初一数学教案范文

时间:2023-02-21 11:29:24

引言:寻求写作上的突破?我们特意为您精选了4篇初一数学教案范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

初一数学教案

篇1

像所有的新生事物一样,关于导学案教学的争议一直没有停息过,孰是孰非,众说纷纭。以下是笔者几年来编写和使用“导学案”后的几点体会。本文重点谈使用“导学案”教学模式、导学案的编写、该教学模式的作用,以及在教学实践中应注意的问题。

一、导学案教学模式

所谓导学案教学模式是以学生的自主学习和小组合作学习为主要形式,以教师的指导为主导,以发现问题自我探究为主线,以指导学生学会学习,实现高效教学。所以,重视导学案的编写的质量显得尤为重要。

二、导学案的编写

1.深刻解读课程标准

在编写导学案之前,一定要仔细研读《普通高中数学教学要求》和《普通高中数学课程标准》,它们为我们每堂课的实际教学活动指明了方向,它们不但定格了教材的内容,而且定格了教师教学的内容,同时也定格了导学案编写的基调,我们不能随心所欲地编,不能偏离了课标的要求,所以,我们的导学案编写必须在符合课标要求的前提下进行。

2.充分挖掘教材

大家都有一个共识,一张成熟的导学案必须是与教材的完美结合。数学导学案更不例外,它对教材的依赖程度比其他任何学科都大。因此我认为充分挖掘教材是编好数学导学案的基础。

3.认真研究学生

如果编写导学案时,只依据课标和教材,不考虑所教学生的实际情况,这样编写出来的导学案,要么太简单,达不到训练目的,要么太难,打击学生学习积极性,不利于使用,自然也就收不到好的教学效果。

4.准确定位学习目标

学习目标的设计既能激发学生的学习要求,明确学习意向,使学生产生一种期盼,增加一份责任,从而为学生学习指明方向。设置学习目标要做到:一是目标准确;二是要体现重难点。

三、导学案教学模式的作用

1.促进科研,师生共同进步

《普通高中数学课程标准》指出:“应鼓励学生积极参与教学活动,包括思维的参与和行为的参与。教师要创设适当的问题情境,鼓励学生发现数学的规律和问题的解决途径,使他们经历知识形成过程。”大体来说,课本是告知式的,必须将告知式变为开放式,就必须对课本进行二次创作,做到源于课本,高于课本;依据课本,不依附于课本,其核心就是引导学生进行探究和科研。

2.集体教研,教师快速成长

充分发挥领军教师的优势,一个年级备课组有一些在数学教学中处于“高地”位置的教师,他们具有比较深厚的数学教学理论基础,较为丰富的教学经验,较为扎实的教学功底,较为丰厚的文化底蕴和较高的数学教研造诣。在编写导学案的过程中,充分发挥领军教师的支柱和骨干作用,用他们的精神财富促进数学教师群体进步,成长提高。

篇2

知识结构

重难点分析

本节的重点是单项式除以单项式的法则与应用.本章的重点是整式的乘除,作为整式除法内容中不可或缺重要组成部分,单项式除以单项式起着承上启下的作用,它既是同底数幂除法性质的延伸,又是多项式除以单项式的基础和关键,因此本节的重点是单项式除以单项式的法则与应用.

单项式除以单项式的运算是本节的难点.在单项式除以单项式的计算过程中,既要对两个单项式的系数进行运算,又要对两个单项式中同字母进行指数运算,同时对只在一个单项式中出现的字母及其指数加以注意,这对于刚刚接触整式除法的初一学生来讲,难免会出现照看不全的情况,以至于出现计算错误或漏算等问题.

教法建议

(1)单项式除以单项式运算的实质是把单项式除以单项式的运算转化为同底数幂除法运算,因此建议在学习本课知识之前对同底数幂除法运算进行复习巩固.

