,等.黄瓜性别基因连锁的分子标记筛选[J].上海农业学报,2003,19(4):11-14.
[9] 娄群峰,陈劲枫,MollyJahn,等.黄瓜全雌性基因连锁的AFLP和SCAR分子标记[J].园艺学报,2005,32(2):256-261.
[10] 张桂华,杜胜利,王鸣,等.与黄瓜抗白粉病相关基因连锁的AFLP标记的获得[J].园艺学报,2004,31(2):189-192.
[11] 张素勤.黄瓜霜霉病和白粉病抗性遗传机制及其分子标记研究(博士毕业论文).2005.
[12] 丁国华.黄瓜抗病基因同源序列的克隆及其对霜霉病抗病基因标记的研究(博士毕业论文).2004.
[13] 国艳梅.黄瓜苦味遗传规律研究及AFLP分子标记(硕士毕业论文).2003.
[14] 顾兴芳,张素勤,张圣平,等.黄瓜果实苦味Bt基因的AFLP分子标记[J].园艺学报,2006,33(1):140-142.
[15] Thomas H,Staub J E,Claude Thomas.Linkage of random amplified polymorphic DNA marker stodowny mildew resistance in cucumber (CucumissativusL.)[J].Euphytica,2000,115:105-113.
[16] Kennard W K,Poetter K,DIjkhuIzen A,et al.Linkage samong RFLP,RAPD,isozyme,disease-resistance and morphological marker sinnarrow and wide crosses of cucumber[J].TheorAppl.Genet,1994,89:42-48.2.
[17] Serquen F C,Bacher J,Staub J E.Mapping and QTL analysis of horticultural trait sinanarrow cross in cucumber(CucumissativusL.)using random 2 amplified polymorphic DNA markers[J].MolecularBreeding,1997,3:257-268.
[18] Danin-Poleg Y,Reisn,Baudracco-Arnas S.Simples equecerepeats in Cucumism apping and mapmerging[J].Genome,2000,43:963-974.
[19] Bradeen J E,Staub C,Wye C.Toward sanexpande dandinte grated linkagemap of cucumber(CucumissativusL.)[J].Genome,2001,44:111-119.
[20] Park Y H,Swnsoy S,Wye C,etal.Agenetic map of cucumber composed of RAPDs,RFLPs,AFLPs, and lociconditioning resistance topapayaring spot and zucchini yellow mosaic viruses[J].Genome,2000,43(6):1003-1010.
[21] Fazd G,Staub J E,Srevensm R.Genetic mapping and QTL analysis of horticultural traits in cucumber(CucumissativusL.)[J].Theor.Appl.Genet.,2003,107(5):864-874.
[22] Young H P,Suat S,Cispin W,et al.Agenetic map of cucumber composed of RAPDs,RFLPs,AFLPs and locicondition[J].Genome,2000,43:1003-1010.
[23] 张海英,葛风伟,王永健,等.黄瓜分子遗传图谱的构建[J].园艺学报,2004,31(5):617-622.
[24] 张海英,陈青君,王永健,等.黄瓜耐弱光性状的QTL定位[J].分子植物育种,2004,2(6):795-799.
[25] 李效尊,潘俊松,王刚,等.黄瓜侧枝基因(lb)和全雌基因(f)的定位及RAPD遗传图谱的构建[J].自然科学选展,2004,14(11):1225-1229.
[26] 张海英,王永健,许勇,等.黄瓜育种中“血缘”遗传关系分析研究[J].华北农学报,2001,16(2):20-26.
[27] 刘殿林,杨瑞环,哈玉洁,等.不同来源黄瓜遗传亲缘关系的RAPD分析[J].华北农学报,2003,18(3):50-54.
[28] 夏立新,陈德富,等.黄瓜亲本间分子遗传距离与杂种优势的相关性[J].南开大学学报(自然科学),2001,34(2):91-94.
[29] 陈劲枫,庄飞云,逯明辉,等.采用SSR和RAPD标记研究黄瓜属(葫芦科)的系统发育关系[J].植物分类学报,2003,41(5):427-435.
[30] 庄飞云,陈劲枫.黄瓜栽培种、近缘野生种、种间杂种及其回交后代的RAPD分析[J].园艺学报,2003,30(1):47-50.
