时间:2022-07-17 07:44:09
引言:寻求写作上的突破?我们特意为您精选了12篇初中数学教案范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
教学目的
1.使学生理解分式的意义。
2.会求使分式有意义的条件。
教学分析
重点:分式的意义及其基本性质。
难点:分式的变号法则。
教学过程
一、复习
1、引言:我们已经学过了整式,知道可用整式表示某些数量关系;学习了整式四则运算,在此基础上学习了一元一次方程的解法和列方程解应用题,但是有些数量关系,只用整式表示是不够的。。
2、例题:甲、乙两人做某种机器零件。已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等。求甲、乙每小时各做多少个?。
3、分析:设甲每小时做x个零件,那么乙每小时做(x-6)个。甲做90个所用的时间是90÷x(或)小时,乙做60个的用的时间是[60÷(x-6)](或)小时,根据题意列方程
=
可以看出、都不是整式。列出的方程也不是已学过的方程。学习本章内容就可以正确认识这样的式子及方程,从而解决问题。
二、新授
1.分式
在算术里,两个数相除可以表示用分数的形式。分数中的分子相当于被除数,分数中的分母相当于除数。因为零不能做除数,所以分数中的分母不能是零。
在代数里,整式的除法也有类似的表示。如前面的例题中,(90÷x)小时可表示成小时,[60÷(x-6)]小时可表示成小时。
又如n公顷麦田共收小麦m吨,平均每公顷产量(m÷n)吨,可用式子吨表示。
再如轮船的静水速度为a千米/小时。水流速度为b千米/小时,轮船在逆流中航行s千米所需时间[s÷(a-b)]小时,可用式子小时表示。
、、、
的分母中都含有字母。
一般地,用A、B表示两个整式,A÷B可以表示成的形式。如果B中含有字母,式子叫做分式。基中A叫做分式的分子,B叫做分式的分母。可见,上列各式都是分式。
由分式的意义可以知道:
(1)分式是两个整式的商。其中分子是被除式,分母是除式。在这里分数线可理解为除号,还含有括号的作用。
(2)分式的分子可以含字母,也可以不含字母,但分母必须含字母。式子、、都不是分式,因为它们的分母都没有字母。
(3)在分式里,分母代数式的值随式中字字母取值的不同而变化。字母所取的值有可能使分母为零。因为分式的分母相当于整式除法的除式,所以分母如果是零,则分式没有意义。因此在分式中,分母的值不能是零,例如在里,x≠0;在里,a≠b。
例1当x取什么值时,下列分式有意义?
(1);(2)。
解:(1)由x-2≠0得x≠2,即当x≠2时,分式有意义。
(2)由4x+1≠0得x≠时,分式有意义。
例2:当x是什么数时,分式的值是零?
解:由分子x+2=0,得x=-2。而当x=-2时,分母2x-5=-4-5≠0,
所以当x=-2时,分式的值是零。
问题:(1)分式的值为零就是分式没有意义吗?
(2)只要分子的值是零,分式的值就是零吗?以为例回答此题。
三、练习
练习:P60中练习1,2,3,4。
四、小结
1、本课学习了什么是分式。
2、本课还学习了使分式有意义的条件及使分式为0的未知数值的求法。
3、要特别注意分式中作为分母的代数式的值不得为零的教学。在分数里,分数的分母是一个具体的数,是否为零一目了然;而在分式里,要明确其是否有意义,就必须分析,讨论分母中所含字母不能取哪些值,以避免分母的代数式的值为零。
二、重点、难点分析
本节教学的重点是完全平方公式的熟记及应用.难点是对公式特征的理解(如对公式中积的一次项系数的理解).完全平方公式是进行代数运算与变形的重要的知识基础。
1.两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.即:
这两个公式是根据乘方的意义与多项式的乘法法则得到的.
这两个公式的结构特征是:左边是两个相同的二项式相乘,右边是三项式,是左边二中两项的平方和,加上(这两项相加时)或减去(这两项相减时)这两项乘积的2倍;公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等代数式.
2.只要符合这一公式的结构特征,就可以运用这一公式.
在运用公式时,有时需要进行适当的变形,例如可先变形为或或者,再进行计算.
在运用公式时,防止发生这样错误.
3.运用完全平方公式计算时,要注意:
(1)切勿把此公式与公式混淆,而随意写成.
(2)切勿把“乘积项”中的2丢掉.
(3)计算时,要先观察题目特点是否符合公式的条件,若不符合,应先变形为符合公式的条件的形式,再利用公式进行计算,若不能变为符合公式条件的形式,则应运用乘法法则进行计算.
4.与都叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式.
三、教法建议
1.在公式的运用上,与平方差公式的运用一样,应着重让学生掌握公式的结构特征和字母表示数的广泛意义,教科书把公式中的字母同具体题目中的数或式子,用“”连结起来,逐项比较、对照,步骤写得完整,便于学生理解如何正确地使用完全平方公式进行计算.
2.正确地使用公式的关键是确定是否符合使用公式的条件.重要的是确定两数,然后再看是否两数的和(或差),最后按照公式写出两数和(或差)的平方的结果.
3.如何使学生记牢公式呢?我们注意了以下两点.
(1)既讲“法”,又讲“理”
在教学中要讲法则、公式的应用,也要讲公式的推导,使学生在理解公式、法则道理的基础上进行记忆.我们引导学生借助面积图形对完全平方公式做直观说明,也是对说理的重视.在“明白道理”这个前提下的记忆,即使学生将来发生错误也易于纠正.
(2)讲联系、讲对比、讲特点
对于类似的内容学生容易混淆,比如在本节出现的(ab)2=a2b2的错误,其原因是把完全平方公式和“旧”知识(ab)2=a2b2及分配律弄混,排除新旧知识间相互干扰的一种作法是向学生指明新知识的特点.所以讲“理”是要讲联系、讲对比、讲特点.
教学设计示例
一、教学目标
1.理解完全平方公式的意义,准确掌握两个公式的结构特征.
