时间:2022-06-26 05:02:02
引言:寻求写作上的突破?我们特意为您精选了12篇剪力墙结构设计论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
现代住宅建筑要求大开间,平面及房间布置灵活、方便,室内不出现柱楞、不露梁等。异形柱与短肢剪力墙结构能较好地满足现代住宅建筑的要求,因而逐渐得到了推广应用。目前,现行国家规范或规程中尚未给出有关异形柱与短肢剪力墙结构设计的条款,因此,结构设计人员在设计中常会遇到一些规范或规程尚未论及的问题,需要设计人员积累经验,利用正确的概念进行设计。
本文旨在对异形柱与短肢剪力墙结构设计中的一些问题进行探讨,提出个人看法,供结构设计人员参考
1异形柱结构型式及其计算
异形柱结构型式有异形柱框架结构、异形柱框架—剪力墙结构和异形柱框架—核心筒结构。
异形柱结构自身的特点决定了其受力性能、抗震性能与矩形柱结构不同。由于异形柱截面不对称,在水平力作用下产生的双向偏心受压给承载力带来的影响不容忽视。因此,对异形柱结构应按空间体系考虑,宜优先采用具有异形柱单元的计算程序进行内力与位移分析。因异形柱和剪力墙受力不同,所以计算时不应将异形柱按剪力墙建模计算。
当采用不具有异形柱单元的空间分析程序(如TBSA5.0)计算异形柱结构时,可按薄壁杆件模型进行内力分析。
对异形柱框架结构,一般宜按刚度等效折算成普通框架进行内力与位移分析。当刚度相等时,矩形柱比异形柱的截面面积大。一般,比值(A矩/A异)约在1.10-1.30之间[1]。因此,用矩形柱替换后计算出的轴压比数值不能直接应用于异形柱,建议用比值(A矩/A异)对轴压比计算值加以放大后再用于异形柱。
对有剪力墙(或核心筒)的异形柱结构,由于异形柱分担的水平剪力很小,由此产生的翘曲应力基本可以忽略,为简化计算,可按面积等效或刚度等效折算成普通框架—剪力墙(或核心筒)结构进行内力与位移分析。按面积等效更能反映异形柱轴压比的情况,且面积等效计算更为简便。但应注意,按面积等效计算时,须同时满足下面两式:
(1)A矩=A异;(2)b/h=(Ix异/Iy异)1/2
式中,A矩、A异——分别为矩形柱和异形柱的截面面积;
b、h——分别为矩形截面的宽和高;
Ix异、Iy异——分别为异形柱截面x、y向的主形心惯性矩。
一般,按面积等效计算时,矩形柱的惯性矩比异形柱的小。但对有剪力墙(或核心筒)的异形柱结构,计算分析表明[2],按面积等效与按刚度等效的计算结果是接近的。
异形柱的截面设计,可根据上述方法得出的内力,采用适合异形柱截面受力特性的截面计算方法进行配筋计算。
2短肢剪力墙结构及其计算
短肢剪力墙结构是适应建筑要求而形成的特殊的剪力墙结构。其计算模型、配筋方式和构造要求均同于普通剪力墙结构。在TAT、TBSA中,只需按剪力墙输入即可,而且TAT、TBSA更适合用来计算短肢剪力墙结构。TAT、TBSA所用的计算模型都是杆件、薄壁杆件模型,其中梁、柱为普通空间杆件,每端有6个自由度,墙视为薄壁杆件,每端有7个自由度(多一个截面翘曲角,即扭转角沿纵轴的导数),考虑了墙单元非平面变形的影响,按矩阵位移法由单元刚度矩阵形成总刚度矩阵,引入楼板平面内刚度无限大假定减少部分未知量之后求解,它适用于各种平面布置,未知量少,精度较高。但是,薄壁杆件模型在分析剪力墙较为低宽、结构布置复杂(如有转换层)时,也存在一些不足,主要是薄壁杆件理论没有考虑剪切变形的影响,当结构布置复杂时变形不协调。而短肢剪力墙结构由于肢长较短(一般为墙厚的5-8倍),本身较高细,更接近于杆件性能,所以,用TAT、TBSA计算短肢剪力墙结构能较好地反映结构的受力,精度较高。
对设有转换层的短肢剪力墙结构,一般都只是将电梯间、楼梯间、核心筒和一少部分剪力墙落地,其于剪力墙框支。框支剪力墙是受力面向受力点过渡,由于薄壁杆件的连接处是点连接,所以用薄壁杆件模型不能很好地处理位移的连续和力的正确传递。因此,带有转换层的短肢剪力墙结构宜优先采用墙元模型软件(如SATWE)进行计算。当然,从整体上的内力(特别是下部支承柱的内力)分布情况来看,如果将剪力墙加以适当的处理,还是可以用TAT、TBSA对结构进行整体计算的[3]。
3异形柱的受力性能及其轴压比控制
天津大学的试验研究结果表明[4]:异形柱的延性比普通矩形柱的差。轴压比、高长比(即柱净高与截面肢长之比)是影响异形柱破坏形态及延性的两个重要因素。
异形柱由于多肢的存在,其剪力中心与截面形心往往不重合,在受力状态下,各肢产生翘曲正应力和剪应力。由于剪应力,使柱肢混凝土先于普通矩形柱出现裂缝,即产生腹剪裂缝,导致异形柱脆性明显,使异形柱的变形能力比普通矩形柱降低。
作为异形柱延性的保证措施,必须严格控制轴压比,同时避免高长比小于4(短柱)。控制柱截面轴压比的目的,在于要求柱应具有足够大的截面尺寸,以防止出现小偏压破坏,提高柱的变形能力,满足抗震要求。广东《规程》按建筑抗震设计规范(GBJ11—89)中所规定的柱子轴压比降低0.05取用(按截面的实际面积计算);天津《规程》则根据箍筋间距与主筋直径之比、箍筋直径及抗震等级共同确定,其要求比广东《规程》严格,例如,对s/d=5、4(即箍筋间距s=100mm,纵筋直径d分别为20mm、25mm的情况),箍筋直径dv=8mm,抗震等级为三级的L形截面,其轴压比限值分别为0.60,0.65。异形柱是从短肢剪力墙向矩形柱过渡的一种构件,柱肢截面的肢厚比(即肢长/肢宽)不大于4。《高规》(JGJ3—91)第5.3.4条,“抗震设计时,小墙肢的截面高度不宜小于3bw”,“一、二级剪力墙的小墙肢,其轴压比不宜大于0.6”。根据上述分析,为便于应用,建议在6度设防区,对于异形柱框架结构,L形截面柱的轴压比不应超过0.6(按截面的实际面积计算,下同),T形截面柱的的轴压比不应超过0.65,十字形截面柱的轴压比不应超过0.8;对于异形柱框架—剪力墙(或核心筒)结构,由于框架是第二道抗震防线,所以框架柱的轴压比限值可放宽到0.65(L形)、0.70(T形)、0.90(+字形),但对于转换层下的支承柱,其轴压比仍不应超过0.60。
短柱在压剪作用下往往发生脆性的剪切破坏,设计中应尽量避免出现短柱。根据高长比不宜小于4,在梁高为600mm的前提下,当标准层层高为3.0m时,异形柱的最大肢长可为600mm;底层层高为4.2m时,肢长可为900mm。
4短肢剪力墙结构中转换层的设置高度及框支柱
在现代高层住宅的地下室和下部几层,由于停车和商业用房需较大空间,就得通过转换层来实现。在短肢剪力墙结构中,一般都只将电梯间、楼梯间、核心筒和一少部分剪力墙落地,其于剪力墙框支。
据研究表明[5],“框支剪力墙结构当转换层位置较高时,转换层附近层间位移角及内力分布急剧突变,内力的传递仅靠转换层一层楼板的间接传力途径很难实现;转换层下部的‘框支’结构易于开裂和屈服,转换层上部几层墙体易于破坏。这种结构体系不利于抗震。高烈度区(9度及9度以上)不应采用;8度区可以采用,但应限制转换层设置高度,可考虑不宜超过3层;7度区可适当放宽限制。”因此,建议在6度抗震设防区,短肢剪力墙结构中转换层设置高度不宜超过5层,避免高位转换。转换层上下的层刚度比γ宜接近1,不宜超过2。转换层位置较高时,宜同时控制转换层下部“框支”结构的等效刚度(即考虑弯曲剪切和轴向变形的综合刚度),使EgJg与EcJc接近。EgJg为剪力墙结构的等效刚度,剪力墙结构高度取框支层的总高度,其平面和层高与转换层上部的剪力墙结构相同;EcJc为转换层下部“框支”结构的等效刚度。研究表明[5],“控制转换层下部‘框支’结构的等效刚度对于减少转换层附近的层间位移角和内力突变是十分必要的,效果也很显著。”
规范对框支柱的内力、轴压比、配筋等的要求都严于普通柱。框支剪力墙结构当转换层位置较高时,如何定义框支柱,涉及到安全与经济的问题。根据圣维南原理,局部处理的影响只限于局部范围,所以当转换层位置较高(如高位转换)时,除转换层附近楼层的内力较复杂外,下面的结构受到的影响很小,应与普通框架结构基本一样,不必按框支柱处理。文献[6]计算了两个28层的结构,一为内筒外框架结构,一为内筒外框支结构,转换层设在18层。计算结果表明,转换层下二层的内力影响很大,下三层的内力误差最大为15%,下五层的内力已比较接近(最大误差小于10%),下八层的内力已基本一样(最大误差小于5%)。这说明框支柱只需在五层范围内加以考虑,其它层的柱子按普通框架柱处理即可。因此,建议当转换层位置不超过五层时,转换层下的各层柱均按框支柱处理;当转换层位置超过五层时,转换层下相邻的五层柱按框支柱处理,而其它层的柱按普通框架柱处理。由于高位转换对抗震不利,所以结构设计中应尽量避免高位转换。
5短肢剪力墙结构的抗震薄弱环节及概念设计
振动台模拟地震试验结果表明[7],建筑平面外边缘及角点处的墙肢、底部的小墙肢、连梁等是短肢剪力墙结构的抗震薄弱环节。当有扭转效应,建筑平面外边缘及角点处的墙肢会首先开裂;在地震作用下,高层短肢剪力墙结构将以整体弯曲变形为主,底部的小墙肢,截面面积小且承受较大的竖向荷载,破坏严重,尤其“一”字形小墙肢破坏最严重;在短肢剪力墙结构中,由于墙肢刚度相对减小,使连梁受剪破坏的可能性增加。因此,在短肢剪力墙结构设计中,对这些薄弱环节,更应加强概念设计和抗震构造措施。例如,短肢剪力墙在平面上分布要力求均匀,使其刚度中心和建筑物质心尽量接近,以减小扭转效应;适当增加建筑平面外边缘及角点处的墙肢厚度(宜取250mm,对底部的小墙肢根据需要可取用300mm),加强墙肢端部的暗柱配筋,严格控制墙肢截面的轴压比不超过0.6,以提高墙肢的承载力和延性;高层结构中连梁是一个耗能构件,连梁的剪切破坏会使结构的延性降低,对抗震不利,设计时应注意对连梁进行“强剪弱弯”的验算,保证连梁的受弯屈服先于剪切破坏;短肢剪力墙宜在两个方向均有梁与之拉结,连梁宜布置在各肢的平面内,避免采用“一”字形墙肢;短肢剪力墙底部加强部位的配筋应符合规范要求;等。
参考文献:
[1]戴教芳.多层框架异形柱设计探索[J].工业建筑,1996,26(1):33-35.
[2]龙卫国.异形柱受力性能及结构设计有关问题探讨[J].四川建筑,2000,20(2):50-52.
[3]赵玉祥.钢筋混凝土高层建筑设计中若干问题的探讨[J].建筑结构学报.1998,19(2):12-22.
