数学解决问题论文范文

时间:2022-04-29 03:35:30

引言:寻求写作上的突破?我们特意为您精选了4篇数学解决问题论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

数学解决问题论文

篇1

如式题;56÷7

1.按其运算顺序叙述:

①56除以7,商是多少?

②7除56,商是多少?

③56与7的商是多少?

④56被7除,商是多少?

⑤用7去除56,商是多少?

2.按其数量关系叙述:

①56里面有几个7?

②56是7的几倍?

③把56平均分成7份,每份是多少?

④一个数的7倍是56,求这个数?

3.按其算式的各部分名称叙述:

被除数是56,除数是7,商是多少?

文字题可以看成是式题的一种转换形式,它只是把口语转换成书面语。这样训练解决了中、差生对文字题理解的困难。如果我们再把文字题情境化,那就是所谓的应用题。

例如:1.有56支红铅笔,7支蓝铅笔,红铅笔的支数是蓝铅笔的几倍?

2.有56支铅笔,每7支铅笔分给一个小朋友,这些铅笔够分给几个小朋友?

3.把56支铅笔平均分给7个小朋友,每个小朋友分得几支?

……

由于简单式题包容着丰富的内涵,就给知识的转移、教学过程的铺垫、教学内容的深化都带来了方便。可见“一题多叙”可以培养发散思维,提高学生分析问题、解决问题的能力。

一题多变一题多变就是把一道题目改变条件或改变问题变换成许多题目。通过一题多变的训练,可使学生从变化发展中掌握应用题之间的联系,构建新的知识结构。

如当一年级学生学完一步应用题,该学两步计算应用题时,让学生知道解答两步应用题的关键是弄清题中的间接条件。由于学生对间接条件的由来不清楚,常常出现解复合应用题时不知从何入手,把两步应用题做成一步,或出现乱做现象。若老师讲一种类型题,学生就做一种类型题,那么题目稍加变化学生就不会做,就会出现死记硬背现象,形成定势思维,不利于培养学生分析问题、解决问题的能力。为了改变这种状况,我抓住解答两步应用题的关键,让学生弄清什么是间接条件,间接条件与已知条件、与问题之间有什么关系等。途径是由一步题导入。

例如:“黑兔12只,白兔3只,一共有多少只兔?”我是这样引导学生的:黑兔的只数,白兔的只数,题目中都直接给出,我们称这两个条件是直接条件,所以一步计算就可以得出一共是15只兔。如果题中第一个条件黑兔12只不变,那么第二个条件白兔3只与黑兔12只有什么关系?(学生会说:白兔3只比黑兔少9只……)如果题中“白兔3只”这个条件不直接给出,根据与黑兔的关系说出来,该怎样叙述题中的第二个条件?(学生可以答出:白兔比黑兔少9只……)解决问题需要知道白兔和黑兔的只数,白兔这个条件需要我们通过与黑兔的关系先算出来,白兔这个条件没有直接给出,这叫间接条件,谁还能把这个条件再变换一下说法,使它变成间接条件?(学生回答:黑兔比白兔多9只,黑兔是白兔的4倍……)

学生思维活跃了,想方设法说出更新颖的条件。这样他们在积极思维中理解了什么是间接条件,间接条件与已知条件、与问题的关系等。理解了也就自然会运算了。接着我又让学生将第一个条件变成间接条件,第二个条件、问题都不变,或问题随着其中的一个条件同时改变,目的仍是巩固练习两步应用题。这样的讲授方法是从学生分析问题入手,在提高学生能力上下功夫,教给学生了解问题、分析问题、解决问题的思路,使学生掌握了解两步应用题的方法,从而收到了事半功倍的效果。下例是学生把一道题目通过改变条件和问题变换成两步应用题。

附图{图}

在两步应用题的基础上,不受任何限制地变换任何一个条件和问题,使学生思维扩展,学生可编出三步四步等较为复杂的问题。这样训练,在知识方面可以使学生举一反三、触类旁通,在能力方面可以培养学生思维的灵敏性和创造性。学生分析问题、解决问题的能力明显地提高了。

一题多解一题多解就是根据题目的结构特征和数量关系,引导学生借助已有的知识,从各个不同角度去思考,从各个方面去分析题中的数量关系,采用各种不同解法达到知识的融会贯通、灵活运用。

例如:学校买来一批儿童读物,按4:5分给五年级甲乙两个班,甲班分得20本,这批儿童读物一共有多少本?