2.熟练运用公式进行计算.
3.通过推导公式训练学生发现问题、探索规律的能力.
4.培养学生用数形结合的方法解决问题的数学思想.
5.渗透数学公式的结构美、和谐美.
二、学法引导
1.教学方法:尝试指导法、讲练结合法.
2.学生学法:本节学习了乘法公式中的完全平方,一个是两数和的平方,另一个是两数差的平方,两者仅一个“符号”不同.相乘的结果是两数的平方和,加上(或减去)两数的积的2倍,两者也仅差一个“符号”不同,运用完全平方公式计算时,要注意:
(1)切勿把此公式与公式混淆,而随意写成.
(2)切勿把“乘积项”2ab中的2丢掉.
(3)计算时,要先观察题目是否符合公式的条件.若不符合,应先变形为符合公式的条件的形式,再利用公式进行计算;若不能变为符合条件的形式,则应运用乘法法则进行计算.
三、重点·难点及解决办法
(一)重点
掌握公式的结构特征和字母表示的广泛含义,正确运用公式进行计算.
(二)难点
综合运用平方差公式与完全平方公式进行计算.
(三)解决办法
加强对公式结构特征的深入理解,在反复练习中掌握公式的应用.
四、课时安排
一课时.
五、教具学具准备
投影仪或电脑、自制胶片.
六、师生互动活动设计
1.让学生自编几道符合平方差公式结构的计算题,目的是辨认题目的结构特征.
2.引入完全平方公式,让学生用文字概括公式的内容,培养抽象的数字思维能力.
3.举例分析如何正确使用完全平方公式,师生共练完成本课时重点内容.
4.适时练习并总结,从实践到理论再回到实践,以指导今后的解题.
七、教学步骤
(一)明确目标
本节课重点学习完全平方公式及其应用.
(二)整体感知
掌握好完全平方公式的关键在于能正确识别符合公式特征的结构,同时还要注意公式中2ab中2的问题,在解题过程中应多观察、多思考、多揣摩规律.
(三)教学过程
1.计算导入;求得公式
(1)叙述平方差公式的内容并用字母表示;
一、知识结构
二、重点、难点分析
本节教学的重点是完全平方公式的熟记及应用.难点是对公式特征的理解(如对公式中积的一次项系数的理解).完全平方公式是进行代数运算与变形的重要的知识基础。
1.两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.即:
这两个公式是根据乘方的意义与多项式的乘法法则得到的.
这两个公式的结构特征是:左边是两个相同的二项式相乘,右边是三项式,是左边二中两项的平方和,加上(这两项相加时)或减去(这两项相减时)这两项乘积的2倍;公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等代数式.
2.只要符合这一公式的结构特征,就可以运用这一公式.
在运用公式时,有时需要进行适当的变形,例如可先变形为或或者,再进行计算.
在运用公式时,防止发生这样错误.
3.运用完全平方公式计算时,要注意:
(1)切勿把此公式与公式混淆,而随意写成.
(2)切勿把“乘积项”中的2丢掉.
(3)计算时,要先观察题目特点是否符合公式的条件,若不符合,应先变形为符合公式的条件的形式,再利用公式进行计算,若不能变为符合公式条件的形式,则应运用乘法法则进行计算.
4.与都叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式.
三、教法建议
1.在公式的运用上,与平方差公式的运用一样,应着重让学生掌握公式的结构特征和字母表示数的广泛意义,教科书把公式中的字母同具体题目中的数或式子,用“”连结起来,逐项比较、对照,步骤写得完整,便于学生理解如何正确地使用完全平方公式进行计算.
2.正确地使用公式的关键是确定是否符合使用公式的条件.重要的是确定两数,然后再看是否两数的和(或差),最后按照公式写出两数和(或差)的平方的结果.
3.如何使学生记牢公式呢?我们注意了以下两点.
(1)既讲“法”,又讲“理”
在教学中要讲法则、公式的应用,也要讲公式的推导,使学生在理解公式、法则道理的基础上进行记忆.我们引导学生借助面积图形对完全平方公式做直观说明,也是对说理的重视.在“明白道理”这个前提下的记忆,即使学生将来发生错误也易于纠正.
(2)讲联系、讲对比、讲特点
对于类似的内容学生容易混淆,比如在本节出现的(ab)2=a2b2的错误,其原因是把完全平方公式和“旧”知识(ab)2=a2b2及分配律弄混,排除新旧知识间相互干扰的一种作法是向学生指明新知识的特点.所以讲“理”是要讲联系、讲对比、讲特点.
教学设计示例
一、教学目标
1.理解完全平方公式的意义,准确掌握两个公式的结构特征.
2.熟练运用公式进行计算.
3.通过推导公式训练学生发现问题、探索规律的能力.
4.培养学生用数形结合的方法解决问题的数学思想.
5.渗透数学公式的结构美、和谐美.
二、学法引导
1.教学方法:尝试指导法、讲练结合法.
2.学生学法:本节学习了乘法公式中的完全平方,一个是两数和的平方,另一个是两数差的平方,两者仅一个“符号”不同.相乘的结果是两数的平方和,加上(或减去)两数的积的2倍,两者也仅差一个“符号”不同,运用完全平方公式计算时,要注意:
(1)切勿把此公式与公式混淆,而随意写成.
(2)切勿把“乘积项”2ab中的2丢掉.
(3)计算时,要先观察题目是否符合公式的条件.若不符合,应先变形为符合公式的条件的形式,再利用公式进行计算;若不能变为符合条件的形式,则应运用乘法法则进行计算.
三、重点·难点及解决办法
(一)重点
掌握公式的结构特征和字母表示的广泛含义,正确运用公式进行计算.
(二)难点
综合运用平方差公式与完全平方公式进行计算.
(三)解决办法
加强对公式结构特征的深入理解,在反复练习中掌握公式的应用.
四、课时安排
一课时.
