时间:2022-10-01 17:23:36
引言:寻求写作上的突破?我们特意为您精选了4篇高边坡设计论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
2.1基于过程模拟与控制的高边坡稳定性评价及灾害控制方法研究
高边坡岩土体具有地质体所具备的地质过程特性,对岩石进行的高边坡稳定性评价的主要目的就是对边坡变形破坏的过程以及机制进行阐述,并且基于地心力学来对问题进行刻画,实际上这种对岩石高边坡进行的稳定性评价更具体说来应该是一个变形稳定性的问题。对变形稳定性的分析是指对高边坡的变形以及相关的破坏情况、破坏机制进行研究,并且结合数学、力学以及计算机技术,利用数值模拟的方法来对边坡变形的过程进行模拟演示,并且对变形过程进行控制,基于这种模拟研究的结果对边坡的稳定性进行相关评价。变形稳定性分析的过程是在对应力环境、变形特征、破坏模式、潜在滑面位置进行模拟分析的基础上进行的,但目前对于稳定性系数以及推力值的估计还缺乏足够的理论支持,没有形成一个成熟、准确的计算方法。
2.2重点高边坡稳定性评价
对需要重点进行研究的边坡要随时进行施工跟踪,要注意对实际施工中遇到的岩体结构以及边坡变形的情况进行足够精确、细致的描述,并且要积极收集边坡以及施工过程中的反馈信息,对具体的坡体情况进行分析,根据上述资料以及研究分析,来建立相应的地质模型来反映控制性结构面空间展布特征,并且要根据具体边坡结构的实际特征来进行计算方法的选择,用来研究边坡变形的破坏模式以及稳定性情况。土质边坡、散体结构以及破裂结构边坡的稳定性大多都会受到最大剪应力面的控制,因此,对这类边坡的边坡开挖过程进行研究分析,就要在对潜在滑动面的位置的判断基础之上进行,并且根据强度稳定性分析来对相应的边坡稳定性进行评价,为支护设计的优化提高有效的参数。
2.3重点高边坡支护优化设计
在对边坡支护进行优化中,要由对变形破坏的过程进行模拟来研究边坡开挖过程的不同变形阶段,由地质体所处的演化阶段以及变形破坏机制来对支护方案进行筛选,要按照具体的规范标准来进行静力学设计,要按照数值模拟的结果来研究地质体以及治理工程结构之间的相互作用,并由此来进行方案的优化设计。高边坡优化设计要建立在精准的地质模型的基础上,利用控制过程技术来完成,而且还需要特别关注边坡的稳定性评价,根据原有的设计方案进行改进。边坡优化要注意变形控制以及灾害控制,要将采用适宜的支护措施来是变形控制在允许范围之内,要结合反馈信息以及稳定性分析结果来进行有针对性的优化。
【Abstract】The reasonable determination of sliding surface is vital to the successful treatment of slope, especially to heterogeneous rocky slope which are more than 30 meters high. Such slope's sliding surface are usually made of several long broken lines,it's difficult to determine the potential sliding surface by exploratory methods.In practice,the orientation of sliding surface are usually assumed based on actual geological and prospecting data.Some possible miscalculation may reault in hidden danger.This paper introduces some thoughts on the reasonable determination of sliding surface in heterogeneous rocky slope treatment on the basis of living example for the referance to relevant people.
