时间:2022-03-08 12:13:40
引言:寻求写作上的突破?我们特意为您精选了4篇码头施工总结范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
中图分类号:TU74文献标识码: A
1、工程概况
码头采用高桩梁板式结构,采用φ800mm钻孔灌注桩。根据勘察报告,本工程采用天然地基,持力层灰黄色~灰色粉砂:层面标高约-23.17~-32.55m,厚度一般为7.10~14.70。顶面起伏变化及厚度变化较大,密实,含云母和铁质物,该层状态好,局部为细砂,局部颗粒较细,表现为粉土。该层平均标贯击数N63.5在水域约为55.5击,陆域约为64.2击。可作为本工程的天然地基持力层。
2、施工过程质量控制
2.1成孔过程控制
钻孔在整个灌注桩施工过程中是占用时间最长的一个重要环节。钻孔质量的好坏,直接关系到下一步施工的难易、成桩的质量及单桩承载力的高低。因此。在施工中要注意钻进速度、成孔深度等。
2.1.1孔径控制。根据桩长、桩径、地质资料及设备情况,选用QSZ150型钻机进行成孔。钻机在开钻前首先确定钻头直径,因灌注桩直径为800mm,考虑到钻进过程中钻杆晃动会扩孔,经试钻孔选用直径780mm钻头,成孔直径可控制在800~820mm之间。
2.1.2钻孔进度控制。根据本区域地质勘探资料,顶层为淤泥层,层顶标高-3.20~-6.50m,流塑状;护壁不宜成功,所以钻孔前陈设12m长的护筒,护筒底穿透淤泥层1~2m。
钻孔时应根据不同土层控制好钻机钻进速度,钢护筒下4m左右范围内钻进应低速,待各方面正常后方可加速。对于易塌孔的土层,或出现缩颈、塌孔时,钻进速度要减慢,并减少泥浆循环速度加大泥浆比重,必要时应在缩颈、塌孔段投入粘土,且慢速空转不进尺。开钻以后应连续钻进,争取以最短的时间成孔,避免粘土层的孔壁或孔底经长期浸泡而软化,导致孔壁的摩擦系数减少和孔底端承力的降低。随钻进深度,应提取相应土层样本,判断土层,与地质剖面图对照,并做好相应的记录。
2.1.3钻孔深度控制。开钻前事先核定主钻杆长度、钻杆长度、钻头长度等,终空前计算钻孔深度:
L1:主钻杆长度;
L2:每节钻杆长度;
L3:钻头长度;
n:钻杆进入护筒的节数,不足一节按进入比例进行计算。
钻孔不允许出现深度不够现象,超深控制在30cm以内,杜绝以超深来抵消孔底沉渣。孔深经检查核实无误后,才允许提钻。
2.1.4清孔质量控制。钻孔结束后,采用正循环进行第一次清孔,通过补充新鲜泥浆将孔内含沙量大、性能差的泥浆置换出来。二次清孔时宜采用正循环清孔,考虑二次清孔在钢筋笼和导管下放后进行,故采用已下放导管进行正循环清孔。孔底沉渣是影响桩承载力的重要因素,沉渣过厚则会积存桩底,甚至被混凝土挤至桩身周围,损及桩身下段之摩擦力及桩端之点承力,影响钻孔灌注桩的成桩质量。泥浆的性能指标是比重、粘度和含砂率,若泥浆过稀,则携渣能力不够;若泥浆过稠,则孔壁会形成泥皮,无形中减少了桩经。为了保证正循环清孔质量,二清时应加大泥浆的比重和粘度,但不宜过大,比重控制在1.15~1.20、粘度控制在20~24为宜,且清孔的速度要慢。待各项指标满足设计和规范要求后,及时进行混凝土浇筑,减少沉渣时间,若清孔后到浇筑混凝土的时间超过30分钟应重新进行清孔。
2.2钢筋笼质量控制
钢筋笼的制作好坏,直接影响到下笼的难易、成桩质量的好坏、单桩承载力的高低。因此在施工中,钢筋笼的制作及安装必须严格按设计要求加工。
钢筋笼的制作必须按图纸进行,本工程钢筋笼长度为28.8m,加工时分为两节,短节置于下端,保证接头处于桩身下部。