五、教具学具准备
投影仪或电脑、自制胶片.
六、师生互动活动设计
1.让学生自编几道符合平方差公式结构的计算题,目的是辨认题目的结构特征.
2.引入完全平方公式,让学生用文字概括公式的内容,培养抽象的数字思维能力.
3.举例分析如何正确使用完全平方公式,师生共练完成本课时重点内容.
4.适时练习并总结,从实践到理论再回到实践,以指导今后的解题.
七、教学步骤
(一)明确目标
本节课重点学习完全平方公式及其应用.
(二)整体感知
掌握好完全平方公式的关键在于能正确识别符合公式特征的结构,同时还要注意公式中2ab中2的问题,在解题过程中应多观察、多思考、多揣摩规律.
(三)教学过程
1.计算导入;求得公式
(1)叙述平方差公式的内容并用字母表示;
[当前第1页/共2页]<<>>
(2)用简便方法计算
①103×97
②103×103
(3)请同学们自编一个符合平方差公式结构的计算题,并算出结果.
学生活动:编题、解题,然后两至三个学生说出题目和结果.
要想用好公式,关键在于辨认题目的结构特征,正确使用公式,这节课我们继续学习“乘
法公式”.
引例:计算,
学生活动:计算,,两名学生板演,其他学生在练习本上完成,然后说出答案,得出公式.
或合并为:
教师引导学生用文字概括公式.
方法:由学生概括,教师给予肯定、否定或更正,同时板书.
两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.
【教法说明】
①复习平方差公式,主要是引起回忆,巩固公式;编题在于提高兴趣.
②有了平方差公式的推导过程,学生基本建立起了一些特殊多项式乘法的认识方法,因此推导完全平方公式可以由计算直接得出.
2.结合图形,理解公式
根据图形完成下列问题:
如图:A、B两图均为正方形,
(1)图A中正方形的面积为____________,(用代数式表示)
图Ⅰ、Ⅱ、Ⅲ、Ⅳ的面积分别为_______________________。
(2)图B中,正方形的面积为____________________,
Ⅲ的面积为______________,
Ⅰ、Ⅱ、Ⅳ的面积和为____________,
用B、Ⅰ、Ⅱ、Ⅳ的面积表示Ⅲ的面积_________________。
分别得出结论:
学生活动:在教师引导下回答问题.
【教法说明】利用图形讲解,增强学生对公式的直观理解,以便更好地掌握公式,同时也培养学生数形结合的数学思想。
3.探索新知,讲授新课
(1)引例:计算
教师讲解:在中,把x看成a,把2y看成b,在中把2x看成a,把3y看成b,则、,就可用完全平方公式来计算,即
【教法说明】引例的目的在于使学生进一步理解公式的结构,为运用公式打好基础.
(2)例1运用完全平方公式计算:
①②③
学生活动:学生独立在练习本上尝试解题,3个学生板演.
【教法说明】让学生先模仿公式解题,学生可能会出现一些问题,这也正是学生对公式理解、应用和熟练程度上存在的需要解决的问题,反馈后要紧扣公式,重点讲解,达到解决问题的目的,关于例呈中(3)的计算,可对照公式直接计算,也可变形成,然后再进行计算,同时也可训练学生灵活运用学过的知识的能力.
4.尝试反馈,巩固知识
练习一
运用完全平方公式计算:
(1)(2)(3)
(4)(5)(6)
(7)(8)(9)
(l0)
学生活动:学生在练习本上完成,然后同学互评,教师抽看结果,练习中存在的共性问题要集中解决.
5.变式训练,培养能力
练
运用完全平方公式计算:
(l)(2)(3)(4)
学生活动:学生分组讨论,选代表解答.
练习三
(1)有甲、乙、丙、丁四名同学,共同计算,以下是他们的计算过程,请判断他们的计算是否正确,不正确的请指出错在哪里.
甲的计算过程是:原式
乙的计算过程是:原式
丙的计算过程是:原式
丁的计算过程是:原式
(2)想一想,与相等吗?为什么?
与相等吗?为什么?
学生活动:观察、思考后,回答问题.
【教法说明】练是一组数字计算题,使学生体会到公式的用途,也可以激发学生学习兴趣,调动学生的学习积极性,同时也起到加深理解公式的作用.练习三第(l)题实际是课本例4,此题是与平方差公式的综合运用,难度较大.通过给出解题步骤,让学生进行判断,使难度降低,学生易于理解,教师要注意引导学生分析这类题的结构特征,掌握解题方法.通过完成第(2)题使学生进一步理解与之间的相等关系,同时加深理解代数中“a”具有的广泛意义.
练习四
运用乘法公式计算:
(l)(2)
(3)(4)
学生活动:采取比赛的方式把学生分成四组,每组完成一题,看哪一组完成得快而且准确,每组各派一个学生板演本组题目.
【教法说明】这样做的目的是训练学生的快速反应能力及综合运用知识的能力,同时也激发学生的学习兴趣,活跃课堂气氛.
(四)总结、扩展
这节课我们学习了乘法公式中的完全平方公式.
引导学生举例说明公式的结构特征,公式中字母含义和运用公式时应该注意的问题.
八、布置作业
1、使学生正确掌握分式的乘除法的法则。
2、能熟练地运用分式的乘除法的法则进行计算。
教学分析
重点:分式的乘除法的法则是本节的教学重点。
难点:分子或分母为多项式的分式的乘除法是本节教学的难点。
教学过程
一、复习
1、复习提问:
(1)什么叫做分式的约分?约分的根据是什么?(可叫一位学生回答.)
(2)用投影仪(或小黑板)出示以下题目:
下列各式是否正确?为什么?。
先让学生观察思考,最后老师作结论.