[31] 李锡香,蔚,杜永臣,等.黄瓜种质资源遗传多样性的RAPD鉴定与分类研究[J].植物遗传资源学报.2004,5(2):147-152.
[32] 齐秀丽.黄瓜自交系及其F1代的RAPD分析(硕士毕业论文).2003.
[33] 王志峰,孙日飞,孙小镭,等.山东省黄瓜地方品种资源亲缘关系的AFLP分析[J].园艺学报,2004,31(1):103-105.
[34] 王志峰,孙小镭,孙日飞,等.山东密刺类黄瓜亲缘关系研究[J].中国蔬菜,2005(2):6-8.
[35] 李锡香,蔚,杜永臣,等.黄瓜种质资源遗传多样性及其亲缘关系的AFLP分析[J].园艺学报,2004,31(3):309-314.
[36] Zhuang F Y,Chen J F.Assessment of genetic relationship samong Cucumisspp.by SSR and RAPD marker analysis[J].Plant Breeding,2004,123:167-172.
[37] 李俊英,闻颖达.黄瓜线粒体类质粒pC1,pC4在品种间的分布及同源性研究遗传[J].科学通报,2001,28(4):367-371.
[38] 康国斌,许勇,雍伟东,等.低温诱导的黄瓜ccr18基因的cDNA克隆及其表达特性分析[J].植物学报2001,43(9):955-959.
[39] 白吉刚,刘佩瑛,等.黄瓜生长素结合蛋白cDN段的克隆及其表达[J].植物生理与分子生物学学报,2002,28(3):200-204.
[40] 丁国华,秦智伟,刘宏宇,等.黄瓜NBS类型抗病基因同源序列的克隆与分析[J].园艺学报,2005,32(4):638-642.
[41] 牛林海.裂叶牵牛、玉米和黄瓜HMG基因的克隆及功能分析(硕士毕业论文).2002.
[42] 叶青静.黄瓜果实发育相关基因的克隆及其表达调控的研究(硕士毕业论文).2003.
[43] 李志英.黄瓜“花打顶”形态、解剖、细胞学特征及相关基因的分离与鉴定(博士毕业论文).2003.
[44] 梅茜.黄瓜幼果cDNA文库构建与部分ESTs分析(硕士毕业论文).2004.
[45] 娄群峰.黄瓜全雌性基因分子标记及ACC合酶基因的克隆与表达研究(博士毕业论文).2004.
[46] 王和勇.黄瓜杂交种子纯度的RAPD鉴定(硕士毕业论文).2001.
[47] 孙敏,乔爱民,王和勇,等.黄瓜杂交种子纯度的RAPD鉴定[J].西南师范大学学报(自然科学版),2003,28(2):103-107.
[48] 金红,杜胜利,陈峥,等.抗除草剂基因在黄瓜杂种纯度快速鉴定上的应用研究[J].华北农学报,2004,19(3):31-34.
[49] 王惠哲,李淑菊,庞金安,等.黄瓜上烟草花叶病毒的RT-PCR检测[J].天津农业科学,2004,10(2):11-13.
[50] 王惠哲,李淑菊,霍振荣,等.利用RT-PCR检测黄瓜上的西瓜花叶病毒[J].天津农学院学报,2004,11(4):20-22.
[51] 李淑菊,王惠哲,霍振荣,等.利用RT-PCR对黄瓜病毒病毒原种类进行检测[J].华北农学报,2004,19(3):100-102.
[52] 陈洁云.两种葫芦科病毒的分子检测和致病性研究[J].植物病理学报,2003,33(5):449-455.
[53] 何晓明,林毓娥.黄瓜子叶和下胚轴的离体培养[J].植物生理学通讯,2001,37(5):423-424.
[54] 郭德章,鄢铮,赖钟雄,等.‘翠秀’黄瓜子叶原生质体的高效培养及植株再生[J].园艺学报,2003,30(2):227-228.
[55] 侯爱菊,朱延明,杨爱馥,等.诱导黄瓜直接器官发生主要影响因素的研究[J].园艺学报,2003,30(1):101-103.
[56] 杨爱馥,朱延明,侯爱菊.几个影响黄瓜子叶体细胞胚胎发生的因素[J].植物生理学通讯,2003,39(3):206-208.