【Key words】Sliding surface;Heterogeneous rocky slope;Slide slope
1. 引言
滑动面是边坡岩土体在一定的边界条件下形成的,随着外部边界条件的变化,滑动面也会相应的变化,边坡治理中滑动面分为已发生的滑动面和潜在的滑动面。目前滑坡处理广泛采用的参数反演法 [1] [2] [3]、折减法 [4]、不平衡推力法 [5] [6],都是基于滑动面确定的前提下进行的,目前仅土质边坡的圆弧滑动面可采用SLOPE/W法 [7]搜索确定,而对于大于30米的非均质岩质边坡潜在滑动面的客观确定鲜有提及,本文从治理边坡实例出发,探讨一下非均质岩质边坡潜在滑动面合理确定。
2. 边坡工程地质概况
(1)以黟(县)-七(都)K3+394~+462段高边坡位于路线右侧,最大坡高67m。边坡地貌单元属低山剥蚀地貌,地势陡峻,地形坡度在40~60°之间,上陡下缓。该处地层岩性主要为牛屋组(Pt2n)板岩,风化强烈,板理及裂隙发育,岩石破碎,薄层状构造,强风化层岩芯呈碎块~片状,碎块状镶嵌结构,层厚2.40~13.20m;中等风化岩芯呈块状~短柱状,地层产状195°∠70°,属中硬岩,表层为松散碎石混粉土,碎石含量可占50~70%,粉土可塑状态,该层厚1.6~6.2m,如图1所示。
(2)该边坡原设计为矮挡墙支护,运营一年多,于二00八年五月中旬产生滑坡滑体厚度1.60~6.20m,体积约为10000m3,滑坡体主要为碎石土,其中碎石占60%,低液限粘土占40%。滑坡堆积体及滑坡后缘坡体均存在进一步滑动的危险性,属活滑坡。
3. 边坡稳定性分析与评价
根据边坡勘察资料,本次滑坡沿风化接触面形成的浅层滑坡,滑坡体为松散碎石混粉土,坡面雨水下渗通道良好,在雨水作用物理力学性质软化明显,在不利条件下,会诱发更大的滑坡,需及时治理。
3.1设计参数的选取。根据勘察资料正常工况下:重度取为20.5KN/m3,c为18KPa,为21°;根据滑坡带物质组成在暴雨工况下,碎石粉土:重度取为22.5KN/m3,c为6KPa,为21°;强风化板岩:重度取为24KN/m3,c为50KPa,为21。
3.2模型的建立。 根据已经产生滑坡的形态、地貌及坡体的工程地质特性,为了增加下部坡体的稳定性,确定第一级为原挡墙+坡率为1:1.75、高度为5米的人工边坡,第二、三级坡坡率1:1,高度为8米,第四~六级为1:1,高度为10米,第七级为1:0.5,高度为10~12米,每级边坡设2.0米宽的平台,进行刷坡,最大坡高为67米,如图2。
3.3剩余推力计算。
图1地质剖面图 3.3.1刷方减载后,边界条件发生变化后,滑动面随之发生变化。由于第三级边坡开挖边坡全部 进入强风化板岩中,为此我们将滑坡体分为上下两个不稳定体,形成两个滑动面。
3.3.2依据暴雨工况下的物理力学参数,根据勘察资料确定的已发生滑坡的滑动面,当稳定安全系数为1.2时 [8],采用不平衡推力法:
Ti=FsWi sina i+ψiT i-1 -W i- cosa i tanφi-ciLi
ψi= cos(a i-1- a i )-sin(a i-1- a i ) tanφi (1)
ψi为传递系数
3.3.3上部碎石粉土不稳定体的剩余下滑力为590KN/m,此外我们对于强风化板岩可能出现的深层滑动进行计算,如图2所示,对应潜在滑面2的剩余下滑力为80KN/m;对应潜在滑面3的剩余下滑力为100KN/m;对应潜在滑面3、4结合的剩余下滑力为330KN/m;对应潜在滑面4的剩余下滑力为510KN/m;可见强风化板岩中,在固定的边界条件下,只有滑面4的形态接近客观的潜在的滑动面,基于此,不断微调滑面4的形态,直至找出最大的剩余下滑力,本次边坡治理采用滑面1、4对应的剩余下滑力,进行边坡处置。
图2潜在滑面搜索过程及边坡治理图3.4边坡治理。
(1)上部不稳定体中,由于滑面1较陡,抗滑桩效果甚微,滑坡体会从抗滑桩顶滑出,滑面4较厚,锚杆无法进入稳定地层,基于上述因素,本次边坡治理采用锚索方案:
(2)对应滑面1的下滑力,第4、5、6级边坡采用预应力锚索框架,根据间距、排数、倾角,每个锚索的设计抗拔力至少要达到25吨,根据勘察资料所提供的锚固体与岩石的锚固强度,所需的锚固段长度在13米左右,初定锚索总长度17米,但对于深层潜在滑动面4的剩余下滑力而言,其锚固长度需大于9.5米,自由端为10米,锚索总长至少需要19.5米,可见,仅按照滑面1来治理边坡,本边坡深层滑动的需要无法满足,无法从整体上保证边坡的稳定,给工程带来隐患。
(3)考虑岩体风化界限的不确定性,结合计算情况,确定本边坡的治理方案为:第四到六级坡均采用锚索框架,每片框架由三根竖肋和三道横梁连接而成,在节点处设置锚索锁固,每束锚索由3根15.24钢筋制成,设计荷载280KN,张拉锁定荷载300KN,对应滑动面1而言,第五、六级锚索设计长度20m,锚固段长度15米,第四级锚索设计长度17m,锚固段长度12米。本边坡经过6年多的运营检验,稳定性良好。
4. 结束语
(1)滑动面不是一成不变的,而是随着岩土体边界条件的变化而改变。
(2)对于一个高边坡来讲,其潜在的滑动面很多 [9],因此,高边坡治理必须考虑深层潜在滑动面的稳定性,对于强风化破碎岩体的潜在滑动面,必须在一定的边界条件下,多次模拟形态,找出规律,最终找到最危险的潜在滑动面,从已经产生的滑动面、最危险的潜在滑动面两方面出发,进行边坡的治理,做到一次根治,不留后患。
参考文献
[1]龚玉锋、周创兵、梁轶等.参数反演在岩质高边坡变形与稳定分析中的应用[J].岩土力学,2002,(05):570~574.