(2)要熟练地进行单项式除以单项式的运算,必须掌握它的基本运算,幂的运算性质是整式乘除法的基础,只要抓住这关键的一步,才能准确地进行单项式除以单项式的运算.

(3)符号仍是运算中的重要问题,用单项式以单项式时,要注意单项式的符号和只在被除式中出现的字母及其指数.

教学设计示例

一、教学目标

1.理解和掌握单项式除以单项式的运算法则.

2.运用单项式除以单项式的运算法则,熟练、准确地进行计算.

3.通过总结法则,培养学生的抽象概括能力.

4.通过法则的应用,训练学生的综合解题能力和计算能力.

二、教法引导

尝试指导法、观察法、练习法.

三、重点难点

重点准确、熟练地运用法则进行计算.

难点根据乘、除的运算关系得出法则.

四、课时安排

1课时.

五、教具

投影仪或电脑、自制胶片.

六、教学步骤

(一)教学过程(

1.创设情境,复习导入

前面我们学习了同底数幂的除法,请同学们回答如下问题,看哪位同学回答很快而且准确.

(l)叙述同底数幂的除法性质.

(2)计算:(1)(2)(3)(4)

学生活动:学生回答上述问题.

(,m,n都是正整数,且m>n)

【教法说明】通过复习引起学生回忆,且巩固同底数幂的除法性质.同时为本节的学习打下基础,注意要指出零指数幂的意义.

2.指出问题,引出新知

思考问题:()(学生回答结果)

这个问题就是让我们去求一个单项式,使它与相乘,积为,这个过程能列出一个算式吗?

由一个学生回答,教师板书.

这就是我们这节课要学习的单项式除以单项式运算.

师生活动:因为

所以(在上述板书过程中填上所缺的项)

由得到,系数4和3同底数幂、a及、分别是怎样计算的?(一个学生回答)那么由得到又是怎样计算的呢?

结合引例,教师引导学生回答,并对学生的回答进行肯定、否定、纠正,同时板书.

一般地,单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.

如何运用呢?比如计算:

学生活动:在教师引导下,根据法则回答问题.(教师板书)

【教法说明】教师根据乘、除法的运算关系,步步深入,引导学生总结得出单项式除以单项式的运算法则,教师给出,紧扣计算法则,在师生互动活动中,要充分发挥教师的主导作用和学生的主体作用,调动学生的思维.

3.尝试计算,熟悉法则

计算:(1)(2)

(3)(4)

学生活动:学生自己尝试完成计算题,同桌互相帮助,然后与课本146页例题解答过程相对照,看自己的解答有无问题,若有问题进行改正.

【教法说明】教师结合的演算,使学生对法则的运用有了初步认识;例题由学生尝试完成,可以训练学生运用知识的能力,在解题的过程中,让学生自己去体会法则、掌握法则、印象更为深刻;也让学生自己发现解题中存在的问题,有助于培养学生良好的思维习惯和主动参与学习的习惯.

4.强化学习,掌握法则

练习一

下列计算是否正确?如果不正确,指出错误原因并加以改正

(1)(2)

(3)(4)

学生活动:学生细心观察思考后,分别找4个学生回答,其他学生对他们的回答进行肯定、否定或纠正.

【教法说明】(1)、(2)、(3)小题中的错误,均是学生在计算时常出现的错误,通过这组题的练习,可以使学生进一步巩固、理解法则对可能出现的计算错误引起注意,从而培养学生解题细心的习惯;除此之外,还可以培养学生辨别是非的能力.

计算

(1)(2)(3)

(4)(5)

学生活动:5个学生板演,其他学生在练习本上完成,然后讲评.

【教法说明】此题目的是使学生熟练运用法则进行计算,要求写清计算步骤,讲评时重复法则,并纠正学生计算中出现的错误,教师提醒学生计算时要耐心细致.

练习三

计算:

(1)(2)(3)

(4)(5)

学生活动:学生在练习本上完成,5名学生板演,然后学生自评.

