时间:2023-02-21 11:29:24
引言:寻求写作上的突破?我们特意为您精选了12篇初一数学教案范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
像所有的新生事物一样,关于导学案教学的争议一直没有停息过,孰是孰非,众说纷纭。以下是笔者几年来编写和使用“导学案”后的几点体会。本文重点谈使用“导学案”教学模式、导学案的编写、该教学模式的作用,以及在教学实践中应注意的问题。
一、导学案教学模式
所谓导学案教学模式是以学生的自主学习和小组合作学习为主要形式,以教师的指导为主导,以发现问题自我探究为主线,以指导学生学会学习,实现高效教学。所以,重视导学案的编写的质量显得尤为重要。
二、导学案的编写
1.深刻解读课程标准
在编写导学案之前,一定要仔细研读《普通高中数学教学要求》和《普通高中数学课程标准》,它们为我们每堂课的实际教学活动指明了方向,它们不但定格了教材的内容,而且定格了教师教学的内容,同时也定格了导学案编写的基调,我们不能随心所欲地编,不能偏离了课标的要求,所以,我们的导学案编写必须在符合课标要求的前提下进行。
2.充分挖掘教材
大家都有一个共识,一张成熟的导学案必须是与教材的完美结合。数学导学案更不例外,它对教材的依赖程度比其他任何学科都大。因此我认为充分挖掘教材是编好数学导学案的基础。
3.认真研究学生
如果编写导学案时,只依据课标和教材,不考虑所教学生的实际情况,这样编写出来的导学案,要么太简单,达不到训练目的,要么太难,打击学生学习积极性,不利于使用,自然也就收不到好的教学效果。
4.准确定位学习目标
学习目标的设计既能激发学生的学习要求,明确学习意向,使学生产生一种期盼,增加一份责任,从而为学生学习指明方向。设置学习目标要做到:一是目标准确;二是要体现重难点。
三、导学案教学模式的作用
1.促进科研,师生共同进步
《普通高中数学课程标准》指出:“应鼓励学生积极参与教学活动,包括思维的参与和行为的参与。教师要创设适当的问题情境,鼓励学生发现数学的规律和问题的解决途径,使他们经历知识形成过程。”大体来说,课本是告知式的,必须将告知式变为开放式,就必须对课本进行二次创作,做到源于课本,高于课本;依据课本,不依附于课本,其核心就是引导学生进行探究和科研。
2.集体教研,教师快速成长
充分发挥领军教师的优势,一个年级备课组有一些在数学教学中处于“高地”位置的教师,他们具有比较深厚的数学教学理论基础,较为丰富的教学经验,较为扎实的教学功底,较为丰厚的文化底蕴和较高的数学教研造诣。在编写导学案的过程中,充分发挥领军教师的支柱和骨干作用,用他们的精神财富促进数学教师群体进步,成长提高。
知识结构
重难点分析
本节的重点是单项式除以单项式的法则与应用.本章的重点是整式的乘除,作为整式除法内容中不可或缺重要组成部分,单项式除以单项式起着承上启下的作用,它既是同底数幂除法性质的延伸,又是多项式除以单项式的基础和关键,因此本节的重点是单项式除以单项式的法则与应用.
单项式除以单项式的运算是本节的难点.在单项式除以单项式的计算过程中,既要对两个单项式的系数进行运算,又要对两个单项式中同字母进行指数运算,同时对只在一个单项式中出现的字母及其指数加以注意,这对于刚刚接触整式除法的初一学生来讲,难免会出现照看不全的情况,以至于出现计算错误或漏算等问题.
教法建议
(1)单项式除以单项式运算的实质是把单项式除以单项式的运算转化为同底数幂除法运算,因此建议在学习本课知识之前对同底数幂除法运算进行复习巩固.
(2)要熟练地进行单项式除以单项式的运算,必须掌握它的基本运算,幂的运算性质是整式乘除法的基础,只要抓住这关键的一步,才能准确地进行单项式除以单项式的运算.
(3)符号仍是运算中的重要问题,用单项式以单项式时,要注意单项式的符号和只在被除式中出现的字母及其指数.
教学设计示例
一、教学目标
1.理解和掌握单项式除以单项式的运算法则.
2.运用单项式除以单项式的运算法则,熟练、准确地进行计算.
3.通过总结法则,培养学生的抽象概括能力.
4.通过法则的应用,训练学生的综合解题能力和计算能力.
二、教法引导
尝试指导法、观察法、练习法.
三、重点难点
重点准确、熟练地运用法则进行计算.
难点根据乘、除的运算关系得出法则.
四、课时安排
1课时.
五、教具
投影仪或电脑、自制胶片.
六、教学步骤
(一)教学过程(
1.创设情境,复习导入
前面我们学习了同底数幂的除法,请同学们回答如下问题,看哪位同学回答很快而且准确.
(l)叙述同底数幂的除法性质.
(2)计算:(1)(2)(3)(4)
学生活动:学生回答上述问题.
(,m,n都是正整数,且m>n)
【教法说明】通过复习引起学生回忆,且巩固同底数幂的除法性质.同时为本节的学习打下基础,注意要指出零指数幂的意义.
2.指出问题,引出新知
思考问题:()(学生回答结果)
这个问题就是让我们去求一个单项式,使它与相乘,积为,这个过程能列出一个算式吗?
由一个学生回答,教师板书.
这就是我们这节课要学习的单项式除以单项式运算.
师生活动:因为
所以(在上述板书过程中填上所缺的项)
由得到,系数4和3同底数幂、a及、分别是怎样计算的?(一个学生回答)那么由得到又是怎样计算的呢?
结合引例,教师引导学生回答,并对学生的回答进行肯定、否定、纠正,同时板书.
一般地,单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.
如何运用呢?比如计算:
学生活动:在教师引导下,根据法则回答问题.(教师板书)
【教法说明】教师根据乘、除法的运算关系,步步深入,引导学生总结得出单项式除以单项式的运算法则,教师给出,紧扣计算法则,在师生互动活动中,要充分发挥教师的主导作用和学生的主体作用,调动学生的思维.
3.尝试计算,熟悉法则
计算:(1)(2)
(3)(4)
学生活动:学生自己尝试完成计算题,同桌互相帮助,然后与课本146页例题解答过程相对照,看自己的解答有无问题,若有问题进行改正.
【教法说明】教师结合的演算,使学生对法则的运用有了初步认识;例题由学生尝试完成,可以训练学生运用知识的能力,在解题的过程中,让学生自己去体会法则、掌握法则、印象更为深刻;也让学生自己发现解题中存在的问题,有助于培养学生良好的思维习惯和主动参与学习的习惯.
4.强化学习,掌握法则
练习一
下列计算是否正确?如果不正确,指出错误原因并加以改正
(1)(2)
(3)(4)
学生活动:学生细心观察思考后,分别找4个学生回答,其他学生对他们的回答进行肯定、否定或纠正.
【教法说明】(1)、(2)、(3)小题中的错误,均是学生在计算时常出现的错误,通过这组题的练习,可以使学生进一步巩固、理解法则对可能出现的计算错误引起注意,从而培养学生解题细心的习惯;除此之外,还可以培养学生辨别是非的能力.
练
计算
(1)(2)(3)
(4)(5)
学生活动:5个学生板演,其他学生在练习本上完成,然后讲评.
【教法说明】此题目的是使学生熟练运用法则进行计算,要求写清计算步骤,讲评时重复法则,并纠正学生计算中出现的错误,教师提醒学生计算时要耐心细致.
练习三
计算:
(1)(2)(3)
(4)(5)
学生活动:学生在练习本上完成,5名学生板演,然后学生自评.