[4]赵艳静等.钢筋混凝土异形截面双向压弯柱延性性能的理论研究[J].建筑结构.1999,29(1):16-21.
2剪力墙结构设计
对于剪力墙结构的设计是一个非常复杂、专业的过程,其中具有着很多个设计步骤。对此,就需要我们在对剪力墙结构进行设计之前就能够对剪力墙结构设计的步骤进行充分的了解,并对墙肢所具有的厚度与长度进行确定。之后,则需要开展连梁以及边缘构件的设计,最终对地震荷载进行计算。
2.1墙肢长度与厚度的设计
之前我们已经提到过,在剪力墙设计的过程中其长度不应当过长。对此,我们就需要对墙肢长度设置进行一定的控制,避免长度过长。一般来说,墙肢长度不应当超过8m,且跨高比应当大于6,并以此帮助我们获得更为稳定的剪力墙设计。在厚度方面,我们在实际设计时则需要能够对剪力墙所具有的稳定性以及刚度作出保证。通常来说,一般居民建筑的填充墙厚度会保持在200mm左右,在剪力墙厚度设计时也将其设置为200mm。而对于部分不含地下室的高层住宅来说,则将其基础埋深选择在2.5m以上,强度高度在5m以上,之后再根据适当的比例对剪力墙进行确定。但是对于这种方式来说,其很可能使最终的剪力墙厚度大于填充墙厚度,这也是非常不利于我们高层建筑设计的。对此,就需要我们在对剪力墙厚度设计时能够在联系建筑实际情况、相关建筑设计规程的基础上对其进行科学的设计。
2.2连梁的设计
连梁就是对墙肢之间进行连接的梁,其不仅能够帮助我们对不同墙肢进行连接,同时也能够在水平荷载的作用下使墙肢因为出现变形情况对连梁产生一种内力,并以这种内力的产生对墙肢施加一种稳定的约束作用。在实际设计中,首先需要重点关注的就是截面尺寸以及连梁跨高比这两个指标。如果连梁刚度过大,就需要我们对其进行适当的折减,但是,在对剪力墙进行设计时,仅仅根据相关的设计标准很难帮助我们实现配置的折减,对此,就需要我们能够允许其适当的出现开裂的情况,并以这种开裂情况的存在将内力转移到墙体上来实现折减的效果。而在折减过程中,也需要我们能够对折减的系数引起充分的重视,通常来说,如果防裂度较低,那么我们就可以根据情况折减的少一些,而如果防裂度较高,就可以折减的多一些。但是,无论我们折减的多、少,都需要保证折减系数应当大于或者等于0.5,因为只有在这种折减系数下才能够使连梁所承受到的竖向荷载能够得到保障。而在连梁刚度方面,我们则可以通过增加剪力墙洞口宽度的方式减小连梁刚度,因为当整体结构的刚度降低时,当发生地震时的地震作用也会因此降低,并可以保证连梁所具有的承载力不会出现超限的情况。另外,混凝土也是我们在设计时需要重点注意的问题,通过混凝土等级的提升,也能够对连梁抗剪承载力的不超限情况起到一个保障作用。
2.3边缘构件的设计
边缘构件也是我们在剪力墙设计过程中非常重要的一项工作。对于边缘构件而言,有约束边缘构件的矩形截面剪力墙和无约束边缘构件剪力墙相比有着明显的优势,具有着更高的基线承载力,同无约束情况相比其承载力能够提升约40%左右。而在类型方面,边缘构件主要有构造边缘构件以及约束边缘构件这两种,在实际应用的过程中都需要我们在联系建筑实际情况的基础上对其进行设置。
2.4地震荷载及内力设计
如果建筑主体结构布置情况较为简单,那么我们在对剪力墙结构进行设计时则可以通过空间协同平面框架的应用对其进行计算。而如果建筑主体结构布置情况较为复杂,我们则可以通过空间分析程序对其位移、内力等因素进行分析。同时,在实际设计过程中,我们也需要以简化计算的原则开展设计工作,且在对地盘长宽进行计算时需要能够在结合建筑主体结构长宽的基础上对其开展分析工作,并尽可能地以成比例的方式进行设计。
中图分类号: TU398+.2 文献标识码: A 文章编号:
一 前言
由于科学技术的进步和人们生产生活方式的改变,人们对建筑结构设计的要求也越来越高,随着建筑结构设计理论的逐渐完善,剪力墙结构凭借着刚度大,可以有效的减少侧移,建筑结构抗震性能很好,可以保证建筑的安稳和稳定性,因此,在建筑结构设计中被广泛的推广运用,为我国的经济发展和人们生活质量的改善提供了强大的动力。因此,加强剪力墙结构在建筑结构设计中的应用探究,有着十分重大的意义。笔者将从结合多年的施工经验,对高层建筑框架剪力墙结构设计的基本原则,墙肢分类,设置,边缘构件的布置,和连梁的设计等多方面做出分析,并提出剪力墙结构设计的优化措施。
二 墙肢的分类和结构布置
2.1墙肢的分类
在剪力墙的分类中,最重要的分类依据是墙肢的高度和厚度比值。一般有短肢剪力墙和一般剪力墙两种,同时,也可以根据墙面的开洞大小分为整截面墙、整体小开口墙、联肢墙和壁式框架等几种类型。
2.2厚度选择
剪力墙的墙肢厚度关系到剪力墙出平面的的稳定性和刚度。因此,在选择时候,一定要遵守相关的技术规程。在住宅建筑的设计中,填充墙的厚度和剪力墙的厚度相同,多会选取两百毫米左右。如果高层建筑没有地下室,在进行剪力墙的设计时候,可以在综合考虑到建筑结构平面的基础上,减少一字型的剪力墙结构设计,多采用十字形等形状。这样既可以使得翼缘长度大于其厚度,让建筑结构抗震性能更好的发挥,同时也可以满足建筑设计的美观性和实用性。
2.3剪力墙的结构布置
随着建筑越来越高,建筑的综合性能也日渐提升,因此,建筑设计中,应该使得建筑具有很好的空间工作性能。因此,在进行剪力墙结构设计时候,应该采用双向布置,科学合理的构成建筑结构的空间性能。同时,由于对建筑的抗震性能有了更高的要求,因此,在剪力墙设计时候,严禁在需要抗震设防区域使用单向剪力墙设计。在进行剪力墙设计时,要保证平面均匀分布,刚度中心要和建筑的整体质心相重合或者是尽量靠近,如此可以很大程度上减小扭转效应。
如果刚度中心和质心相距很远,可以改变墙肢长度和连梁的高度调整刚心位置。在进行建筑结构设计中,剪力墙由于抗侧刚度很大,整体结构的自振周期很短,使得整体建筑受到的水平地震作用很大,不利于建筑结构的稳定,因此,可以综合考虑到剪力墙的抗侧刚度和承载力,减小墙体的纵横厚度,加大墙体之间的距离,或者是合理减少墙体的总体数量,如此,可以达到降低墙体自身重量的目的。同时,可以降低墙体的整体水平地震的剪力和弯矩程度。
三 连梁的设计布置
连梁的跨高以及截面的尺寸会受到各种条件的影响和限制,因此,在剪力墙的连梁设计中,会因为设计的不合理,容易出现连梁承载力或者是连梁的界面难以达到相关规定的标准,从而既会影响到工程的施工,又会影响到工程的质量。因此,要综合多种情况,进行设计和处理。
3.1提高混凝土等级
为了让连梁的抗剪承载能力不会超过规定标准,可以合理的提高剪力墙的混凝土的等级,当混凝土的等级得到提升,混凝土的弹性模量增加比例会小于抗剪承载力的提升比例,从而,可以达到控制目标。
3.2增加剪力墙洞口的宽度、减小连梁高度
在进行连梁的设计中,为了达到降低连梁刚度,减少地震影响效果的目的,可以选择扩大剪力墙所开洞口的宽度,也就是增加连梁的总体跨度,从而使的连梁的高度降低。使得连梁的承载力保证在一定的标准范围内。
3.3对连梁的刚度进行折减
连梁由于跨高比较小与之相连的墙肢刚度大等原因,在水平力作用下的内力往往很大,连梁屈服时表现为梁端出现裂缝,刚度减小,内力重分布。因此,在开始进行结构整体计算时,就需对连梁刚度进行折减。高规中解释说高层建筑结构构件均采用弹性刚度参与整体分析,但抗震设计的剪力墙结构中的连梁刚度相对墙体较小,而承受的弯矩和剪力很大,配筋设计困难。因此,可考虑在不影响其承受竖向荷载能力的前提下,允许其适当开裂而把内力转移到墙体上。
3.4增加剪力墙的厚度
在进行连梁设计时,可以增加剪力墙的厚度,使得连梁的截面宽度变大,不仅仅可以让建筑结构整体的刚度变大,也使得地震产生的内力作用变得更大,由于连梁的抗剪承载力与连梁宽度的增加成正比。通过剪力墙的厚度增加,也有可能达到让连梁抗剪承载力符合限度的目的。
四 剪力墙结构计算和设计的优化的措施
4.1剪力墙结构计算方面的优化
4.1.1楼层最小剪力系数的调整原则。在满足短肢剪力墙承受的第一振型底部地震倾覆力矩占结构总底部地震倾覆力矩不超过40%的前提下,尽可能减少剪力墙的布置,以大开间剪力墙布置方案为目标,使结构具有适宜的侧向刚度使楼层最小剪力系数接近规范限值,这样能够减轻结构自重,有效减小地震作用的输入同时降低工程造价。
4.1.2楼层最大层间最大位移与层高之比的调整原则。规范规定在计算多地震作用的楼层最大层间位移时,以楼间弯曲变形为主,计入扭转变形,可不扣除结构整体弯曲变形,因此,对于高层建筑应尽可能扭转变形最小,但又不能仅根据这些层间位移不够,不加分析地增加竖向构件的刚度。在实际工程设计中,有些设计人员一看到某一方向层间位移不能满足规范要求,就不断地增加该项的侧向刚度,此举虽然可以解决问题,但应该注意此时结构的剪重比,若与规范限制接近则可行,若剪重比已经较大,则不应一味地增加也要学会减小对应一侧的结构刚度,使其剪重比减小,地震作用减小,同样可以达到较好的效果。
4.2剪力墙结构设计方面的优化
4.2.1剪力墙墙肢截面宜简单、规则。剪力墙的竖向刚度应均匀,剪力墙的门窗洞口宜上下对齐,成列布置,形成明确的墙肢和连梁。应力分布比较规则,又与当前普遍应用的计算简图较为符合,设计结果安全可靠。宜避免使墙肢刚度相差悬殊的洞口设置,当剪力墙的洞口布置出现错洞,叠合错洞时,墙内配筋应构成框架形式。
4.2.1剪力墙的特点是平面内刚度及承重力大,而平面外刚度及承载力都相对很小,应控制剪力墙平面外的弯矩,保证剪力墙平面外的稳定性。当剪力墙墙肢与其平面外方向的楼面梁连接时,应采取足够的措施减少梁端部弯矩对墙的不利影响。
五 结束语
总之,剪力墙结构在我国建筑行业的广泛运用,既可以大力推进我国建筑质量的提高,又可为我国的社会主义和谐社会奠定强大的基础,在进行剪力墙结构设计时候,必须综合考虑多方面因素,严格遵守设计规程,进而保证设计的科学合理。
参考文献;
[1] 李成华 剪力墙结构在建筑结构设计中的应用分析 [期刊论文] 《城市建设》 -2009年35期
中图分类号: TU97 文献标识码: A 文章编号:
一.引言
随着我国现代高层建筑高度的不断增加,建筑的功能也日趋复杂,在高层建筑竖向立面上的造型也呈现多样化。在某些建筑结构中,通常会要求上部的框架柱或是剪力墙不落地,在建筑结构中需要设置较大的横梁和桁架来作为支撑,甚至有时要改变竖向的承重体系,此时就要求设置转换构件,将上部和下部两种不同的竖向结构进行过度和转换,通常这种转换构件占据约为一至二层,这种转换构件即为转换层。结构转换层在很大程度上改变了建筑的结构体系,在进行设计时要慎重考虑。
二.转换层结构施工特点
由于高层建筑结构下部楼层受力很大,上部楼层受力较小,正常的结构布置应是下部刚度大、墙体多、柱网密,而到上部则逐渐减少墙体及柱的布置,以扩大柱网。这样,结构的正常布置与建筑功能对空间的要求正好相反。因此,为了适应建筑功能的变化,就必须在结构转换的楼层设置水平转换构件,部分竖向构件在转换层处被打断,使竖向力的传递被迫发生转折,而转换层就是实现转折功能的大型水平构件。转换层的结构形式一般有以下几种构成:箱式转换、梁式转换、空腹桁架式转换、桁架式转换、板式转换和斜撑式转换等。 带转换层的高层建筑是一受力复杂、不利抗震的结构体系,该结构及其支撑系统有自身的特点。众多高层建筑采用梁式转换层进行结构转换,这主要是由于:
1.转换层设计带转换层的多高层建筑,转换层的下部楼层由于设置大空间的要求,其刚度会产生突变,一般比转换层上部楼层的刚度小,设计时应采取措施减少转换层上、下楼层结构抗侧刚度及承载力的变化,以保证满足抗风、抗震设计的要求。转换构件为重要传力部位,应保证转换构件的安全性。2.8度抗震设计时除考虑竖向荷载、风荷载或水平地震作用外。还应考虑竖向地震作用的影响,转换构件的竖向地震作用,可采用反应谱方法或动力时程分析方法计算;作为近似考虑,也可将转换构件在重力荷载标准值作用下的内力乘以增大系数1.1。
2.经济指标
从抗剪和抗冲切的角度考虑,转换板的厚度往往很大。一般可2.0m~2.8m 。这样的厚板一方面重量很大,增大了对下部垂直构件的承载力设计要求,另一方面本层的混凝土用量也很大。
转换梁常用截面高度为1.6~4.0m,只有在跨度较小以及承托的层数较少时才转换梁常用截面高度0.9~1.4m,而跨度较大且承托较大且承托的层数较多时,或构件条件特殊时才采用较大的截面高度4.0~8.2m 。
3.抗震性能
由于厚板集中了很大的刚度和质量,在地震作用下,地震反应强烈。不仅板本身受力很大,而且由于沿竖向刚度突然变化,相邻上、下层受到很大的作用力,容易发生震害。以往的模型振动台试验研究表明,厚板的上、下相邻层结构出现明显裂缝和混凝土剥落。另外,试验还表明,在竖向荷载和地震力共同作用下,板不仅发生冲切破坏,而且可能产生剪切破坏,板内必须三向配筋。
4.转换层结构的基本功能
从结构角度看,转换层结构的功能主要有:
(1)上、下层结构形式的转换
这种转换层广泛用于剪力墙结构和框架--剪力墙结构,将上部的剪力墙转换为下部的框架。
(2)上、下层结构轴网的转换
转换层上下结构形式没有改变,但通过转换层使下层柱的柱距扩大,形成大柱网,这种形式常用于外框筒的下层以形成较大的入口。
(3)下、下层结构形式和结构轴网同时转换
上部楼层剪力墙结构通过转换层改变为下部框架结构的同时,下部柱网轴线与上部剪力墙的轴线错开,形成下、下结构不对齐的布置。
5.转换层结构设计方法存在的问题
目前在多、高层建筑中,绝大多数的开发商都会要求建筑物具有完备的建筑功能,建筑师在建筑设计中也往往首先想到采用结构转换层来完成上、下层建筑物功能的转换。但一些结构设计人员在实际进行转换层设计时显得无从下手,没有可操作、可遵循的设计思路、设计原则来进行结构设计。造成这种现象的主要原因是当前转换层设计没有相关的可遵循的设计准则,使设计人员难以进行结构选型、截面确定、计算模型确定、计算方法确定,计算结果应用以及配筋方法的实施等一系列结构设计步骤。这种现状与我国当前高层建筑的迅猛发展足不适应的。转换结构层具有与一般结构层相比结构重量大、结构层刚度大、几何尺寸超大、受力复杂等特点。这样的尺寸和重量意味着转换结构组成了建筑物的主要构件。它们设计的是否合理、安全、经济对整个结构的安全性、结构造价、施工费用等有着重要影响。现有的转换层设计方法,主要是针对形式简单、受力相对简单的转换梁,对于受力复杂的转换梁还没有深入研究。即便是对于形式简单的转换梁,其受力性能也没有完全清楚,而往往是互相混淆,设计概念小明确,设计原则不准确。
三. 带结构转换层的高层建筑结构设计
1. 带转换层的高层建筑结构设计原则
高层建筑中转换层的设置造成建筑物竖向刚度的突变,地震作用时在转换层上下容易形成薄弱环节,对结构抗震不利,故转换层结构在设计时应遵循以下原则:
(1)为防止沿竖向刚度变化过于悬殊形成薄弱层,设计中应考虑使上、下层刚度比γ≤2,尽量接近1。这样才能保证结构竖向刚度的变化不至于太大,使上柱有良好的抗侧力性能,减少竖向刚度变化,有利于结构整体受力。
(2)尽可能减少需结构转换的竖向构件,直接落地的竖向构件越多,转换结构越少,转换层造成的刚度突变就越小,对结构抗震更有利。
(3)设计中应保证转换层有足够的刚度,一般应使梁高度不小于跨度的1/6,才能保证内力在转换层及其下部构件中分配合理,转换梁、剪力墙柱有良好的受力性能,能较好的起到结构转换作用。
(4)必须控制框支剪力墙与落地剪力墙的比例,当剪力墙较多且考虑抗震时,横向落地剪力墙数目与横向墙总数之比不宜少于50%,非抗震时不宜少于30%。
(5)转换层以上的剪力墙和柱子应尽量对称布置,梁上立柱应尽量设在转换梁跨中,以免转换梁变形时,在梁上立柱的柱脚处产生较大转角,带动立柱柱脚产生较大变形,引起柱的弯曲及剪切,使立柱产生很大的内力而超筋。
(6)转换层结构在高层建筑竖向的位置宜低不宜高。转换层位置较高时,易使框支剪力墙结构在转换层附近的刚度、内力和传力途径发生突变,并易形成薄弱层,对抗震设计不利,其抗震设计概念与底层框支剪力墙结构有较大差异。当必须采用高位转换时,应控制转换层下部框支结构的等效刚度,即考虑弯曲、剪切和轴向变形的综合刚度,这对于减少转换层附近的层间位移角及内力突变是十分必要的,效果也很显著。另外,对落地剪力墙间距的限制应比底层框支剪力墙结构更严一些。对平面为长矩形的建筑,落地剪力墙的数目应多于全部横向剪力墙数目的一半。
2.转换层的应用
(1)梁式转换层
作为目前高层建筑结构转换层中应用最广的结构形式,它具有传力直接明确及传力途径清晰,同时受力性能好、工作可靠、构造简单、计算简便、造价较低及施工方便等优点。转换梁不宜开洞,若必须开洞则洞口宜位于梁中和轴附近。转换梁有托柱与托墙两种形式,其截面设计有4种方法,即普通梁截面设计法、偏心受拉构件截面设计法、深梁截面设计法和应力截面设计法。转换梁的截面尺寸一般由剪压比(mv=Vmax/febh0)计算确定,应具有合适的配箍率,以防发生脆性破坏,其截面高度在抗震和非抗震设计时应分别小于计算跨度的16和18。(2)厚板转换层 当转换层上、下柱网轴线错开较多而难以用梁直接承托时,可采用厚板转换层,但厚板的巨大荷载会集中作用于建筑物中部,振动性能复杂,且该层刚度很大、下层刚度相对较小,容易产生底部变形集中,其传力途径十分复杂,是一种对抗震十分不利的复杂结构体系,应进行整体内力分析、动力时程分析及板的内力分析等。厚板的厚度可由抗弯、抗剪、抗冲切计算确定;可局部做成薄板,厚薄交界处可加腋或局部做成夹心板,一般厚度可取2.0~2.8m,约为柱距的1/3~1/5。厚板应沿其主应力方向设置暗梁,一般可在下部柱墙连线处设置。转换层厚板上、下一层的楼板应适当加强,楼板厚度不宜小于150mm。
(3)箱式转换层
当需要从上层向更大跨度的下层进行转换时,若采用梁式或板式转换层已不能解决问题,这种情况下,可以采用箱式转换层。
它很像箱形基础,也可看成是由上、下层较厚的楼板与单向托梁、双向托梁共同组成,具有很大的整体空间刚度,能够胜任较大跨度、较大空间、较大荷载的转换。
(4)桁架式转换层
这种形式的转换层受力合理明确,构造简单,自重较轻,材料节省,能适应较大跨度的转换,虽比箱式转换层的整体空间刚度相对较小,但比箱式转换层少占空间。
(5)空腹桁架式转换层
这种形式的转换层与桁架式转换层的优点相似,但空腹桁架式转换层的杆系都是水平、垂直的,而桁架式转换层则具有斜撑竿。空腹桁架式转换层在室内空间上比桁架式转换层好,比箱式转换层更好。
四.结束语
高层建筑的迅速发展,从以往的简单体型和功能单一的时代开始走向体型复杂,建筑的功能呈现多样化发展。在高层结构设计中,带转换层结构设计不能简单设置成“承上启下”,而要在实际结构上实现上部结构和下部结构的过度和转换。
参考文献:
[1] 熊进刚 李艳 带结构转换层的高层建筑结构设计[期刊论文] 《南昌大学学报(工科版)》 ISTIC -2002年4期
[2]季静 韩小雷 杨坤 郑宜 Ji Jing Han XiaoLei Yang Kun Zheng Yi带主次梁转换层的超限高层建筑结构设计[期刊论文] 《结构工程师》 ISTIC -2005年2期
[3]丁奇峰 带结构转换层的高层建筑结构设计 [期刊论文] 《城市建设理论研究(电子版)》 -2013年6期
[4]韩小雷 杨坤 郑宜 季静 带梁式转换层的超限高层建筑结构设计[期刊论文] 《昆明理工大学学报(理工版)》 ISTIC PKU -2004年6期
[5]黄瑛 带转换层高层结构综合楼设计 [期刊论文] 《铁道标准设计》 ISTIC PKU -2005年1期
中图分类号:TU208文献标识码: A
剪力墙结构是建筑结构中常见的形式,对于高层预制钢筋混凝土叠合剪力墙结构的设计具有多种形式。目前,较为常见的设计形式包括两种,通过对这两种形式的简化,应用计算机软件对其进行有效的分析、计算,实现了对高层预制钢筋混凝土叠合剪力墙结构的设计的优化。下面就通过具体的工程对其进行详细的分析。
1.工程概况
钢筋混凝土剪力墙结构在我国高层住宅建筑工程中应用较为广泛。通过PC技术实施的钢筋混凝土剪力墙结构被称为预制钢筋混凝土叠合剪力墙结构,现阶段由于没有完善的设计规范以及配套的设计标准,所以PC结构设计在建筑住宅规范化、产业化发展的过程中具有重要的作用。
某工程为两栋18层的住宅楼,建筑面积为2.36万平方米。其中第一层为架空绿化空间;2~15层为标准层;16~18层具有局部退层。该项工程中,PC技术主要应用范围是3~15层。两栋楼房中一共有26层标准层。应用PCF构件,即在建筑外山墙中利用预制钢筋混凝土剪力墙模板;采用PC+PCF混合构件,即在建筑前后外墙结构中采用预制钢筋混凝土模板。
该工程中,PCF模板在工厂中事先制作好,形成模板与外饰面,并在施工现场进行安装,将其当做现浇钢筋混凝土剪力墙外墙模板结构,然后在结构内侧设置相应数量的钢筋。然后支设内膜结构,并安装预制钢筋混凝土模板,形成叠合剪力墙结构。具体情况如下图所示:
预制外墙PC是通过将剪力墙结构外墙的填充墙部分,通过预制形成外模,在内侧可填充轻质材料:外模使用钢筋与现浇筑的墙以及梁连接起来。
2.高层预制钢筋混凝土叠合剪力墙住宅结构设计
该工程建筑抗裂度为Ⅵ度,剪力墙的抗震等级为4级。根据两栋楼房建筑结构,建筑平面较为规则,建筑竖向结构较为连续。因此本工程能够使用钢筋混凝土剪力墙结构。在该工程建筑中设置地下结构一层,其基础为预应力管桩结构,并以筏板作为辅助结构。PC结构设计与传统的建筑结构设计存在较大的去呗,在内容上得到了更新与完善。实际设计中,主要采用以下两种设计方式:
方式一:建筑项目中竖向抗侧力构建全部采用现浇钢筋混凝土剪力墙结构或柱结构。这种设计忽略了PC构建以及PCF构件刚度要求以及其对建筑相关结构的影响,将PC构件以及PCF构件当做建筑荷载设计在建筑整体结构体系中。设计过程中使用现行的软件与设计规范对该结构设计方式进行计算与分析。
方式二:建筑结构中添加了PC与PCF构件结构,会增加剪力墙结构的刚度。根据可靠实践证明,预制钢筋混凝土叠合剪力墙弹性变形范围内,现浇墙体结构能够与预制模板结构协同作业。该设计形式就是根据实际的情况,合理设计预制钢筋混凝土叠合剪力墙的厚度,控制建筑结构的刚度以及位移。叠合剪力墙墙体的厚度等于现浇剪力墙墙体厚度与预制钢筋混凝土模板厚度之和。通过相应的建筑结构计算与分析,以建筑周期、结构位移、刚度等计算结果作为设计的主要依据。