解法一:设这批儿童读物一共有x本?

204──=──

x4+5

思路:把这批读物按4:5分给甲、乙两个班,可以看作是把这批读物平均分成(4+5)份,甲班分得4份,乙班分得5份,也就是甲班分得的本数与读物总数的比是4:(4+5)。

5

解法二:20×(1+──)

4

思路:如果把甲班分得的本数看作单位“1”,乙班分得的本数就

55是甲班的─,那么这批儿童读物的总本数就是甲班分得本数的(1+─)。

44

解法三:设这批儿童读物一共有x本。

4

x×───=20

4+5

思路:把这批读物按4:5分给甲、乙两个班,可以看作是一共分成了(4+5)份,甲班分得其中的4份。把这批读物的本数看作单位"1",甲

4班分得这批读物的──正好是20本。

9

解法四:20÷4×(4+5)

思路:把这批读物按4:5分给甲、乙两个班,可以看作是一共分成了(4+5)份,其中甲班分得4份,是20本。可以先求出每一份是多少本,再求一共有多少本。

学生还能列出以下算式:

4

①20÷──+20

5

4

②20÷───

4+5

③20÷4×5+20

④解:设这批读物一共x本

x-20=20÷4×5

⑤解:设乙班读物有x本

20x

──=──,再算x+20

篇2

二、元认知在数学问题解决中的作用

1.元认知能修正数学问题解决的目标

数学问题解决具有明确的目标指向性。目标是问题解决者主观经验的知觉,它既是问题解决的出发点,也是问题解决的归宿,它影响和制约着问题解决的进程。因为问题解决者在自拟目标的影响下,将自己正在进行的认知活动作为意识的对象,不断发挥主动性和自觉性对问题解决的进程进行积极的、自觉的监视。

一旦进程与目标不符,而又相信自己的进程时,则将怀疑其目标,对目标必将修改或放弃,以确定新的目标。对目标的修正必须由元认知来进行,通过元认知体验,在元认知知识的基础上,问题解决者要监控其解题计划,制订切实可行的目标结构,致使数学问题解决得以顺利进行。元认知对目标所起的作用是通过定向、调节和控制功能表现出来的。

2.元认知能激活和改组数学问题解决的策略数学问题解决具有明显的策略性。策略是在思维模式的作用下反应出来的,它影响着数学问题解决的进程和质量。问题解决者在解题过程中通过三种方式来操作策略。①激活策略,即以目标的期望为出发点,将材料系统放入知识背景,在操作系统的作用下激活认知结构,选择解题策略;②制订策略,即在元认知知识的基础上,根据材料系统在认知结构中的相似性,寻求数学认知结构中的“相似块”,制订解题策略;③改组策略,即通过对问题解决进程的反馈,问题解决者要进行自我评价,对进程的评价实质上也就是对问题解决策略的评价,一旦对自己的目标确信无疑而又达不到或不能顺利达到目标时,则将怀疑其策略,有必要对策略进行改组。问题解决者在操作策略时,实际上均受元认知的指示和指导。

即通过元认知体验,在元认知知识的基础上检验回顾解题方法,调控解题策略,最终逼近问题目标状态。调控策略的指标是通过策略的可行性、简捷性、有效性反应出来的。

3.元认知能够强化解题者在数学问题解决中的主体意识解题者能否自我激活是关系到问题解决系统能否优化的先决条件。由于数学问题通常有一定的障碍性,这就要求解题者必须发挥主体作用,排除障碍,激发问题解决的欲望。而元认知在问题解决中自始至终存在着内反馈的调节,即通过元认知体验来调动积极性和探究性,因此,元认知能积极监控、调节自身学习活动的思维过程,并逐步强化解题者对问题解决的主体意识。元认知主要通过三种方式来强化解题者的主体意识。①通过元认知知识的导引作用,使解题者能主动审清题意,揭示问题矛盾之所在,使其能主动搜索解题策略;②通过元认知体验的自我启发作用,调动非智力因素的参与,使其能积极超越障碍;③通过元认知的调控作用,来刺激解题者思维模式深层结构的内部运行机制,并通过对解题过程进行自我控制,自我评价,使思维活动成为一种有目的性、可控性的组织活动,这在很大程度上强化了解题者的主体意识,导致问题得以最快、最好的解决。