2、用类比的方法总结出分式的乘除法的法则。
由分数的基本性质类比地得到分式的基本性质,由分数的约分类比地得到分式的约分.由分数乘除法的法则同样可类比地得到分式的乘除法的法则.现在我们来学习分式的乘除法.(板书课题)
让学生回忆并回答什么是“分数的乘除法的法则”;用投影仪(或小黑板)出示分数的乘除法的法则,然后启发学生,用类比的方法叙述出分式的乘除法的法则.。
二、新授
用投影仪或小黑板出示分式的乘除法法则:
分式乘以分式,用分子的积做积的分子,分母的积做积的分母;
分式除以分式,把除式的分子、分母颠倒位置后与被除式相乘.
用式子表示即是:
例1计算
分析(1)题并引导学生解答:
①(1)题是几个分式进行什么运算?
②每个分式的分子和分母都是什么代数式?
③运用分式乘除法法则得到的积的分子、分母各是什么?
④积的符号是什么?
⑤怎样应用分式的约分法则使积化成最简分式或单项式?
随手板书解题过程:
分析(2)题并引导学生自解:
①(2)题两个分式进行什么运算?
②每个分式的分子、分母各是什么代数式?
③怎样应用分式的除法法则把分式的除法运算变成分式的乘法运算?
以下可由学生写出运算结果:
(用投影仪或小黑板出示以下小结内容)
小结:分子和分母都是单项式的分式乘除法的解题步骤是:
①含有分式除法运算时,先用分式除法法则把分式除法运算变成分式乘法运算;
②再用分式乘法法则得出积的分式;
③用分式符号法则确定积的符号;
④用分式约分法则使积化成最简分式或整式(一般为单项式).
三、练习
课堂练习1:
计算:
分析、引导学生
①本题是几个分式在进行什么运算?
②每个分式的分子和分母都是什么代数式?
③在分式的分子、分母中的多项式是否可以分解因式,怎样分解?(a2-4)=(a+2)(a-2),a2-4a+3=(a-1)(a-3),a2+3a+2=(a+1)(a+2).
④怎样应用分式乘法法则得到积的分式?
⑤怎样应用分式约分法则使积化成最简分式或整式(一般为多项式)?
随手板书解题过程.
课堂练习2:
计算:
小结:分子或分母是多项式的分式乘除法的解题步骤是:
①将原分式中含同一字母的各多项式按降幂(或升幂)排列;在乘除过程中遇到整式则视其为分母为1,分子为这个整式的分式;
②把各分式中分子或分母里的多项式分解因式;
③应用分式乘除法法则进行运算得到积的分式;
④应用分式约分法则使积化成最简分式或整式.
先分析:本题是分子或分母为多项式的分式乘除法混合运算,运算过程从左至右依次进行;因此,分式乘除法法则也适用于两个以上的分式相乘除.然后让学生自己做,教师巡视,并找出得出正、反两个结果的学生上台板书,让大家判断正误.
四、小结
(1)让两个学生分别用语言叙述和式子表示分式乘除法法则.
(2)课堂验收题:在余下的时间内让学生独立完成以下题目,下课时全收上来,批阅打分,以便检查课堂效果.(题目可用小黑板出示).
计算:
五、作业
1.计算:
教学目的
1、使学生理解同类项的意义。
2、使学生掌握合并同类项法则,并应用合并同类项。
3、通过合并同类项的学习,培养学生观察与分类归纳能力。
教学分析
重点:同类项的概念,合并同类项的方法。
难点:多字母同类项的判别与合并。
突破:理解同类项的概念的两个特性,合并同类项,就是合并它们的系数。
教学过程
一、复习
1、回答下列单项式的系数
-4ab2,10x2,-2x,abc,-y3z,2r
2、什么叫多项式?什么叫多项式的项?
3、列代数式:每本练习本x元,王强买5本,张华买2本,两人一共花多少钱?王强比张华多花多少钱?
二、新授
1、引入
问:5x+2x=?5x-2x=?
5x看成是x的5倍,2x看成是x的2倍,所以和是x的7倍,也可逆向运用分配律:5x+2x=(5+2)x,后面的也是一样。
同样,根据分配律有,
-4ab2+3ab2=(-4+3)ab2
以上两项,所含有的字母相同,相同字母的指数也相同。
2、给出同类项的概念
多项式中所含有的字母相同,并且相同字母的指数也相同的项,叫做同类项,几个常数项也是同类项。
例1(P153练习1)回答
找出多项式2x2-5x+x2+4x-3x2-2中的同类项。
有两个特征:(1)各项中所含有的字母相同,(2)相同字母的指数分别相同。(与系数无关,与字母的顺序无关。)
3、合并同类项、合并同类项法则和根据。
(1)、把多项式中的同类项合并成一项,叫做合并同类项
(2)同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。
(3)根据:分配律
例2(P153例2)
合并多项式4x2-8x+5-3x2+6x-2的同类项。
(结果为x2-2x+3,解见P153)
例3(P153例3)
合并多项式4a2+3b2+2ab-4a2-3b2的同类项。
析:4a2与-4a2这一对同类项的系数是互为相反数,合并后这两项就互相抵消,结果为0。
解:(见教材P154)
三、练习P153:3,4。
四、小结
要抓住同类项的特征,又要知道合并时只能合并系数。
1、使学生理解同类项的意义。
2、使学生掌握合并同类项法则,并应用合并同类项。
3、通过合并同类项的学习,培养学生观察与分类归纳能力。
教学分析
重点:同类项的概念,合并同类项的方法。
难点:多字母同类项的判别与合并。
突破:理解同类项的概念的两个特性,合并同类项,就是合并它们的系数。
教学过程
一、复习
1、回答下列单项式的系数
-4ab2,10x2,-2x,abc,-y3z,2r
2、什么叫多项式?什么叫多项式的项?
3、列代数式:每本练习本x元,王强买5本,张华买2本,两人一共花多少钱?王强比张华多花多少钱?
二、新授
1、引入
问:5x+2x=?5x-2x=?
