时间:2023-02-28 15:32:14
引言:寻求写作上的突破?我们特意为您精选了12篇传输机理论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
蓝牙(Bluetooth)是一种新型、开放、低成本、短距离的无线连接接技术,可取代短距离的电缆,实现话音和数据的无线传输。这种有效、廉价的无线连接技术可以方便地将计算机及外设、移动电话、掌上电脑、信息家电等设备连接起来,在它可达到的范围内使各种信息化移动便携设备都能实现无缝资源共享,还可通过无线局域网(WirelessLAN)与Internet连接,实现多媒体信息的无线传输。
蓝牙系统采用分散式(Scatter)结构,设备间以及从方式构成微微网(Piconet),支持点对点和点对多点通信。它采用GFSK调制,抗干扰性能好,通过快速跳频和短包技术来减少同频干扰,保证传输的可靠性。使用的频段为无需申请许可的2.4GHz的ISM频段。
蓝牙协议从协议来源大致分为四部分:核心协议、电缆替代协议(RECOMM)、电路控制协议和选用协议。其中核心协议是蓝牙专利协议,完全由蓝牙SIG开发,包括基带协议(BB)、连接管理协议(LMP)、逻辑链路控制和适配协议(L2CAP)以及服务发现协议(SDP)。蓝牙协议从体系结构又可分为底层硬件模块、中间协议层和高端应用层三大部分,其中链路管理层(LM)、基带(BB)和射频层(RF)构成蓝牙的底层模块。由此可见,基带层是蓝牙协议的重要组成部分。本文主要对蓝牙技术中最重要的基带数据传输机理进行分析。
1基带协议概述
图1给出蓝牙系统结构示意图。在蓝牙系统中,使用蓝牙技术将设备连接起来的网络称作微微网(Piconet),它由一个主节点(MasterUnit)和多个从节点(SlaveUnit)构成。主节点是微微网中用来同步其他节点的蓝牙设备,是连接过程的发起者,最多可与7个从节点同时维持连接。从节点是微微网中除主节点外的设备。两个或多个微微网可以连接组成散射网(Scatternet)。
图2给出蓝牙协议结构示意图。基带层位于蓝牙协议栈的蓝牙射频之上,并与射频层一起构成蓝牙的物理层。从本质上说,它作为一个链接控制器,描述了基带链路控制器的数字信号处理规范,并与链路管理器协同工作,负责执行象连接建立和功率控制等链路层的,如图3所示。基带收发器在跳频(频分)的同时将时间划分(时分),采用时分双工(TDD)工作方式(交替发送和接收),基带负责把数字信号写入并从收发器中读入数据。主要管理物理信道和链接,负责跳频选择和蓝牙数据及信息帧的传输、象误码纠错、数据白化、蓝牙安全等。基带也管理同步和异步链接,处理分组包,执行寻呼、查询来访及获取蓝牙设备等。
在蓝牙基带协议中规定,蓝牙设备可以使用4种类型的地址用于同场合和状态。其中,48位的蓝牙设备地址BD_ADDR(IEEE802标准),是蓝牙设备连接过程的唯一标准;3位的微微网激活节点地址AM_ADDR,用以标识微微网中激活成员,该地址3位全用作广播信息;8位的微微网休眠节点地址PM_ADDR,用以标识微微网中休眠的从节点。微微网接入地址AR_ADDR,分配给微微网中要启动唤醒过程的从节点。
当微微网主从节点通信时,彼此必须保持同步。同步所采用的时钟包括自身不调整也不关闭的本地设备时钟CLKN,微微网中主节点的系统时钟CLK以及为主节点时钟对从节点本地设备时钟进行周期更新以保持主从同步的补偿时钟CLKE。
与其它无线技术一样,蓝牙技术中微微网通过使用各种信道来实现数据的无线传输。其中,物理信道表示在79个或者23个射频信道上跳变的伪随机跳频序列,每个微微网的跳频序列是唯一的,并且由主节点的蓝牙设备地址决定;此外,蓝牙有5种传送不同类型信息的逻辑信道,它们分别为:
(1)LC信道:控制信道,用来传送链路层控制信息;
(2)LMC信道:链接管理信道,用在链路层传送链接管理信息;
(3)UA信道:用户信道,用来传送异步的用户信息;
