时间:2022-12-23 04:37:52
引言:寻求写作上的突破?我们特意为您精选了4篇数学数学论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
[1]范璐璐.解析数学思想、数学活动与小学数学教学[J].中国教育学刊,2014,(06).
[2]姜嫦君,刘静霞.小学数学教学中数学思想方法的渗透[J].延边教育学院学报,2010,(02).
[3]邹益群.试论数学思想、数学活动与小学数学教学[J].才智,2015,(15).
[4]俞元苗.论数学思想、数学活动与小学数学教学[J].才智,2013,(36):104-104.
[5]范璐璐.解析数学思想、数学活动与小学数学教学[J].才智,2014,(6):47-47.
[6]曾国栋.数学思想、数学活动与小学数学教学[J].现代教育科学(普教研究),2014,(6):154-154,116.
[7]邹益群.试论数学思想、数学活动与小学数学教学[J].才智,2015,(15):169-169.
数学思想数学论文参考文献:
[1]于芳.小学数学课堂教学的现实性研究[D].湖南师范大学,2012.
[2]朱黎生.指向理解的小学“数与运算”内容的教材编写策略研究[D].西南大学,2013.
[3]刘勋达.小学数学模型思想及培养策略研究[D].华中师范大学,2013.
[4]张桂芳.小学数学解决问题方法多样化的研究[D].西南大学,2013.
[5]俞祥龙.分类思想在中职数学中的渗透[J].数学学习与研究,2015(13):16-17.
[6]李祎.高水平数学教学到底该教什么[J].数学教育学报,2014(6).
[7]雷会荣.浅谈数学思想在极限教学中的渗透[J].教育探索,2011(12):58-59.
数学思想数学论文参考文献:
[1]林雪.关于转化思想方法在高中数学解题中的应用探讨[J].中国校外教育,2016,23(13)
[2]韩云霞,马旭.浅谈函数思想在高中数学解题中的应用[J].宁夏师范学院学报,2016,22(3)
二、数学史有助于学生掌握数学思维方法
数学对学生的逻辑推理能力要求较高,需要学生具有足够的思维和空间想象力。由于其特殊性,教材在编排上都是按照一定的过程进行编写,基本上每一个知识点的罗列都是先介绍其定义,然后举例证明和进行推理或反推理,最后让学生做题巩固。这种教材的安排固然有其道理,但也在一定程度上忽略了学生思考的过程。有的教师在数学课堂教学中讲解知识点时,往往按照自己的思路,一步一步地分析,在黑板上写满解题步骤,以便学生一目了然。用这种方法讲解例题,看似可以让学生能够清楚、直接地理解例题,但实际上学生会觉得这样上课丝毫没有乐趣可言,而且会认为数学知识根本不需要多加思考。这时教师就可以在课内融入数学史,目的就是告诉学生数学是如何创造出来的,数学思维是怎样一步一步产生的,这样有助于学生掌握数学思维方法。例如在渗透数形结合这一数学思想时,就让学生充分了解在数学发展史上几何的解题曾是一大难题。在经过无数数学家长期探索与不断研究下,最终发现代数可以有效帮助解决几何问题,从而形成数形结合思想。
三、利用数学史讲授知识系列
数学教学不仅要向学生传授知识,更要培养学生的数学思维能力。因此,为有效提高学生的逻辑推理能力,教师可以将数学史与思维培养结合运用,让学生自己体会数学知识的创造和数学思想形成的过程。在高中数学教学中,教师没有必要急于讲解每一个详细的知识点,而是在知识点的基础上介绍其历史,比如这个知识点是哪一位数学家提出来的,是在怎样的历史背景条件下创造的,这个知识所表达的数学思想是什么。这样的教学过程可以帮助学生整体把握这些知识的相互联系甚至整个知识体系,从而对数学有更深刻的理解。比如在一开始介绍几何时,教师可以先从几何发展史讲起,数学几何的发展是从古希腊开始的,在几何发展的过程中,其中阿基米德对圆锥曲线透彻研究为以后的解析几何贡献颇大。后来几何又经历了很多历史阶段,在历史长河中经久不衰。通过对几何数学思想创造过程的理解,学生初步掌握了几何系列知识的特点,这对他们今后的几何学习有着重大的意义。
