时间:2022-06-30 01:21:26
引言:寻求写作上的突破?我们特意为您精选了4篇网管技术范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
【分类号】TP393.07
1 引言
EJB的出现带来了诸如事务管理之类的核心中间层概念的标准化,但是在实践中并没有获得绝对的成功,因为开发效率,开发难度和实际的性能都令人失望。为了解决企业级应用开发的复杂性,Spring技术诞生了。Spring是一个开源框架,是一个轻量级的控制反转(IOC)和面向切面(AOP)的容器框架。Spring使用基本的JavaBean代替EJB,并提供了更多的企业应用功能。
2 Spring技术及特点
2.1 Spring框架
核心Spring容器
容器是Spring框架最核心的部分,它负责Spring应用中的Bean的创建、配置和管理。所有的Spring模块都构建于核心容器之上。
Spring的AOP模块
在AOP模块中,Spring对面向切面编程提供了丰富的支持。这个模块是Spring应用系统开发切面的基础。与依赖注入一样,AOP可以帮助应用对象解耦。借助于AOP,可以将遍布应用的关注点从它们所应用的对象中解耦出来。
数据访问与集成
Spring的ORM模块建立在对DAO的支持之上,并为某些ORM框架提供了一种构建DAO的简便方式。Spring对许多流行的ORM框架进行了集成,包括Hibernate、JDO等。
WEB和远程调用
MVC模式已经被普遍的接受为一种构建Web应用的方法,它有助于将用户界面逻辑与应用逻辑分离。Spring集成了多种流行的MVC框架,并且自带了一个强大的MVC框架,提升了Web层技术的松耦合性。
2.2 Spring的主要技术特点
轻量--从大小与开销两方面而言Spring都是轻量的。Spring应用中的对象不依赖于Spring的特定类。
面向切面--Spring提供了面向切面编程的丰富支持,允许通过分离应用的业务逻辑与系统级服务进行内聚性的开放。
容器--Spring包含并管理应用对象的配置和生命周期,可以配置每个Bean如何被创建以及它们是如何相互关联的。Spring不应该被混同于传统的重量级的EJB容器,它们经常是庞大的并难以使用。
框架--Spring可以将简单的组件配置、组合成为复杂的应用。在Spring中,应用对象被声明式地组合,典型地是在一个XML文件里。
3 Spring在网络管理中的应用
3.1 Spring与网络管理结合的优势
如果将Spring技术应用到网络管理领域,则可以使网络管理系统同样具有Spring的诸多优势。同时,还可以利用已经实现的Spring通用服务和集成框架,使网络管理系统更能适应未来发展的需要。更为重要的是,可以在最大程度上减少网络一致化过程所需要完成的工作。
利用Spring技术,能方便地实现各个网络管理功能模块之间的相互调用以及信息传递,这样就可以通过增加新的服务模块来实现新的功能,而不必对整个系统进行重新编写和重载,便于网络管理系统功能的扩充。
3.2 传统网络管理系统存在的问题
传统的网络管理系统管理构架曾经取得了巨大的成功,极大地推动了网络的发展。但是,随着新一代网络的快速进步,它的一些缺点也慢慢显现出来,甚至制约了网络管理的进一步发展。主要问题有:
现在的网络终端千差万别,对于每种不同的设备、不同的软件平台都要开发出不同的应用程序,代码的可移植性差、工程量大。
系统的可扩展性差。由于历史原因所致,该架构对于很多异构的子系统难以合成一个综合的管理系统,其本身也面临着可扩展性问题。
3.3 Spring的解决方案
本文在分析传统网管系统的问题的基础上,研究了Spring在BS环境中基于Spring技术的解决方案,并提出了一个简单的网络管理框架,如图2所示。
Web容器启动后,创建两个Spring容器:Spring根容器和Web容器。根容器负责业务处理,整个应用系统的核心处理单元,Web容器主要负责接收用户请求,并将解析后的参数等转交根容器进行处理,然后将处理结果通过HTTP响应返回给前台。