[2]孙志斌.边坡稳定性上限分析方法及参数反演研究.中南大学博士论文.2013.
[3]鲁志强.岩质高边坡稳定性设置模拟岩体力学参数反分析.武汉理工大学硕士论文.2009.
[4]陈国庆、黄润秋、石豫川等.基于动态和整体强度折减法的边坡稳定性分析[J].岩石力学与工程学报,2014,(02):243~256.
[5]时卫民、郑颖人、唐伯明等.边坡稳定不平衡推力法的精度分析及其使用条件[J].岩土工程学报,2004,(03):313~317.
[6]张月英. 基于改进不平衡模式的边坡稳定性分析及程序实现.湖南大学硕士论文,2007.
中图分类号:U213.1 文献标识码:A 文章编号:
一、前言
在公路工程施工中,路基是一个十分重要的方面,其对公路工程的质量具有十分重要的影响。通过加强对公路路基边坡防护的研究,可以有效的提高公路路基的施工质量,确保公路路基的安全性和可靠性。在对公路路基边坡防护的研究过程中,一定要考虑到影响边坡失稳的因素,从而对症下药,解决边坡的治理问题。因此,笔者根据自己的施工经验和研究,从公路路基边坡失稳的因素出发,研究边坡防护的原则以及具体的措施,希望对相关的领域的研究提供借鉴。
二、公路路基边坡失稳的因素分析
1、公路建设的土石方工程阶段是破坏原地貌植被、弃土、弃石的集中时期,工程用土范围内原地表植被所具有的水土保持功能迅速降低或丧失,并为水土流失发生、发展提供了大量易冲蚀的松散堆积物。路基边坡开挖、填筑使原有地表植被被破坏.形成大面积坡面.表土层抗蚀能力减弱.水土流失加剧.从而导致边坡失稳的机率增大。
2、设计中对滑坡路段岩士性质认识不足,设计边坡率过陡。施工中未根据实际情况采取相应措施,堑坡仍按原设计坡率开挖,边坡过高过陡,难以保证自身稳定。边坡开挖后,未及时进行防护,长时间暴露在大气中,致使风化、冲刷严重。
三、公路路基边坡防护原则分析
1.在公路路基边坡防护过程中 ,要坚持从工程地段的地质地貌条件出发,加强对滑坡做出科学合理的定性评价,在此过中,再辅之以定量评价。
2.要坚持技术原则和经济原则的统一性。在进行边坡防护过程中,要从本地的地形地貌地质条件族从科学的分析,并对各种地质地貌做出合理的利用,因地制宜,采取有效的控制措施,如此,可以让工程治理更为稳定,且一定程度上减低了工程的成本。
3.在进行边坡防护过程中,要确保工程的安全性,实施安全作业管理。要在综合考虑地震条件,地下水位等多方面的条件下,做出科学合理的设计,并严格计算整个工程的安全系数。
四、公路路基边坡防护技术分析
1、锚固洞
在加固高边坡时,锚固洞加固技术是一种较为常见而且有效的方法,在施工时应该按照由内而外、自上而下、逐层加固的方式进行。处于同一结构面的锚固洞应该采取跳洞开挖的施工方式,从而降低由于抗滑力的减少而影响高边坡的稳定性。此外,锚固洞自身具备一定的倾斜度,从而有效的避免了混凝土与洞壁之间结合不实的现象。
2、混凝土挡墙
在高边坡加固中,混凝土挡墙是一种比较常见的施工方式,这种方法能够很好的改善滑坡体的受力失衡问题,进而使得滑坡体变形得到很好的控制。通
常这种施工方式具有结构简单易于操作且迅速起到相应的稳定高边坡结构的优点。在进行混凝土挡墙的设计时,应该充分考虑滑面的形状以及位置,从而选择适合的挡墙基础砌筑深度,此外,挡墙后面应该设计必要的泄水孔,从而有效的减少静水压力以及水的浸泡腐蚀。
3、植物防护措施
植物防护以成活的植物作为路基防护的材料,通过植物的叶、茎和根系与被保护土体的共同作用,在拟保护的路基部位,形成有生命的保护层;是一种积极、有生命的防护措施。采用铺草皮、种草形式,利用植被对边坡的覆盖作用、植物根系对边坡的加固作用,保护路基边坡免受降水和地表径流的冲刷。植物防护应根据当地土质、含水量等因素,选用易于成活、便于养护、经济的植物类种。植物覆盖对地表径流和水土冲刷有极大减缓作用。植被根系能与土层密切结合,盘根错节,使地表层土壤形成不同深度牢固的稳定层,从而有效地稳定土层,阻挡冲刷和坍塌。