三、在数学教学中,通过数学问题解决,对学生进行元认知开发的策略

在数学教学中,教师必须强化学生解题的主体意识,使学生有机会去锻炼自己能主动确定解题目标,分析解题任务的能力。使其元认知能力在学生的目标分析和任务调控中得到很好地开发。为此,笔者认为,在数学教学中必须注意以下策略:

1.目标激励和目标强化在数学教学中,教师应当强化学生的目标意识,用目标去激励学生解题的自主性。

在数学问题解决中,首先应当让其明确问题目标,即明确应该达到什么终结状态,然后使学生明确:为了达到问题目标,自己应该做些什么,如果做不到,那么就会失败。这样,通过目标的激励和目标强化,学生就能自觉地确定解题目标,订出解题计划,设计解题策略,调节解题进程。也即有利于学生元认知能力的培养和开发。笔者认为,要对学生进行目标激励和目标强化,必须注意这样几点:①引导学生建构对具体数学问题解决的目标体系,建构目标体系应遵循“小步距”和层次性原则,即将问题解决分成有序的若干阶段,通过对若干阶段的目标构建以及目标实现,一步一步地逼近整个数学问题的解决,使之对数学问题的解决能循序渐进,以便及时通过反馈来调控解题步骤或策略,做到随时失败随时补救,以免功夫白费;②引导学生根据任务或目标状态主动选择有效手段,并使学生意识到,任务或目标不同,采取的手段或策略就不同,让学生学会能主动根据数学问题解决的阶段性去分别选择适宜的手段,致使任务或目标能顺利地完成或达到;③引导学生善于自我评价目标体系,总结解题的经验教训,以便充分利用反馈信息调节以后的解题手段和策略。

2.创设思维场情景,活化问题解决的思维活动所谓创设思维场情景,是指教师必须为学生的思维创造一种良好的内外条件。

其中包括学生所处的内环境(知识经验)和外环境(问题情境),以及内外环境相互作用产生的思维渴求和能力水平。在数学教学中,强调创设思维场情景实际上也就是强调了思维的活跃性、延伸性和发散性;强调了数学问题解决中学生对问题解决路径的搜索性和调控性。因为,问题解决始于问题情境,问题情境的内化则是思维场情景,思维场情景能引领学生解题方向,活化思维活动,有助于发现问题的隐蔽关系,突破解题障碍;更有助于对问题解决进程的反馈和调节。因此,通过创设思维场情景可以激发学生思维的灵活性和迁移性,从而使学生的元认知能力在这种情景中得到有效开发。创设思维场情景的有效策略是创设问题情境。因而,数学教学也就应当是创设问题情境的教学。具体地说,在教学中必须注意这样几点:①创设“小步距”问题情境,注意问题情境的有序性。即创设问题情境要有层次性、分阶段、有步骤地进行,采劝小步距”策略,使之一步一步地逼近整个问题情境的创设;②创设“变式”和“矛盾式”问题情境,注意问题情境的发散性。即创设的问题情景要变式综合,灵活应用,随时揭示矛盾,随时引导学生解决矛盾,让问题情境中充满着矛盾,促使学生主动思维,主动反馈;③创设“精而有效”的问题情境,注意问题情境的策略性。即创设的问题情境应当讲求效益,切忌“泛”而“杂”,应注重其策略性,这有助于学生对策略性知识和手段的掌握;④创设“启发性”问题情境,注意问题情境的延伸性。即通过创设问题情境,使课堂真正地活起来,活跃学生思维,激发学生自求解决问题的积极性、自觉性,强化学生学习的内驱力与动机。