四、利用数学史开展探究式学习
数学知识需要经过长时间的不断探究才能形成,数学是严谨的,每一个知识点都必须经得起历史的考验和实践的证明。教师在高中数学教学中,可以把数学史当做数学知识学习的载体,将数学公式或概念和数学发展史有机结合起来,重点讲授数学概念中的关键字词。由于学生的理解能力有限,很难将一整句甚至是一大段的数学概念理解清楚,于是教师便可抓住概念中的关键词语,利用相关概念在数学史的创造历程,用史实说话,让学生在学习过程中清楚、准确地认知概念所对应的一系列数学知识。通过关键字词入手,强化了学生对新概念的理解。与此同时,学生也了解到了概念中字词的选取不是随意而成的,是数学家不断研究、探索的过程。要知道,探究式学习是数学学习的重要途径,因此教师在课堂教学中要以培养学生探究能力为目标,巧妙融入相关知识的发展史,和学生共同创设适宜的教学情境,提高课堂参与度和教学效率。例如以“概率”知识为例,可以向学生今天的数学历史事件,学生发现今天没有发生那些事,那明天是不是有可能和历史重合呢?
二、数学活动要蕴含丰富的数学教育价值
1.数学活动要揭示数学概念的来龙去脉
小学生的数学学习主要从生活经验出发,在现实生活中寻求概念的原型,通过观察比较、归纳概括等活动抽象出概念的内涵,通过问题解决体验数学概念的外延及应用价值,通过反思总结把自我建构起来的概念纳入已有的认知系统中。例如,“比例尺”的教学,可以通过“画教室的平面图和画手机芯片设计图”两个活动,引导学生自主确定图上距离和实际距离的比,并用人们能读懂并且熟悉的形式表示出来,从而感悟比例尺的意义和使用价值,在沉淀知识的同时学会创造。
2.数学活动要渗透数学思维方式的培养
数学的基本思想是指抽象、推理、建模等思想,在具体的数学活动中反映为数学的思维方式,主要有:观察与实验、比较与分类、类比与推理、分析与综合、抽象与概括、归纳与演绎、想象与联想、猜想与验证、特殊化与一般化等,其中概括是数学思维方式的核心。在数学活动中培养科学的数学思维方式,可以帮助学生轻松地思考数学问题,感悟数学知识,形成解决问题的能力。例如,“称”的活动在小学数学活动中至少用过6次,它所蕴含的数学思想方法和思维方式却各不相同。二年级“克与千克的认识”通过“称”进行观察与实验,直观感知1克与1千克的质量,形成对克与千克的抽象认识;三年级“数学广角———等量代换”通过“称”进行替换推理,感悟等量代换的思想;五年级“综合实践———量一量%找规律”通过“称”,用单位长度的线段来刻画物品的质量,感悟函数思想,培养归纳推理能力;五年级“方程的意义”用“称”建立等式的数学模型,渗透方程思想;五年级“数学广角———找次品”通过“称”进行排除推理,感悟从特殊到一般与优化的思想;六年级“综合应用———有趣的平衡”,通过“称”发现竹竿的两边塑料袋中放棋子的个数和刻度的积相等,感悟函数思想。
数学在生活中无处不在,我们的一切日常几乎都用到了它。如:
“水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学。”
“要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学。”
“生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学。这使得生物学获得了重大的成就。
在买衣物时,物品所进行的优惠就运用到了数学中的折扣
与分率的知识运用。
谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样,由此可见数学的广泛性。
应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。
广泛的应用性也是数学的一个显着特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。