SpringWeb容器寄生于Spring根容器中,是根容器的子容器,可以访问根容器中所有的资源和服务。单Spring根容器作为单独的业务处理单元,不能定位SpringWeb容器的服务,这就将应用逻辑和视图显示处理隔离开来,降低了不同模块之间的耦合性,并使得应用系统更加容易扩展。
使用Spring技术与网管结合,使得网络管理中拓扑管理、故障管理、性能管理、配置管理等模块之间联系更加松耦合,模块彼此独立,更加容易复用和扩展。
4 结束语
Spring是分层的架构,开发者可以选择自己需要的层而不必关注不必要的部分。Spring使得对象管理集中化和简单化。Spring致力于简化企业级Java开发,促进代码松耦合。Spring成功的关键在于依赖注入和AOP。随着网络管理系统的发展,Spring必将在未来的综合网络管理系统中发挥越来越大的作用。
中图分类号:TP311 文献标识码:A 文章编号:1009-3044(2014)32-7763-02
三网融合就是将计算机网络、电信网和有线广播电视网络相互融合,形成一个集成的网络系统。网络上可以实现互联互通,业务上可以实现互相渗透交叉。随着三网的不断融合,就需要一个要对融合网络能进行自动化、有效管理的网络管理系统。本文就设计并实现了一个基于三网融合下的综合网管系统,并对其关键技术,基于并行广播轮询算法进行了分析。
1 需求分析
基于三网融合下的网络管理系统可以支持多级用户,可采用多线程的方式对相应的设备进行监控和管理。
其中,多级用户包括:超级用户、机房管理员和普通管理员三级用户。超级用户拥有最高的权限,机房管理员用户只拥有该用户所管辖机房的管理权限,而普通管理员用户的权限是根据实际情况由以上两种用户来分配、修改的。
多线程的方式是指在网管系统对相应的设备进行数据采集时,是采用多线程、并行轮询的方式进行的,这样可以提高效率满足用户的需求。
该网络管理系统由总服务器上的综合网管模块和子服务器上的数据采集模块两部分组成。
综合网管模块主要实现用户权限管理功能、设备及用户的查询功能、设备配置、设备数据的实时采集、告警提示管理、日志管理、帮助等功能;数据采集模块则主要完成对子网中相关的设备进行数据采集和告警提示管理、用户的登陆、注册与注销、相应服务器上的日志管理等功能,如图1系统功能模块图所示。
考虑到系统升级扩展的需要,本系统采用B/S结构,提高了系统的可扩展性。
2 系统设计
2.1 体系结构
该系统的体系结构基于B/S结构,并与分布式系统相结合。其中分布式网络的拓扑结构是星形结构,中心节点为总服务器,它与子服务器之间直接通信。如图2系统体系结构图所示,该系统分为三层:Web总服务器、Web子服务器和子网层。
2.2 功能设计
该系统主要由总服务器上的综合网管模块和子服务器上的数据采集模块两部分组成。
2.2.1 综合网管模块主要功能
该模块主要实现用户权限管理功能、设备及用户的查询功能、设备配置、设备数据的实时采集、告警提示管理、日志管理、帮助等功能。
1)用户权限管理
为每个用户设置自已应该拥有的权限,登录时可通过用户名和口令验证合法身份。登录后,不同权限的用户所能使用的功能和设备权限也各不相同,使用该用户所进行的操作将记入日志,包括以该用户名登录的时间、 IP 地址、权限、注销时间等等。
利用该功能可进行用户的注册、基本信息修改、删除用户等操作。用户可分管理员用户和普通用户两种。管理员用户将可拥有使用所有软件功能、给普通权限用户分配权限及管理所有设备的权利;普通用户只能在自己拥有的权限内使用本软件的部分操作功能和设备管理功能。
此中的权限管理还包括设备权限管理。管理员可以给普通用户分配管辖设备。管理员可以管理所有的设备,一个普通用户可以管理多个设备,一个设备也可以被多个用户管理,这些都是由用户的权限决定的。
2) 设备配置功能
对设备进行参数配置,可进行恢复出厂设置,重启设备等操作。对所有相关设备进行的操作都将记入日志。
3) 设备数据实时采集功能
当用户选定某设备时,将实时显示所采集到的设备信息;当用户单击设备图标进行查看时,将实时获取设备当前的相关信息,并存入数据库中。