钢筋笼吊装时要保证其不变形,吊点位置应对称,保证钢筋笼呈垂直状态。钢筋笼的下端吊入护筒后,使其中心与桩中心一致。钢筋笼上端下至护筒口时,应再次检查钢筋笼的位置。第一节下放完成后用槽钢担于护筒上,第二节钢筋笼用吊车起吊后与第一节对接,两节钢筋笼的连接采用焊接,焊接时要扶正、同心,主筋搭接采用单面焊。将钢筋笼的两根主筋根据护筒标高接长,顶部与钢护筒和平台进行固定,防止在混凝土灌注过程中钢筋笼上浮。
2.3灌注过程控制
混凝土灌注是一个连续的过程,质量控制难度较大,通常是通过成桩后的低应变动测来检查成桩质量。如果此时发现存在质量问题,则为时已晚。因此在混凝土灌注过程中应着重于以下几方面质量控制:
2.3.1防止钢筋笼上浮
钢筋笼放置初始位置过高,混凝土流动性过小,导管在混凝土中埋置深度过大时钢筋笼被混凝土拖顶上升;当混凝土灌至钢筋笼下,若此时提升导管,导管底端距离钢筋笼仅有1m左右时,由于浇筑的混凝土自导管流出后冲击力较大,推动了钢筋笼的上浮;由于混凝土灌注过钢筋笼且导管埋深较大时,其上层混凝土因浇注时间较长,已接近初凝,表面形成硬壳,混凝土与钢筋笼有一定的握裹力,如此时导管底端未及时提到钢筋笼底部以上,混凝土在导管流出后将以一定的速度向上顶升,同时也带动钢筋笼上升。所以钢筋笼初始位置应定位准确,并与孔口固定牢固。加快混凝土灌注速度,缩短灌注时间,或掺外加剂,防止混凝土顶层进入钢筋笼时流动性变小,混凝土接近钢筋笼时,控制导管埋深在1.5~2.0m。灌注混凝土过程中,应随时掌握混凝土浇注的标高及导管埋深,当混凝土埋过钢筋笼底端2~3m时,应及时将导管提至钢筋笼底端以上。导管在混凝土面的埋置深度一般宜保持在2~5m,严禁把导管提出混凝土面。当发生钢筋笼上浮时,应立即停止灌注混凝土,并准确计算导管埋深和已浇混凝土面的标高,提升导管后再进行浇注,上浮现象即可消失。
2.3.2防止导管堵塞。导管堵塞事故,会造成桩身夹泥、夹砂而形成断桩,甚至造成导管埋置,堵塞事故的发生,主要与混凝土的和易性、粒径与级配、泥浆比重等有关。
和易性是混凝土拌合物性能的综合反映,包括流动性、粘聚性和保水性。和易性差的混凝上表现为:拌合物松散、不易粘结、流动性差;拌合物粘聚力大、成团、不易灌注,拌合物在出料运输灌注过程中,容易造成分层离析或泌水。造成此现象的原因是:①水灰比配合不当。在骨料用量不变情况下,水灰比越大,拌合物流动性增大;反之则减小。但水灰比过大,会造成粘聚性和保水性不良;水灰比过小,会使拌合物流动性过低而影响混凝土灌注,发生堵管。所以在根据混凝土设计强度,计算配合比时,合理选用水泥标号,确定最优水灰比。②拌制混凝土时,坍落度太小,或搅拌时间过短,混凝土拌合不均匀,流动性差。合理选择混凝土拌合物的坍落度,坍落度宜在18~22cm范围内;还要严格把握搅拌时间,每盘自装料到出料时间不小于120S,以保证搅拌均匀。③灌注混凝土过程中,运输距离过长或道路不平,引起混凝土离析和泌水。为保证混凝土灌注桩灌注的混凝土不产生离析和泌水,混凝土输送道路应平整和畅通,尽量缩短运输时间。
成孔过程中为稳定孔壁,采用的护壁泥浆都具有高比重(1.35~1.45)、高粘度(多在25s以上)的特点;选用原土造浆并辅以膨润土造浆,易造成附在孔壁的泥皮较厚。这些因素对于水下混凝上导管灌注都是极不利的。导管灌注混凝土工作原理是靠混凝土柱的压力来顶升导管外混凝土柱和泥浆柱的压力,其力学原理可用以下关系式表:
h1×rc>hw×rw+ h2×rc(1)
h1:导管内混凝土面到导管底高度;
h2:导管在混凝土内的埋深;
hw:导管外混凝土面以上泥浆的高度;
rc:混凝土的比重;
rw:泥浆的比重;
上式成立时,才能顶升管外混凝土,形成连续灌注。这样,在导管有一定埋深的情况下,降低泥浆的比重就显得极为重要。因为随着混凝土的灌注,将不断挤出孔壁周围的泥皮进入孔内上部泥浆和混凝土的泥浆中,造成孔内泥浆比重(rw)增大,造成灌注顶升的不畅而形成堵管。孔内泥浆比重越大,混凝上流出导管顶升的受阻滞作用也随之增大,若加上混凝土拌合不充分或骨料级配不合理等现象,更易造成堵管。故在灌注混凝土之前,一定要保证二次清孔质量,以确保导管灌注的顺利进行。