3.构建知识网络,实现认知结构的整体优化

在数学教学中,教师必须沟通教材中知识的内在联系,使知识系统化、深刻化。从不同角度加深对概念的理解,并使新旧知识逐步形成紧密的锁链,比较以“求其异”、“求其同”,形成知识网络,进而从不同角度和方面去激活思维的灵活性、独创性和批判性,发展学生的元认知能力。为此,教师在教学中应遵循“整体----部分----整体”的方法,重视正迁移能力的培养,防止负迁移的干扰。

以较少的道理说明尽可能多的数学现象,减轻教学负担,实现认知结构的整体优化。为此教学中应注重:①认识每单元知识系统的整体结构,理清知识要素间的纵横联系,尤其是隐藏在教材中的概念原理间、字词句段章间的联系规律,分清知识的主干与分支(层次结构);②启发学生归纳、概括、比较解决问题的方法,学会一题多解和一法多用,达到触类旁通、举一反三;③引导学生独立地建立与发展认知结构,对知识要素比较其“同中之异”、“异中之同”,并积极主动地进行思维。

篇3

对「问题的理解与关于甚么是「问题解决的分析直接相关,讨论和研究「问题解决的一个主要困难就在于对甚么是真正的「问题缺少明晰的一致意见。

当代美国著名数学家哈尔莫斯(P.R.Halmos)曾说:「问题是数学的心脏。美籍匈牙利著名数学教育家波利亚(G.Polya)在《数学的发现》一书中曾给出问题明确含义,并从数学角度对问题作了分类。他指出,所谓「问题就是意味着要去寻找适当的行动,以达到一个可见而不立即可及的目标。《牛顿大词典》对「问题的解释是:指那些并非可以立即求解或较困难的问题(question),那种需要探索、思考和讨论的问题,那种需要积极思维活动的问题。

在1988年的第六屇国际数学教育大会上,「问题解决、模型化及应用课题组提交的课题报告中,对「问题给出了更为明确而富有启发意义的界定,指出一个问题是对人具有智力挑战特征的、没有现成的直接方法、程序或算法的待解问题情境。该课题组主席奈斯(M.Niss)还进一步把「数学问题解决中的「问题具体分为两类:一类是非常规的数学问题;另一类是数学应用问题。这种界定现已经逐渐为人们所接受。

我国的张奠宙、刘鸿坤教授在他们的《数学教育学》里的"数学教育中的问题解决"中,对甚么是问题及问题与习题的区别作了很好的探讨,根据他们的思想观点,我们可对「问题作以下几个方面的理解和认识。

*问题是一种情境状态。这种状态会与学生已有的认知结构之间产生内部矛盾冲突,在当前状态下还没有易于理解的、没有完全确定的解答方法或法则。换句话说,所谓有问题的状态,即这个人面临着他们不认识的东西,对于这种东西又不能仅仅应用某种典范的解法去解答,因为一个问题一旦可以使使用以前的算法轻易地解答出来,那么它就不是一个问题了。

*问题解决中的「问题,并不包括常规数学问题,而是指非常规数学问题和数学的应用问题。这里的常规数学问题,就是指课本中既已唯一确定的方法或可以遵循的一般规则、原理,而解法程序和每一步骤也都是完全确定的数学问题。

*问题是相对的。问题因人因时而宜,对于一个人可能是问题,而对于另一个人只不过是习题或练习,而对于第三个人,却可能是所然无味了。另一方面,随着人们的数学知识的增长、能力的提高,原先是问题的东西,现在却可能变成常规的问题,或者说已经构不成问题了。例如,学生在学习因式分解之前,对于「求方程﹕x3-6x2+5x=0的解,构成问题,而在学习了因式分解之后,已熟练地掌握了abc=0;则a=0或b=0或c=0,那么,此时前述求方程的根已对他不构成问题了,而当前状态下对于「求方程x3-6x2-4x=6的根则构成一个问题。

*问题情境状态下,要对学生本人构成问题,必须满足三个条件:(1)可接受性。指学生能够接受这个问题,还可表现出学生对该问题的兴趣。(2)障碍性。即学生当时很难看出问题的解法、程序和答案,表现出对问题的反应和处理的习惯模式的失败。(3)探索性。该问题又能促使学生深入地研究和进一步的思考,展开各种探究活动,寻求新的解题途径,探求新的处理方法。