5x看成是x的5倍,2x看成是x的2倍,所以和是x的7倍,也可逆向运用分配律:5x+2x=(5+2)x,后面的也是一样。
同样,根据分配律有,
-4ab2+3ab2=(-4+3)ab2
以上两项,所含有的字母相同,相同字母的指数也相同。
2、给出同类项的概念
多项式中所含有的字母相同,并且相同字母的指数也相同的项,叫做同类项,几个常数项也是同类项。
例1(P153练习1)回答
找出多项式2x2-5x+x2+4x-3x2-2中的同类项。
有两个特征:(1)各项中所含有的字母相同,(2)相同字母的指数分别相同。(与系数无关,与字母的顺序无关。)
3、合并同类项、合并同类项法则和根据。
(1)、把多项式中的同类项合并成一项,叫做合并同类项
(2)同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。
(3)根据:分配律
例2(P153例2)
合并多项式4x2-8x+5-3x2+6x-2的同类项。
(结果为x2-2x+3,解见P153)
例3(P153例3)
合并多项式4a2+3b2+2ab-4a2-3b2的同类项。
析:4a2与-4a2这一对同类项的系数是互为相反数,合并后这两项就互相抵消,结果为0。
解:(见教材P154)
三、练习P153:3,4。
四、小结
要抓住同类项的特征,又要知道合并时只能合并系数。
1.使学生明确分式的约分概念和理论依据,掌握约分方法;
2.通过与分数的约分作比较,学习分式的约分,渗透“类比”的思想方法.
教学重点和难点
重点:分式约分的方法.
难点:分式约分时分式的分子或分母中的因式的符号变化.
教学过程设计
一、导入新课
问:下面的等式中右式是怎样从左式得到的?这种变换的理论根据是什么?
答:(1)式中的左边分式的分子与分母都除以2a2b2,得到右式,这里a≠0,b≠0.(2)式中的左边分式的分子与分母都除以(x+y),得到右式,这里(x+y)≠0.这种变换的根据是分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.
本性质.
问:什么是分数的约分?约分的方法是什么?约分的目的是什么?
答:把一个分数化为与它相等,但是分子、分母都比较小的分数,这种运算叫做约分.对于一个分数进行约分的方法是:把分子、分母都除以它们的公约数(1除外).约分的目的是把一个分数化为既约分数.分式的约分和分数的约分类似,下面讨论分式的约分.
二、新课
我们观察:
(1)中左式变为右式,是把左式中的分子与分母都除以2a2b2得到的,它是分式的分子与分母的公因式.
(2)中左式变为右式,是把左式中的分子与分母都除以它们的公因式(x+y)而得到的.
像(1),(2)中分式的运算就是分式的约分.即把一个分式的分子与分母的公因式约去,叫做分式的约分.
一个分式的分子与分母没有公因式时,这个分式叫做最简分式.
把一个分式进行约分的目的,是使这个分式变为最简分式.
为了把上述分式约分,应该先确定分式的分子与分母的公因式,那么分式的分子与分母的公因式是什么?
答:因为分式的分子与分母都是单项式,取分子、分母中相同因式的最低次幂和分子、分母的系数的最大公约数,把它们的积作为这个分式的分子与分母的公因式.
指出:分子或分母的系数是负数时,一般先把负号移到分式本身的前边.这就同时改变了分式本身与分子或分母的符号,所以分式的值不变.
例2约分:
分析:(1),(2)的分子、分母都是多项式,并且都能分解因式,可以先分解因式,再分别确定分子与分母的公因式.
请同学说出解题思路.
答:分式的分子、分母都是多项式,可以先分别因式分解,约分,把分式化为最简分式,再求值.
当x=45时,
请同学概括分式约分的步骤.
答:
1.如果分式的分子、分母是单项式,约去分子、分母的系数的最大公约数和相同因式的最低次幂.
2.如果分式的分子与分母都是多项式时,可先把分子、分母分解因式,然后约去分子与分母的公因式.
3.当分式的分子或分母的系数是负数时,应先把负号提到分式的前边.
请同学思考一个问题:将分式约分时,约去分式中的分子与分母的公因式,为什么分式的值不变?
答:因为所给的分式都是有意义的,也就是说,分母的值不等于零.而分式的分子与分母的公因式一定是分式的分母的一个因式,根据分式的基本性质,约分后分式的值不变.
三、课堂练习
1.约分:
2.指出下列分式运算中的错误,并把它改正.
四、小结
把一个分式的分子与分母的公因式约去,叫做分式的约分.
分式进行约分的目的是要把这个分式化为最简分式.
如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.
分式约分中注意正确运用乘方的符号法则,如
x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.
五、作业
1.约分:
2.约分:
3.先约分,再求值:
课堂教学设计说明
一、知识结构
二、重点、难点分析
本节的重点是:单项式乘法法则的导出.这是因为单项式乘法法则的导出是对学生已有的数学知识的综合运用,渗透了“将未知转化为已知”的数学思想,蕴含着“从特殊到一般”的认识规律,是培养学生思维能力的重要内容之一.
本节的难点是:多种运算法则的综合运用.是因为单项式的乘法最终将转化为有理数乘法、同底数幂相乘、幂的乘方、积的乘方等运算,对于初学者来说,由于难于正确辩论和区别各种不同的运算以及运算所使用的法则,易于将各种法则混淆,造成运算结果的错误.
三、教法建议
本节课在教学过程中的不同阶段可以采用了不同的教学方法,以适应教学的需要.
(1)在新课学习阶段的单项式的乘法法则的推导过程中,可采用引导发现法.通过教师精心设计的问题链,引导学生将需要解决的问题转化成用已经学过的知识可以解决的问题,充分体现了教师的主导作用和学生的主体作用,学生始终处在观察思考之中.
(2)在新课学习的例题讲解阶段,可采用讲练结合法.对于例题的学习,应围绕问题进行,教师引导学生通过观察、思考,寻求解决问题的方法,在解题的过程中展开思维.与此同时还进行多次有较强针对性的练习,分散难点.对学生分层进行训练,化解难点.并注意及时矫正,使学生在前面出现的错误,不致于影响后面的学习,为后而后学习扫清障碍.通过例题的讲解,教师给出了解题规范,并注意对学生良好学习习惯的培养.