2.3.3防止初灌量不足。初灌量要能保证导管底部混凝土埋深和导管内平衡管外泥浆压力量。所以初灌时要能保证满足:
V≥πd12h1/4+πd22h2/4(2)
V:混凝土初灌量;
d1:导管直径;
d2:桩孔直径;
h1:桩孔内砼面高度达到h2时,导管内砼需要达到的高度(由式(1)确定);
h2:首灌混凝土时,混凝土面必须达到的高度(满足导管埋深≥1m);
为了保证隔水塞能顺利排出,导管底口距孔底距离应在30~50cm,所以在灌注时应准备一些短导管,保证此间的距离。
2.3.4 防止导管埋深不足。通过对初灌量的控制,保证首批混凝土的埋管深度不小于1m。在以后的混凝土灌注的过程中,埋管深度保持在2~6m。在施工过程中,操作人员在灌注不畅时,常常先采取提升导管的办法;如果此时控制不好,极易造成将导管提出有效混凝土面的质量事故。针对这种情况,对每立方米混凝土的灌注高度,应有预先的估算,并注意积累现场经验数据。由于偶然性因素的存在,在提拆导管前,应测定混凝土面实际高度,保证导管埋置深度大于2m。应特别注意在提拆导管时,实际操作的导管提升高度,防止提升至最高点时导管底口高出混凝土面。
2.3.5灌注混凝土质量控制。由于灌注桩混凝土的灌注是在水下进行,比一般的浇筑较难控制混凝土的质量,因此要加大水下灌注混凝土的质量监控。
在混凝土灌注前,首先要核实混凝土的供应是否能够保证 ,待一切准备工作均已就绪方可进行混凝土灌注。混凝土应连续灌注,不得中断并应尽量加快灌注速度。混凝土首灌量应能保证混凝土灌人后,导管埋入混凝土深度不小于1m,另外还应考虑到导管底部离孔底30~50cm的距离,导管内混凝土柱与导管外泥浆柱要平衡,以及保证适当的充盈系数。
混凝土灌注过程中,导管应始终埋在混凝土内,严禁将导管提出混凝土面。导管埋入混凝土面深度控制在2~6m,最小埋入深度不得小于2m。导管应勤提勤拆,一次提管拆管不得超过6m。为了保证桩顶质量,混凝土实际灌注高度应比设计桩顶标高高出0.8m,经测定合格后才可停止灌注。
中图分类号:F721文献标识码: A 文章编号:
1.引言
近年来的工程实践表明,工程总承包管理模式以其独特的优势在国际工程承包市场上备受青睐。EPC模式即“设计、采购、施工”模式,该模式兴起于上个世纪80年代,通常应用于工业投资项目的建设。工程总承包是国际通行的工程建设项目组织实施方式,EPC工程总承包是指设计、采购、施工管理总承包,由承包商承担工程项目的设计、采购、施工、试运行服务等工作,并对承包工程的安全、工期、质量、造价全面负责。EPC总承包可协同工程勘察、设计、采购和施工各主要环节和全过程的管理,从而提高工程建设管理水平,减少工程建设周期,保证工程投资效益和质量。本文对台山核电重件码头防波堤工程采用了EPC总承包模式的实施阶段关键环节进行探讨。
2.防波堤工程项目背景
台山核电项目位于广东省江门市辖台山市赤溪镇,规划建设六台百万千瓦级核电机组,一次规划,分期建设。该项目已列为广东省“十一五”规划重大能源保障工程项目。项目由中国广东核电集团所属全资成员企业台山核电有限公司负责建设和运营。重件码头是台山核电站工程的一部分,建设规模为3000t级杂货船转驳码头。
码头位于珠江崖门及虎跳门出口,黄茅海西侧,属于台山市赤溪镇管辖,地理坐标为东经112度59分、北纬21度54分。码头泊位总长度为150m,其中靠船平台长102m,宽60m,码头面高程7.50m。在重件码头建好以后,由于为开敞式无掩护码头,外海风浪及涌浪可以无阻拦的进入港池及码头前沿;同时由于码头所在区域的地形较为复杂,核电重件卸船要求又非常高,致使已建成的重件码头难于正常发挥作用,故需要建设一座防波堤对港池停泊水域进行掩护。