【教法说明】通过练,学生对法则已基本能够熟练运用,对一些容易出现的错误,也得到了纠正.适时给出练习三,可以使学生对知识的掌握得到强化,学生自评可以调动学生主动参与学习的积极性,培养他们的主人翁意识.
练习四
把图中左圈里的每一个代数式分别除以,然后把商式写在右图里.
学生活动:学生理解题意后,分别由3个学生说出答案,其他学生给予判断.
【教法说明】此题目的是使学生在进一步运用法则进行熟练计算的同时,渗透集合与对应的思想,但教师不必说明.
(二)小结
由学生完成本节课的归纳与总结,教师给予引导或补充.
更多关于教学工作计划的内容请点下方链接
三年级数学培优补差工作计划
初中地理教学计划精选5篇汇总
高一政治下学期教学计划
班干部工作计划范文
六年级安全上册教学计划
初一上册数学《有理数》教案精选范文一教学目标:
知识能力:理解有理数的概念,掌握有理数的两种分类方法,能把给出的有理数按要求分类。
过程与方法:经历本节的学习,培养学生分类讨论的观点和正确进行分类的能力。
情感态度与价值观:通过本课的学习,体验成功的喜悦,保持学好数学的信心。
教学重点:掌握有理数的两种分类方法
教学难点:会把所给的各数填入它所属于的集合里
教学方法:问题引导法
学习方法:自主探究法
一、情境诱导
在小学我们学习了整数、分数,上一节课我们又学习了正数、负数,谁能很快的做出下面的题目。
1.有下面这些数:15,-1/9,-5,2/15,-13/8,0.1,-5.22,-80,0,123,2.33
(1)将上面的数填入下面两个集合:正整数集合{ },负整数集合{ },填完了吗?
(2)将上面的数填入下面两个集合:整数集合{ },分数集合{ },填完了吗?
把整数和分数起个名字叫有理数。(点题并板书课题)
二、自学指导
学生自学课本,对照课本找自学提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,并了解掌握学生自学情况,为展示归纳作准备。
附:自学提纲:
1.___________、____、_______统称为整数,
2._______和_________统称为分数
3.____
______统称为有理数,
4.在1、2、3、0、-1、-2、-3、1/2、0.1、-0.5、-5/2中,整数:、分数:
;正整数:、负整数:、正分数:、负分数:.
三、展示归纳
1、找有问题的学生逐题展示自学提纲中的问题答案,学生说,老师板书;
2、发动学生进行评价、补充、完善,教师根据每个题目的展示情况进行必要的讲解和强调;
3、全部展示完毕后,老师对本段知识做系统梳理,关键点予以强调。
四、变式练习
逐题出示,先让学生独立完成,再请有问题的学生汇报结果,老师板书,并发动其他学生评价、补充并完善,最后老师根据需要进行重点强调。
1.整数可分为:_____、______和_______,分数可分为:_______和_________.有理数按符号不同可分为正有理数,_______和________.
2.判断下列说法是否正确,并说明理由。
(1)有理数包括有整数和分数.
(2)0.3不是有理数.
(3)0不是有理数.
(4)一个有理数不是正数就是负数.
(5)一个有理数不是整数就是分数
3.所有的正整数组成正整数集合,所有负整数组成负整数集合,依次类推有正数集合、负数集合、整数集合、分数集合等,把下面的有理数填入它属于的集合中(大括号内,将各数用逗号分开):
杨桂花:1.2.1有理数教学设计
正数集合:{ …} 负数集合:{ …}
正整数集合:{ … } 负分数集合:{ …}
4.下列说法正确的是(
)
A.0是最小的正整数
B.0是最小的有理数
C.0既不是整数也不是分数
D.0既不是正数也不是负数
5、下列说法正确的有(
)
(1)整数就是正整数和负整数(2)零是整数,但不是自然数(3)分数包括正分数和负分数(4)正数和负数统称为有理数(5)一个有理数,它不是整数就是分数
五、总结与反思:通过本节课的学习,你有什么收获?
六、作业:必做题:课本14页:1、9题
初一上册数学《有理数》教案精选范文二教学目标:
1、明白生活中存在着无数表示相反意义的量,能举例说明;
2、能体会引进负数的必要性和意义,建立正数和负数的数感。
重点:通过列举现实世界中的“相反意义的量”的例子来引进正数和负数,要求学生理解正数和负数的意义,为以后通过实例引进有理数的大小比较、加法和乘法法则打基础。
难点:对负数的意义的理解。
教学过程:
一、知识导向:
本节课是一个从小学过渡的知识点,主要是要抓紧在数范围上扩充,对引进“负数”这一概念的必要性及意义的理解。
二、新课拆析:
1、回顾小学中有关数的范围及数的分类,指出小学中的“数”是为了满足生产和生活的需要而产生发展起来的。
如:0,1,2,3,…,,
2、能让学生举例出更多的有关生活中表示相反意义的量,能发现事物之间存在的对立面。
如:汽车向东行驶 3千米和向西行驶2千米
温度是零上10°C和零下5°C;
收入500元和支出237元;
水位升高1.2米和下降0.7米;
3、上面所列举的表示相反意义量,我们也许就会发现:如果只用原来所学过的数很难区分具有相反意义的量。
一般地,对于具有相反意义的量,我们可把其中一种意义的量规定为正的,用过去学过的数表示;把与它意义相反的量规定为负的,用过去学过的数(零除外)前面放上一个“—”号来表示。
如:在表示温度时,通常规定零上为“正”,零下为“负”即零上10°C表示为10°C,零下5°C表示为-5°C
概括:我们把这一种新数,叫做负数,如:-3,-45,…
过去学过的那些数(零除外)叫做正数,如:1,2.2…
零既不是正数,也不是负数
例:下面各数中,哪些数是正数,哪些数是负数,
1,2.3,-5.5,68,-,0,-11,+123,…
三、阶梯训练:
P18 练习:1,2,3,4。
四、知识小结:
从本节课所学的内容中,应能从数的角度来区分小学与初中的异同点,通过运用发现相反意义量,能理解引进“负数”的必要性及其意义。
五、作业巩固:
1、每个同学分别举出5个生活中表示相反意义量的的例子;
并用正、负数来表示;
2、分别举出几个正数与负数(最少6个)。
3、P20习题2.1:1题。
初一上册数学《有理数》教案精选范文三教学目标:
1、理解有理数的概念,懂得有理数的两种分类,及对一个有理数进行分类判别;
2、在数的分类中,应加强对负数的理解及对零在数分类中的特殊意义的理解。
重点:在引进负数后,能对已有的各种数进行概括,理解有理数的意义,及有理数的两种不同分类的重要意义。
难点:在对有理数的认识上,应加强对负数及零的重视,明确两者在有理数集的地位与作用。
教学过程:
一、知识导向:
通过上节课对“负数“概念的引入,通过对数范围的补充及扩大,进一步引入了有理数的概念,并对扩大后的数的范围进行重新分类。
二、新课拆析:
1、引例:(1)请学生说出负数的特征,并指出实例说明。
(2)以第(1)题中,学生所回答的数进一步分析,不同数的不同特点。
2、通过对“负数”的引入,从我们所接触的数可发现有这样几类:
正整数:如1,2,34,…
零:0
负整数:如-1,-3,-5,…
正分数:如 …
负分数:如 -0.3,…
由此我们有:
概括:正整数、零和负整数统称为整数;
正分数、负分数统称为分数;
整数和分数统称为有理数。
然后根据我们的概括,我们可以对有理数进行如下的分类
分类一: 分类二:
正整数 正整数
整数 零 正有理数 正分数
有理数 负整数 有理数 零
分数 正分数 负有理数 负整数
负分数 负分数
3、有关集合的简单知识:
概括:把一些数放在一起,就组成一个数的集合,简称为数集;
所有的有理数组成的数集叫做有理数集;
所有的整数组成的数集叫做整数集;……
例:把下列各数填入表示它所在的数值的圈里:
-18,3.1416,0,2001,-0.142857,95%
正整数 负整数
整数集 有理数集
三、巩固训练: P20 ,练习:1,2,3
四、知识小结:
从有理数的分类入手,就着重于各类数的特点,特别是正,负及零的处理。
五、作业:
P20-21 习题2.1:2,3,4
初一上册数学《有理数》教案精选范文四教学目标
1, 掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;
2, 了解分类的标准与分类结果的相关性,初步了解“集合”的含义;
3, 体验分类是数学上的常用处理问题的方法。
教学难点 正确理解分类的标准和按照一定的标准进行分类
知识重点 正确理解有理数的概念
教学过程(师生活动) 设计理念
探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).