【教法说明】通过练,学生对法则已基本能够熟练运用,对一些容易出现的错误,也得到了纠正.适时给出练习三,可以使学生对知识的掌握得到强化,学生自评可以调动学生主动参与学习的积极性,培养他们的主人翁意识.

练习四

把图中左圈里的每一个代数式分别除以,然后把商式写在右图里.

学生活动:学生理解题意后,分别由3个学生说出答案,其他学生给予判断.

【教法说明】此题目的是使学生在进一步运用法则进行熟练计算的同时,渗透集合与对应的思想,但教师不必说明.

(二)小结

由学生完成本节课的归纳与总结,教师给予引导或补充.

篇3

更多关于教学工作计划的内容请点下方链接

三年级数学培优补差工作计划

初中地理教学计划精选5篇汇总

高一政治下学期教学计划

班干部工作计划范文

六年级安全上册教学计划

初一上册数学《有理数》教案精选范文一教学目标:

知识能力:理解有理数的概念,掌握有理数的两种分类方法,能把给出的有理数按要求分类。

过程与方法:经历本节的学习,培养学生分类讨论的观点和正确进行分类的能力。

情感态度与价值观:通过本课的学习,体验成功的喜悦,保持学好数学的信心。

教学重点:掌握有理数的两种分类方法

教学难点:会把所给的各数填入它所属于的集合里

教学方法:问题引导法

学习方法:自主探究法

一、情境诱导

在小学我们学习了整数、分数,上一节课我们又学习了正数、负数,谁能很快的做出下面的题目。

1.有下面这些数:15,-1/9,-5,2/15,-13/8,0.1,-5.22,-80,0,123,2.33

(1)将上面的数填入下面两个集合:正整数集合{ },负整数集合{ },填完了吗?

(2)将上面的数填入下面两个集合:整数集合{ },分数集合{ },填完了吗?

把整数和分数起个名字叫有理数。(点题并板书课题)

二、自学指导

学生自学课本,对照课本找自学提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,并了解掌握学生自学情况,为展示归纳作准备。

附:自学提纲:

1.___________、____、_______统称为整数,

2._______和_________统称为分数

3.____

______统称为有理数,

4.在1、2、3、0、-1、-2、-3、1/2、0.1、-0.5、-5/2中,整数:、分数:

;正整数:、负整数:、正分数:、负分数:.

三、展示归纳

1、找有问题的学生逐题展示自学提纲中的问题答案,学生说,老师板书;

2、发动学生进行评价、补充、完善,教师根据每个题目的展示情况进行必要的讲解和强调;

3、全部展示完毕后,老师对本段知识做系统梳理,关键点予以强调。

四、变式练习

逐题出示,先让学生独立完成,再请有问题的学生汇报结果,老师板书,并发动其他学生评价、补充并完善,最后老师根据需要进行重点强调。

1.整数可分为:_____、______和_______,分数可分为:_______和_________.有理数按符号不同可分为正有理数,_______和________.

2.判断下列说法是否正确,并说明理由。

(1)有理数包括有整数和分数.

(2)0.3不是有理数.

(3)0不是有理数.

(4)一个有理数不是正数就是负数.

(5)一个有理数不是整数就是分数

3.所有的正整数组成正整数集合,所有负整数组成负整数集合,依次类推有正数集合、负数集合、整数集合、分数集合等,把下面的有理数填入它属于的集合中(大括号内,将各数用逗号分开):

杨桂花:1.2.1有理数教学设计

正数集合:{ …} 负数集合:{ …}

正整数集合:{ … } 负分数集合:{ …}

4.下列说法正确的是(

)

A.0是最小的正整数

B.0是最小的有理数

C.0既不是整数也不是分数

D.0既不是正数也不是负数

5、下列说法正确的有(

)

(1)整数就是正整数和负整数(2)零是整数,但不是自然数(3)分数包括正分数和负分数(4)正数和负数统称为有理数(5)一个有理数,它不是整数就是分数

五、总结与反思:通过本节课的学习,你有什么收获?