(4)UI信道:用户信道,用来传送等时的用户信息;
(5)US信道:用户信道,用来传送同步的用户信息。
在蓝牙系统中,主从节点以时分双工(TDD)机制轮流进行数据传输。因此,在信道上又可划分为长度为625μs的时隙(TimeSlot),并以微微网主节点时钟进行编号(0-227-1),主从节点分别在奇、偶时隙进行数据发送。
2蓝牙数据传输
蓝牙支持电路和分组交换,数据以分组形式在信道中传输,并使用流控制来避免分组丢失和拥塞。为确保分组包数据正确传输,还进行数据的白化和纠错,下面分别对这些传输机制进行分析。
2.1蓝牙分组
分组包数据可以包含话音、数据或两者兼有。分组包可以占用多个时隙(多时隙分组)并且可以在下一个时隙继续发送,净荷(Payload)也带有16位的错误校验识别和校验(CRC)。有5种普通的分组类型,4个SCO分组包和7个ACL分组包。一般分组包格式如图4。
图3基带层抽象
其中,接入码(Accesscode)用来定时同步、偏移补偿、寻呼和查询。蓝牙中有三种不同类型的接入码:
(1)信道接入码(CAC):用来标识一个微微网;
(2)设备接入码(DAC):用作设备寻呼和它的响应;
(3)查询接入码(IAC):用作设备查询目的。
分组头(Header)包含6个字段,用于链路控制。其中AM_ADDR是激活成员地址,TYPE指明分组类型,FLOW用于ACL流量控制位,ARQN是分组包确认标识,SEQN用于分组重排的分组编号,HEC对分组头进行验。蓝牙使用快速、不编号的分组包确认方式,通过设置合适的ARQN值来区别确定是否接收到数据分组包。如果超时,则忽略这个分组包,继续发送下一个。
2.2链接及流控制
蓝牙定义了两种链路类型,即面向连接的同步链路(SCO)和面向无连接的异步链路(ACL)。SCO链接是一个对称的主从节点之间点对点的同步链接,在预留的时间里发送SCO分组,属于电路交换,主要携带话音信息。主节点可同时支持3个SCO链接,从节点可同时支持2~3个链接SCO,SCO分组包不支持重传。SCO链路通过主节点LMP发送一个SCO建立消息来建立,该消息包含定时参数(Tsco和Dsco)。
ACL链接是为匹克网主节点在没有为SCO链接保留的时隙中,提供可以与任何从节点进行异步或同步数据交换的机制。一对主从节点只可以维持一个ACL链接。使用多个ACL分组时,蓝牙采用分组包重发机制来保证数据的完整性。ACL分组不指定确定从节点时,被认为是广播分组,每个从节点都接收这个分组。
蓝牙建议使用FIFO(先进先出)队列来实现ACL和SCO链接的发送和接收,链接管理器负责填充这些队列,而链接控制器负责自动清空队列。接收FIFO队列已满时则使用流控制来避免分组丢失和拥塞。如果不能接收到数据,接收者的链接控制器发送一个STOP指令,并插入到返回的分组头(Header)中,并且FLOW位置1。当发送者接收到STOP指示,就冻结它的FIFO队列停止发送。如果接收器已准备好,发送一个GO分组给发送方重新恢复数据传输,FLOW位置0。
2.3数据同步、扰码和纠错
由于蓝牙设备发送器采用时分双工(TDD)工作机制,它必须以一种同步的方式来交替发送和接收数据。微微网通过主节点的系统时钟来实现同步,并决定其跳频序列中的相位。在微微网建立时,主节点的时钟传送给从节点,每个从点节给自己的本地时钟加上一个偏移量,实现与主节点的同步。在微微同生存期内,主节点不会调整自己的系统时钟。为了与主节点的时钟匹配,从节点会偏移量进行周期的更新。蓝牙时钟应该至少具有312μs的分首辨率。主节点分组发送的平均定时与理想的625ms时隙相比,偏移不不能超过20ppm,抖动(Jitter)应该少于1ms。
在分组数据送出去并且在FEC编码之前,分组头和净荷要进行扰码,使分组包随机化。接收数据分组包时,使用盯同的白化字进行去扰处理。