问题1:观察黑板上的9个数,并给它们进行分类.
学生思考讨论和交流分类的情况.
学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.
例如,
对于数5,可这样问:5和5.1有相同的类型吗?5可以表示5个人,而5.1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.1不是整个的数,称为“正分数,,.??…(由于小数可化为分数,以后把小数和分数都称为分数)
通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’.
按照书本的说法,得出“整数”“分数”和“有理数”的概念.
看书了解有理数名称的由来.
“统称”是指“合起来总的名称”的意思.
试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与
学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。
有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会
练一练 1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.
2,教科书第10页练习.
此练习中出现了集合的概念,可向学生作如下的说明.
把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;
数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号.
思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?
也可以教师说出一些数,让学生进行判断。
集合的概念不必深入展开。
创新探究 问题2:有理数可分为正数和负数两大类,对吗?为什么?
教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。
有理数 这个分类可视学生的程度确定是否有必要教学。
应使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等
小结与作业
课堂小结 到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。
本课作业 1, 必做题:教科书第18页习题1.2第1题
2, 教师自行准备
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概
念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进
行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分
类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。
2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。
3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。
初一上册数学《有理数》教案精选范文五教学目的:
1.了解计算器的性能,并会操作和使用;
2.会用计算器求数的平方根;
重点:用计算器进行数的加、减、乘、除、乘方和开方的计算;
难点:乘方和开方运算;
教学过程:
1.计算器的使用介绍(科学计算器)
初一上册数学一单元教案.png
2.用计算器进行加、减、乘、除、乘方、开方运算
例1用计算器求下列各式的值.
(1)(-3.75)+(-22.5) (2)51.7(-7.2)
解(1)
初一上册数学一单元教案.png
(-3.75)+(-22.5)=-26.25
(2)
初一上册数学一单元教案.png
51.7(-7.2)=-372.24
说明输入数据时,按键顺序与写这个数据的顺序完全相同,但输入负数时,符号转换键要放在数据之后键入.
随堂练习
用计算器求值
1.9.23+10.2
一、知识与技能
使学生理解多项式、整式的概念,会准确确定一个多项式的项数和次数。
二、过程与方法
通过实例列整式,培养学生分析问题、解决问题的能力。
三、情感态度与价值观
培养学生积极思考的学习态度,合作交流意识,了解整式的实际背景,进一步感受字母表示数的意义。
教学重、难点与关键
1.重点:多项式以及有关概念。
2.难点:准确确定多项式的次数和项。
3.关键:掌握单项式和多项式次数之间的区别和联系。
教具准备 投影仪。
四、课堂引入
一、复习提问 1.什么叫单项式?举例说明。
2.怎样确定一个单项式的系数和次数?-的系数、次数分别是多少?
3.列式表示下列问题:
(1)一个数比数x的2倍小3,则这个数为________.
我所在的农村初中,身边存在着以下两方面的现象,一方面是相当多学生都有新知掌握不够扎实的现象,新知易错点一而再、再而三地出现又没有根本解决,另一方面是教师面对学生可能的新知易错点已再三提防,再三强调,可又没法根本解决学生错误的不断涌现。
在以人的发展为本的数学课堂教学中,要求老师重新审视我们的课堂,它是学生出错的地方,也是老师和学生逐步认识错误、修正方法,实现老师和学生共同成长的地方。如何才能够有效干预新知教学中的易错点,使我们的学生更少走弯路,使我们的新知教学更有效?这个问题值得每一位老师去思考。
经过研究我发现,教师对新知教学中的易错点的干预有几种典型方式,我认为可以将其归纳为四种类型:
一、拯救式干预
很多教师都有这样的体会:课堂上感觉很顺利,课后才发现有问题,而且有时问题还会很严重,然后就急着找时间去班上进行“拯救式干预”,学生累,老师累,效果还不一定好。首先打乱了学生有张有弛的学习规律;其次不利于学生良好学习习惯的养成,导致学生对课堂产生懈怠思想,对课下补救形成依赖。
“拯救式干预”出现的原因较复杂,可能是对学生还不够了解,或对教材还不够理解,教学设计不够周密,讲解不到位,并且在课堂上没有及时发现,直到下课后才发现。
其实,彻底解决“拯救式干预”问题的关键不是事后的补救,而是事先的备课要充分。教学实践表明,教师在备课上所花工夫的多少直接影响授课的质量。对于我们一线的老师来说,“补救式干预”最好是没有,可又有时是不得不面对。
当失败已经存在,教师就应反思自己的失败,努力地去实现由失败到成功的转化,千万不能靠简单的回炉处理,机械地打题海战、不计其数的评讲习题等方式去弥补新授课中的不足,而应该抱着实事求是的科学态度去分析失败的原因,在反思、总结的基础上,富有创造性地对症下药。
二、保姆式干预
我对于自己曾经上过的不等式的性质教学印象深刻,那就是效果十分不理想。应该实事求是地说,我认为自己还是备足了功课,对于不等式的性质2给予了足够的重视,对于学生可能出现的不等式的两边都乘以(或除以)同一个负数时,不等号的方向可能忘记改变应该说还是有所准备的。在教学时也是特别的注意了,在例题和练习中我注意反复强调,可谓苦口婆心,自我认为尽心尽力,可是学生练习中总是有人出错,还有部分学生在我强调后不要变号的也变号了,我再次感到了自己所谓的强调是多么的无力!这也太有讽刺意味了,我不禁问自己,怎么会效果这么差?