2011年1月28日,我公司承接了台山核电重件码头防波堤工程EPC总承包项目,项目业主要求2011年7月重件码头防波堤工程具备防洪掩护作业条件,确保核电运输船舶安全停靠重件码头,2011年9月全部完工。但前期设想、规划不完善,设计、施工以及相关的报建报批工作都必须同时进行,项目建设任务非常繁重、紧急。
3.项目实施中的关键环节
3.1项目的沟通与协调管理
项目的协调管理应贯穿建设工程项目的全过程。沟通的主要内容包括与项目建设有关的所有信息,特别需要在所有项目干系人之间共享的核心信息。
EPC总承包单位根据项目的特点,在本项目的实施中,成立了项目工作小组,由业主主管领导担任组长,相关单位负责人作为工作小组成员,工作小组定期召开工作协调会,根据项目存在的问题,工作小组根据项目参见单位自身的优势,明确解决相关问题的责任单位,具体的完成时间。同时,对存在问题的解决过程中,如遇到困难,相关责任人必须及时向工作小组汇报,工作小组将临时召开工作小组会进行研究解决,使整个项目在实施过程中,充分的发挥了各参建单位的优势,存在的问题得到快速有效的解决,确保了项目进展顺利,充分发挥了EPC总承包管理模式的协调优势。
3.2项目设计管理
在项目设计方案过程中,我公司利用了EPC总承包管理特点,打破了项目设计人员长期以来的设计和思维习惯主要是专注于具体方案的比较与研究,更多是以完成设计任务为主的弊端。加强与施工的紧密衔接,加强与施工方沟通,探讨设计方案的可行性,确保施工方更好的理解设计意图,能够快速有效实施。为避免因设计方案的调整而引起项目返工的情况发生,项目的设计计划依据项目的施工计划进行编制,解决项目边设计边施工交叉进行的矛盾,有效的缩短项目的建设周期。
1)根据项目的施工计划编排设计计划,使项目的设计进度满足施工进度要求,使项目设计与施工紧密结合。
首先,进行总平面布置方案设计,使项目可进行施工段的划分,确定项目开工部位。根据现场地形情况,航道的入口位置的布置已不具备可优化性,防波堤航道入口段作为优先开工部位;防波堤的另一端附近有礁石,该位置平面布置具有可优化性(研究是否利用礁石),应等待设计优化完成后安排施工。
然后,进行项目的基础处理方案设计,确定项目基础处理采用基础开挖,抛石换填的处理方式,项目开始了基础处理工程施工。
在结构形式的选择阶段,邀请了施工技术经验良好的专家参与项目结构形式进行审查,确保了项目结构形式具有可实施性。
2)充分发挥项目EPC总承包方技术方面的优势,根据现场施工情况,及时调整设计方案,以确保项目的顺利实施。在本项目实施过程中,由于总体工期及前期异常紧张的堤身出水节点要求,造成堤身步级方块无法按原设计图纸施工,综合考虑到工期要求及实用能力,对原步级设计进行修改,保证了项目的顺利实施。
3.3项目的进度、费用控制
在项目实施过程中,采用赢得值原理对项目进行费用和进度综合控制,动态管理,及时分析项目偏差发生的原因,采取有效处理措施,使项目的进度、费用得到了有效控制,具体如下:
1)图2-2为项目2011年3月至2011年10月的工程赢得值曲线。根据项目费用对照表和工程赢得值曲线分析,在项目的2、3月份,完成工程量的预算费用(BCWP=935万元)小于计划预算费用(BCWS=1050万元),即SV=-115万元
2)在项目的4月份,完成工程量的预算费用(BCWP=1555万元)小于计划预算费用(BCWS=1780万元),即SV=-225万元
3)至7月份结束,项目的完成工程量的预算费用(BCWP=3845万元)小于计划预算费用(BCWS=3899万元),即SV=-54万元