4) 告警提示管理
包括:实时地进行告警信息的提示、接收告警信息、告警信息的查询、告警类型的设置等几个功能。其中,接收告警信息功能中的信息是由子服务器转发来的 trap 信息、掉线信息等,接受到以上信息后,可将其写入数据库中保存。
5) 日志管理
日志中将记录该软件使用过程中进行过的所有用户操作。每个功能的相关操作都会被记入日志。日志管理中还包括按设备、按时间、按告警类型等进行日志查询的功能。
2.2.2 数据采集模块主要功能
该模块主要完成对子网中设备进行的数据采集、告警提示以及相关用户注册、登陆等用户操作功能,还有日志管理等功能。
1)子网中设备的数据采集功能
包括对所有在线设备和掉线设备的轮询,对在线设备采集信息,而掉线设备则会跳过。
2)告警提示功能
接受设备告警,对其进行解析后存入数据库;还可对接收到的告警转发给总服务器,这样就实现了总服务器上的实时告警。
3 关键技术
在网管性能层面上进行分析,本系统在数据采集器上用的时多线程并行的广播轮询的方式,此方式可以在很大程度上改善轮询的效率,以提高系统的实时性。
系统中所有的设备属性信息分为静态和动态信息,被存放在MIB库中,静态信息配置后基本上上是不会改变的,不需要每次中都轮询,只需当其信息发生变化时,访问一次,以保证信息的有效性。
电力通信为电网安全、经济、稳定运行提供保障,同时也是电力系统设施的重要组成部分。为保证通信网络及网络设备的良好运行,分别建设了各自的网络管理系统,为通信网络及网络设备的正常运行提供监测及控制手段。电力通信网管网络互联接口标准在底层普遍采用TCP/IP协议。网络互联的高层标准接口有多种可选择的国际标准,如:Q3接口的公共管理信息协议标准(CMIP)、互联网中流行的简单网络管理协议标准(SNMP)、近年来发展迅速的公共对象请求体系标准(CORBA)以及大量的专用协议标准等。这些标准都在一定的领域中得到应用并有其优点和不足。鉴于目前尚未形成一个统一的高层标准接口协议的原因,电力通信网网管系统的建设应强调可接受多种标准接口协议的能力,以保障网管系统之间具有较强的互联能力。本文研究一种多网络管理通道融合的技术,使网络管理系统可接受多网络通道、多接口及多标准协议,提高网管系统对于多网管通道的兼容性、融合性,提升与不同类型网络设备互联互通的能力,实现电力通信网络管理的一体化和标准化。
1多网管通道融合系统结构及功能
1.1系统结构
电力通信多网管通道融合系统位于各电力通信设备的网管系统与上级调度或综合网管之间,把不同厂商的电力通信设备网管数据集中到同一个通信传输通道进行传输,将不同设备的网管数据发送到上级调度或综合网络管理软件上;反之,上级调度或综合网络管理软件的数据经过集中通道传输后能够分发到各自的通信设备上。中途网管数据透明传输。电力通信多网管通道融合系统结构如图1所示。
1.2系统功能
多网管通道融合系统主要功能是实现通信通道融合和标准协议转换。实现设备网管到融合系统的多通道融合,进行设备网管数据到级调度或综合网管的融合及分发。同时具有网络管理的功能。1.2.1通道融合和协议转换通道融合分为两部分:第一是系统与设备网管的通道建立和数据交互,第二是系统与上级调度或综合网管之间的通道建立和数据交互。设备网管一般采用CORBA,WebService,SNMP等标准提供北向接口,系统实现对以上北向接口的接入,并且对上提供CORBA北向接口。分别建立相互独立的通道,同时进行数据的收发和数据的解析、编码、封装。系统对数据的融合处理:依据各标准协议从各设备网管获取实时数据,通过系统网关进行上行数据的协议转换,形成实时数据库;从上级调度或综合网管所获取的命令指令,通过网关进行下行数据的协议转换,采用定位分发机制通过相应的通道发送给相应设备网管。1.2.2系统管理实现对接入网管及设备的运行方式、计算机运行状态、设备冗余、故障切换和监视和管理。包括用户管理、权限管理、通道接入认证配置、系统配置、日志管理。1.2.3设备管理对各种通信设备的矢量拓扑图、设备对象仿真图形的展示;查看每一个接入网管的设备列表。查看网管设备板卡、设备端口、设备VLAN信息;接收和查看网管端产生并经过融合平台进行汇集和处理后的告警信息,以及生成各类数据统计报表。1.2.4网络状态监控监测各通道状态:监控每一网管主机的连接状态和运行状态;监控各个网管系统中各个设备的运行情况。1.2.5Web系统以Web服务的形式进行。包括网络设备及拓扑图、收到的报警信息、以及统计报表。当Web浏览器提出对某设备网络及设备查询时,从实时数据库读取数据并。