(3)本节课可以师生共同小结,旨在训练学生归纳的方法,并形成相应的知识系统,进一步防范学生在运算中容易出现的错误.
教学设计示例
一、教学目的
1.使学生理解并掌握单项式的乘法法则,能够熟练地进行单项式的乘法计算.
2.注意培养学生归纳、概括能力,以及运算能力.
3.通过单项式的乘法法则在生活中的应用培养学生的应用意识.
二、重点、难点
重点:掌握单项式与单项式相乘的法则.
难点:分清单项式与单项式相乘中,幂的运算法则.
三、教学过程
复习提问:
什么是单项式?什么叫单项式的系数?什么叫单项式的次数?
引言我们已经学习了幂的运算性质,在这个基础上我们可以学习整式的乘法运算.先来学最简单的整式乘法,即单项式之间的乘法运算(给出标题).
新课看下面的例子:计算
(1)2x2y·3xy2;(2)4a2x2·(-3a3bx).
同学们按以下提问,回答问题:
(1)2x2y·3xy2
①每个单项式是由几个因式构成的,这些因式都是什么?
2x2y·3xy2=(2·x2·y)·(3·x·y2)
②根据乘法结合律重新组合
2x2y·3xy2=2·x2·y·3·x·y2
③根据乘法交换律变更因式的位置
2x2y·3xy2=2·3·x2·x·y·y2
④根据乘法结合律重新组合
2x2y·3xy2=(2·3)·(x2·x)·(y·y2)
⑤根据有理数乘法和同底数幂的乘法法则得出结论
2x2y·3xy2=6x3y3
按以上的分析,写出(2)的计算步骤:
(2)4a2x2·(-3a3bx)
=4a2x2·(-3)a3bx
=[4·(-3)]·(a2·a3)·(x2·x)·b
=(-12)·a5·x3·b
=-12a5bx3.
通过以上两题,让学生总结回答,归纳出单项式乘单项式的运算步骤是:
①系数相乘为积的系数;
②相同字母因式,利用同底数幂的乘法相乘,作为积的因式;
③只在一个单项式里含有的字母,连同它的指数也作为积的一个因式;
④单项式与单项式相乘,积仍是一个单项式;
⑤单项式乘法法则,对于三个以上的单项式相乘也适用.
看教材,让学生仔细阅读单项式与单项式相乘的法则,边读边体会边记忆.
利用法则计算以下各题.
例1计算以下各题:
(1)4n2·5n3;
(2)(-5a2b3)·(-3a);
(3)(-5an+1b)·(-2a);
(4)(4×105)·(5×106)·(3×104).
解:(1)4n2·5n3
=(4·5)·(n2·n3)
=20n5;
(2)(-5a2b3)·(-3a)
=[(-5)·(-3)]·(a2·a)·b3
=15a3b3;
(3)(-5an+1b)·(-2a)
=[(-5)·(-2)]·(an+1·a)b
=10an+2b;
(4)(4·105)·(5·106)·(3·104)
=(4·5·3)·(105·106·104)
=60·1015
=6·1016.
例2计算以下各题(让学生回答):
(3)(-5amb)·(-2b2);
(4)(-3ab)(-a2c)·6ab2.
=3x3y3;
(3)(-5amb)·(-2b2);
=[(-5)·(-2)]·am·(b·b2)
=10amb3
(4)(-3ab)·(-a2c)·6ab2
第二,备学生。在课堂教学过程中,学生才是课堂的主体, 教师是课堂教学的组织者、指导者、参与者。应努力创设有趣的问题情境,激发学生的求知欲望和好奇心,启发学生学习的自主性,培养学生的学习兴趣。听取学生对教学的意见和要求,及时改进教学方式。还要重视学生发展性思维的培养,教师必须结合教材促进学生思维能力的健康发展,不要用墨守成规和一成不变的教法,允许学生发散性思维,这样才能最大限度地发掘每一位学生的创新性能力。
第三,备教法。教学方法就是教师教会学生如何运用掌握的知识解决实际问题的方法。当然没有不变的教法,即使同一教材,对于不同学生也应有不同的教法,而教学的方法是各种各样的。(1)激发学生学习兴趣。兴趣是最好的老师。只有激发了学生的学习兴趣,发挥出学生的自主能动性,让他们参与其中,才能体现现代的数学教学模式。(2)多鼓励学生参与式教学。只有学生自身参与实践活动,才会体现数学学习的价值,才会体现出数学的应用价值。参与式教学是学生学习数学的一种有意识的内在活动,需要教师要时刻唤醒。(3)教会学生观察、分析和总结的能力。这是数学教学的关键点。于是,在实践活动中,教师要根据教学内容的特点,引导学生按一定的方法进行观察、分析和总结,发现事物间的联系和规律。
第四,备反思。每当上完一节课后,应该及时的写下本节课的反思,记录好一节课的成功和失败,只有坚持记录,才能对自己的教学、学生的学情很好的把控。所以让我们都来做一个反思型教师,在不断的反思中学生才会受益,自己才会成长。
总之,在新标下,随着教师角色的转变和学生学习方式的改变,备课不再是简单的诠释,教学的过和教学方法不再是简单的展示,它们已经发生了颠覆性的变化。因此教师备课已升华为教师教学研究的一个重要学问。让我们坚持以上“四点”的方式,继续努力......
俗话说:“一把钥匙开一把锁”,我愿意用我毕生最大的努力,把自己锻成一把“万能钥匙”。
【参考文献】
[1]数学课程标准研制组编写《数学课程标准解读》北京师范大学出版社2016年版
[2]张一民著.《中学数学教学方法》 云南教育出版社 1995年2月第一版
1.掌握相似三角形的性质定理2、3.
2.学生掌握综合运用相似三角形的判定定理和性质定理2、3来解决问题.