*问题解决中的「问题与「习题或「练习是有区别的,其重要区别在于:(1)性质不同。中学数学课本中的「习题或者「练习属于「常规问题,教师在课堂中已经提供了典范解法,而学生只不过是这种典范解法的翻版应用,一般不需要学生较高的思考。因此,实际上学生只不过是在学习一种算法,或一种技术,一种应用于同一类「问题的技术,一种只要避免了无意识的错误就能保证成功的技术。(2)服务的目的不同。尽管有些困难的习题对大部份学生实际上也可能是真正的问题,但数学课本中的习题是为日常训练技巧等设计的,而真正的问题则适合于学习发现和探索的技巧,适合于进行数学原始发现以及学习如何思考。因此,练习技巧与解真正问题所要达到的学习目的不大相同,也正因为它们各自服务于一种目的,所以中学教学课本中的「习题、「练习不应该从课本中被除去,而应该被保留。然而,解决了这些常规问题后,并不意味着已经掌握了「问题解决。

二、一个好问题的「标准

以问题解决作为数学教育的中心事实上集中体现了数学观和数学思想的重要变化,也即意味着数学教育的一个根本性的变革,正是在这样的意义上,著名数学教育家伦伯格指出:解决非单纯练习题式的问题正是美国数学教育改革的一个中心论题。

那么,从数学教育的角度看,究竟甚么是一个"好"的问题,它的标准该是甚么?一般来说,一个好问题标准应体现在以下三个方面:

其一、一个好问题应该具有较强的探究性。

这就是说,好问题能启迪思维,激发和调动探究意识,展现思维过程。如同波利亚所指出的「我们这里所指的问题,不仅是寻常的,它们还要求人们具有某种程度的独立见解、判断力、能动性和创造精神。这里的「探究性(或创造精神)的要求应当是与学生实际水平相适应的,既然我们的数学教育是面向大多数学生的,因此,对于大多数学生而言,具有探索性或创造性的问题,正是数学上「普遍的高标准-这又并非是「高不可及的,而是可通过努力得到解决的。从这个意义上来说,我们这里说的好问题并不是指问题应有较高的难度,这一点与现在数学奥林匹克竞赛中所选用的大部份试题是有区别的。在竞赛中,「问题解决在很大程度上所发挥的只是一种「筛子的作用,这是与以「问题解决作为数学教育的中心环节和根本目标有区分的。

其二、一个好问题,应该具有一定的启发性和可发展空间。

一个好问题的启发性不仅指问题的解答中包含着重要的数学原理,对于这些问题或者能启发学生寻找应该能够识别的模式,或者通过基本技巧的某种运用很快地得到解决。同时,「问题解决还能够促进学生对于数学基本知识和技能的掌握,有利于学生掌握有关的数学知识和思想方法,这就与所谓的「偏题、「怪题划清了界线。

一个好问题的可发展空间是说问题并不一定在找到解答时就会结束,所寻求的解答可能暗示着对原问题的各部份作种种变化,由此可以引出新的问题和进一步的结论。问题的发展性可以把问题延伸、拓广、扩充到一般情形或其他特殊情形,它将给学生一个充分自由思考、充分展现自己思维的空间。

其三、一个好问题应该具有一定的「开放性。

好问题的「开放性,首先表现在问题来源的「开放。问题应具有一定的现实意义,与现实社会、生活实际有着直接关系,这种对社会、生活的「开放,能够使学生体现出数学的价值和开展「问题解决的意义。同时,问题的「开放性,还包括问题具有多种不同的解法,或者多种可能的解答,打破「每一问题都有唯一的标准解答和「问题中所给的信息都有用的传统观念,这对于学生的思想解放和创新能力的发挥具有极为重要的意义。

三、「问题解决见解种种

从国际上看,对「问题解决长期以来有着不同的理解,因而赋予「问题解决以多种含义,总括起来有以下6种:

1、把「问题解决作为一种教学目的。

例如美国的贝格(Begle)教授认为:「教授数学的真正理由是因为数学有着广泛的应用,教授数学要有利于解决各种问题,「学习怎样解决问题是学习数学的目的。E.A.Silver教授也认为本世纪80年代以来,世界上几乎所有的国家都把提高学生的问题解决的能力作为数学教学的主要目的之一。当「问题解决被认为是数学教学的一个目的时,它就独立于特殊的问题,独立于一般过程和方法以及数学的具体内容,此时,这种观点将影响到数学课程的设计和确定,并对课堂教学实践有重要的指导作用。

2、把「问题解决作为一个数学基本技能。

例如美国教育咨询委员会(NACOME)认为「问题解决是一种数学基本技能,他们对如何定义和评价这项技能进行了许多探索和研究。当「问题解决被视为一个基本技能时,它远非一个单一的技巧,而是若干个技巧的一个整体,需要人们从具体内容、问题的形式、构造数学模型、设计求解模列的方法等等综合考虑。

3、把「问题解决作为一种教学形式。

例如英国的柯可可劳夫特(Cockcroft)等人认为,应当在教学形式中增加讨论、研究问题解决和探索等形式,他还指出在英国,教师们还远远没有把「问题解决的活动形式作为教学的类型。

4、把「问题解决作为一种过程。

例如《21世纪的数学纲要》中提出「问题解决是学生应用以前获得的知识投入到新或不熟悉的情境中的一个过程。美国的雷布朗斯认为:「个体已经形成的有关过程的认识结构被用来处理个体所面临的问题?此种解释,可以使一个人使用原先所掌握的知识、技巧以及对问题的理解来适应一种不熟悉状况所需要的这样一种手段,它着重考虑学生用以解决问题的方法、策略和猜想。

5、把「问题解决作为法则。

例如在《国际教育辞典》中指出,「问题解决的特性是用新颖的方法组合两个或更多的法则去解决一个问题。

6、把「问题解决作为能力。

例如1982年英国的《Cockcroftreport》认为那种把数学用之于各种情况的能力,称之为「问题解决。

综合以上各种观点,虽然对「问题解决的描述不同,形式不一,但是,它们所强调的有着共同的东西,即「问题解决不应该仅仅理解为一种具体教学形式或技能,它应贯穿在整个教学教育之中。「问题解决的教学目的是很明确的,那就是要帮助学生提高解决实际问题能力,而且「问题解决的过程是一个创造性的活动,因而是数学教学中最重要的一种活动?以下是从文献中对「问题解决的六个不同的概念:

(1)解决教科书中标题文字题,有也叫做练习题;

(2)解决非常规的问题;

(3)逻辑问题和「游戏;

(4)构造性问题;

(5)计算机模拟题;

(6)「现实生活情境题。

在「问题解决中,相当一部份是实际生活中例子。从构造数学模型、设计求解模型的方法,再到检验与回顾等整个过程要由学生去发现、去设计、去创新、去完成,这是「问题解决与创造性思维密切联系之所在。数学教师应创造更有利于问题解决的条件,在为所有年级编制出好的问题并传授解决问题的技能、技巧的同时,尽力为学生的创造性思维提供良好的课堂环境与机会、乃至服务。

四、数学问题解决的心理分析

1、从学习心理学看「问题解决

从学习心理学角度来看,问题解决一般理解为一种认知操作过程或心理活动过程。所谓「问题解决指的是一系列有目的指向认知操作过程,是以思考为内涵、以问题为目标定向的心理活动过程。具体来说,问题解决是指人们面临新的问题情境、新课题,发现它与主客观需要的矛盾而自己缺少现成对策时,所引起的寻求处理问题办法的一种心理活动过程。问题解决是一种带有创造性的高级心理活动,其核心是思考与探索。认知心理学家认为,问题解决有两种基本类型:一是需要产生新的程序的问题解决,属于创造性问题解决;一是运用已知或现成程序的问题解决,是常规性问题解决。数学中的问题解决一般属于创造性问题解决,不仅需要构建适当的程序达到问题的目标,而且更侧重于探索达到目标的过程。

问题解决有两种形式的探索途径:试误式和顿悟式。试误式是对头脑中出现的解决问题的各种途径进行尝试筛选,直至发现问题解决的合理途径。顿悟式是在长期不懈地思考而又不得其解时,受某种情境或因素的启发,突然发现解决的方法和途径或方式。对中学生而言,这两种探形式都是问题解决不可缺少策略。