3.建筑主体结构设计
通过相应的计算与分析,该工程所采用的设计方式,能够通过PC结构进行简化,并通过现行的设计规范与软件形成相应的设计模型。在实际设计过程中,需要考虑到PC、PCF构件结构对建筑其他结构的影响,包括刚度的影响,并根据相关的计算对计算模型相关参数进行适当的调整。有关的设计参数必须符合设计规范要求,同时也应该与高工程设计方案相适应。
通过相应的计算,并对上述两种设计形式计算结果比较中可知,PC与PCF构件对建筑结构刚度的影响程度。PC、PCF结构对结构周期、位移等都具有微小的影响,但是不会对建筑整体结构计算造成影响。在预制钢筋混凝土叠合剪力墙结构设计过程中,不仅需要考虑PC、PCF结构刚度,还需要综合考虑其对建筑结构刚度的影响,对建筑结构位移、周期进行有效的控制。
4.建筑结构设计中常见的问题
在高层预制钢筋混凝土叠合剪力墙住宅结构设计过程中,不仅需要对PC结构主体进行合理设计,还需要对相关构件结构进行合理设计,形成完整的设计模型、体系。在具体的设计过程中,常见的设计问题体现在以下几个方面:(1)应该重视现浇混凝土结构域叠合剪力墙结构的协同工作,重视PCF构件对建筑结构中的优化作用;(2)在PC、PCF构件的脱模、运输存放以及安装就位和现场浇筑混凝土等施工状况下的刚度以及强度计算应根据实际工程项目的设计以及施工开展;(3)Pc构件与主体建筑具有多种连接方案,柔性方案与刚性方案的特点不同,各有优势以及缺陷,本工程所使用的是柔性方案;(4)在建筑结构体系当中,有其他部位预制构件的使用例如阳台、楼梯和叠合楼板的预制件,能在一定程度上对建筑结构的导荷方式以及建筑模型的假定存在一定的影响,在实际的计算过程中应考虑全面;(5)在设计的设计过程中,应该加强对各个结构连接部位的设计,设置合理的连接构件,确保整体结构的稳定性。
5.总结
本文通过实际建筑工程,并以工程预制钢筋混凝土叠合剪力墙结构设计的计算分析为基础,对高层预制钢筋混凝土叠合剪力墙住宅结构设计方式进行分析探讨,为相关人员在这一方面的工作提供能参考。我国建筑行业发展具有悠久的历史,但是PC技术起步较晚,应用到实际工程中也相对较少,同时也没有形成完善的设计规范以及施工标准与验收标准。这就需要相关的工作者加强对该领域的研究,对PC结构设计进行不断的完善,形成完善的设计模型与体系,为我国高层建筑发展提供技术支持,促进我国建筑行业的发展,为城市化建设作出更大的贡献。
参考文献:
[1]潘剑锋.高层预制混凝土叠合剪力墙住宅结构设计经验谈[J].建材与装饰.2013,26(8):124-125.
一、高层建筑设计结构类型时存在的问题及解决方法
1、 在选择建筑的结构构型时要科学合理
存在的问题:
建筑的结构构型决定着建筑结构设计的整体走向,现在很多设计师在设计结构构型时,没有考虑到各方面的问题,导致最终的建筑设计在整体上不能满足用户需求。
解决方法:
在布置高层建筑的结构平面时应该遵循对称、规则、简单的原则,防止出现狭长的缩颈位置和应急过于集中的凹角部位,此外,还应该防止楼梯的电梯部位出现偏置而产生扭转的后果。在设计竖向体型时,应防止过于外挑,并且内收也要适度,刚度也要均匀的变化,切忌出现应力过于集中。在《高层建筑混凝土结构技术规程》中有了专门的内容在叙述建筑结构构型的规则性,比如:竖向结构的规则性、平面结构的规则性等等,在审定建筑设计方案中,坚决摒弃不符合规则的设计图。因此,建筑结构设计工程师在设计建筑构型时必须要遵循这些规则,如果在设计过程中发现了一些问题或者碰到了难题,就应该及时向建筑专业交流沟通,尽最大的努力选择最优的结构构型,以免给工程的后续工作带了不必要的麻烦。
2、 房屋最适高度和高宽比
存在的问题:
房屋的最适高度和高宽比直接影响着人们在使用过程中的心理感受,最适的高度和高宽比能给人一种舒适的感觉,并且还能增强建筑结构的安全性。而目前,很多设计师在设计房屋的最适高度和高宽比时,过于片面地追求单一方面的因素,而使房屋的高度和高宽比不能达到最佳。
解决方法:
在高层建筑设计规范和抗震规范中明确指出,应该严格限制高层建筑的总高度,以前是将高层建筑的总高度限制值设定成A级,但是现在将建筑的限制高度设定成B级,所以必须严格控制高层建筑的结构设计高度,从多方面综合考虑,如果高层建筑的高度超出了限定值B级,那么就要改变结构设计方案和处理手段。在建筑结构设计实践中,经常会发生因设计高度超过B级高度导致在审查设计图时,没有通过直接作废,就又需要重新设计,这就严重影响到建筑的整体规划和建设周期。高层建筑的高宽比直接控制着建筑结构的整体稳定性、刚度、载重能力以及经济合理性,不同高度的高层建筑有着各不相同的高宽比限制值。然而,在设计一些结构比较复杂的高层建筑过程中,怎样准确地确定一个科学合理的高宽比是一个比较困难的工作。通常在计算时,能够根据需要考虑的方向的的最小投影宽度,针对建筑物中有一些的小的突出部位,例如楼电梯间,这就不在计算的宽度范围之内。针对有些高层建筑物附带了裙房,如果裙房的刚度和面积相对于上部的塔楼的刚度和面积过于大时,此时在宽度比的计算过程中就可以直接考虑裙房上面的部位。
3、重视短肢剪力墙的设置
存在的问题:
短肢剪力墙在建筑结构受力方面起到了十分重大的作用,现在的很多建筑的意外倒塌事故,都是由短肢剪力墙的受力不均匀引起的。
解决方法:
短肢剪力墙所指的是墙肢截面高度和厚度的比值是5~8的剪力墙。短肢剪力墙结构是在最近几年出现的,它既对住宅建筑的合理布置有利,还能使建筑结构的自重得到一定程度的减轻,然而,在高层建筑结构中,剪力墙的肢不能过于短小,这是由于短肢剪力墙有着比较差的抗地震能力,在地震多发区的实际应用很少,鉴于安全方面,高层建筑结构的剪力墙不能全部采用短肢剪力墙。如果断肢剪力墙设置太多,就应该增加设置一些筒体或者常规性的剪力墙,这二者之间共同受力,形成坚固的剪力墙结构,此外,高层建筑规范中还对短肢剪力墙的使用有了一些特别的限制,比如:抗震等级、纵向钢筋的总配筋率、最大高度等,所以,短肢剪力墙在建筑结构设计中应该少使用或者不适用为宜,不能因为了方便于施工而设计错误。
二、高层建筑结构的分析与计算方法
1、 在整体计算建筑结构时要选择正确的软件
现在大家普遍采用的计算软件包括:TBSA、TAT、SATWE或SAP、ETABS等。然而,因为不同的软件所使用的计算模型都是各不相同的,所以要根据建筑高度、结构选型、结构体系等来正确选择合适的软件版本进行设计。所以计算得出的结果有一些不同。因此,在计算和分析高层建筑的整体结构时,必须要综合考虑到建筑结构的高度和构型来正确选择计算软件,以便能够保证计算结果的精准性,有时可以使用多个不同的软件来计算,然后工程设计师再仔细分析这些不同的结果,找出适合参考且合理的结果。否则,一旦选择了不恰当的计算软件,不仅会消耗设计者大量的精力和时间,影响到建设周期,还将有可能使建筑结构存在一系列的安全隐患。
2、应该具有充足的振性数目
在新的高层建筑规范中,提出了振型参与系数的概念,还清楚地指出了这个参数的额定值。又因为在之前的高层建筑规范中,没有明确指出振型参与系数该方面的内容,即使有的指出了此概念,没有清楚的指出这个参数的额定值,所以,在分析和计算时期,就应该正确判断确立出这个参数,再进行有效地调整振型参与系数的最终取值。
3、非结构构件的计算和设计
在高层建筑的结构设计中,通常会有一些因为建筑的功能和美观方面的要求而非主体承重骨架体系以内的非结构构件。特别是在设计高层建筑屋顶处的装饰构件过程中,因为高层建筑有着比较大的风荷载和地震作用,所以,就一定要根据新的高层建筑规范中的要求老计算和处理非结构构件,以免造成恶劣的影响。
三、总结
高层建筑的结构设计是一项比较复杂且耗时长的工作,在设计过程中,稍不留意就会出现一些或大或小的错误,从而会给建筑结构的后期施工带了一系列的安全隐患,一旦发生安全事故,将会给建设单位带了严重的损失。因此,高层建筑结构设计人员应该严格按照新的高层建筑规范进行设计方案,并且还要认真考虑高层建筑的结构构型,在通过仔细的分析计算来得出最终比较完美的设计图,这样既能保证建筑物的安全性能,还能给建设单位带来丰厚的利润。在设计过程中,若遇到了一些阻碍,就应该及时和建筑师商讨,实现资源共享、技术共享。
参考文献:
[1] 于险峰. 高层建筑结构设计特点及其体系[J]. 中国新技术新产品. 2009(24)
[2] 王平山,孙炳楠,唐锦春. 高层建筑厚板转换层计算中支承条件对内力分布的影响[A]. 第六届全国结构工程学术会议论文集(第二卷)[C]. 1997
[3] 倪志刚. 超高层巨型组合结构设计时应考虑的钢结构建造因素影响[A]. 第六届海峡两岸及香港钢及组合结构技术研讨会—2010论文集[C]. 2010
【摘要】为了确保高层建筑结构设计的安全和合理,必须提高高层建筑结构设计的水平。本文建筑设计论文主要分析了高层建筑结构设计的基本要求,说明了提高高层建筑结构设计水平的关注要点。关键词:高层建筑;结构设计;要点
Abstract: In order to ensure the security and reasonable of the high-rise buildings structural design, we must improve the level of the high-rise buildings structural design. This article analyze the basic requirements of high-level building structures design, and illustrates the increased level of attention points of high-level design of building structures.Key words: high-rise buildings; structural design; points
中图分类号:TU972 文献标识码:A文章编号:2095-2104(2012)04-0020-0