4)8月份因业主运输船舶的停靠,影响了项目的正常施工,导致完成时间与计划滞后2个月,最终支出费用与计划费用相差67万。
4.结束语
本工程于2011年3月11日顺利开工;2011年7月,具备了防洪掩护作业条件;2011年10月20日,项目全部完成。项目质量满足合同要求,施工质量合格,项目外观质量优良。
EPC总承包管理能更好地缩短建设周期、保证工程质量。EPC总承包单位能充分发挥设计主导作用,有利于实现项目统筹安排,易于掌控项目的成本、进度和质量。
参考文献
在码头工程的施工建设中,沉箱重力式结构型式作为一种常见的码头施工结构型式,由于其在工程施工建设中结构的坚固与耐久性比较高,施工建设速度比较快,并且具有较好的抗冻性和抗冰效果,能够对于较大地面荷载和船舶荷载等荷载作用进行较大承受,在码头装卸应用中的荷载变化应对灵活性比较突出,进行结构维修的费用比较少等特点,在我国码头以及海港工程施工中比较常见。下文将以龙口港2×20000吨级多用途泊位工程施工为例,结构为沉箱重力式,结合其施工工序与主要环节,对其施工中的监控管理要点进行总结分析。
工程概况
龙口港2×20000吨级多用途泊位工程属于山东省重要海港工程项目之一,建设20000吨级多用途泊位2个,在进行码头主体的施工建设过程中,主要采用了沉箱重力式结构型式设计,因此是一个典型的沉箱重力式海港码头工程。根据该工程的施工设计情况可知,施工建设码头的全长达到410米,码头工程的顶面高度约为3.3米,外侧#14泊位长246米,前沿底高程-14.0米,内侧#15泊位长164米,前沿底高程-13.2米。
结合该码头工程的施工设计与现场具体环境情况,进行码头工程的施工建设时,首先需要对于码头工程施工现场的堡礁进行整平处理,以方便进行码头基槽的施工建设。值得注意的是,在进行码头工程施工现场堡礁整平施工中,需要将堡礁整平处理过程中产生的渣石进行平整清理;然后再进行沉箱重力式码头结构中需要的沉箱预制施工,并进行沉箱的拖运、安装,在沉箱内部进行石块填充;其次,在进行沉箱之间的倒虑井以及沉箱棱体、倒滤层的抛填施工,并进行沉箱重力式码头结构中的胸墙混凝土和轨道梁混凝土浇筑施工;最后进行沉箱重力式码头工程的附属设施安装施工等,以完成对于沉箱重力式码头的建设,保证本码头工程按期完工并投入使用,目前,该码头已经竣工验收并投入运行和使用。
如下图1所示,为沉箱重力式码头结构断面示意图。
沉箱重力式码头施工建设的工艺程序与监控要点分析
结合上述海港码头施工建设的具体情况,在进行沉箱重力式海港码头的施工建设中,除码头基槽施工外,其主要施工内容与环节还包括沉箱重力式码头中的沉箱预制施工以及沉箱出运、沉箱安装、沉箱填石、沉箱间倒虑井、沉箱后方棱体、沉箱倒滤层回填等施工,此外,还需要进行沉箱重力式码头结构以及附属设施的安装施工。下文将结合沉箱重力式码头的上述施工环节,对其施工监控要点进行分析论述。
1、沉箱重力式码头基槽施工及其监控要点分析
在沉箱重力式结构码头的施工建设中,基槽施工是整个码头工程的基础施工环节,对于码头工程的施工质量有着直接的作用和影响,尤其是对于码头工程结构的安全性、稳定性与耐久性作用影响更为明显。通常情况下,在沉箱重力式码头的施工建设中,基槽施工主要包括基槽炸礁、清碴以及基床抛石、夯实、平整施工等。首先,在进行沉箱重力式码头的基槽炸礁以及清碴施工中,根据上述工程的施工设计,要求沉箱重力式码头基础底高为14.5米左右。在进行该工程基槽炸礁与清碴施工前,通过地质勘查与勘测发现该施工工程的地质岩层主要为辉绿岩,因此为了达到工程设计中的基础底标高标准,需要以炸礁方式进行码头基槽的施工建设。