2多网管通道融合的关键技术
2.1系统模型
系统主要由应用管理、通道管理、实时数据库、历史数据库、抽象通道、抽象网关、Web服务组成。其中通道管理是核心组件,包含多个抽象通道和抽象网关。通道和网关之间存在1对1的关系。依照此关系,模型包含对设备网管和对上提供北向接口的通信。北向接口由CORBA客户端执行功能。应用管理负责各个功能部件之间的数据交互。系统模型如图2所示。
2.2实时数据模型
如图3所示,实时数据模型是对象的容器,维护全部网络设备运行数据。同时维护设备端点和连接点等设备之间连接关系信息。实时数据模型对外提供网络集合、设备对象、数据集分组、数据点、设备端点、连接点、拓扑操作等的访问接口。
2.3网关信息转换
网关是在各种协议和实时数据模型之间进行信息转换的中间环节。包括网络单元信息的转换、网络信息转换、网络拓扑分析三个部分组成。网络元素信息转换是获取网络单元功能和网络单元物理部分所需的信息与实时数据模型之间的转换。网络信息转换是逻辑上的网络信息与实时数据模型之间的数据转换。网络拓扑分析综合以上信息,得出各个网络单元实体之间的关联关系、网络物理和逻辑的拓扑连接。网关信息转换模型如图4所示,
2.4通道融合
系统接入某设备网管系统时,动态创建相应的网关读取其网络元素信息和网络信息并转换到到实时数据模型。同时给此通道进行ID+IP标识对标识并纳入通道管理。以此类推接入多个设备网管系统,以不同ID+IP标识区分各个被管网络。在实时数据模型中形成整体网络管理模型。同时对上提供北向接口,使外部获取整体网络信息。
3多网管通道融合的技术实现流程
(1)依据配置建立与被管设备网管的网络通道,以及建立北向接口的网络通道。并且在各个通道中动态创建并启动相应的协议网关进行通信。(2)通过各协议网关从设备网管获取其网络单元信息和网络信息。动态建立自定义网络管理模型的实时数据库,保存一份从各设备网络系统的网络单元和网络实时信息。并通过此信息动态建立网络拓扑结构及连接关系。(3)建立CORBA北向接口,给上层系统提供全网网络单元信息和网络信息。数据来源于本地实时数据模型及实时数据库。从北向接口所获取的命令指令通过网关进行编码,采用定位分发机制通过相应的通道发送给相应的设备网管执行命令。(4)以WebService形式进行信息,依据采集的网络单元信息和网络信息动态生成所管网络的网络拓扑以及设备网管状态并进行图形方式展示。(5)将接收的报警信息以消息总线的形式,提供报警查询接口。(6)将实时数据记录入库,并依据配置自动生成报表,提供报表查询接口;提供信息查询接口,以进行网络及设备信息查询功能、资源管理等功能。
4结语
本文在分析多网管通道融和功能的基础上,使用组件及UML技术设计了多通道融和系统结构,分析了系统模型、实时数据模型、信息转换、通道融合等关键技术,给出了多网管通道融合的技术实现。本文设计的多网管通道融合技术可为网络管理的标准化提供有效的技术保障。
参考文献
[1]张宏伟.浅析电力通信综合网管系统设计[J].通信电源技术,2014,32(2):73-74
Study on Soft-Switch Tandem Network and Network Management Technologies Based on IP Bearing Network
ZHANG Wei
(School of Electrical & Information Engineering,Beifang University of Nationalities,Yinchuan 750021,China)