前言高层建筑结构设计是针对高层建筑特性的建筑结构设计(Design of building stractures):在满足安全、适用、耐久、经济和施工可行的要求下,按有关设计标准的规定,对建筑结构进行总体布置、技术经济分析、计算、构造和制图工作,并寻求优化的过程。当前,我国高层建筑特别是超高层建筑的发展非常迅速,其规模、形式日益丰富。高层建筑形式的这一变化使得结构形式也发生了很大的变化,为了确保高层建筑结构设计的安全和合理,必须提高高层建筑结构设计的水平。一、建筑结构设计包括的内容建筑结构设计包括上部结构设计和基础设计。 上部结构设计主要内容及步骤:1.根据建筑设计来确定结构体系、确定结构主要材料;2.结构平面布置;3.初步选用材料类型、强度等级等,根据经验初步确定构件的截面尺寸;4.结构荷载计算及各种荷载作用下结构的内力分析;5.荷载效应组合;6.构件的截面设计。此外还包括某必要些构造措施。需要依据结构专业相关规范、图集等。 基础设计:1,根据工程地质勘察报告、上部结构类型及上部结构传来的荷载效应和当地的施工技术水平及材料供应情况确定基础的形式,材料强度等级,一般有浅基础(如:独立基础、条形基础等)和深基础(如:桩基);2,基础底面积的确定及地基承载力验算;3,基础内力计算及配筋计算。4,考虑必要的构造措施 结构设计的成果体现在绘制的结构施工图上,该图纸是结构工程师的语言,是直接面对施工现场及相关工程技术人员的,应该按照一定的规范绘制。二、高层建筑结构设计的基本要求1、基础设计在设计时宜最大限度地发挥地基的潜力, 必要时还应进行地基变形验算。基础设计应有详尽的地质勘察报告。一般情况下, 同一结构单元不宜采用两种不同的类型。2、必须对工程的设计要求、地理环境、材料供应、施工条件等情况进行综合分析, 并与建筑、水、暖、电等专业充分协商, 在此基础上进行结构选型, 确定结构方案, 必要时还应进行多方案比较,择优选用。3、选择恰当的计算简图是保证结构安全的重要条件。计算简图还应有相应的构造措施来保证。实际结构的节点不可能是纯粹的刚结或铰结点, 但与计算简图的误差应在设计允许范围之内。 4、坚持“强柱弱梁、强剪弱弯、强压弱拉” 原则;注意构件的延性性能;加强薄弱部位;注意钢筋的锚固长度, 尤其是钢筋的直线段锚固长度;考虑温度应力的影响。 5、按均匀、对称、规整原则考虑平面和立面的布置;综合考虑抗震的多道防线;尽量避免薄弱层的出现以及正常使用极限状态的验算等等都需要概念设计作指导。三、提高高层建筑结构设计水平的关注要点 1、计算机在结构设计中只是辅助工具,只有真正理解结构概念的内涵后,才能确定合理的参数取值和正确的判断分析结果。设计人员不能过分依赖程序,将计算结果照抄照搬,要认真分析结构。工程设计中常用的软件有TBSA、PKPM 等, 合理地根据结构特点选用分析模块对提高设计质量和效率十分重要。T A T 是PKPM 系列中重要的功能模块,其特点是可计算多塔、连体、错层及底部不等高嵌固结构;可计算常用的各种形状截面的钢梁、钢柱和支撑的钢结构,钢结构截面和支撑信息由P M C A D 建模生成。2、高层建筑的平面宜采用简单、规则、对称的形状, 避免过于复杂的平面形式,大量震害的资料表明,高层建筑物平面布置不对称、过多的外凸、内凹等复杂形式都容易造成震害。在高层结构的抗震设计中,结构体系的选择、布置、构造措施比软件的计算结果是否精确,更能影响结构的安全,除了考虑结构安全因素外,还要综合考虑建筑美观、结构合理及便于施工和工程造价等多方面因素。在不对称结构中,结构在凹凸拐角等处容易造成应力集中而遭到破坏,所以应尽量避免。而在完全对称的结构中, 也应注意凸出部分的尺寸比例。如凸出部分较长,要在结构设计中采取相应的补救措施。结构的竖向布置要尽力做到刚度均匀且连续,避免结构的刚度突变和出现软弱层。刚度突变及软弱层的出现往往是由于切断剪力墙所致,如果在结构设计中必须要切断少数剪力墙时,其他剪力墙在该切断层处应给以加强。 3、对于桩基础,桩的中心线宜与剪力墙中心线相重合,宜在剪力墙两端及剪力墙与剪力墙相交处设桩,不宜在开洞的剪力墙处布桩。剪力墙下桩基承台宜做成联合承台,不宜采用单独承台,联合承台可加强桩基承台的整体性、减少基础的不均匀沉降以及提高桩抗水平力的能力,联合承台可以按照反梁法计算内力,按照梁的构造配筋。对于电梯井或框架筒体、筒中筒结构的筒体部分,可采用厚板或环形承台,采用厚板承台时可按筏板配筋。 4、高层建筑顶点位移限值的决定不仅是其数值大小而且还与其振动频率的大小有关,一般来说,人对建筑振动频率的大小感觉很强烈,而对振动幅度(绝对位移)的大小则不是很关心,所以只要结构摆动的频率不太高时就可满足人们的舒适度;对于防止结构由于变形过大而可能遭受损坏的层间相对位移,其限值在现行规范中偏于严格,可以放松其指标。而且由于各计算程序算法的差别,同一结构用不同的计算程序计算,其层间位移数值差异可能会很大,其中一个原因可能就是各个软件对“层间位移”的定义不同所致,有的是指楼层形心位移,有的则认为是考虑楼层转动后的最大角点位移,后者通常比前者要大,对于规则建筑来说,形心位移很有意义,而角点位移却更能反映出结构楼层的真实位移,是结构工程师需要注意的。四、结束语综上论文所述,高层建筑结构设计是一个长期、复杂甚至循环往复的过程, 任何在这个过程中的遗漏或错误都有可能使整个设计过程变得更加复杂或使设计结果存在不安全因素。在设计过程中要掌握以上要点, 才能提高高层建筑结构设计水平。
Abstract: the development of our national economy, urban and rural residents and the standard of living rises ceaselessly, housing demand rapid increase, construction land increasingly nervous, national and each large and medium cities arise high-rise residential big development situation. To high-level residence structure design of further discussion and research, and has important practical significance. This paper mainly high-rise residential buildings to the shear wall structure design of the related problems on the some research.
Keywords: high-rise residential concrete shear wall structure design
中图分类号:TU318文献标识码:A 文章编号:
前言
剪力墙是一种有效的抗侧向力结构单元,可以组成完全由剪力墙抵抗侧向力
的结构,也可以和框架共同组成抵抗侧向力的框一剪结构。通常按其墙肢截面高度与厚度的比值分为一般剪力墙、短肢剪力墙和异型柱。剪力墙结构作为高层建筑中的主要结构形式,被广泛运用于现代高层建筑领域。《高层建筑混凝土结构技术规程》(JGJ3.2002)对剪力墙结构的设计原则、计算方法和构造措施作出了相应规定,但有些规定尚不够细致,可操作性较差。目前工程实践中大多数剪力墙结构的布置还主要取决于设计人员的经验。
一、剪力墙的分类
剪力墙根据墙肢的高厚比分为一般剪力墙和短肢剪力墙。―般剪力墙是指墙肢截面高度和厚度之比大于8的剪力墙;短肢剪力墙是指墙肢截面高度与厚度之比为5~8 的剪力墙。当剪力墙的墙肢截面高度hw与厚度bw之比不大于3时,应按柱的要求进行设计,底部加强部位纵向钢筋的配筋率不应小于1.2%,其他部位不应小于1.0%,箍筋应沿全高加密。剪力墙墙肢长度(即墙肢截面高度)―般不宜大于8m。
剪力墙按受力特性的不同主要可分为:①整体剪力墙。不开洞或开洞面积不大于15%的墙。②小开口整体剪力墙。开洞面积大于15%,但仍属洞口较小的开孔剪力墙,其局部弯矩不超过水平荷载的悬臂弯矩的 15%,且大部分楼层上墙肢没有反弯点。③双肢墙(多肢墙)。开洞面积比较大或洞口成列布置的墙,其受力特点与小开口整体剪力墙相似。④壁式框架。洞口尺寸大,连梁线刚度与墙肢线刚度相近的墙,其受力特点是弯矩图在大多数楼层中都出现反弯点。
二、剪力墙结构分析模型及方法
高层建筑结构中的剪力墙所承受的荷载有风和地震引起的水平荷载、结构自重和各楼层活荷载等竖向荷载,其主要功能还是抵抗结构的水平侧力,利用其强大的抗侧移刚度,减小结构的侧移。一般在多遇地震作用下,剪力墙能很好地满足结构强度、刚度和抗震方面的要求,在大震和罕遇地震作用下,由于地震加速度峰值大,输入的地震能量大,这就要求剪力墙具有较好的耗能能力,具有较好的延性。所以在进行结构设计时,对有抗震设防要求的结构就要进行非线性静力、动力分析,而在这一分析中,如何建立合理的剪力墙计算分析模型就显得尤为重要。目前国内外对剪力墙的计算分析模型的研究很多,主要可归纳为两种,
基于固体力学的微观模型和以一个构件为一个单元的宏观模型。
三、剪力墙结构设计应注意的问题
1、选择有利的建筑形式
住宅剪力墙结构布置时,墙片不宜过长,一般以墙片高宽比为1.5左右为宜,墙片平面形式不宜采用提高抗侧刚度的“L”“T”等平面形式,而是应尽可能采用“一”字形,以弱化每一单片剪力墙的刚度,实现剪力墙均匀分散、多道设防的目的。另外,还应控制剪力墙的最大间距,而纵向抗震墙应在外纵轴布置开窗洞的抗震墙或剪力墙,以增强横向抗倾覆的能力,避免边柱产生过大的压力和拉力。
2、结构竖向布置
结构竖向布置方面,该项目高宽比H/B=5,符合抗震规范剪力墙结构6度设防小于6的要求。在抗震设计中要求结构承载力和刚度宜自下而上逐渐减小,变化均匀、连续,不要突变。该工程平面在竖向上没有大的内收外挑情况,平面从底至顶一致。竖向刚度的变化主要表现在分段改变构件截面尺寸和混凝土强度等级,从施工方便来说,改变次数不宜太多;但从结构受力角度来看改变次数太少,每次变化太大又容易产生刚度的突变。
3、 剪力墙边缘构件的设置
根据(JGJ 3―2002)《高层建筑混凝土结构技术规程》 中规定,当一、二级抗震等级底部加强部位轴压比小于限值时,需要设置约束边缘构件,其长度及箍筋配置量都需要进行计算,并从加强部位顶部向上延伸一层。对于普通剪力墙,其暗柱配筋满足规范要求的最小配筋率,建议加强区配筋率取0.7%,一般部位配筋率取0.5%;而根据 《高层建筑混凝土结构技术规程》规定,对于短肢剪力墙截面的全部纵向钢筋的配筋率,底部加强部位不宜小于1.2%,其他部位不宜小于取1.0%。对于小墙肢的受力性能较差,应严格按《 高层建筑混凝土结构技术规程》控制其轴压比,宜按框架柱进行截面设计,并应控制其纵向钢筋配筋率,加强区取1.2%,一般部位取1.0%;而对于一个方向长肢另一方向短肢的墙体,设计计算中,一是另一方向短肢不计入刚度,则配筋可不考虑该方向短肢的影响,二是短肢计入刚度,则配筋中应考虑该方向短肢的不利影响,即该短肢配筋率在加强区取1.0%,一般部位可取0.8%。同时,对抗震等级为二级的剪力墙和三、四级抗震等级的全部,以及非抗震设计剪力墙的全部,在重力荷载代表值作用下轴压比小于 0.30 时,可按 《高层建筑混凝土结构技术规程》仅设置构造边缘构件,而设置约束边缘构件配筋不宜过大。
4、连梁的设计及配筋
剪力墙的连梁是耗能构件,它的剪切破坏对抗震不利,会使结构的延性降低。设计时要注意对连梁进行“强剪弱弯”的验算,保证连梁的剪切破坏后于弯曲破坏。切忌人为加大连梁的纵筋,如此,可能无法满足“强剪弱弯”的要求。不能认为加大箍筋就能保证“强剪弱弯”。当连梁不满足截面控制条件时,盲目增加箍筋的结果会导致连梁剪切破坏先于箍筋充分发挥作用。连梁截面的抗剪计算,对于跨高比大于2.5的连梁,其剪力设计值应乘以增大系数ƞvb:一级取