通常情况下,在码头基槽炸礁施工中,对于炸礁施工的宽度应控制在1米以内,炸礁深度通常为0.4米,此外,在上述沉箱重力式码头施工中,由于该码头工程和码头运行中船舶的停泊位置相临近,同时与海港养殖区域的最近距离约为1200多米,因此,为了保证码头基槽炸礁施工的安全性,减少对于临近工程的影响,还需要结合区域需求对于炸礁爆破的时间以及爆破安全距离等进行多方进一步精确确认,以避免对于周围生命以及财产安全等造成影响。而对于基槽炸礁产生的碴子进行清理施工过程中,上述工程主要调用抓斗船进行碴石的清理施工,施工过程中采用GPS系统对于清碴船只进行作业定位控制,这样一来在很大程度上提高了码头基槽清碴的施工进度,减少了基槽炸礁的施工量,对于基槽炸礁施工质量也有很大的保障,有利于减少工程施工的成本费用。此外,在上述码头基槽炸礁以及清碴施工环节,还应注意结合码头基槽平面位置与深度、宽度等情况,对于基槽炸礁与清碴施工质量进行过程控制与管理。
其次,沉箱重力式码头基础施工中,基床抛石施工主要是在基槽施工完成后,结合基槽水深测量情况进行基槽开挖施工断面结构的绘制,以根据码头基槽施工断面结构情况,进行基床抛石施工实施。需要注意的是,进行码头基床抛石施工前应先对于水下回淤情况进行潜水探摸或扫测检查,同时做好抛石质量的饱和浸水抗压强度实验,以保证基坑抛石的质量。再次,在基床夯实施工环节,上述工程主要采用重锤夯实方式进行基床夯实施工,结合工程情况,保证基床夯实施工的时间持续在20到30小时之间,以对于基床夯实施工质量进行保障。最后,在基床平整施工中,主要是进行基床平整度的控制,多采用二片石作为整平石料进行基床整平实施。在进行基床施工验收中注意采用相应规格的方格网以加密形式进行测量验收,保证基床施工质量。
2、沉箱重力式码头的沉箱施工与监控要点分析
沉箱重力式码头的沉箱施工主要包括沉箱预制以及安装、填石等施工内容和环节。其中,在进行沉箱预制施工中,上述工程主要采用在沉箱预制场进行预制施工方式,通过专门的监理人员从沉箱预制原材料以及预制工序等方面,对于沉箱预制施工质量进行全过程监控管理。其次,在进行沉箱安装施工中,主要结合施工设计要求,按照沉箱安装设计顺序进行安装施工,保证两个沉箱之间的安装高差严格控制在2厘米范围内,沉箱安装的接缝宽度在3到9厘米范围内,沉箱安装的临水面错牙在5厘米范围内,并且尽量一次安装成功,以保证沉箱安装的质量。最后,在进行沉箱填石以及沉箱间倒虑井、后方棱体、倒滤层的回填施工中,需要在沉箱安装施工结束并经过两个潮水观测之后再进行。其中,在沉箱填石环节,需要按照施工设计的相关要求对于沉箱填石的硬度以及密度、耐久性等进行控制,同时注意沉箱填石材料中含泥量的控制,填石过程中尽量采用自卸车进行填石施工,同时注意控制填石压力对于沉箱隔墙的破坏作用。
3、沉箱重力式码头上部结构施工与监控要点分析
在沉箱重力式码头工程中,上部结构施工主要包括沉箱重力式码头的胸墙以及沉箱盖板、后轨道梁等结构部分的混凝土浇筑施工。其中胸墙是沉箱重力式码头墙身预制构件的连接结构,一般在沉箱填石施工结束后进行该部分的施工建设,包括钢筋搭连接与模板铺设、混凝土浇筑施工等,需要按照相关施工要求对于施工过程以及材料质量进行严格控制。
此外,沉箱重力式码头施工中,还包括码头附属设施的安装施工,在这一施工环节中主要对于附属设施安装施工质量进行控制,以避免对于码头外观质量产生不利影响。
结束语
沉箱重力式码头作为常见结构型式的码头工程,其施工建设虽然比较简单,但是对于工程质量的控制与保障相对困难,因此做好沉箱重力式码头施工建设要点的控制管理,以保证码头工程施工建设质量,具有突出的现实作用和价值意义。进行沉箱重力式码头的施工管理与控制中,注意通过对于施工管理组织的完善以及做好施工组织与设计方案审查、保证施工材料合格等方面,做好码头工程施工建设的质量和进度控制,促进海港码头建设的健康发展。
参考文献:
[1] 王启选. 重力式码头抛石基床重锤夯实施工方法的探讨[J]. 水运工程.2004(1).