六、作业:必做题:课本14页:1、9题

初一上册数学《有理数》教案精选范文二教学目标:

1、明白生活中存在着无数表示相反意义的量,能举例说明;

2、能体会引进负数的必要性和意义,建立正数和负数的数感。

重点:通过列举现实世界中的“相反意义的量”的例子来引进正数和负数,要求学生理解正数和负数的意义,为以后通过实例引进有理数的大小比较、加法和乘法法则打基础。

难点:对负数的意义的理解。

教学过程:

一、知识导向:

本节课是一个从小学过渡的知识点,主要是要抓紧在数范围上扩充,对引进“负数”这一概念的必要性及意义的理解。

二、新课拆析:

1、回顾小学中有关数的范围及数的分类,指出小学中的“数”是为了满足生产和生活的需要而产生发展起来的。

如:0,1,2,3,…,,

2、能让学生举例出更多的有关生活中表示相反意义的量,能发现事物之间存在的对立面。

如:汽车向东行驶 3千米和向西行驶2千米

温度是零上10°C和零下5°C;

收入500元和支出237元;

水位升高1.2米和下降0.7米;

3、上面所列举的表示相反意义量,我们也许就会发现:如果只用原来所学过的数很难区分具有相反意义的量。

一般地,对于具有相反意义的量,我们可把其中一种意义的量规定为正的,用过去学过的数表示;把与它意义相反的量规定为负的,用过去学过的数(零除外)前面放上一个“—”号来表示。

如:在表示温度时,通常规定零上为“正”,零下为“负”即零上10°C表示为10°C,零下5°C表示为-5°C

概括:我们把这一种新数,叫做负数,如:-3,-45,…

过去学过的那些数(零除外)叫做正数,如:1,2.2…

零既不是正数,也不是负数

例:下面各数中,哪些数是正数,哪些数是负数,

1,2.3,-5.5,68,-,0,-11,+123,…

三、阶梯训练:

P18 练习:1,2,3,4。

四、知识小结:

从本节课所学的内容中,应能从数的角度来区分小学与初中的异同点,通过运用发现相反意义量,能理解引进“负数”的必要性及其意义。

五、作业巩固:

1、每个同学分别举出5个生活中表示相反意义量的的例子;

并用正、负数来表示;

2、分别举出几个正数与负数(最少6个)。

3、P20习题2.1:1题。

初一上册数学《有理数》教案精选范文三教学目标:

1、理解有理数的概念,懂得有理数的两种分类,及对一个有理数进行分类判别;

2、在数的分类中,应加强对负数的理解及对零在数分类中的特殊意义的理解。

重点:在引进负数后,能对已有的各种数进行概括,理解有理数的意义,及有理数的两种不同分类的重要意义。

难点:在对有理数的认识上,应加强对负数及零的重视,明确两者在有理数集的地位与作用。

教学过程:

一、知识导向:

通过上节课对“负数“概念的引入,通过对数范围的补充及扩大,进一步引入了有理数的概念,并对扩大后的数的范围进行重新分类。

二、新课拆析:

1、引例:(1)请学生说出负数的特征,并指出实例说明。

(2)以第(1)题中,学生所回答的数进一步分析,不同数的不同特点。

2、通过对“负数”的引入,从我们所接触的数可发现有这样几类:

正整数:如1,2,34,…

零:0

负整数:如-1,-3,-5,…

正分数:如 …

负分数:如 -0.3,…

由此我们有:

概括:正整数、零和负整数统称为整数;

正分数、负分数统称为分数;

整数和分数统称为有理数。

然后根据我们的概括,我们可以对有理数进行如下的分类

分类一: 分类二:

正整数 正整数

整数 零 正有理数 正分数

有理数 负整数 有理数 零

分数 正分数 负有理数 负整数

负分数 负分数

3、有关集合的简单知识:

概括:把一些数放在一起,就组成一个数的集合,简称为数集;

所有的有理数组成的数集叫做有理数集;

所有的整数组成的数集叫做整数集;……

例:把下列各数填入表示它所在的数值的圈里:

-18,3.1416,0,2001,-0.142857,95%

正整数 负整数

整数集 有理数集

三、巩固训练: P20 ,练习:1,2,3

四、知识小结:

从有理数的分类入手,就着重于各类数的特点,特别是正,负及零的处理。

五、作业:

P20-21 习题2.1:2,3,4

初一上册数学《有理数》教案精选范文四教学目标

1, 掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;

2, 了解分类的标准与分类结果的相关性,初步了解“集合”的含义;

3, 体验分类是数学上的常用处理问题的方法。

教学难点 正确理解分类的标准和按照一定的标准进行分类

知识重点 正确理解有理数的概念

教学过程(师生活动) 设计理念

探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).

问题1:观察黑板上的9个数,并给它们进行分类.

学生思考讨论和交流分类的情况.

学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.

例如,

对于数5,可这样问:5和5.1有相同的类型吗?5可以表示5个人,而5.1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.1不是整个的数,称为“正分数,,.??…(由于小数可化为分数,以后把小数和分数都称为分数)

通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’.

按照书本的说法,得出“整数”“分数”和“有理数”的概念.

看书了解有理数名称的由来.

“统称”是指“合起来总的名称”的意思.

试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与

学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。

有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会

练一练 1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.

2,教科书第10页练习.

此练习中出现了集合的概念,可向学生作如下的说明.

把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;

数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号.

思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?

也可以教师说出一些数,让学生进行判断。

集合的概念不必深入展开。

创新探究 问题2:有理数可分为正数和负数两大类,对吗?为什么?

教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。

有理数 这个分类可视学生的程度确定是否有必要教学。

应使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等

小结与作业

课堂小结 到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。

本课作业 1, 必做题:教科书第18页习题1.2第1题

2, 教师自行准备

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概

念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进

行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分

类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。

2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。

3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。

初一上册数学《有理数》教案精选范文五教学目的:

1.了解计算器的性能,并会操作和使用;

2.会用计算器求数的平方根;

重点:用计算器进行数的加、减、乘、除、乘方和开方的计算;

难点:乘方和开方运算;

教学过程:

1.计算器的使用介绍(科学计算器)

初一上册数学一单元教案.png

2.用计算器进行加、减、乘、除、乘方、开方运算

例1用计算器求下列各式的值.

(1)(-3.75)+(-22.5) (2)51.7(-7.2)

解(1)

初一上册数学一单元教案.png

(-3.75)+(-22.5)=-26.25

(2)

初一上册数学一单元教案.png

51.7(-7.2)=-372.24

说明输入数据时,按键顺序与写这个数据的顺序完全相同,但输入负数时,符号转换键要放在数据之后键入.

随堂练习

用计算器求值

1.9.23+10.2

篇4

一、知识与技能

使学生理解多项式、整式的概念,会准确确定一个多项式的项数和次数。

二、过程与方法

通过实例列整式,培养学生分析问题、解决问题的能力。

三、情感态度与价值观

培养学生积极思考的学习态度,合作交流意识,了解整式的实际背景,进一步感受字母表示数的意义。

教学重、难点与关键

1.重点:多项式以及有关概念。

2.难点:准确确定多项式的次数和项。

3.关键:掌握单项式和多项式次数之间的区别和联系。

教具准备 投影仪。

四、课堂引入

一、复习提问 1.什么叫单项式?举例说明。

2.怎样确定一个单项式的系数和次数?-的系数、次数分别是多少?

3.列式表示下列问题:

(1)一个数比数x的2倍小3,则这个数为________.

友情链接