1.3,二级取1.2,三级取1.1。剪力墙连梁的截面尚应满足以下要求:
跨高比大于2,5时:
跨高比不大于2.5时:
式中:V――梁端截面组合的剪力设计值;
ßc――混凝土强度影响系数,按《高规》(JGJ 3-2002)第6.2.6条的规定采用。
由于高层建筑中联肢剪力墙在风荷载、地震作用下被破坏时的形态与剪力墙的连梁有很大关系,因此,在设计中为减少剪力墙受破坏,应注重连梁的设计。即在设计中,应降低连梁的弯矩,从而降低连梁的抗弯承载力,使连梁早出现塑性铰,降低连梁中的平均剪应力,改善其延性;设计时,应使连梁的剪力设计值大于或等于连梁的抗弯极限状态相应的剪力;相应增大连梁的跨高比(连梁的高度计算与设计应按照统一规定,从洞顶算到楼板面或屋面),从而可相应降低连梁的刚度,使连梁的承载力有可能不超限;对于窗洞楼面至窗台部分可用轻质材料砌筑;对于窗台有飘窗时,可再增加 1 根梁,2 根梁之间用轻质材料填充。连梁配筋应对称配置,腰筋同墙体水平筋预应力筋有腐蚀作用的外加剂。
四、剪力墙结构优化设计控制因素初探
影响剪力墙结构优化设计的主要因素包括结构变形和轴压比、建筑功能布局、剪力墙的构造要求、经济性能等。
水平位移是结构变形的主要方面,高层建筑中为了保证结构具有较大刚度,应对层间位移加以控制。这个控制实际上是对构件截面大小、刚度大小的一个相对指标。层间位移角的限制却不包括建筑整体弯曲产生的水平位移,要求较宽松。显然层间位移是与结构的抗侧刚度紧密联系的,剪力墙结构的抗侧刚度主要是由剪力墙产生的,而剪力墙的多少又直接与混凝土和钢筋的用量相关。所以对位移进行控制就间接控制结构的造价。剪力墙的轴压比是指在地震作用下,剪力墙的轴力与混凝土的抗压强度和剪力墙截面积之比。对轴压比的限制是为了保证在地震作用下剪力墙具有足够的延性,也即是说对轴压比的控制就是对剪力墙延性的控制。结构的经济性是在综合考虑各个控制因素的基础上对结构作出的功能与造价的最优比。
低烈度区在非强风作用下,因为地震作用与风荷载作用较小,水平力较小,且一般剪力墙结构墙肢布置间距较小,可能轴压比和结构变形均不起控制作用,建筑功能布局、剪力墙构造要求起控制作用。在强震区水平力较大,主要控制因素可能是结构变形和轴压比。
结语
随着经济建设的发展,我国高层建筑也有了快速的发展,尤其是改革开放之后建设了很多的高层建筑。但是由于高层建筑设计上的复杂性,也给高层建筑的设计带来许多难点。所以,我们要不断加强建筑结构设计研究。
参考文献
【1】方鄂华.高层建筑钢筋混凝土结构概念设计【M】.北京:机械工业出版社。2004.
1 小高层钢筋混凝土结构的住宅的基本结构形式
1.1 框架结构 框架结构的特点是开间大、灵活性好、抗震性能较好,造价较低,但由于柱截面大于隔墙厚度而造成柱角外凸,影响家具的布置和美观,有时由于住宅中房间分隔的不规则性又造成柱网的难以布置。
1.2 框架一剪力墙结构 在框架结构中布置一定数量的剪力墙就组成了框架一剪力墙结构。它是小高层住宅中应用比较广泛的一种主体结构型式。其特点是平面灵活,适用性强,结构合理,能使框架、剪力墙两种有不同变形性能的抗侧力结构很好地协同发挥作用。
1.3 大开间剪力墙结构 随着时代的发展和人们生活水平的提高,原来建造的小开间剪力墙体系住宅在建筑功能上的局限性变得日益明显。从强度方面看,小开间结构中墙体的作用不能得到充分的发挥,并且过多的剪力墙布置还会导致较大的地震力,增加工程费用,另外,由于结构自重较大,也增加了基础的投资,因此,大开间剪力墙应运而生。承重墙的开间达到4.5m~7.5m,进深达到7.5m~1lm,室内一般无承重的横墙和纵墙,可以按照住户的不同要求灵活分隔,随着家庭的变化还可重新布置。
1.4 短肢剪力墙结构 短肢剪力墙(墙肢截面高度与厚度之比为5~8的剪力墙)介乎于异形框架柱和一般剪力墙之间,由于这种结构体系在建筑功能、结构形式、投资效益、节能指标等多方面效果良好,己成小高层住宅的主要结构形式。
2 小高层住宅钢筋混凝土结构设计的要点
2.1 水平荷载逐渐成为钢筋混凝土结构设计的控制因素 在低层住宅中,往往是以重力为代表的竖向荷载控制着钢筋混凝土结构设计;而在小高层住宅中,尽管竖向荷载仍对钢筋混凝土结构设计产生着重要影响,但水平荷载将成为控制因素。对某一特定建筑来说,竖向荷载大体上是定值;而作为水平荷载的风荷载和地震作用,其数值是随动力特性的不同而有较大幅度的变化。
2.2 轴向变形不容忽视 对于采用框架体系或框架一剪力墙体系的小高层住宅,框架中柱的轴压应力往往大于边柱的轴压应力,这就使得中柱的轴向压缩变形大于边柱的轴向压缩变形。当房屋很高时,此种差异轴向变形将会达到很大的数值,其后果相当于连续梁中间支座产生沉陷,使连续梁中间支座处的负弯矩值减小,跨中正弯矩值和端支座负弯矩值增大。
2.3 侧移成为钢筋混凝土结构设计的控制指标 与低层住宅不同,结构侧移己成为小高层住宅钢筋混凝土结构设计的关键因素。随着房屋高度的增加,水平荷载下结构的侧移变形迅速增大,结构的顶点侧移一般与房屋高度H的四次方成正比。在设计小高层住宅时,不仅要求结构具有足够的强度,而且还要有足够的抗侧移刚度,使结构在水平荷载下产生的侧移控制在一定的范围内。这是因为:①过大的侧移会使人不舒服,影响房屋的正常使用。②过大的侧移会使隔墙、围护墙以及它们的高级饰面材料出现裂缝或损坏,也会使电梯轨道变形而导致不能正常运行。③过大的侧移会因P一效应使结构产生附加内力,甚至因侧移与附加内力的恶性循环导致建筑物的倒塌。
2.4 结构延性是钢筋混凝土结构设计的重要指标 相对于低层住宅而言,小高层住宅更柔一些,地震作用下的变形就更大一些。为了使结构在进入塑性阶段后仍具有较强的变形能力,避免倒塌,特别需要在构造上采取恰当的措施,来保证结构具有足够的延性。
3 小高层住宅钢筋混凝土框架结构设计策略
3.1 优化设计的方法 当前,在无成熟的优化设计分析软件的情况下,主要是应用小高层住宅结构分析软件,采用人工分析进行调整,运用概念设计的方法对不同的结构选型和布置不断的进行方案分析比较,以获得比较理想的结构方案,这是在结构设计中最常用的也是最简单的优选或者说是优化方法。用概念设计的方法所得的方案是较合理、经济的,虽其费工费时、对设计人员的素质要求较高,但这种依靠设计人员经验进行人工优化的方法仍是当前所普遍采用的主要方法。对于同一小高层住宅方案,可以有许多不同的结构(包括基础)布置方案;确定了结构布置的小高层住宅物,即使在同种荷载情况下也存在不同的分析方法;分析过程中设计参数、材料、荷载的取值也不是唯一的;小高层住宅物细部的处理更是不尽相同等等,这些问题目前计算机是无法完全解决的,都需要设计人员自己做出判断。而判断只能在结构设计的一般规律指导下,根据工程实践经验进行,这便是前面所说的概念设计。因此,概念设计存在于设计师对多种备选方案进行选择的过程中。
3.2 性能分析
3.2.1 抗震性能分析 对结构体系来说足够的承载能力和变形能力是两个同时需要满足的条件。结合概念设计的理念,对上述两种结构体系进行对比分析,电算程序可以采用中国建筑科学研究院编制的结构空间有限元分析软件SATWE。在结构设计中,不仅要求结构具有足够的承载能力,还要求其有适当的刚度。高层结构的使用功能和安全与其侧移的大小密切相关,过大的侧向变形会使隔墙、维护墙及其饰面材料出现裂缝或损坏。结构分别按考虑5%的偶然偏心和双向地震力作用的不利情况计算出各结构体系层间位移角,剪力墙结构小于框剪结构,但均小于规范要求,且富裕量较大,说明两种结构体系满足刚度要求。
但就使用性能方面,剪力墙结构由于墙体太多,结构自重大,导致了较大的地震作用,混凝土和钢材用量也较高;同时也增加了基础工程的投资,而且限制了建筑上的灵活使用。而框架一剪力墙结构的特点是平面使用灵活,适用性强,结构合理,能使框架、剪力墙两种有着不同变形性能的抗侧力结构很好地协同发挥作用。在水平荷载作用下,具有较纯框架和纯剪力墙结构更为有利的水平变形曲线。由框架构成自由灵活的使用空间,容易满足不同建筑功能的要求;同时剪力墙具有相当大的抗侧移刚度,从而使框一剪结构具有较好的抗震能力,也大大减少了结构的侧移。
3.2.2 经济性比较 我们通过对三种钢筋混凝土住宅结构直接费的计算,发现三种钢筋混凝土住宅结构单位面积直接费相差不是很多,其中短肢剪力墙结构的单位面积直接费最大,框架一剪力墙结构的单位面积直接费最小,其中短肢剪力墙结构的单位面积直接费比框架一剪力墙结构的单位面积直接费高出12.5%,比大开间剪力墙结构的单位面积直接费高出7.3%,大开间剪力墙结构的单位面积直接费比框架一剪力墙结构的单位面积直接费高出4.9%。三种钢筋混凝土住宅结构的次要项目造价基本相同。单位面积造价框架一剪力墙结构的最小,框架一剪力墙结构的次之,短肢剪力墙结构的稍微较大,三种结构体系直接费最大相差不到45元/m2元。
4 结语
随着我国经济的发展,人民生活水平进一步提高,用户对住宅的功能提出更高的要求,人们希望建筑物在使用过程中具有更大的灵活性,能够适应多功能变换的需求。因此,设计单位在拿到开发单位的设计意图后,应本着经济美观,安全适用的原则多为社会设计出更好的产品。
一、概念设计的涵义
概念设计就是从结构总体方案设计一开始,就运用人们对建筑结构抗震已有的正确知识去处理好结构设计中将遇到的问题,诸如:房屋体形、结构体系、刚度分布、构件延性等等。从宏观原则上进行评价、鉴别、选择等处理,再辅以必要的计算和构造措施。从而消除建筑物抗震的薄弱环节,以达到合理抗震设计的目的。也就是说概念设计是工程师运用思维和判断力,根据从大量震害经验得出的结构抗震原则,从宏观上确定结构设计中的基本问题。因此,工程师必须从主体上了解结构抗震特点,振动中结构的受力特征,抓住要点,突出主要矛盾,用正确的概念来指导概念设计,才会获得成功。由于概念设计包括的范围极广,因此不仅仅要分析总体方案确定的原则,还要顾及非材料的正确使用和关键部位的细部构造。但是首先和最重要的还是结构总体概念设计、材料选型和细部构造等问题,这些设计原则和结构概念中,较为重要的是结构总体设计。
二、结构总体设计的注意要点
1.延性耗能
在建筑结构的整体设计上要注意加强薄弱环节,尽量做到等强度。同时,应使建筑结构在一个恰当的部位能消耗大量的能量,在具体设计中即为各式各样的梁,如框架梁、联肢墙的连肢梁等。结构延性一般用延性系数表示,它表示的是结构极限变形(位移、转角、曲率)与屈服变形的比值,也可以分别用位移延性系数,转角延性系数等来表示,该比值越大,结构的延性越好。在设计上为提高钢筋混凝土梁的延性,一般采取以下措施:(1)首先应选取合适的梁截面尺寸,以获得合适的配筋率,避免梁受拉筋过多或出现超筋。因此,对地震区梁的配筋率要大大低于一般梁的最高配筋率。(2)梁上部(跨中)和下部(端部)配置适量的受压筋。(3)提高梁混凝土强度等级,采用中低级钢筋对延性有利。(4)T形梁比矩形梁延性好。(5)注意加密箍筋。地震区钢筋混凝土梁的位移延性系数一般要求不得低于4。