Abstract:With the ever-increasing penetration of IP technology and the tremendous growth in wireless data traffic,the wireless industry is evolving the 3rd Generation (3G)core networks(CN)towards all IP technology.This paper proposes corresponding strategies of the whole Soft-Switch tandem network and network management technologies based on IP bearing network.The project improve the network availability and benefit of investment,adequately develop the advantages of Soft-Switch and IP bearing network technology,meet the needs of business development in the long term.
Key words:Next Generation Network;Tandem Network;IP Bearing Network
1.研究背景及意义
现有的信息网络,无论是电信网、计算机网和有线电视网,不可能以其中某一网络为基础平台来生长信息基础设施。但近几年随着IP的发展,才使人们真正认识到电信网络、计算机网络及有线电视网络将最终汇集到统一的IP网络,即人们通常所说的"三网"融合大趋势。IP协议使得各种以IP为基础的业务都能在不同的网上实现互通,具有了统一的为三大网都能接受的通信协议,从技术上为下一代网络(NGN)奠定了最坚实的基础。NGN的综合业务提供,能使运营商通过单一的网络提供话音、数据、多媒体等业务[1][2]。
2.软交换汇接网方案
2.1 汇接网组网
建设中长途软交换网将采用相对独立的组网方式,TMGW/SG通过E1中继电路和七号信令链路与区内移动网内MSC、IGW或及STP相连[3]。
2.1.1 话路网组织
本地TMGW/SG将与各移动网内MSC和IGW均设置直达中继电路,由MSC、IGW按一定比例将省际和区内长途呼叫送至软交换网。
为了避免传输中断对业务的影响,省内TMGW/SG与移动网的TMSC间设置少量备用电路,一旦发端省TMSC S选路后发现对端TMSC S或TMGW不可达,发端TMSC S进行二次选路,控制区内TMGW将呼叫送至区内TMSC,由TDM汇接网疏通。
2.1.2 信令网路组织
若TDM交换机与TMGW/SG之间的中继电路数达到或超过8个E1,则TDM交换机与TMGW/SG之间可设置直联信令链路,且选用其间的2个E1中继中的各1个64kb/s电路作为信令链路。
若TDM交换机与TMGW/SG之间的中继电路数少于8个E1,则TDM交换机与TMGW/SG之间通过本省移动网1对STP转接信令消息,即TMGW/SG还需要与省内的STP相连。
2.2 局域网物理组网结构
设有一套TMGW单TMG局,一局址配置2台T64G交换机和业务设备,典型拓扑结构采用“口字+倒三角”结构。媒体流量直接从MGW出GE接口接入到IP承载网的PE路由器。在网络层次上,业务设备、接入业务设备的局域网、CE共同构成了接入层的一个站点。T64G交换机每台可以提供44个FE接口,4个电口GE,12个光口GE,完全满足设备组网要求。
2.3 以太网交换机接入
每局址配置两台Lan Switch,Lan Sw-itch工作在二层模式,用来会聚信令面、计费、网管接口流量,再通过GE接口上IP承载网。两台Lan Switch之间用多条FE链路连接,Lan Switch配置LACP协议,将Lan Switch之间的多条物理链路捆绑为一条逻辑链路,保证Lan Switch之间连接的可靠性,Lan Switch和IP承载网PE做口字形连接。