为了提高数据传输可靠性及系统抗干扰性,蓝牙数据传输机制采用三种纠错方式:1/3率FEC编码方式(即每一数据位重复3次)、冗余2/3率FEC编码方式(即用一个多项式发生器把10位码编码成15位码)以及数据自动请求重发方式(即发送方在收到接收方确认消息之前一直重发数据包,直到超时)。
图4蓝牙分组包格式
3蓝牙设备连接
蓝牙链接控制器工作在两种主要状态:待令(Standby)和连接(Connection)。在蓝牙设备中,Standby是缺省的低功率状态,只运行本地时钟且不与任何其他设备交互。在连接状态,主节点和从节点能交换分组包进行通信,所以要实现蓝牙设备之间的互相,彼此必须先建立连接。由于蓝牙使用的ISM频带是对所有无线电系统都开放的频带,会遇到各种各样的干扰源,所以蓝牙采用分组包快速确认技术和跳频方案来确保链路和信道的稳定。在建立连接和通信过程中使用跳频序列作为物理信道,跳频选择就是选择通信的信道。
3.1跳频选择
跳频技术把频带分成若干个跳频信道(HopChannel)。无线电收发器按一定的码序列(以产生随机数的方式)不断地从一个信道跳到另一个信道,并且收发双方都按这个规律才能通信并同步。跳频的瞬时带宽很窄,通过扩频技术展成宽频带,使干扰的影响最小。当一个设备被激活时,该设备被分配32个跳频频点,以后该设备就在这些跳频点上接收和发送信息。通用跳频选择方案由两部分组成,即选择一个序列并在跳频频点上映射该序列。对于每一情况,都需要从-主和主-从两种跳频序列。蓝牙系统中使用的跳频序列有如下几种:
(1)呼叫跳频序列:在呼叫(Page)状态使用;
(2)呼叫应答序列:在呼叫应答(PageResponse)状态使用;
(3)查询序列:在查询(Inquiry)状态使用;
(4)查询应答序列:在查询应答(InquiryResponse)状态使用;
(5)信道跳频序列:在连接(Connection)状态使用。
3.2蓝牙连接建立
从待令状态到连接状态的过程就是连接建立过程。通常来讲,两个设备的连接建立过程如下:
首先,主节点使用GIAC和DIAC来查询范围内的蓝牙设备(查询状态)。如果任何附近的蓝牙设备正在监听这些查询(查询扫描状态),就发送它的地址和时钟信息后,从节点可以开始监听来自主节点的寻呼消息(寻呼扫描),主节点在发现附近的设备之间可以寻呼这些设备(寻呼状态),建立链接。在寻呼扫描的从设备被这个主节点寻呼后,就会以DAC(设备访问码)来响应(Slaveresponsesubstate)。主节点在接收到从节点的响应后,便可以以送主节点的实时时钟、BD_ADDR、BCH奇偶位和设备类(FHS分组包),最后在从节点已经接收到这个FHS分组之后,进入连接状态。具体过程如图5。
由图5可见,在蓝牙连接建立的呼个不同阶段,主节点和从节点分别处于不同的状态,这些状态包括:
查询(Inquiry):查询是主节点用来查找可监视区域中的蓝牙设备,以便通过收集来自从节点响应查询消息中得到该节点的设备地址和时钟,查询过程使用IAC;
查询扫描(InquiryScan):蓝牙设备周期地监听来自其他设备的查询消息,以便自己能被发现。扫描过程中,设备可以监听普通查询接入码(GIAC)和特定查询接入码(DIAC);
查询响应(Inquiryresponse):从节点以FHS分组响应查询消息,它携带从节点的DAC、本地时钟等信息;
寻呼(Page):主节点通过在不同的跳频序列发送消息,来激活一个从节点并建立连接,寻呼过程使用DAC;
寻呼扫描(PageScan):从节点周期性地在扫描窗间隔时间内唤醒自己,并监听自己的DAC,从节点每隔1.28s在这个扫描窗上根据寻呼跳频序列选择一个扫描频率;
从节点响应(SlaveResponse):从节点在寻呼扫描状态收到主节点对自己的寻呼消息即进入响应状态,响应主设备的寻呼消息;
主节点响应(MasterResponse):主节点在接收到从节点对它的寻呼消息的响应后,主节点发送一个FHS分组给从节点,如果从节点响应回答,主节点就进入连接状态。