[2]只红茹,别社安,任增金. 重力式码头抛石基床内部滑移破坏研究[J]. 水运工程.2007(1).
[3]李增军,马玉臣,赵佳波.北方地区沉箱重力式码头冬季施工成套技术[J].中国港湾建设.2011(5).
[4] 王利欢,贡金鑫,李荣庆,麦远俭.重力式码头稳定性可靠指标简化计算方法[J].水运工程.2011(1).
[5]张全林,丁志军,张小波,张莹,马占河,姚立.北方地区沉箱重力式码头冬季施工技术[J].水运工程.2011(2).
[6] 冯辉.浅谈沉箱重力式码头施工须注意的几个关键技术环节[J].北方交通.2012(5).
[7] 陆云鹏,张华强,方育平.洛比托港重力式码头工程施工及沉降位移观测[J].中国港湾建设.2012(4).
[8] 童新春,叶锋,邱青长,张宝洁. 重力式码头抛石基床重锤夯实施工效率改进研究[J]. 水运工程.2013(3).
重力式沉箱结构码头广泛应用于沿海港口,整体稳定性好,耐久性高,施工进度快,维修费用少,抗冻能力强,能够承受较大地面荷载和船舶荷载。近年来,随着国民经济的快速发展,重力式码头正向大型化、深水化发展,工期变得更加紧迫。在这种情况下,施工过程中会出现基槽回淤过快、抛填棱体顶高程过低、码头主移沉降、轨道位移沉降等一系列的技术问题。因此,在施工过程中,需要采取一些相应的对策,总结施工技术要点,克服技术难题,保证码头的施工质量。
1 施工中常见问题
施工过程中,常见的问题有以下几个方面:一是基槽回淤过快。在基槽开挖完成之后,如果淤泥回流速度过快,会导致沉积物超过规范允许的范围。在问题严重时,基床抛石和夯实工程完成之后,上部的淤泥等沉积物重度太大、数量过多,会导致潜水员不能顺利作业,无法进行基床的整平工序。二是抛填棱体顶高程偏低时,需要配合潮汐时间才能施工,会影响到工程的整体进度。三是码头前沿轨间的混凝土大板会发生位移和沉降,导致码头前沿出现严重积水。四是在使用过程中,码头前部轨道发生位移和沉降,导致装卸货物的设备运行受到影响。
2 对策
2.1 基槽回淤
基槽深度过大并且周围海域的0、1、2级淤泥没有及时疏浚和清除,是造成基槽回淤过快的主要原因。解决问题的对策是:事先制定科学的施工方案、施工中合理安排流程、出现问题及时补救。
具体来说,在制定施工方案时,首先安排疏浚施工,再进行开挖基槽。在施工过程中,清除上层的0、1、2级淤泥,再进行基槽的开挖和施工。如果在未能有效清除淤泥的情况下,就进行基槽开挖,在随后的疏浚施工中应该按照基槽、停泊水域、港池的顺序逐步施工,能够有效降低基槽的回淤速率。当出现基槽回淤过快的情况,处理柔软且流动性较大的回淤沉积物,不适合采用斗式挖泥船,应该采用绞吸式挖泥船进行疏浚和清除。
2.2 抛填棱体顶高程过低
根据相关规范,棱体顶面超过预制安装墙身顶高程0.3m即可,设计人员往往按照棱体顶面高程的低限来进行设计。如果按照这种设计方案来进行施工,会导致棱体和倒滤层施工不能全天候进行,只能根据潮汐时段进行作业,会严重影响到施工进度。为了加快施工进度,就需要增加抛石量,会增加工程的投资。
解决问题的对策是适当抬高棱体顶高程,以胸墙断面陆侧最下一级台阶顶高程为宜。这样的话,基本上能够实现全天候的施工作业。抛填达到顶高程,再进行胸墙施工时,可以利用其布置施工机械,堆放施工材料,降低了胸墙的施工难度,能够加快工程进度。
2.3 码头主移和沉降