2、数学问题解决心理过程

现代学习心理学探究表明,问题分为三种状态,即初始状态、中间状态和目的状态。问题解决就是从问题的初始状态开始,寻求适当的途径和方法达到目的状态的过程。因此,问题解决实质上是运用已有的知识经验,通过思考探索新情境中问题结果和达到问题的目的状态的过程。

以数学对象和数学课题为研究客体的问题解决叫做数学问题解决。一般来说,数学问题解决是在一定的问题情境中开始。所谓问题情境,是指问题的刺激模式,即问题是以甚么样的形态、方式组成和出现的,其内涵包括三个方面:第一、个体试图达到某一目标;第二、个体与目标之间存在一定的距离,它将引起学生内部的认知矛盾冲突;第三、能激起个体积极心理状态,即产生思考、探索和达到目标的心向,从而刺激学生积极主动的思维活动。因此,数学问题解决是从问题情境开始,运用已有的知识经验,克服认知矛盾冲突,积极主动地寻求和达到问题结果的过程。著名数学教育家波利亚在《怎样解题》一书中指出:「数学问题解决过程必须经过下列四个步骤,即理解问题、明确任务;拟定求解计划;实现求解计划;检验和回顾。根据上述分析,数学问题解决过程可用框图示如下:以上关于问题解决的过程讨论,数学问题解决在一定的问题情境中开始,要求教师根据问题的性质、学生的认识规律和学生所学知识的内部联系,创造一种教学中问题情境,以引起学生内部的认知矛盾冲突,激发起学生积极、主动的思维活动,再经过教师启发和帮助,通过学生主动地分析、探索并提出解决问题方法、检验这种方法等思维活动,从而达到掌握知识、发展能力的教学目的。

主要参考文献

(1)张奠宙等:《教学教育学》,江西教育出版社,1991年

篇4

 

苏教版小学数学第九册P63~64例1、例2及练一练。

2、教材结构、地位及作用:

本课教学用“一一列举”的策略解决一些简单的实际问题。这部分内容是在学生已经学习过用列表和画图的策略解决问题的基础上进行教学的。因此本部分内容可分为两层来安排教学。第一层:认识列举法。第二层:学会列举。即:例1作为本单元教学的起始,让学生初步体会按一定顺序列举是解决问题的一种有效方法。然后通过例2的教学,进一步突出用“一一列举”的策略解决问题时需要不重复、不遗漏地进行思考。最后让学生利用学到的知识独立解决问题,帮助他们巩固认识、加深体会。通过这部分内容的学习,一方面可以使学生增强分析问题的条理性和严密性,另一方面可以使学生增强根据需要解决的问题的特点灵活选用策略的意识,提高分析问题、解决问题的能力。

二、学情分析

本节课的教学对象是五年级学生。在知识储备上,在学习本单元内容以前,学生已经学习了用画图、列表等策略解决简单的实际问题,并在学习和运用这些策略的过程中,感受了策略对于解决问题的价值,逐步形成了一定的策略意识。在思维方式上,五年级学生已经具备了一定的整理信息、分析问题和解决问题的思想方法与经验,具有一定的抽象逻辑思维能力小学数学论文,但抽象思维一般都还处于无序状态,通过学习,使学生的无序思维有序化、数学化、规范化。

三、设计理念

1、贴近生活,激发兴趣。《数学课程标准》指出:“数学学习,要紧密地联系学生的实际和生活环境,从学生的经验和已有的知识出发。”对于小学生而言,与他们直接相关的、发生在他们身边的、可以直接触摸到的或者间接看见、听说的事物,是他们最感兴趣的。设计中,我在不改变教材的设计意图的同时,对教材进行适当的加工,真正把教材与学生的生活实际和学生的生活需求联系起来,有效地增强学生对数学的兴趣。

2、自主参与,亲历过程。美国著名心理学家布鲁纳说:“学习者不应该是信息的被动接受者,而应是知识获取过程的主动参与者。”数学知识只有通过学生亲身的主动参与、主动探索,才能转化为学生自己的知识。数学课程标准中强调学生亲历知识的形成过程,把“动手操作、自主探究、合作交流”作为学生学习的主要方式。本节课教学设计,我力求“以学生自主发展为本”,关注学生学习结果,更关注他们的学习过程,关注他们的学习,更关注他们的情感体验。