现在想想,还是自己的方法问题,我采用的就是一种保姆式干预。什么样的教学方式是保姆式干预?顾名思义,就是就像保姆一样,老师什么都替学生想到了,把认为容易犯错的地方灌输给学生,那真是苦口婆心,老师讲的那是面面俱到,但对于学生来说留给他的也许只是:这个要考,那个要考,这个重要,那个重要。为什么会重要?他或许没印象,不知道,他只知道这是指令,是书上说它很重要,老师说它很重要,而不是他自己觉得它确实重要。所以,一段时间后,他就毫无印象,因为重要的东西太多了,也就不重要了。
三、陷阱式干预
错误在数学学习中谁都不想出现,可事实上却又不可避免。如果教师在平时的教学中,能根据学生的认知特点,针对学生知识“盲点”,巧妙设置“陷阱”,让学生错在“点子”上,那一定能使学生在出错之后大大增强“免疫力”。
我校一位教师在一节公开课上如下的教学设计让我印象深刻:
陷阱1:在ABC中,已知:a=3,b=4,则c=____。
此时,好多学生会不假思索地回答:c=5(师故作肯定,但还是有学生发现其中破绽)。
生1:ABC应是直角三角形。(众生顿悟状)
陷阱2:在RtABC中,已知:a=3,b=4,则c=_____。
此时,学生几乎是异口同声地回答:c=5。此时有学生又举手了。
生2:不对,因为c不一定表示斜边。
生3:c=5或……
学生在教师预设的陷阱中,步步“上当”,处处“碰壁”,却又在不知不觉中准确、牢固地掌握了勾股定理。
这种陷阱式干预方式是教师对新知中易错点有预见,在错误没有发生之前采取的主动的干预措施,这种干预方式更多地体现在教师是有备而来,当学生在学习中有过“上当受骗”的经历后,他对知识的记忆会特别深刻,掌握也更加牢固。教学中,教师若能针对学生易出错的地方设置一些小“陷阱”,诱使学生出错,再利用学生的“错误”资源进行教学,既生动有趣,又富有成效。
四、探索式干预
中点四边形是一个非常重要的知识点,这个知识点在课本上有梯度地展开,以往学生在我的引导下能基本掌握中点四边形的几种情形,但一段时间后学生就又混淆了,效果往往不良。
在掌握了几何画板这种软件操作之后,我被它的众多优势所吸引,不但在自己的课堂上经常使用,而且还把这个软件介绍给我的学生,并指导他们学会了基本操作。我在三角形的中位线内容完成之后,布置利用几何画板操作的预习作业内容……
第二天的数学课堂完全成了学生表演的课堂,不少学生都争相上台表演自己的制作以及自己的发现,甚至还有学生得意地向大家介绍自己的制作技巧,课堂一度成为经验交流会。至于为什么,你能证明吗?不少学生也早已胸有成竹,自信满满,我这时考虑的倒是如何控制局面以及拉还没有发现规律的学生“入网”。于是我将学生分组讨论,交流心得并总结归纳。由小组派代表上台总结归纳出中点四边形不同类型的结论。这时我在学生既有的结论基础上加以确认,再出题举一反三,效果出其的好。
这种方式我称为探索式干预,探索式干预方式更多地体现在教师是有备而来,教师的精心设计不仅仅为了掌握正确的结论,更让学生经历了探索、尝试的过程,这对学生知识的完善和能力的提高会产生有益的影响,使学生学会分析,自己发现错误,改正错误,从而真正地完善数学知识,真正地实现自己学习的数学目标。
以上四种类型的新知易错点干预方案,代表着教师不同的干预程度,干预的效果很不相同。拯救式干预方案更多地体现在教师课前、课中的无意识,课后发现了问题后的事后补救,增加了师生的负担,效果还不好。保姆式干预说明教师备课时已发现了新知中的易错点,采用的方式是片面的强调,可是带来的效果也可能是一段时间后的归零。陷阱式干预不仅体现了教师的备课细致,更体现了教师的用心和独到之处,教师用自己的一片苦心换来了学生对新知中易错点的认同和记忆深刻,效果不错。探索式干预则反映了教师不仅备课上课的独具匠心,更体现为教师能认真地贯彻新课程理念,往往在新知易错点的干预效果的表现上更胜一筹。
作为一名一线的初中数学教师,学生的问题也成为我越来越深感不安的问题,我深感自身提高的必要性和迫切性,新课改为教师的专业发展提供了广阔的空间和舞台,我们必须努力学习,领悟新课改的精神,转变自身的教学行为,增长自身的专业能力,从而从根本上更好地为学生服务!
参考文献:
1.使学生会进行简单的公式变形。
教学分析
重点:含字母系数的一元一次方程的解法。
难点:含字母系数的一元一次方程的解法及公式变形。
教学过程
一、复习
1.试述一元一次方程的意义及解一元一次方程的步骤。
2.什么叫分式?分式有意义的条件是什么?
二、新授
1.公式变形
引例:汽车的行驶速度是v(千米/小时),行驶的时间是t(小时),那么汽车行驶的路程s(千米)可用公式
s=vt①
来计算。
有时已知行驶的路程s与行驶的速度v(v≠0),要求行驶的时间t。因为v≠0,所以
t=。②
这就是已知行驶的路程和速度,求行驶的时间的公式。
类似地,如果已知s,t(t≠0),求v,可以得到
v=。③
公式②,③有时也可分别写成t=sv-1;v=st-1。
以上的公式①,②,③都表示路程s,时间t,速度v之间的关系。当v、t都不等于零时,可以把公式①变换成公式②或③。
像上面这样,把一个公式从一种形式变换成另一种形式,叫做公式变形,公式变形往往就是解含有字母系数的方程。
例3在v=v0+at中,已知v、v0、a且a≠0。求t。
解:移项,得v-v0=at。
因为a≠0,方程两边都除以a,得。
例4在梯形面积公式S=中,已知S、b、h且h≠0,求a。
解:去分母,得2S=(a+b)h,ah=2S-bh
因为h≠0,议程两边都除以h,得
。
三、练习
P92中练习1,2,3。
四、小结
公式变形的实质是解含字母系数的方程,要求的字母是未知数,其余的字母均是字母已知数。如例3就是把v、v0、a当作字母已知数,把t当作未知数,解关于t的方程。
五、作业作业:P93中习题9.5A组7,8,9。
教学分析
重点:含字母系数的一元一次方程的解法。
难点:含字母系数的一元一次方程的解法。
教学过程
一、复习
1.什么叫方程?什么叫方程的解?什么叫解方程?
2.试述一元一次方程的意义及解一元一次方程的步骤。
3.什么叫分式?分式有意义的条件是什么?
二、新授
1.含有字母系数的一元一次方程
引例:一数的a倍(a≠0)等于b,求这个数。
用x表示这个数,根据题意,可得方程
ax=b(a≠0)
在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。
含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必须特别注意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零。
例如:解方程5x+6=3x+10与解方程ax+b=cx+d。
解:移项,5x-3x=10-6,ax-cx=d-b,
合并同类项,2x=4,(a-c)x=d-b,
x=2。当a-c≠0时,
x=.
可以看出,上述两个方程的解法及其步骤基本相同。只是最后一步,从2x=4与(a-c)x=d-b中求出x不同,其中2≠0是很明显的,所以得x=2。而a-c必须指明a-c≠0时x=.
例1解方程ax+b2=bx+a2(a≠0).
解:移项,得ax-bx=a2-b2,
合并同类项,得(a-b)x=a2-b2。
因为a≠b,所以a-b≠0,方程两边同除以a-b,得
x=,x=a+b.
注意:方程的解是分式时,一般要化成最简分式或整式。
例2解方程。
解:去分母,得b(x-b)=2ab-a(x-a),
去括号,得bx-b2=2ab-ax+a2,
移项,得ax+bx=a2+2ab+b2,
分解因式,得(a+b)x=(a+b)2。
a+b≠0,x=a+b。
三、练习
练习:P90中练习1,2,3,4。
四、小结
本课内容:含有字母系数的一元一次方程的解法。
五、作业
作业:P93中习题9.5A组7,8,9。
一、素质教育目标
(一)知识教学点
会列二元一次方程组解简单的应用题,并能检查结果是否正确、合理.
(二)能力训练点
培养学生分析问题、解决问题的能力.
(三)德育渗透点
1.体会代数方法的优越性.
2.向学生进一步渗透把未知转化为已知的思想.
3.向学生进行理论联系实际的教育.
(四)美育渗透点
学习列方程组解应用题时,若能在错综复杂的关系中抓住问题的关键,就能迅速通过相等求解,从而渗透解题的简捷性的数学美,以及解题的奇异美.
二、学法引导
1.教学方法:尝试指导法、观察法、讲练结合法.