4、地下排水
(一)渗沟: 渗沟对排水路基边坡下渗水、裂隙水具有显著效果,也可降低路基两侧的地下水位。
(二)支撑式渗沟: 支撑式渗沟主要设计在路基边坡体裂隙水发育明显,且出现多个渗出点,往以带状、面状发育的坡面,由于其水富丰、分布分散,通过设置“Y”型支撑式渗沟,可有效收集边坡一定范围的渗水,并及时排出,对保证边坡稳定、保持边坡体强度具有一定作用,从而保证边坡稳定。
(三)倾斜式排水管: 在多雨地区,往往边坡水在一定的深度内大范围分布,若不及时排水,长期储存在路基边坡体内,影响边坡体的岩、土强度,不利于边坡稳定,该情况下,可通过设置深层的带孔排水管,必要式可采用上下交错布设,可有克服支撑渗沟深度不足的缺点,将深层水排水。
(四)大孔径排水管( 沟) : 该种情况多用于泉眼式渗水,在多雨地区,部分泉眼雨季水量较大,采用倾斜式排水孔很难及时排除水流,往往造成边坡明显的冲刷。这种情况下采用加大孔径的混凝土排水管( 沟) 具有较为明显效果。
五、结束语
综上所述,加强对边坡稳定性的定量定性分析,加强边坡的预防治理工作,已经是整个公路建设施工,养护中的重要环节,在整个交通网络建设中得到了更多的关注。对于公路路基的边坡,一定要采取有效的处理措施,不断采用先进技术和机械设备,预防边坡的出现,提高边坡的防护水平,保证整个公路建设的质量,促进我国公路建设的健康快速发展。
参考文献:
[1] 楚笑红,解来承.浅谈水利水电工程高边坡加固治理措施[J]. 中国新技术新产品. 2011(03)
[2] 刘克伟.水利水电工程高边坡的治理与加固探讨[J]. 中国房地产业. 2011(03)
[3] 雷蕾,谢新生.竹寿水库泄洪隧洞进口高边坡加固方案研究[J]. 陕西水利. 2011(06)
1概述
尤溪口车站是外洋至福州铁路电气化工程的一个新建车站,2000年开工建设,2001年竣工。车站位于尤溪口水库北岸山坡,线路右临水库,左侧穿越山坡,山体自然坡度35“左右,相对高差160m。车站的重点工程是三段高边坡的开挖和边坡支护,长度分别为238. 00 m, 227. 00 m和227. 14 m,边坡最大高度60 m,挖方数量大,支挡防护工程艰巨。车站施工图设计于1999年8月完成。在施工过程中,针对岩体高边坡工程的特点,根据实际开挖揭示的地质情况,进行动态设计,及时修改设计和施工方案,确保了工程的安全稳定和车站的竣工通车。
2地质概况
地面植被较茂密,表层有厚度约3m的坡残积粘性土,基岩主要为古生代变质岩—石英云母片岩。岩体受构造影响强烈,构造节理发育,有的节理面可见擦痕和硅化面,岩块上可见强烈的小褶皱和节理切割错断迹象,岩体风化带和风化节理很发育,全风化带厚5一10 m左右,下部为中等风化带。边坡岩体被结构面切割成碎石状和块状。岩体主要节理有5组,节理产状:1200乙450一600;3300乙650; 1950乙35“一580; 2400乙650;1700乙630。
片理产状:800一95“乙29“一450
线路走向边坡倾向2020
由边坡与岩体结构面的关系可知,不利于边坡稳定的结构面主要有三组,即:2400乙650; 1700
乙630;195乙35一5800
路堑挖方深度内无地下水,但降雨时,由于岩体节理发育,开挖裸露后,成为雨水人渗的路径,降雨期会出现临时性裂隙含水现象,因而影响边坡岩体的稳定。
3施工过程中的动态设计
(1)车站路堑高边坡地段的施工图设计,是1999年8月完成的,设计方案为15 m高挡墙,上接1一3级(1520m)的高护墙,护墙坡率为1:0.5,1:0. 75和1:1。