ZXWN核心网产品内部未内置Lan Swit-ch,因此配置的Lan Switch不需要启用STP协议。
3.网管组网方案
根据汇接软交换网容量大、局址多、网络结构化的特点,汇接软交换网管系统分为全网集中网管OMC和设备本地操作维护OMM两个级别来建设[4]。
OMM组网方案:机房内的本地操作维护功能通过OMM来实现,OMM采用Server/Client架构,包括一台上架PC服务器作为OMM Server,一台或多台PC机作为客户端LMT,配置两台LMT,一台LMT兼做OMC的反牵客户端。
OMC组网方案:OMC采用Server/Client架构,包括一台上架UNIX小型机作为OMC Server,一台或多台PC机作为客户端,本次工程配置五台客户端。根据汇接软交换网络工程建设的要求,建设一对OMC Server,接入IP承载网单独划分的MPLS-VPN网作为整个汇接软交换网的综合网管系统。
OMC、OMM、OMC客户端、OMC客户端均接入到IP承载网为一汇网管单独划分的MPLS-VPN网络。
本地操作维护组网方案:
机房内的本地操作维护功能通过OMM来实现,OMM采用Server/Client架构,包括一台上架PC服务器作为OMM Server,一台或多台PC机作为客户端LMT,本次工程配置两台LMT,一台LMT兼做OMC的反牵客户端。
OMM支持局域网组网,提供面和双平面两种组网方式,推荐双平面组网。OMM组网配置两台交换机组成双平面,交换机之间通过一对级连线形成互备,交换机通过划分多个VLAN的策略,将业务平面、网管平面在逻辑上分开,保证整个网络的通讯安全。
OMM涉及到MPLS-VPN网和网管内网VLAN,MPLS-VPN网IP地址规划根据实际组网要求设置。
OMM组网方案:MGW单独建设在一个机房。本地机房建设一台OMM Server和两台LMT实现本地操作维护,其中的一台LMT兼做安全工作站(与设置在总部的安全服务器同步,完成病毒库和操作系统补丁的更新)。
OMC组网方案:OMC采用Server/Client架构,包括一台上架UNIX小型机作为OMC Server,一台或多台PC机作为客户端,本次工程配置五台客户端。根据汇接软交换网络工程建设的要求,建设一对OMC Server,接入IP承载网单独划分的MPLS-VPN网作为整个汇接软交换网的综合网管系统。
目前,每省配置了2套OMC返迁终端OMC client,建议放置在维护中心;每个网元配置了2套维护终端,建议在软交换设备机房每个网元保留1套本地维护终端,便于软交换系统调测维护;其余维护终端可以拉远,放置在维护中心。
组网方式如下:OMC client、远程LMT放置在维护中心。维护中心可以直接连接到MPLS-VPN,通过MPLS-VPN连接到TMSC和TMGW,用户主要在维护中心操作监控。对于这种组网要求维护中心机房需要配置1套路由器。
4.本章小结
为了满足未来几年电信级业务网IP化演进时对IP承载的需求,支撑长期的软交换、3G、IMS等网络的演进和基于IP的电信级公众数据业务的开展,本文提出了基于IP承载技术的软交换汇接网和网管组网方案,利用IP承载网MPLS VPN实现各网管终端和网管中心的数据交互和对本省设备的运行管理维护,利用长途软交换网络系统OMC实现了分权、分域管理功能。
参考文献
[1]H.Aghababaeian.“Building the Next Generation Multi-Play & Multi-layer IP Network”.Iran Telecom Conference(ITC),2010.
[2]韩秀娟,谢显中.下一代网络NGN及其研究进展[J].通信技术,2007(12).
[3]张云勇.电信级多业务IP承载网需求及关键技术[J].移动通信,2007(10).
[4]李红双,冯志杰.IP承载网带外网管应用研究[J].电信工程技术与标准化,2011(01).