2.多道防线设计
现在有一种新的抗震概念:当建筑结构受到强烈地震动主脉冲卓越周期的作用时,一方面利用结构中增设的赘余杆件的屈服和变形,来耗散地震输入能量;另一方面利用赘余杆件的破坏和退出工作,使整个结构从一种稳定体系过渡到另一种稳定体系,实现结构周期的变化,以避开地震动卓越周期长时间持续作用所引起的共振效应。这种通过对结构动力特性的适当控制,来减轻建筑物的破坏程度,是对付高烈度地震的一种经济有效的方法。
3.妥善处理非结构部件
非结构部件一般是指在通常结构分析中不考虑承受重力荷载以及风、地震等侧力荷载的部件,如内隔墙,框架填充墙,建筑处围墙板,楼梯等。实际上,在地震作用下,高层建筑中的这些部件或多或少地参与工作,从而改变了整个结构或局部构件的刚度,承载力和传力路线。造成未曾估计到的局部震害。在钢筋混凝土框架体系的高层建筑中,这些影响最为普遍。(1)砌体填充墙的抗震作用:①使结构刚度增大,自振周期缩短,水平地震力增大30%~50%。②改变了结构的地震剪力分布状况。③砌体填充墙具有较大的抗推刚度,限制了框架的变形,从而减小了整个结构的地震侧移幅值。 (2)柱端震害,在地震中,角柱上端被嵌砌于框架间的砖墙顶断。这是典型的柱端震害。在框架体系设计中必须考虑,并采取恰当的预防措施。(3)形成短柱破坏。采用钢筋混凝土框架的高层建筑,就框架柱的受力状况和破坏形态而言,一般情况下属于长柱。由于窗裙墙对框架柱的刚性约束,减短了柱的有效长度,使它变成了短柱,承担的地震力大增,发生剪切破坏。因此,采用贴砌围护方案或墙、柱柔性连接方案都是防止短柱破坏的有效手段。否则沿柱的全高,柱身箍筋的配置均应符合短柱的规定。这一点,在施工图中,应当说明清楚。
三、案例讨论
郑州市郑东新区景峰国际项目情况:地上34层共120m,地下共3层,其中地下第3层为5级人防。该结构为超高层结构,框架-剪力墙结构体系。其中在地上第三层有局部框值转换。在方案设计阶段,框架的轴线尺寸己经由建筑确定,梁柱截面尺寸根据竖向荷载及粗估的水平地震作用效应确定。最后问题是剪力墙如何布置、数量多少。这是一个关系到结构安全和技术经济合理性,并体现出体系优越性的关键性环节。所以结构工程师在方案设计阶段都积极参与,并根据适宜刚度概念算出剪力墙的面积,结合建筑要求设计出经济合理的方案。
1.剪力墙的布置。一般情况下,剪力墙应在纵横两个方向同时布置,并使两个方向的自振周期比较接近。在非抗震设计的条件下,也允许只设横向剪力墙而不设纵向剪力墙,这时,纵向风力全部由纵向框架承受。剪力墙的一般布置原则是“均匀、分散、对称、周边”。均匀、分散是要求剪力墙的片数多,每片的刚度不要太大,也就是说布置很多片短的剪力墙;并且在楼层平面上均匀布开不要集中在某一局部区域。一方面,剪力墙对称布置可以避免和减少建筑物受到的扭矩。另一方面,剪力墙沿周边布置可以最大幅度地加大抗扭转的内力臂,提高整个结构的抗扭能力。经过讨论,大家一致同意剪力墙沿周边布置。
2.剪力墙的平面位置。一般情况下,剪力墙宜布置在下述的各个部位:(1)竖向荷载较大处。这样可以获得三点好处:①较大重力荷载引起的较大地震作用,可以直接传到剪力墙上;②剪力墙承受很大的弯矩和剪力,有了较大轴向压力来平衡,可以减小墙体的拉应力,并提高墙体的受剪力承载力;③可以避免使用较大截面梁、柱的框架来承担较大的竖向荷载。(2)平面形状变化处或楼盖水平刚度剧变处。这样可以消除地震时在该部位楼板中引起的应力集中效应。(3)楼梯间、电梯间以及楼板较大洞口的两侧。根据本工程特点,剪力墙的平面位置布置在竖向荷载较大处。
3.剪力墙最大间距。在框―剪体系中,剪力墙是主要抗震构件,承担着80%以上的地震力;框架是次要抗震构件,仅承担加%以下的地震力。要保持框一剪体系这一结构特性,以剪力墙为侧向支撑的各层楼盖,在地震力作用下的水平变形就需控制在很小数值范围以内,使框架的侧向变形与剪力墙大致相同。否则,就需要通过空间分析来考虑楼盖水平变形所引起的框架剪力增值。在实际工程中,剪力墙间距一般在2.5B及30m以内。有30m长的一段无剪力墙的自由布置空间,完全可以满足建筑功能的要求。
参考文献:
[1]小谷俊川.日本基于性能结构抗震设计方法的发展.建筑结构,2000,6.
[2]建筑抗震设计规范.(GBJfl一89).
Abstract: This article mainly discusses the torsion nature, factors and reverse design and control measures these four respects in the architecture structure, for your reference.
Key words: high-rise building; torsion resistance design
中图分类号:TU7文献标识码:A 文章编号:2095-2104(2012)
扭转效应是建筑遭受震害的重要因素之一,建筑设计工作者在对高层建筑进行结构设计时,一定要充分重视建筑结构的扭转问题,熟悉结构扭转产生的原因,了解结构扭转的性质,并掌握扭转的理论和计算方法。最关键的还是要充分考虑各方面的影响因素,做好计算和校核工作,根据建筑的具体特点,针对薄弱点,做好建筑结构的抗扭设计措施,使高层建筑能经得起地震的考验,保障人民的生命财产安全。
1 高层建筑结构扭转的性质
高层建筑结构在地震荷载作用发生扭转破坏时,会加大建筑抗推刚度较弱的一侧的位移,并使其剪力增加,破坏程度加重。如果平面的刚度不均匀,一端刚度很大,另一端只有刚度很小的柱子,地震荷载作用下发生扭转,导致没有剪力墙的一端柱子塌落而使楼板也跟着塌下。若每个结构单元两端之问的质量和刚度相差悬殊,也会在地震作用下产生扭转,造成钢筋混凝土柱出现交叉裂缝。如果建筑的每层平面布置不尽相同,有些柱子上、下错位或形状和长边方向改变,这样可能造成地震时底层柱折断而导致上层整体塌落。当结构平面形状不规则时,产生破坏时交叉斜裂缝的宽度可达100mm。对单一受扭构件的破坏的研究表明,少筋及超筋构件以脆性形式破坏,而且破坏是突发性的,没有明显塑性变形,而适筋受扭构件以延性形式破坏,破坏具有明显的塑性变形过程。但对于整体结构发生扭转破坏来讲,破坏是具有突发性的,塑性变形量较小,属脆性破坏范畴。
2 引起结构扭转的因素
2.1 建筑结构扭转振动原因
2.1.1 外来干扰
地震时地面质量间具有运动的差别性,使地面不仅产生平动分量,同时也产生转动分量,正是后者迫使结构产生了扭转。但由于地震观测的工作条件复杂,使得扭转分量的相关理论和计算方法还不成熟,一些实际技术工作也没能得到解决,所以目前的抗震规范都没有考虑地震扭转分量的计算。但我国规范中考虑了其影响:当不对规则结构进行扭转耦联计算时,应将平行于地震作用方向的两个边榀的地震作用效应乘以一个适当的增大系数,通常短边可取1.15,长边可取1.05,若扭转刚度较小,则增大系数不宜小于1.3。
2.1.2 建筑结构本身因素
当建筑结构的刚度中心没有与质量中心重合时,会导致地震作用下结构的扭转振动。就算各层的刚心与质心重合,但建筑整体的质心不在同一轴线上,也会受到地面运动的扭转分量、活荷载的偏心及其他复杂因素的影响,也会引起结构的扭转振动。造成扭转破坏的一个重要原因是平面刚度是否均匀,而剪力墙的布置是影响刚度是否均匀的主要因素。
2.2 建筑结构的平面和立面布置
2.2.1 平面布置
地震区的高层建筑,最好采用圆形、方形或矩形平面,椭圆形、扇形、正六边形、正八边形也可以采用。虽然三角形平面看起来也比较简单和对称,但它并非沿主轴方向都对称,地震时也易产生较强的扭转振动,所以地震区高层建筑的现状尽量避免采用三角形。此外,带有较长翼缘的L形、U形、H形、T形、十字形、Y形平面也不宜采用,因为此类平面在地震时容易发生差异侧移而使震害加重。
2.2.2 立面布置
地震区高层建筑的立面也尽量采用矩形和梯形等均匀的几何形状,不宜采用带有突然变化的立面形状,因为形状突变会引起质量和刚度的剧烈变化,致使该突变部位在地震时因塑性变形集中效应而加重破坏。在地震区尤其不宜出现倒梯形建筑和大底盘建筑,但这两种建筑形式是比较流行的。倒梯形建筑虽然建筑风格比较时尚,但其在质量、刚度和强度分布上均不符合抗震设计原则,它的上部质量大而下部质量小,使得重心偏高,增加了倾覆力矩;上部刚度大而下部刚度小,相对增大了底层的薄弱程度。许多大底盘高层建筑,在低层裙房与高层主楼相连处容易引起刚度突变,使主楼底部楼层变成相对柔弱的楼层,容易在地震中因塑性变形集中效应而导致严重破坏。
3 高层建筑结构扭转设计控制方法及措施
引发高层建筑结构的扭转振动的因素众多,包括地面的运动、建筑物质量和刚度分布的不均匀、计算分析的误差以及抗扭构件的脆性破坏等,这些使得扭转振动在所难免。在设计中应尽量改善结构扭转效应,并在构造上采取一定措施来减小扭转。
3.1 改善扭转效应
总的来说,就是要做到削弱中间、加强周边。具体可从以下几个方面来改善扭转效应:
3.1.1 建筑平面总体布置应规则、对称,具有良好的整体性。
3.1.2 建筑的立面形状应规则,竖向抗侧力构件的材料强度和形状尺寸从上到下应逐渐增加,避免其刚度和承载力突变。
3.1.3 增加远离质心处的剪力墙厚度,尽量使刚心接近质心,减小偏心率。
3.1.4 若简体刚度很大,则可加开结构洞以减小刚度偏心。
3.1.5 平面凹凸不规则处应加拉梁或增设拉接楼板。
3.1.6 尽量加大周边构件截面,以增加整个平面的抗扭刚度。
3.2 抗扭措施
3.2.1 根据建筑具体高度来选择适宜的结构类型。
3.2.2 确保框架一剪力墙基础具有良好的整体性和刚度。
3.2.3 框架结构和框架一剪力墙结构中,梁中线与柱中线、柱中线与剪力墙中线之间的偏心距不宜过大,并且框架和剪力墙均应双向设置。
3.2.4 剪力墙的设置宜贯通房屋全高,其横向与纵向墙体应相连;较长房屋中的纵向剪力墙不宜设置在端开间,应设置在墙面不需开大洞口的位置,剪力墙上的洞口宜上下对齐。
3.2.5 调整后的框架的角柱的剪力设计值和组合弯矩设计值还应乘以一个增大系数,并且其值不小于1.1。
3.2.6 剪力墙的底部加强部位及以上一层的截面组合的弯矩设计值,应采用墙肢底部截面组合弯矩设计值,而其余部位设计值应乘以增大系数1.2。
3.2.7 各级剪力墙底部加强部位的截面剪力墙设计值均应乘以相应的增大系数,一、二、三级的增大系数分别为1.6、1.4、1.2。
3.2.8 控制好建筑的高宽比,不应使这一值过大,基础埋深应达到一定的限值。
3.2.9 适当增大边柱、角柱及剪力墙端柱的纵向钢筋面积。
4 结语
高层建筑结构破坏大多是由扭转所导致的,因此加强结构的抗扭刚度和抗扭能力是减小建筑结构震害程度的重要措施,也是结构设计的一个重要概念。扭转效应大多是由建筑布置不合理而产生的,因此抗震设计中首先要考虑合理的建筑布置,抗震结构应尽量满足平、立面简单对称的原则,尽量减少凸出和凹进等复杂平面,还应尽可能使平面刚度均匀。
参考文献:
[1] JGJ 3-2010,高层建筑混凝土结构技术规程[S].