导致码头主移的因素有很多种:基槽的底部土质;回淤沉积物的厚度与含水率;基床施工厚度均匀性与夯实的密实度;码头前沿局部挖泥太深会导致码头位移向前倾斜;码头后边回填过快会导致码头墙身发生位移或者倾斜现象;倒滤层级配不合理会导致码头区域发生位移等。在这些因素影响下,码头前沿轨间混凝土大板会产生位移和沉降,发生积水现象。
解决问题的对策是,先进行铺砌面层的施工,等待码头主体和填筑材料的位移和沉降稳定之后,拆除铺砌的面层,然后进行混凝土大板的施工。
2.4 轨道位移和沉降
重力式码头在使用过程中,一般会出现位移和沉降现象。位移和沉降的程度与施工进度的快慢有着密切关系,施工进度越快则位移和沉降越明显,反之,施工进度越慢则位移和沉降越不明显。码头轨道的前后部分所处的位置不同,前轨是建造在码头胸墙上面,前轨的位移和沉降与码头主体的位移和沉降相一致。而后轨轨道梁距离码头主体很近,无法夯实地基,导致轨道前后部分的位移和沉降也是不同的。
解决问题的对策是,如果后轨轨道梁的正下方位于抛填棱体和倒滤层断面范围之外,或者仅仅穿过抛填棱体和倒滤层坡脚处,则后轨轨道梁应该采用桩基。对于不能打桩的后轨道梁,可以采用以下方案:一是加大沉箱的宽度,促使后轨轨道梁正下方的投影全部或者大部分位于沉箱或者卸荷板的范围内。二是对前轨、后轨的位移和沉降情况进行事先预测,在施工中对于码头面层和后轨轨道梁预留尽可能大的位移和沉降量。为了在使用过程中能够调整前轨轨矩和后轨轨矩,使之到达标准轨距,应该适当增加轨道槽的宽度,并增加锚碇台的宽度和防风拉索的间距。三是在轨道型式的选择上,不能采用钢轨下钢垫板通过胶泥与轨道梁粘接牢固的型式、钢轨焊接联成整体的型式,这些轨道型式很难调整,而应该采用容易调整的型式。
3 施工技术要点
3.1 基槽与基床
重力式码头是依靠自身重力来保持稳定性的一种结构形式,要求天然地基承载力大于250kPa,贯入击数大于35a。当建筑物表层地基承载力达不到要求,并且下卧硬层埋置深度不足时,应该采用换置地基、复合地基的方法来处理。根据不同的下卧硬层埋置深度和均匀程度,可以采用不同的处理方法:清除表层软土层换填粗砂、开山石、块石;深层水泥拌和;沉埋式大圆筒结构物等。建筑物底面基面利用人造基床来提高基面的可靠度,一般采用经过夯实整平之后的抛石基床。
3.2 沉箱
沉箱的预制,根据施工条件,可以采用专业预制场进行预制、货场预制、半潜驳上预制等多种方式。沉箱的浇注,可以采用一次立模连续浇注工艺,也可以采用分段爬模、翻模预制工艺,或者预制一部分高度的沉箱,运输到施工现场再实施水上接高浇注作业。沉箱的存放场地,需要稳固的地基和符合标准的平整度。沉箱的浮运,需要考虑天气、潮汐、航道水深等情况,主拖缆系绑点要偏下一些,沉箱需要加封仓盖,准备好抽水设施。沉箱的沉放,一般选择落潮时段,采用二次定位法进行沉放,采用注水法进行坐底,注意保持沉箱四周吃水均匀、内隔仓眼水压平衡。沉箱的填仓,需要在坐底后及时进行,增加重量防止沉箱移位。
3.3 沉箱岸壁
沉箱岸壁存在安装缝和沉降缝,需要在墙后采用整体倒滤层处理或者沉箱缝间设置倒滤井附加防漏土工布处理,能够有效防止陆面坍塌现象。
参考文献:
[1]涂诚军.浅谈重力式码头施工质量及进度控制要点[J].中国水运(下半月),2012,(1):127-128.
[2]陈辉光.重力式码头施工问题的控制措施研究[J].中国水运(下半月),2008,8(7):71-72.
[3]陈钧颐,赵春潮,孙彬.超大型码头重力式沉箱结构施工技术[J].建筑技术,2011,42(6):531-534.
[4]孙旻,孙大鸣,刘洋.沉箱重力式码头施工的监控要点[J].水运工程,2007,(9):119-122.