2.学生学法:本节主要学习列二元一次方程组和三元一次方程组解应用题的方法,尤其重点要掌握列出二元一次方程组解应用题,其分析方法和解题步骤都与前面学过的列一元一次方程解应用题类似,可在学习中进行类比从而加强理解.
三、重点·难点·疑点及解决办法
(一)重点与难点
根据简单应用题的题意列出二元一次方程组.
(二)疑点
正确找出表示应用题全部含义的两个相等关系,并把它们表示成两个方程.
(三)解决办法
通过反复读题、审题,分析出题目中存在的两个相等关系是列方程组的关键.
四、课时安排
一课时.
五、教学具学具准备
投影仪、自制胶片.
六、师生互动活动设计
1.通过提问,复习列一元一次方程解应用题的步骤,尤其相等关系的寻找问题.
2.师生共同探索新知识—列二元一次方程组解应用题的一般步骤.
3.通过反馈练习,检查学生掌握知识的情况,以便有针对性地进行差漏补缺.
七、教学步骤
(一)明确目标
本节课主要学习列二元一次方程组解应用题.
(二)整体感知
列二元一次方程组解应用题的关键在于通过准确的审题迅速寻找出两个正确的相等关系来列二元一次方程组.
(三)教学过程
1.创设情境、导入新课
(1)根据下列条件设适当的未知数,列出二元一次方程.
①甲、乙两数的和是10.
②甲地的人数比乙地的人数的2倍还多70.
③买4支铅笔、3支圆珠笔共花了1.6元.
(2)甲、乙两工人师傅制作某种工件,每天共制作12件.已知甲每天比乙多制作2件,求甲、乙每人每天可制作几件?
①列出一元一次方程和二元一次方程组解题.
②比较一下,两种方法得到的结果是否相同?是列一元一次方程容易,还是列二元一次方程组容易?
学生活动:第(1)题口答,第(2)题在练习本上完成.
【教法说明】第(1)题为根据相等关系列二元一次方程打下了基础;第(2)题通过两种解法的比较,让学生体会列方程组的优越性,这样引入课题,可以引起学生学习新知识的兴趣.
2.探索新知,讲授新课
例1小华买了80分与2元的邮票共16枚,共花了18元8角,80分与2元的邮票各买了多少枚?
分析:(1)题中有几个未知数?分别是什么?
(2)题中有几个相等关系?分别是什么?
学生活动:观察、分析后回答.
未知数:80分邮票枚数与2元的邮票枚数.
相等关系(1)80分邮票枚数+2元邮票枚数=总枚数.
(2)80分邮票总价+2元邮票总价=全部邮票总价.
学生活动:设未知数、根据相等关系列方程.
解:设共买枚80分邮票,枚2元邮票,根据题意得
解这个方程组,得
答:80分邮票买了11枚,2元邮票买了5枚.
强调:(1)选定几个未知数,根据问题中的条件找几个相等关系,这几个相等关系正好表示了应用题的全部含义.
(2)列方程组解应用题时,解方程组过程在练习本上完成.
(3)得到结果后,要检验是不是原方程组的解,是不是符合应用题的实际意义,然后再写答句.
反馈练习:P351,2.(只列不解)
例2小兰在玩具工厂劳动,做4个小狗、7个小汽车用去3小时42分;做5个小狗、6个小汽车用去3小时37分.平均每1个小狗与1个汽车各用多少时间?
仿照刚才分析例1的方法,分析问题.
学生活动:拟题、自由提问,其他学生抢答.
教师根据学生的拟题板书.
两个未知数:平均做1个小狗的时间与1个小汽车的时间
(1)做4个小狗的时间+做7个小汽车的时间=3时42分
(2)做5个小狗的时间+做6个小汽车的时间=3时37分
解题过程由学生完成,一个学生板演.
解:设平均做1个小狗用分,做1个小汽车有分,根据题意,得
解这个方程组,得
答:平均做一个小狗用17分,做1个小汽车用22分.
【教法说明】例2用拟题训练的方法让学生自己去尝试分析问题,不但能活跃课堂气氛,而且能促进学生积极思维,培养学生分析问题、解决问题的能力.
反馈练习:P353,4.
学生活动:口答、设未知数、列方程组.
3.变式训练,培养能力
用白铁皮做罐头盒,每张铁皮可制盒身16个或制盒底43个,一个盒身与两个盒底配成一套罐头盒,现有150张白铁皮,用多少张制盒身、多少张制盒底,可以正好制成整套罐头盒?
分析:此题的相等关系不明显,应启发学生认真思考,找到第二个相等关系.
相等关系:(1)制盒身铁皮张数+制盒底铁皮张数=150张.
(2)盒底总数=2×盒身总数.
解:设用张铁皮制盒身,张铁皮制盒底,可以制成整套缺头盒.根据题意,得
(四)总结、扩展
我们这节课学习了二元一次方程组的应用,你能简单归纳出列二元一次方程组解应用题的步骤吗?
学生发言后,老师适当补充、纠正.
八、布置作业
(一)必做题:P391,2,3.
(二)选做题:P41B组2.
(三)补充题:给定两数5和3,编一道列出二元一次方程组求解的应用题,使得这个方程组的解就是给定的两数.
参考答案
(一)1.到甲地130人,到乙地70人.
2.有28个队参加篮球赛,20个队参加排球赛.
3.长38㎝,宽16㎝.
(二)解:设一辆大车、一辆小车一次分别可运货吨、吨,根据题意,得
解得
4×3+2.5×5=24.5(吨)
九、板书设计
投影幕
重难点分析
本节的重点是单项式除以单项式的法则与应用.本章的重点是整式的乘除,作为整式除法内容中不可或缺重要组成部分,单项式除以单项式起着承上启下的作用,它既是同底数幂除法性质的延伸,又是多项式除以单项式的基础和关键,因此本节的重点是单项式除以单项式的法则与应用.
单项式除以单项式的运算是本节的难点.在单项式除以单项式的计算过程中,既要对两个单项式的系数进行运算,又要对两个单项式中同字母进行指数运算,同时对只在一个单项式中出现的字母及其指数加以注意,这对于刚刚接触整式除法的初一学生来讲,难免会出现照看不全的情况,以至于出现计算错误或漏算等问题.
教法建议
(1)单项式除以单项式运算的实质是把单项式除以单项式的运算转化为同底数幂除法运算,因此建议在学习本课知识之前对同底数幂除法运算进行复习巩固.
(2)要熟练地进行单项式除以单项式的运算,必须掌握它的基本运算,幂的运算性质是整式乘除法的基础,只要抓住这关键的一步,才能准确地进行单项式除以单项式的运算.
(3)符号仍是运算中的重要问题,用单项式以单项式时,要注意单项式的符号和只在被除式中出现的字母及其指数.
教学设计示例
一、教学目标
1.理解和掌握单项式除以单项式的运算法则.
2.运用单项式除以单项式的运算法则,熟练、准确地进行计算.
3.通过总结法则,培养学生的抽象概括能力.
4.通过法则的应用,训练学生的综合解题能力和计算能力.
二、教法引导
尝试指导法、观察法、练习法.
三、重点难点
重点准确、熟练地运用法则进行计算.
难点根据乘、除的运算关系得出法则.
四、课时安排
1课时.
五、教具
投影仪或电脑、自制胶片.
六、教学步骤
(一)教学过程(
1.创设情境,复习导入
前面我们学习了同底数幂的除法,请同学们回答如下问题,看哪位同学回答很快而且准确.
(l)叙述同底数幂的除法性质.
(2)计算:(1)(2)(3)(4)
学生活动:学生回答上述问题.
(,m,n都是正整数,且m>n)
【教法说明】通过复习引起学生回忆,且巩固同底数幂的除法性质.同时为本节的学习打下基础,注意要指出零指数幂的意义.