3.进一步培养学生类比的教学思想.
4.通过相似性质的学习,感受图形和语言的和谐美
二、教法引导
先学后教,达标导学
三、重点及难点
1.教学重点:是性质定理的应用.
2.教学难点:是相似三角形的判定与性质等有关知识的综合运用.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、常用画图工具.
六、教学步骤
[复习提问]
叙述相似三角形的性质定理1.
[讲解新课]
让学生类比“全等三角形的周长相等”,得出性质定理2.
性质定理2:相似三角形周长的比等于相似比.
∽,
同样,让学生类比“全等三角形的面积相等”,得出命题.
“相似三角形面积的比等于相似比”教师对学生作出的这种判断暂时不作否定,待证明后再强调是“相似比的平方”,以加深学生的印象.
性质定理3:相似三角形面积的比,等于相似比的平方.
∽,
注:(1)在应用性质定理3时要注意由相似比求面积比要平方,这一点学生容易掌握,但反过来,由面积比求相似比要开方,学生往往掌握不好,教学时可增加一些这方面的练习.
(2)在掌握相似三角形性质时,一定要注意相似前提,如:两个三角形周长比是,它们的面积之经不一定是,因为没有明确指出这两个三角形是否相似,以此教育学生要认真审题.
例1已知如图,∽,它们的周长分别是60cm和72cm,且AB=15cm,,求BC、AB、、.
此题学生一般不会感到有困难.
例2有同一三角形地块的甲、乙两地图,比例尺分别为1:200和1:500,求甲地图与乙地图的相似比和面积比.
教材上的解法是用语言叙述的,学生不易掌握,教师可提供另外一种解法.
解:设原地块为,地块在甲图上为,在乙图上为.
∽∽且,.
.
学生在运用掌握了计算时,容易出现的错误,为了纠正或防止这类错误,教师在课堂上可举例说明,如:,而
[小结]
1.本节学习了相似三角形的性质定理2和定理3.
1.使学生了解直角三角形相似定理的证明方法并会应用.
2.继续渗透和培养学生对类比数学思想的认识和理解.
3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力.
4.通过学习,了解由特殊到一般的唯物辩证法的观点.
二、教学设计
类比学习,探讨发现
三、重点及难点
1.教学重点:是直角三角形相似定理的应用.
2.教学难点:是了解直角三角形相似判定定理的证题方法与思路.
四、课时安排
3课时
五、教具学具准备
多媒体、常用画图工具、
六、教学步骤
[复习提问]
1.我们学习了几种判定三角形相似的方法?(5种)
2.叙述预备定理、判定定理1、2、3(也可用小纸条让学生默写).
其中判定定理1、2、3的证明思路是什么?(①作相似,证全等;②作全等,证相似)
3.什么是“勾股定理”?什么是比例的合比性质?
【讲解新课】
类比判定直角三角形全等的“HL”方法,让学生试推出:
直角三角形相似的判定定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.
已知:如图,在∽中,
求证:∽
建议让学生自己写出“已知、求征”.
这个定理有多种证法,它同样可以采用判定定理l、2、3那样的证明思路与方法,即“作相似、证全等”或“作全等、证相似”,教材上采用了代数证法,利用代数法证明几何命题的思想方法很重要,今后我们还会遇到.应让学生对此有所了解.
定理证明过程中的“都是正数,,其中都是正数”告诉学生一定不能省略,这是因为命题“若,到”是假命题(可举例说明),而命题“若,且、均为正数,则”是真命题.
例4已知:如图,,,,当BD与、之间满足怎样的关系时∽.
解(略)
教师在讲解例题时,应指出要使∽.应有点A与C,B与D,C与B成对应点,对应边分别是斜边和一条直角边.
还可提问:(1)当BD与、满足怎样的关系时∽?(答案:)
(2)如图,当BD与、满足怎样的关系式时,这两个三角形相似?(不指明对应关系)
(答案:或两种情况)
探索性题目是已知命题的结论,寻找使结论成立的题设,是探索充分条件,所以有一定难度,教材为了降低难度,在例4中给了探索方向,即“BD与满足怎样的关系式.”
这种题目体现分析问题的思维方法,对培养学生研究问题的习惯有好处,教师要给予足够重视,但由于有一定难度,只要求学生了解这类问题的思考方法,不应提高要求或增加难度.
[小结]
1.直角三角形相似的判定除了本节定理外,前面判定任意三角形相似的方法对直角三角形同样适用.
2.让学生了解了用代数法证几何命题的思想方法.
(一)知识教学点:1.使学生了解一元二次方程及整式方程的意义;2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.
(二)能力训练点:1.通过一元二次方程的引入,培养学生分析问题和解决问题的能力;2.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.
(三)德育渗透点:由知识来源于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识.
二、教学重点、难点
1.教学重点:一元二次方程的意义及一般形式.
2.教学难点:正确识别一般式中的“项”及“系数”.
三、教学步骤
(一)明确目标
1.用电脑演示下面的操作:一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让学生拿出事先准备好的长方形纸片和剪刀,实际操作一下刚才演示的过程.学生的实际操作,为解决下面的问题奠定基础,同时培养学生手、脑、眼并用的能力.
2.现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖的长方体盒子,那么应该怎样求出截去的小正方形的边长?
教师启发学生设未知数、列方程,经整理得到方程x2-70x+825=0,此方程不会解,说明所学知识不够用,需要学习新的知识,学了本章的知识,就可以解这个方程,从而解决上述问题.
板书:“第十二章一元二次方程”.教师恰当的语言,激发学生的求知欲和学习兴趣.
(二)整体感知
通过章前引例和节前引例,使学生真正认识到知识来源于实际,并且又为实际服务,学习了一元二次方程的知识,可以解决许多实际问题,真正体会学习数学的意义;产生用数学的意识,调动学生积极主动参与数学活动中.同时让学生感到一元二次方程的解法在本章中处于非常重要的地位.