[57] 梅茜,张兴国.黄瓜组织培养研究[J].西南农业大学学报,2002,24(3):266-267.
[58] 曹利仙,赵鹂,唐宇力,等.硝酸银对黄瓜离体子叶培养芽再生的促进效应[J].甘肃农业大学学报,2001,36(2):168-171.
[59] 李云,鄢洪强,李林,等.离体培养黄瓜子叶花芽分化研究[J].内江师范学院学报,2004,19(6):86-88.
[60] 周俊辉,周家容,林毕成,等.6-BA和氨基酸对黄瓜子叶离体培养成花的影响[J].植物生理学通讯,2004,40(2):171-173.
[61] 杜胜利,魏爱民,魏惠军,等.利用生物技术创造黄瓜育种新材料方法研究[J].天津科技,2001,(2):627.
[62] 雷春,陈劲枫,钱春桃,等.辐射花粉授粉和胚培养诱导产生黄瓜单倍体植株[J].西北植物学报,2004,24(9):1739-1743.
[63] 陈劲枫,罗向东,余纪柱,等.异源三倍体黄瓜的离体繁殖和鉴定[J].植物生理学通讯,2003,39(2):109-112.
[64] 陈峥,金红,程奕,等.提高黄瓜农杆菌遗传转化体系再生频率的研究[J].天津农业科学,2001,7(4):47-49.
[65] 姚春娜,王亚馥.超声波辅助发根农杆菌对黄瓜遗传转化的影响[J].园艺学报,2001,28(1):80-82.
[66] 侯爱菊.黄瓜抗真菌基因遗传转化体系的研究(硕士毕业论文).2001.
[67] 金红,杜胜利,陈峥,等.抗除草剂转基因黄瓜的获得及T_1植株抗性鉴定[J].华北农学报,2003,18(1):44-46.
[68] 于静.CTB/CS3基因表达载体构建及对黄瓜的转化(硕士毕业论文).2003.
[69] 孙兰英.几丁质酶基因对黄瓜遗传转化的研究(硕士毕业论文).2003
[70] 赵隽,王华,潘俊松,等.黄瓜子叶节离体再生体系的研究[J].上海交通大学学报(农业科学版),2004,22(1):43-48.
[71] 邓小燕,张兴国,井鑫,等.冷诱导转录因子基因CBF3转化黄瓜的研究[J].西南农业大学学报(自然科学版),2004,26(5):603-605.
[72] 张兴国,邵长文,等.基因Cor15A和CBF3导入黄瓜基因组[J].蔬菜分子育种研讨会论文集,2004.
[73] 白吉刚,宋明,刘佩瑛,等.生长素结合蛋白cDNA的克隆及其在黄瓜中的表达[J].植物学通报,2002,19(6):705-709.
[74] 白吉刚,王秀娟,尹谦逊,等.生长素结合蛋白基因转化黄瓜的研究[J].中国农业科学,2004,37(2):263-267.
[75] 陈丽梅.黄瓜的高效再生和根癌农杆菌介导的遗传转化(硕士毕业论文).2004.
[76] 林建丽.花生白黎芦醇合酶基因表达载体构建及黄瓜遗传转化体系的初步研究(硕士毕业论文).2004.