3.3连接状态
连接(connection)状态以主节点发送一个POLL分组开始,表示连接已经建立,此时分组包可以在主从节点之间来回发送。连接两端即主从节点都使用主节点的接入码和时钟,并且使用的跳频为信道跳频序列。即在连接建立后,主节点的蓝牙设备地址(BD_ADDR)决定跳频序列和信道接入码。在连接状态的蓝牙设备,可以有以下几个子状态:
Active:在这个模式下,主从节点都分别在信道通过监听,发送和接收分组包,并彼此保持同步;
Sniff:在这个模式下,从节点可以暂时不支持ACL分组,也就是ACL链路进入低能源sleep模式,空出资源,使得象寻呼、扫描等活动、信道仍可用;
Park:当从节点不必介入微微网信道,但仍想与信道维持同步,它能进入park(休眠)模式,此时具有很少的活动而处于低耗模式,从节点放弃AM_ADDR,而使用PM_ADDR。
一、引言
目前存储式电子压力计已广泛应用于国内各大油田高温井下压力和温度的测量。存储式电子压力计在工作过程中,仪器内的单片机系统和各种传感器共同完成井下压力和温度的采集,并以数字量形式存储于电可改写型存储器中,待测试过程完成后,再将压力计返回地面,用专门配套研制的数据回放仪与压力计连接,通过软件和硬件接口通讯进行数据的接收、回放和处理,使用很不方便,影响生产。
因此,为克服存储式电子压力计的上述缺点,提高油田生产效率,提升电子压力计在油田测井领域的市场竞争力,必须研制在井下高温、高压、远距离条件下,实现压力、温度数据实时可靠采集、传输、分析的压力计——直读式电子压力计。
二、直读式电子压力计技术需求分析
(一)功能及主要技术指标要求
直读式电子压力计实现井下压力和温度参数的测量,并将测量结果通过单芯铠装电缆实时传送至地面解码控制仪,主要技术指标要求如下所示。
a)压力测量范围:(0~30、45、60、80)MPa;压力测量误差:0.04%F.S;
b)温度测量范围:(-20~+150)℃,测量误差:±1℃;
c)传输距离不小于6000m;通讯误码率1.0×10-7。
(二)基本方案及工作原理
直读式电子压力计由井下电子压力计和地面解码控制仪两部分组成,其中井下电子压力计由压力传感器、温度传感器、信号放大电路、模数转换电路、单片机系统、编码电路、数字通讯接口电路和装载于单片机系统中的相关工作软件组成,解码控制仪由解码电路、通讯接口电路、通用计算机(油田配置)和相关工作软件组成。
工作过程中,井下电子压力计由地面解码控制仪通过单芯铠装电缆提供能源,温度和压力传感器分别将环境压力和温度转换为电信号输出,该电信号经放大和模数转换后由单片机系统进行数据实时采集和处理,然后按一定周期经数字通讯口输出。井下电子压力计和井上解码控制仪之间通过单芯铠装电缆连接,解码控制仪中通讯接口电路接收井下电子压力计输出的压力和温度数据,并经解码后输入计算机中进行实时分析和处理。
三、数据传输方案选择
设备之间数据通讯通常有并行通讯和串行通讯两种方案,并行通讯的缺点是传输距离短,通讯信道所占点号多,而串行通讯与之相反。根据井下电子压力计与井上解码控制仪的数据传输特点,需选择串行数据传输方式。
在曼彻斯特编码中,用电压跳变的相位不同来区分逻辑1和逻辑0,即用正的电压跳变表示逻辑0,用负的电压跳变表示逻辑1。
在油田测井中,井下电子压力计在井下采集大量信息,并传送给地面解码控制仪;但井下电子压力计到地面解码控制仪这段信道的传输距离较长且环境恶劣,常用的NRZ码不适合在这样的信道里传输,而且NRZ码含有丰富的直流分量,容易引起滚筒的磁化。曼彻斯特编码方式使得信号以串行脉冲码的调制方式在数据线上传输,和最常用的NRZ码相比,消除了NRZ码的直流成分,具有时钟恢复和更好的抗干扰性能,这使它更适合于从井下到井上的信道传输,因而在井下电子压力计和地面解码控制仪之间选用曼彻斯特编码使数据传输可靠性更高、传输距离更远。
四、曼彻斯特码编码软硬件设计