(三)重点、难点的学习及目标完成过程
1.复习提问
(1)什么叫做方程?曾学过哪些方程?
(2)什么叫做一元一次方程?“元”和“次”的含义?
(3)什么叫做分式方程?
问题的提出及解决,为深刻理解一元二次方程的概念做好铺垫.
2.引例:剪一块面积为150cm2的长方形铁片使它的长比宽多5cm,这块铁片应怎样剪?
引导,启发学生设未知数列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以观察、比较,得到整式方程和一元二次方程的概念.
整式方程:方程的两边都是关于未知数的整式,这样的方程称为整式方程.
一元二次方程:只含有一个未知数,且未知数的最高次数是2,这样的整式方程叫做一元二次方程.
一元二次方程的概念是在整式方程的前提下定义的.一元二次方程中的“一元”指的是“只含有一个未知数”,“二次”指的是“未知数的最高次数是2”.“元”和“次”的概念搞清楚则给定义一元三次方程等打下基础.一元二次方程的定义是指方程进行合并同类项整理后而言的.这实际上是给出要判定方程是一元二次方程的步骤:首先要进行合并同类项整理,再按定义进行判断.
3.练习:指出下列方程,哪些是一元二次方程?
(1)x(5x-2)=x(x+1)+4x2;
(2)7x2+6=2x(3x+1);
(3)
(4)6x2=x;
(5)2x2=5y;
(6)-x2=0
4.任何一个一元二次方程都可以化为一个固定的形式,这个形式就是一元二次方程的一般形式.
一元二次方程的一般形式:ax2+bx+c=0(a≠0).ax2称二次项,bx称一次项,c称常数项,a称二次项系数,b称一次项系数.
一般式中的“a≠0”为什么?如果a=0,则ax2+bx+c=0就不是一元二次方程,由此加深对一元二次方程的概念的理解.
5.例1把方程3x(x-1)=2(x+1)+8化成一般形式,并写出二次项系数,一次项系数及常数项?
教师边提问边引导,板书并规范步骤,深刻理解一元二次方程及一元二次方程的一般形式.
6.练习1:教材P.5中1,2.要求多数学生在练习本上笔答,部分学生板书,师生评价.题目答案不唯一,最好二次项系数化为正数.
练习2:下列关于x的方程是否是一元二次方程?为什么?若是一元二次方程,请分别指出其二次项系数、一次项系数、常数项.
8mx-2m-1=0;(4)(b2+1)x2-bx+b=2;(5)2tx(x-5)=7-4tx.
教师提问及恰当的引导,对学生回答给出评价,通过此组练习,加强对概念的理解和深化.
(四)总结、扩展
引导学生从下面三方面进行小结.从方法上学到了什么方法?从知识内容上学到了什么内容?分清楚概念的区别和联系?
1.将实际问题用设未知数列方程转化为数学问题,体会知识来源于实际以及转化为方程的思想方法.
2.整式方程概念、一元二次方程的概念以及它的一般形式,二次项系数、一次项系数及常数项.归纳所学过的整式方程.
3.一元二次方程的意义与一般形式ax2+bx+c=0(a≠0)的区别和联系.强调“a≠0”这个条件有长远的重要意义.
四、布置作业
1.教材P.6练习2.
2.思考题:
1)能不能说“关于x的整式方程中,含有x2项的方程叫做一元二次方程?”
2)试说出一元三次方程,一元四次方程的定义及一般形式(学有余力的学生思考).
五、板书设计
第十二章一元二次方程12.1用公式解一元二次方程
1.整式方程:……4.例1:……
2.一元二次方程……:……
3.一元二次方程的一般形式:
……5.练习:……
…………
六、课后习题参考答案
教材P.6A2.
教材P.6B1、2.
1.(1)二次项系数:ab一次项系数:c常数项:d.
(2)二次项系数:m-n一次项系数:0常数项:m+n.
2.一般形式:(m+n)x2+(m-n)x+p-q=0(m+n≠0)二次项系数:m+n,一次项系数:m-n,常数项:p-q.
思考题
一、教学目标
1.使学生在理解的基础上掌握平行线分线段成比例定理及其推论,并会灵活应用.
2.使学生掌握三角形一边平行线的判定定理.
3.已知线的成已知比的作图问题.
4.通过应用,培养识图能力和推理论证能力.
5.通过定理的教学,进一步培养学生类比的数学思想.
二、教学设计
观察、猜想、归纳、讲解
三、重点、难点
l.教学重点:是平行线分线段成比例定理和推论及其应用.
2.教学难点:是平行线分线段成比例定理的正确性的说明及推论应用.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、常用画图工具.
六、教学步骤
【复习提问】
叙述平行线分线段成比例定理(要求:结合图形,做出六个比例式).
【讲解新课】
在黑板上画出图,观察其特点:与的交点A在直线上,根据平行线分线段成比例定理有:……(六个比例式)然后把图中有关线擦掉,剩下如图所示,这样即可得到:
平行于的边BC的直线DE截AB、AC,所得对应线段成比例.
在黑板上画出左图,观察其特点:与的交点A在直线上,同样可得出:(六个比例式),然后擦掉图中有关线,得到右图,这样即可证到:
平行于的边BC的直线DE截边BA、CA的延长线,所以对应线段成比例.
综上所述,可以得到:
推论:(三角形一边平行线的性质定理)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.
如图,(六个比例式).
此推论是判定三角形相似的基础.
注:关于推论中“或两边的延长线”,是指三角形两边在第三边同一侧的延长线,如果已知,DE是截线,这个推论包含了下图的各种情况.
这个推论不包含下图的情况.
后者,教学中如学生不提起,可不必向学生交待.(考虑改用投影仪或小黑板)
例3已知:如图,,求:AE.
教材上采用了先求CE再求AE的方法,建议在列比例式时,把CE写成比例第一项,即:.
让学生思考,是否可直接未出AE(找学生板演).
【小结】
1.知道推论的探索方法.
2.重点是推论的正确运用