2.指出问题,引出新知
思考问题:()(学生回答结果)
这个问题就是让我们去求一个单项式,使它与相乘,积为,这个过程能列出一个算式吗?
由一个学生回答,教师板书.
这就是我们这节课要学习的单项式除以单项式运算.
师生活动:因为
所以(在上述板书过程中填上所缺的项)
由得到,系数4和3同底数幂、a及、分别是怎样计算的?(一个学生回答)那么由得到又是怎样计算的呢?
结合引例,教师引导学生回答,并对学生的回答进行肯定、否定、纠正,同时板书.
一般地,单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.
如何运用呢?比如计算:
学生活动:在教师引导下,根据法则回答问题.(教师板书)
【教法说明】教师根据乘、除法的运算关系,步步深入,引导学生总结得出单项式除以单项式的运算法则,教师给出,紧扣计算法则,在师生互动活动中,要充分发挥教师的主导作用和学生的主体作用,调动学生的思维.
3.尝试计算,熟悉法则
计算:(1)(2)
(3)(4)
学生活动:学生自己尝试完成计算题,同桌互相帮助,然后与课本146页例题解答过程相对照,看自己的解答有无问题,若有问题进行改正.
【教法说明】教师结合的演算,使学生对法则的运用有了初步认识;例题由学生尝试完成,可以训练学生运用知识的能力,在解题的过程中,让学生自己去体会法则、掌握法则、印象更为深刻;也让学生自己发现解题中存在的问题,有助于培养学生良好的思维习惯和主动参与学习的习惯.
4.强化学习,掌握法则
练习一
下列计算是否正确?如果不正确,指出错误原因并加以改正
(1)(2)
(3)(4)
学生活动:学生细心观察思考后,分别找4个学生回答,其他学生对他们的回答进行肯定、否定或纠正.
【教法说明】(1)、(2)、(3)小题中的错误,均是学生在计算时常出现的错误,通过这组题的练习,可以使学生进一步巩固、理解法则对可能出现的计算错误引起注意,从而培养学生解题细心的习惯;除此之外,还可以培养学生辨别是非的能力.
练
计算,全国公务员共同天地
(1)(2)(3)
(4)(5)
学生活动:5个学生板演,其他学生在练习本上完成,然后讲评.
【教法说明】此题目的是使学生熟练运用法则进行计算,要求写清计算步骤,讲评时重复法则,并纠正学生计算中出现的错误,教师提醒学生计算时要耐心细致.
练习三
计算:
(1)(2)(3)
(4)(5)
学生活动:学生在练习本上完成,5名学生板演,然后学生自评.
【教法说明】通过练,学生对法则已基本能够熟练运用,对一些容易出现的错误,也得到了纠正.适时给出练习三,可以使学生对知识的掌握得到强化,学生自评可以调动学生主动参与学习的积极性,培养他们的主人翁意识.
练习四
把图中左圈里的每一个代数式分别除以,然后把商式写在右图里.
学生活动:学生理解题意后,分别由3个学生说出答案,其他学生给予判断.
【教法说明】此题目的是使学生在进一步运用法则进行熟练计算的同时,渗透集合与对应的思想,但教师不必说明.
(二)小结
由学生完成本节课的归纳与总结,教师给予引导或补充.
一、选择题:每题5分,共25分 1. 下列各组量中,互为相反意义的量是( )A、收入200元与赢利200元 B、上升10米与下降7米C、“黑色”与“白色” D、“你比我高3cm”与“我比你重3kg”2.为迎接即将开幕的广州亚运会,亚组委共投入了2 198 000 000元人民币建造各项体育设施,用科学记数法表示该数据是( ) A 元 B 元 C 元 D 元3. 下列计算中,错误的是( )。A、 B、 C、 D、 4. 对于近似数0.1830,下列说法正确的是( ) A、有两个有效数字,精确到千位 B、有三个有效数字,精确到千分位 C、有四个有效数字,精确到万分位 D、有五个有效数字,精确到万分5.下列说法中正确的是 ( )A. 一定是负数 B 一定是负数 C 一定不是负数 D 一定是负数二、填空题:(每题5分,共25分)6. 若0<a<1,则 , , 的大小关系是 7.若 那么2a 8. 如图,点 在数轴上对应的实数分别为 , 则 间的距离是 .(用含 的式子表示)9. 如果 且x2=4,y2 =9,那么x+y= 10、正整数按下图的规律排列.请写出第6行,第5列的数字 . 三、解答题:每题6分,共24分11.① (-5)×6+(-125) ÷(-5) ② 312 +(-12 )-(-13 )+223 ③(23 -14 -38 +524 )×48 ④-18÷ (-3)2+5×(-12 )3-(-15) ÷5
四、解答题:12. (本小题6分) 把下列各数分别填入相应的集合里.
(1)正数集合:{ …};(2)负数集合:{ …};(3)整数集合:{ …};(4)分数集合:{ …} 13. (本小题6分)某地探空气球的气象观测资料表明,高度每增加1千米,气温大约降低6℃.若该地地面温度为21℃,高空某处温度为-39℃,求此处的高度是多少千米?
14. (本小题6分) 已知在纸面上有一数轴(如图),折叠纸面.(1)若1表示的点与-1表示的点重合,则- 2表示的点与数 表示的点重合;(2)若-1表示的点与3表示的点重合,则5表示的点与数 表示的点重合; 15.(本小题8分) 某班抽查了10名同学的期末成绩,以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下:+8,-3,+12,-7,-10,-3,-8,+1,0,+10.(1)这10名同学中分是多少?最低分是多少? (2)10名同学中,低于80分的所占的百分比是多少?(3)10名同学的平均成绩是多少? 参考答案1.B 2.C 3.D 4.C 5.C6. 7.≤ 8.n-m 9.±1 10.3211①-5 ②6 ③12 ④ 12① ② ③ ④ 13.10千米14. ①2 ②-315.①分:92分;最低分70分.②低于80分的学生有5人。所占百分比50%.③10名同学的平均成绩是80分.