3、尊重差异,分层施教。“由于学生所处的文化坏境、家庭背景和自身的思维方式的不同,学生的数学活动应当是一个生动活泼的、主动的、富有个性的过程。”本节课的设计,我对学生的学情进行了大胆的预设,根据预设的情况,灵活选择了不同的教学策略,努力让不同层次的学生,都有参与的机会,发展他们的个性小学数学论文,使“不同的人在数学上有不同的发展”。

四、目标预设

根据教材内容、学生的年龄特点和认知规律,以及新课标的要求,我预设了以下几个方面的教学目标:

知识与技能:使学生经历用“一一列举”的策略解决简单实际问题的过程,能通过不遗漏、不重复的列举找到符合要求的所有答案。

过程与方法:使学生在对解决简单实际问题过程的反思和交流中,感受“一一列举”策略的特点和价值,进一步发展思维的条理性和严密性。

情感、态度与价值观:使学生进一步积累解决问题的经验,增强解决问题的策略意识,并获得解决问题的成功经验,提高学好数学的信心。

基于以上教学目标,我拟定本节课的教学重难点是:

教学重点:

感受“一一列举”的特点和价值,能用“一一列举”的策略解决实际问题。

教学难点:

能有条理地一一列举,发展思维的条理性和严密性。

五、教、学具准备:

多媒体课件、小棒、表格。

六、教学流程及设计意图:

设计思路:本节课的教学力求紧密联系学生的生活经验,让学生充分参与知识的探索过程,引导学生充分体验策略的价值,促使学生富有个性地学习。设计思路是:创设情境,感知策略——合作探究,体验策略——比较反思,感悟策略——运用拓展,形成策略——总结反思,内化策略。

(一)创设情境,感知策略

1、问题引入:用1、2、3这几个数字可以组成多少个不同的三位数?

2、揭示课题:

师:刚才同学们把组成的三位数按照一定的顺序一个不漏地列举出来,这在数学上叫一一列举。(板书:一一列举)一一列举也是我们解决数学问题常用的一种策略。

【设计意图:导学的艺术在于唤醒。学生虽然是第一次正式学习用一一列举的策略解决问题,但在他们的知识经验中已模糊地经历过类似的方法,只是还没有建立起一种完整的数学模型。所以在课的引入部分,创设用不同数字组成三位数的问题情境唤醒了他们头脑里已有的知识经验,为下面的探究过程做好心理准备和认知铺垫。】

(二)合作探究,体验策略

第一层:教学例1 (简单列举)

1、情景创设,呈现问题。

出示情境图,王大叔 :“我用18根1米长的栅栏围成一个长方形花圃。”

提问:从这句话中你获得了哪些数学信息?

引导学生明确:花圃是长方形的小学数学论文,周长是18米。

呈现问题:有多少种不同的围法?

【设计意图:将教材中的“围羊圈”改成“围花圃”更贴近学生的生活实际,让学生感受到数学就在身边,体验学习数学的价值。】

2、动手操作,交流围法。

提出要求:周长是18米的长方形花圃可以怎样围呢?请同学们用自己喜欢的方法试一试。(提示:可以围一围、画一画、想一想、算一算。)

学生动手操作,教师巡视,并与生交流。

提问:你是怎样围的?围成的长方形花圃的长和宽各是多少?

学生汇报,课件相机出示围成的4种不同的长方形。

【设计意图:“教学有法,教无定法,贵在得法。”通过学生的自主操作,一方面使学生明确围成的长方形的周长与它的长和宽的关系,另一方面也使学生实实在在地感受到:要找出所有不同的围法,需要有条理地一一列举。】

3、填表列举,解决问题。

谈话:长方形的周长是18米,说明长与宽的和是多少?(9米)

师:你能把这些围法一个不漏地列举出来并填写在表中吗?

 

长方形的长(米)

 

 

 

 

 

 

 

 

长方形的宽(米)

 

 

 

 

 

友情链接