我国改革开放以来,建筑业有了突飞猛进的发展,近十几年我国已建成高层建筑万栋,建筑面积达到2亿平方米,其中具有代表性的建筑如深圳地王大厦81层,高325米;广州中天广场80层,高322米;上海金茂大厦88层,高420.5米。另外在南宁市也建起第一高楼摘要:地王国际商会中心即地王大厦共54层,高206.3米。随着城市化进程加速发展,全国各地的高层建筑不断涌现,作为土建工作设计人员,必须充分了解高层建筑结构设计特征及其结构体系,只有这样才能使设计达到技术先进、经济合理、平安适用、确保质量的基本原则。
一、高层建筑结构设计的特征
高层建筑结构设计和低层、多层建筑结构相比较,结构专业在各专业中占有更重要的位置,不同结构体系的选择,直接关系到建筑平面的布置、立面体形、楼层高度、机电管道的设置、施工技术的要求、施工工期长短和投资造价的高低等。其主要特征有摘要:
(一)水平力是设计主要因素
在低层和多层房屋结构中,往往是以重力为代表的竖向荷载控制着结构设计。而在高层建筑中,尽管竖向荷载仍对结构设计产生重要影响,但水平荷载却起着决定。因为建筑自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值,仅和建筑高度的一次方成正比;而水平荷载对结构产生的倾覆力矩、以及由此在竖向构件中所引起的轴力,是和建筑高度的两次方成正比。另一方面,对一定高度建筑来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震功能,其数值是随着结构动力性的不同而有较大的变化。
(二)侧移成为控指标
和低层或多层建筑不同,结构侧移已成为高层结构设计中的关键因素。随着建筑高度的增加,水平荷载下结构的侧向变形迅速增大,和建筑高度H的4次方成正比(=qH4/8EI)。
另外,高层建筑随着高度的增加、轻质高强材料的应用、新的建筑形式和结构体系的出现、侧向位移的迅速增大,在设计中不仅要求结构具有足够的强度,还要求具有足够的抗推刚度,使结构在水平荷载下产生的侧移被控制在某一限度之内,否则会产生以下情况摘要:
1.因侧移产生较大的附加内力,尤其是竖向构件,当侧向位移增大时,偏心加剧,当产生的附加内力值超过一定数值时,将会导致房屋侧塌。
2.使居住人员感到不适或惊慌。
3.使填充墙或建筑装饰开裂或损坏,使机电设备管道损坏,使电梯轨道变型造成不能正常运行。
4.使主体结构构件出现大裂缝,甚至损坏。
(三)抗震设计要求更高
有抗震设防的高层建筑结构设计,除要考虑正常使用时的竖向荷载、风荷载外,还必须使结构具有良好的抗震性能,做到小震不坏、大震不倒。
(四)减轻高层建筑自重比多层建筑更为重要
高层建筑减轻自重比多层建筑更有意义。从地基承载力或桩基承载力考虑,假如在同样地基或桩基的情况下,减轻房屋自重意昧着不增加基础造价和处理办法,可以多建层数,这在软弱土层有突出的经济效益。
地震效应和建筑的重量成正比,减轻房屋自重是提高结构抗震能力的有效办法。高层建筑重量大了,不仅功能于结构上的地震剪力大,还由于重心高地震功能倾覆力矩大,对竖向构件产生很大的附加轴力,从而造成附加弯矩更大。
(五)轴向变形不容忽视
采用框架体系和框架——剪力墙体系的高层建筑中,框架中柱的轴压应力往往大于边柱的轴压应力,中柱的轴向压缩变形大于边柱的轴向压缩变形。当房屋很高时,此种轴向变形的差异将会达到较大的数值,其后果相当于连续梁中间支座沉陷,从而使连续梁中间支座处的负弯矩值减小,跨中正弯矩值和端支座负弯矩值增大。
(六)概念设计和理论计算同样重要
抗震设计可以分为计算设计和概念设计两部分。高层建筑结构的抗震设计计算是在一定的假想条件下进行的,尽管分析手段不断提高,分析的原则不断完善,但由于地震功能的复杂性和不确定性,地基土影响的复杂性和结构体系本身的复杂性,可能导致理论分析计算和实际情况相差数倍之多,尤其是当结构进入弹塑性阶段之后,会出现构件局部开裂甚至破坏,这时结构已很难用常规的计算原理去进行分析。实践表明,在设计中把握好高层建筑的概念设计也是很重要的。
二、高层建筑的结构体系
(一)高层建筑结构设计原则
1.钢筋混凝土高层建筑结构设计应和建筑、设备和施工密切配合,做到平安适用、技术先进、经济合理,并积极采用新技术、新工艺和新材料。
2.高层建筑结构设计应重视结构选型和构造,择优选择抗震及抗风性能好而经济合理的结构体系和平、立面布置方案,并注重加强构造连接。在抗震设计中,应保证结构整体抗震性能,使整个结构有足够的承载力、刚度和延性。
(二)高层建筑结构体系及适用范围
目前国内的高层建筑基本上采用钢筋混凝土结构。其结构体系有摘要:框架结构、剪力墙结构、框架—剪力墙结构、筒体结构等。
1.框架结构体系。框架结构体系是由楼板、梁、柱及基础四种承重构件组成。由梁、柱、基础构成平面框架,它是主要承重结构,各平面框架再由连系梁连系起来,即形成一个空间结构体系,它是高层建筑中常用的结构形式之一。
框架结构体系优点是摘要:建筑平面布置灵活,能获得大空间,建筑立面也轻易处理,结构自重轻,计算理论也比较成熟,在一定高度范围内造价较低。
框架结构的缺点是摘要:框架结构本身柔性较大,抗侧力能力较差,在风荷载功能下会产生较大的水平位移,在地震荷载功能下,非结构构件破坏比较严重。
框架结构的适用范围摘要:框架结构的合理层数一般是6到15层,最经济的层数是10层左右。由于框架结构能提供较大的建筑空间,平面布置灵活,可适合多种工艺和使用的要求,已广泛应用于办公、住宅、商店、医院、旅馆、学校及多层工业厂房和仓库中。
2.剪力墙结构体系。在高层建筑中为了提高房屋结构的抗侧力刚度,在其中设置的钢筋混凝土墙体称为“剪力墙”,剪力墙的主要功能在于提高整个房屋的抗剪强度和刚度,墙体同时也作为维护及房间分格构件。
剪力墙结构中,由钢筋混凝土墙体承受全部水平和竖向荷载,剪力墙沿横向纵向正交布置或沿多轴线斜交布置,它刚度大,空间整体性好,用钢量省。历史地震中,剪力墙结构表现了良好的抗震性能,震害较少发生,而且程度也较稍微,在住宅和旅馆客房中采用剪力墙结构可以较好地适应墙体较多、房间面积不太大的特征,而且可以使房间不露梁柱,整洁美观。
剪力墙结构墙体较多,不轻易布置面积较大的房间,为了满足旅馆布置门厅、餐厅、会议室等大面积公共用房的要求,以及在住宅楼底层布置商店和公共设施的要求,可以将部分底层或部分层取消剪力墙代之以框架,形成框支剪力墙结构。
在框支剪力墙中,底层柱的刚度小,形成上下刚度突变,在地震功能下底层柱会产生很大内力及塑性变形,因此,在地震区不答应采用这种框支剪力墙结构。
3.框架—剪力墙结构体系。在框架结构中布置一定数量的剪力墙,可以组成框架—剪力墙结构,这种结构既有框架结构布置灵活、使用方便的特征,又有较大的刚度和较强的抗震能力,因而广泛地应用于高层建筑中的办公楼和旅馆。
4.筒体结构体系。随着建筑层数、高度的增长和抗震设防要求的提高,以平面工作状态的框架、剪力墙来组成高层建筑结构体系,往往不能满足要求。这时可以由剪力墙构成空间薄壁筒体,成为竖向悬臂箱形梁,加密柱子,以增强梁的刚度,也可以形成空间整体受力的框筒,由一个或多个筒体为主反抗水平力的结构称为筒体结构。通常筒体结构有摘要:
(1)框架—筒体结构。中心布置剪力墙薄壁筒,由它受大部分水平力,周边布置大柱距的普通框架,这种结构受力特征类似框架—剪力墙结构,目前南宁市的地王大厦也用这种结构。
(2)筒中筒结构。筒中筒结构由内、外两个筒体组合而成,内筒为剪力墙薄壁筒,外筒为密柱(通常柱距不大于3米)组成的框筒。由于外柱很密,梁刚度很大,门密洞口面积小(一般不大于墙体面积50%),因而框筒工作不同于普通平面框架,而有很好的空间整体功能,类似一个多孔的竖向箱形梁,有很好的抗风和抗震性能。目前国内最高的钢筋混凝土结构如上海金茂大厦(88层、420.5米)、广州中天广场大厦(80层、320米)都是采用筒中筒结构。