在抗生素生产过程中,注重新型抗生素的获取,同时也注重优良抗生素产生菌的获取。而对现代生物技术加以应用,则能够使抗生素的产量得到有效提升,同时使抗生素的组分得到有效改善,并提升抗生素的生产工艺水平[1]。从现状来看,如发酵工程、酶工程、细胞工程以及基因工程等现代生物技术,均在抗生素生产中具备显著应用价值。
1现代生物技术中发酵工程在抗生素生产中的应用
从上世纪四十年代开始,在青霉素被发现之后,抗生素发酵工业便逐步发展起来。目前,抗生素具备两百多个品种,广泛应用于医学、农用等行业。其中,通过发酵方法生产的便存在数百种。基于现代生物技术中的发酵工程在抗生素生产中具备显著应用价值。一方面,在抗生素发酵生产过程中,必须具备生产菌的参与。对于抗生素生产菌来说,主要包括霉菌和放线菌两类。在我国,各个抗生素生产商将军中筛选及改造视为使抗生素产品提升的有效方法。在发酵工程菌种选育及其改造过程中,通常会联合基因工程方法实施,进而使育种经过三个阶段:第一阶段,野生菌向变异菌育种;第二阶段,自然选育向代谢控制育种;第三阶段,诱发基因突发向基因重组定向育种[2]。此外,为了使抗生素产量得到有效提高,会利用现代生物技术中的发酵工程,从而采取优化发酵过程控制策略,包括加糖控制、补料控制、pH控制以及温度控制等等。总而言之,现代生物技术中发酵工程子啊抗生素生产中具备显著应用价值,为抗生素的优化生产奠定了坚实的基础。
2现代生物技术中酶工程在抗生素生产中的应用
对于酶工程来说,在上世纪七十年代产生,该项技术具备的优势包括:效能高、污染低、自动化以及安全性高等。将酶工程应用于抗生素生产中具备显著价值作用。例如:我国在上世纪八十年代,采取固定化酶技术(固定青霉素酰化酶及头孢菌素酰化酶等)生产出了6-氨基青酶烷酸与7-氨基头孢烷酸等抗生素中间体。近年来,对于酶工程来说,逐渐朝传统的固定化酶以及固定化活细胞环节朝向DNA重组技术以及细胞融合技术等方向发展,这样将其应用于抗生素生产过程中,便能够使抗生素的生产工艺水平得到有效提升。然而,就现状而言,我国在利用细胞融合技术以及DNA重组技术进行抗生素生产尚且处于初步试验环节,其价值作用还有待进一步考究。但是,毋庸置疑的是,随着社会的发展,科学技术的几部,现代生物技术中酶工程在抗生素生产中的应用价值将能够得到充分有效的体现。
3现代生物技术中细胞工程在抗生素生产中的应用
在现代生物技术当中细胞工程不可忽视,并且其在抗生素生产中具备显著应用价值。细胞工程中的原生质融合技术加以应用,能够使抗生素的产量得到有效提升。对于维生素原生质体融合来说,指的是将遗传性状存在差异的2个菌体细胞的原生质体加以融合,进而获取存在2个菌体遗传性状的稳定重组子。此项技术能够使远缘菌株的基因重组得到有效实现,不会有有性孢子的丝状真菌产生,但是却具备准性生殖的特殊遗传现象。并且,利用此项技术,在高产量的变异菌株筛选过程中,具备显著应用价值。比如:柔红霉素产生菌和四环素产生菌的种间原生质体融合,因这2个抗生素生物合成均源于聚酮体,从而让柔红霉素的单位产量获得了显著提升。总之,对细胞工程中的原生质体融合技术加以应用,能够使抗生素的产量得到有效提高。因此,相关工程技术人员需对此充分重视。
4现代生物技术中基因工程在抗生素生产中的应用
基于现代生物技术当中的基因工程也能够在抗生素生产中发挥有效作用。一方面,利用基因工程中的两步重组法技术,能够使生物合成肽类抗生素得到有效改造。对于肽类抗生素来说,可由微生物的非核糖体合成的方法基于多肽合成酶系中进行,多肽合成酶系具备酶与模板的功能,称之为蛋白质模板,针对其相应的氨基酸激活功能域采取定向两步重组取代,能够使全新的肽类抗生素得到有效生成,例如:耶儿森氏鼠疫杆菌素的合成等[3]。另一方面,通过基因工程当中的人工改造技术,能够使抗生素的产量及品质得到有效提升。例如:改造卡那霉素链霉菌当中的编码氨基糖苷6-N-乙酰转移酶的自身抗性基因过表达,能够使产生菌对氨基糖苷类的抗性得到有效提升,进而使链霉素的产量得到有效提高。
5结语
通过本文的探究,认识到在抗生素生产过程中,可以利用现代生物技术,以此使抗生素的产量及品质得到有效提高。例如:基于现代生物技术中的发酵工程、酶工程、细胞工程以及基因工程均能够在抗生素生产中发挥技术作用。因此,抗生素生产商便有必要对现代生物技术的应用加以重视,进一步为抗生素产量及品质的提高奠定夯实的基础。
参考文献:
[1]王际辉.刘诗文.肖珊.刘冰南.王晗.现代生物技术与饲用微生态制剂[J].微生物学杂志,2015,02:1-8.