1.学生学习兴趣不高
衡量教师课堂教学效果高低的一个标准就是学生的学习热情是否持续高涨,学生在课堂学习中普遍存在的一大问题便是学习兴趣不高。从教育心理学的角度来说,兴趣是一个人倾向于认识、研究获得某种知识的心理特征,是可以推动人们求知的一种内在力量。若学生对某一学科有兴趣,就会持续地专心致志地钻研,从而提高学习效果;若学生对某一学科缺乏兴趣,就会厌恶甚至放弃学习。课堂教学的作用之一便在于兴趣的培养。学生学习兴趣不高根本的原因在于他们缺乏对学习的一种积极的认识倾向与情绪状态。
2.学生学习动力不足
学习动力不足是课堂教学中普遍存在的又一个问题,它直接影响着学生学习的持续开展。学生的学习需要他律,也需要自律。他律的学习是高压下的结果,靠外因的推动。教学中过多的他律就会导致学习中的动力缺失,具体表现为:无明确的学习目标和学习计划,没有养成良好的学习习惯;无成就感,没有抱负和理想,没有求知欲和上进心,懒惰,自制力差;学习的挫败感导致消极地应付学习。国际学生评估项目(简称PISA)负责人安德烈亚斯·施莱克尔博士曾在北京大学附属中学的一场交流会上如是表示:“中国教育系统的不足之处在于学生的学习动力大多来自外界的压力,学生很难养成终身学习的习惯。”
3.学生学习潜力未能充分开发
学习潜力是蕴藏在每个学生身体里的一股能量,有效地利用它就能使教学事半功倍,忽视它的存在就会使教学事倍功半。就我国目前的教育而言,学生的学习潜力还远未被开发。原因正如人们所言:“中国的教育就是把泥鳅拉得跟黄鳝一样长,教学就是按照一个规格和标准去要求学生。”这样的教学忽视了学生独特个体的存在,看不到学生之间的个体差异,忽视了学习潜能,其结果必然导致学生的学习缺失自我,教学效果止步不前。其实,每个人的身体里都潜藏着巨大的能量,教学要看到这种能量的存在,充分相信每个人均能借助自己灵魂的理性能力获得发展,并发挥教师在教学过程中引导和帮助的作用。
二、教学暗示艺术及其功能解析
针对以上问题,教师在施教过程中若能深谙暗示心理效应,懂得运用暗示教学艺术,便可轻易化解。“教学暗示艺术是基于对人全面发展的考虑,从人的本能出发,借助教师的力量,运用艺术的手段,调动学生的潜能,提升学习进程的一种方式。”[1] 它运用了心理学、生理学、精神病治疗学的有关知识和规律,精心设计教学环境,通过暗示、联想与想象、智力和体力活动、音乐等方式的综合运用,巧妙地利用无意识的心理活动,充分挖掘心理潜力,使学生在轻松愉快、毫不紧张的情况下学习。
1.引起注意,提高学习兴趣
在课堂教学中巧妙地运用暗示艺术是提高学生学习的自觉性、主动性,激发他们学习兴趣的极为有效的方法。首先,教学暗示艺术强调关注学生个体。在课堂教学中一旦学生感受到被关注了,他们的注意力就会转移到学习上来。其次,教学暗示艺术强调积极营造愉快的课堂氛围。微妙的暗示,对学生不付诸压力,不强求接受,合理地、适当地运用目光、表情、手势、姿态等方式来表达暗示,利于师生间情感的沟通,便于良好学习氛围的形成。再次,教学暗示艺术强调通过多种形式来传达。教师可结合不同的教学内容,在教学过程的不同环节,采用放音乐、讲故事、做游戏、情境表演、视频呈现等方式将所教的知识渗透其中,让学生在知识的学习、问题的解决中获得某种满足感。
2.传递期望,提高自我效能感
很多学生在学习过程中常会感到一种“习得性无助”,这是因为教师没有让学生感受到自己的进步和成功,体会不到被关注和被肯定。教学中的暗示能让学生感受到一种被期待,当学生被鼓舞和被信任能做更重要的事情时,他们会学得更好;当学生有更高的自我期待时,他们会学得更好。教学暗示艺术正是通过教师一个个善意的微笑、一个个赞许的眼神和一句句鼓励的话语,传达暗示期待,调动学习积极性,促使学生将教师的期望和热情转化为自爱、自尊和自信,帮助学生人格的发展,促进学生学习的提高。因此,课堂中运用暗示艺术的根本在于教师要潜意识地传递一种积极期待,及时捕捉学生学习的闪光点,多表扬,少批评,多肯定,少否定,给予学生积极的心理影响,使学生不断增强学习的自信心和成就感。
3.放松身体,提升潜能
“暗示是在无对抗的条件下,通过含蓄、间接的方法对人的心理和行为发生影响,使人按一定的方式行事或接受一定的意见。”[2] 教学中的暗示是在愉快而不紧张的环境中进行的,学生处在身心的放松状态,感受到学习是一种乐趣,是一种享受。身体放松能极大地开启人的潜意识,为学生个人潜力的发挥创造条件。适时地采用心理暗示可以使个人的潜力活化,使学生巨大的学习潜能转化为实践的教学成效。大量研究表明,“兴趣、情感等和认识是相通的,认识是情趣的基础,情趣是认识的重要推动力。烦恼、紧张、害怕、反感、压抑等消极情绪是抑制智力的;心境愉悦、心平气和、自信乐观等积极情绪则能强化智力活动”。[3]课堂教学中有效地运用暗示艺术也能使学生处于超强记忆和最佳思维状态,达到全面激发他们的心智潜能、提高学习效率和教学质量的目的。在课堂教学中可以借助心理暗示让学生处在舒适的环境中,身心放松,产生“假消极状态”,然后教师立足在知识教学基础上,开发学生思维,激活潜在能量,再借以启发诱导,就能达到意想不到的教学效果。
三、教师在课堂上实施教学暗示艺术的策略
1.教师要有利用心理暗示调控课堂教学的意向
如何有效地在课堂教学中实施教学暗示艺术?它要求教师首先应当承认课堂教学互动中确有心理暗示效应存在,并相信它发挥着不可估量的作用;然后需要学习与研究心理暗示,了解心理暗示产生的条件、运行的机制,并且在特定的课堂情景中创造性地应用,发挥心理暗示的积极作用,实现心理暗示效应与教学互动的无痕链接。教师要从更新自己的教育理念出发,不断提升专业素养,学习和研究心理学、生理学、精神病治疗学的有关知识和规律,并把他们运用于教学过程。教师要有利用心理暗示调控教学的意向,在课堂中有意识、无意识地通过暗示手段,开发教学资源。与此同时,教师要明确利用心理暗示促进有效教学互动是一门艺术,是一门需要孜孜不倦钻研的艺术。
2.教师要有把握课堂教学暗示艺术的技巧
首先,教学暗示艺术的开展在于平等师生关系的建立,师友型关系是暗示教学顺利开展的保证。平等的师生关系的前提在于教师的去“权威性”,即通过教学用语的暗示,让学生感受到平等与受尊重,通过教师眼神、表情、手势等的暗示,产生师生间的个体联系,让学生感受到被关注。其次,教师要学会营构和谐的课堂氛围。教师在课堂中设计多样的教学互动暗示与学生交流,产生思想与情感的对接,在互动中唤起学生的主动性和积极性,良性教学互动的结果必然会创设出和谐的课堂教学氛围。再次,教师需要学会多种暗示技巧的综合运用。如在语言的表达中去掉那些让人不快的“要求、命令、必须”等词汇,而通过“启发、暗示、商量”等形式,用丰富的语言暗示鼓励学生、吸引学生,用形象的体态语暗示牵引学生的注意力,并借助语言的轻重缓急、快慢节奏及“弦外之音”来让学生体悟,行无声有行之教。
3.教师要有反省教学暗示艺术产生效应的能力
师生在课堂教学过程中相互之间产生的暗示无时无刻不存在,但有些暗示可以起作用,有些暗示并没有发生作用;有些暗示是积极的,有些暗示是消极的;有些暗示可以促进学生的学习,有些暗示反而阻碍了学生的学习;有些暗示在这一环节起作用,有些暗示只针对某类学生起作用。这些都需要教师不断地去反思课堂教学,反省教学过程中教学暗示艺术运用得恰当与否。课堂教学本身就是一个不断生成的过程,有不可预知的情况产生,有不可把握的问题出现,教师要懂得及时归纳和总结,并不断提升自身水平,把握暗示技巧,使教师在课堂上的一言一行都成为一种有效的教学行为。
(作者单位:南京师范大学泰州学院,江苏 泰州,225300)
参考文献:
一、选择题(本大题共有6小题,每小题 3分,共18分)1. 下列每组数据表示3根小木棒的长度,其中能组成一个三角形的是() A.3cm,4cm,7cm B.3cm,4cm,6cm C.5cm,4cm,10cm D.5cm,3cm,8cm2.下列计算正确的是() A.(a3)4=a7 B.a8÷a4=a2 C.(2a2)3•a3=8a9 D.4a5-2a5=23.下列式子能应用平方差公式计算的是( ) A.(x-1)(y+1) B.(x-y)(x-y) C.(-y-x)(-y-x) D.(x2+1)(1- x2)4.下列从左到右的变形属于因式分解的是() A.x2 –2xy+y2=x(x-2y)+y2 B.x2-16y2=(x+8y)(x-8y) C.x2+xy+y2=(x+y)2 D. x4y4-1=(x2y2+1)(xy+1)(xy-1)5. 在ABC中,已知∠A:∠B:∠C=2:3:4,则这个三角形是( ) A.钝角三角形 B.直角三角形 C.锐角三角形 D.等腰三角形 6.某校七(2)班42名同学为“希望工程”捐款,共捐款320元,捐款情况如下表:捐款(元) 4 68 10人 数 6 7表格中捐款6元和8元的人数不小心被墨水污染已看不清楚.若设捐款6元的有 名同学,捐款8元的有 名同学,根据题意,可得方程组() A. B. C. D. 二、填空题 (本大题共有10小题,每小题3分,共30分)7.( )3=8m6. 8.已知方程5x-y=7,用含x的代数式表示y,y= .9. 用小数表示2.014×10-3是 .10.若(x+P)与(x+2)的乘积中,不含x的一次项,则常数P的值是 .11.若 x2+mx+9是完全平方式,则m的值是 .12. 若 ,则 的值是 .13.若一个多边形内角和等于1260°,则该多边形边数是 .14.已知三角形的两边长分别为10和2,第三边的数值是偶数,则第三边长为 .15.如图,将一副三角板和一张对边平行的纸条按下列 方式摆放,两个三角板的一直角边重合 ,含30°角 的直角三角板的斜边与纸条一边重合,含45°角的三 角板的一个顶点在纸条的另一边上,则∠1的度数 是 . 16.某次地震期间,为了紧急安置60名地震灾民,需要搭建可容纳6人或4人的帐 篷,若所搭建的帐篷恰好 (即不多不少)能容纳这60名灾民,则不同的搭建方 案有 种. 三、解答题(本大题共有10小题,共102分.解答时应写出必要的步骤) 17.(本题满分12分) (1)计算: ; (2)先化简,再求值: ,其中y= .18.(本题满分8分) (1)如图,已知ABC,试画出AB边上的中线和AC边上的高; (2)有没有这样的多边形,它的内角和是它的外角 和的3倍?如果有,请求出它的边数,并写出 过这个多边形的一个顶点的对角线的条数. (第18(1)题图)19.(本题满分8分)因式分解: (1) ; (2) .20.(本题满分8分)如图,已知AD是ABC的角平分线,CE是ABC的高,AD与CE相交于点P,∠BAC=66°,∠BCE=40°,求∠ADC和∠APC的度数.21.(本题满分10分)解方程组: (1) (2)22.(本题满分10分)化简: (1)(-2x2 y)2•(- xy)-(-x3)3÷x4•y3; (2)(a2+3)(a-2)-a(a2-2a-2).新课 标第 一 网23.(本题满分10分) (1)设a-b=4,a2+b2=10,求(a+b)2的值; (2)观察下列式子:1×3+1=4,2×4+1=9,3×5+1=16,4×6+1=25,…, 探索以上式子的规律,试写出第n个等式,并说明第n个等式成立.24.(本题满分10分)某铁路桥长1000m,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min,整列火车完全在桥上的时间共40s.求火车的速度和长度.(1)写出题目中的两个等量关系;(2)给出上述问题的完整解答过程. 25.(本题满分12分)“种粮补贴”惠农政策的出台,大大激发了农民的种粮积极性,某粮食生产专业户去年计划生产小麦和玉米共18吨,实际生产了20吨,其中小麦超产12%,玉米超产10%.该专业户去年实际生产小麦、玉米各多少吨? (1)根据题意,甲和乙两同学分别列出了如下不完整的方程组: 甲: 乙: 根据甲、乙两位同学所列的方程组,请你分别指出未知数x,y表示的意义,然后在上面的横线上分别补全甲、乙两位同学所列的方程组: 甲:x表示 ,y表示 ; 乙:x表示 ,y表示 ;(2)求该专业户去年实际生产小麦、玉米各多少吨?(写出完整的解 答过程, 就甲或乙的思路写出一种即可) 26.(本题满分14分)如图①,ABC的角平分线BD、CE相交于点P. (1)如果∠A=70°,求∠BPC的度数; (2)如图②,过P点作直线MN∥BC,分别交AB和AC于点M和N,试求 ∠MPB+∠NPC的度数(用含∠A的代数式表示);
(3)在(2)的条件下,将直线MN绕点P旋转. (i)当直线MN与AB、AC的交点仍分别在线段AB和AC上时,如图③,试 探索∠MPB、∠NPC、∠A三者之间的数量关系,并说明你的理由; (ii)当直线MN与AB的交点仍在线段AB上,而与AC的交点在AC的 延长线上时,如图④,试问(i)中∠MPB、∠NPC、∠A三者之间 的数量关系是否仍然成立?若成立,请说明你的理由;若不成立,请 给出∠MPB、∠NPC、∠A三者之间的数量关系,并说明你的理由.
一、选择题(本大题共有6小题,每小题3分,共18分)二、填空题(本大题共有10小题,每小题3分,共30分)7.2m2;8.5x-7;9.0.002014;10.-2;11.±6;12.9;13.9;14.10;15.15°;16. 6.三、解答题(共10题,102分.下列答案仅 供参考,有其它答案或解法,参照标准给分.) -4a(4a2-4ab+b2)(2分)=-4a(2a-b)2(2分).20.(本题满分8分)AD是ABC的角平分线,∠BAC=66°,∠BAD=∠CAD= ∠BAC=33°(1分);CE是ABC的高,∠BEC=90°(1分);∠BCE=40°,∠B=50°(1分),∠BCA=64°(1分),∠ADC=83°(2分),∠APC=12 3°(2分).(可以用外角和定理求解)21.(本题满分10分)(1)①代入②有,2(1-y)+4y=5(1分),y=1.5 (2分),把 y=1.5代入①,得x=-0.5(1分), (1分);(2)②×3-①×5得: 11x=-55(2分),x=-5(1分).将x=-5代入①,得y=-6(1分), (1分)22.(本题满分10分)(1)原式=4x4 y2•(- xy)-(-x9)÷x4•y3(2分)=- x5y3+x5y3(2分)=- x5y3(1分);(2)原式=a3-2a2+3a-6-a3+2a2+2a(4分)=5a-6( 1分). 25.(本题满分12分)(1)甲: 乙: (4分,各1分);甲:x表示该专业户去年实际生产小麦吨数,y表示该专业户去年实际生产玉米吨数;乙:x表示原计划生产小麦吨数,y表示原计划生产玉米吨数;(4分,各1分)(2)略.(4分,其中求出方程组的解3分,答1分,不写出设未知数的扣1分).26. (本题满分14分)(1)125°(3分);(2)利用平行线的性质求解或先说明∠BPC=90°+ ∠A,∠MPB+∠NPC=180°-∠BPC=180°-(90°+ ∠A)=90°- ∠A(3分);(3)(每小题4分)(i)∠MPB+∠NPC= 90°- ∠A(2分).理由:先说明∠BPC=90°+ ∠A,则∠MPB+∠NPC=180°-∠BPC=180°-(90°+ ∠A)= 90°- ∠A(2分);(ii)不成立(1分),∠MPB-∠NPC=90°- ∠A(1分).理由:由图可知∠MPB+∠BPC-∠NPC=180°,由(i)知:∠BPC=90°+ ∠A,∠MPB-∠NPC=180°-∠BPC=180°-(90°+ ∠A)= 90°- ∠A(2分).