每一周期井下电子压力计需将采集到的压力和温度两个参数分别进行曼彻斯特编码方式输出,井下电子压力计与地面解码控制仪之间按如下通讯协议进行。
a)压力与温度均以字为单位进行传送,先发送压力字,后发送温度字,一个压力字和一个温度字的组合称为一个消息;
b)每一个字由20位组成,第1~3位为3个起始位,第4~19位为16个数据位,第20位为奇偶校验位;
c)压力字3个起始位电平为先高后低,温度字起始位为先低后高,高低电平均各占一位半,压力字与温度字校验位均采用奇校验;
d)传输的波特率:5.7292kbps(175μs/位),传输一个消息共耗时3.5ms。为保证数据传输可靠性,井下电子压力计同一消息在一个采样周期内重复发送两次,地面解码控制仪根据校验位判断每个字的正确性。
由单片机编程输出两路I/O控制信号,经过滤波电路、运放电路、整型电路后,产生曼彻斯特编码双相电平信号,并经单芯铠装电缆送至地面解码控制仪。为满足曼彻斯特编码格式及井下电子压力计与地面解码控制仪之间的通讯协议,井下电子压力计软件采用如下的编程方式输出波形。
a)压力字同步头为262.5μs高电平后跟随262.5μs低电平,温度字同步头为262.5μs低电平后跟随262.5μs高电平;
b)若数据位为逻辑0,则在87.5μs低电平后跟随87.5μs高电平;
c)若数据位为逻辑1,则在87.5μs高电平后跟随87.5μs低电平;
d)校验位的波形产生方式与数据位相同。
五、曼彻斯特码解码软硬件设计
地面解码控制仪需将井下电子压力计输出的曼彻斯特码进行解码,并按通讯协议用软件将接收到的曼彻斯特码数据转换为井下电子压力计测得的压力和温度数据,即地面解码控制仪中的解码过程为井下电子压力计编码过程的逆过程。曼彻斯特码解码过程可分为如下三部分:
a)同步字头检测,并辨别其为温度数据还是压力数据。
b)对曼码形式的数据进行解码,从曼彻斯特码波形中分离出同步时钟,并将时钟和数据进行处理使曼码数据转化为非归零二进制数据。
c)将串行数据转化为并行数据,并进行奇偶校验,以检验数据传输的正确性。
经过几千米铠装电缆传输上来的数据,幅度衰减到毫伏级,因此井上需要精密的解码电路,才能保证数据传输无误码率。井下传输上来的数据经过滤波电路、精密运算放大器、双D触发器输出曼码波形给单片机,经过单片机的程序转化为井下的压力与温度数字量。
六、试验结果
直读式电子压力计首台产品完成厂内试验后,到油田用8000m的铠装电缆连接井下电子压力计和地面解码控制仪,将电子压力计下放到井下6500m的深度,在温度高达150℃、压力为30~60MPa的油井中测试压力和温度。在三次连续5个小时的测试过程中,数据传输准确可靠,没有出现丢点现象,误码率为零。
七、结束语
试验数据统计分析结果表明,本文研究结果解决了直读式电子压力计通讯方案、通讯协议、单芯远距离传输、曼彻斯特码编解码软硬件设计等关键技术,增强了电子压力计在油田测井领域的市场竞争力。
随着传感器技术、信息处理技术、测量技术与计算机技术的发展,智能驾驶系统(辅助驾驶系统一无人驾驶系统)也得了飞速的发展。消费者越来越注重驾驶的安全性与舒适性,这就要求传感器能识别在同一车道上前方行驶的汽车,并能在有障碍时提醒驾驶员或者自动改变汽车状态,以避免事故诉发生。国际上各大汽车公司也都致力于这方面的研究,并开发了一系列安全驾驶系统,如碰撞报警系统(CW)、偏向报警系统(LDW)和智能巡游系统(ICC)等。国内在这些方面也有一定的研究,但与国外相比仍存在较大的差距。本文将主要讨论多传感器信息融合技术在智能驾驶系统(ITS)中的应用。
1ICC/CW和LDW系统中存在的问题
1.1ICC/CW系统中的误识别问题
ICC/CW系统中经常使用单一波束传感器。这类传感器利用非常狭窄的波束宽度测定前方的车辆,对于弯曲道路(见图1(a)),前后车辆很容易驶出传感器的测量范围,这将引起智能巡游系统误加速。如果前方车辆减速或在拐弯处另一辆汽车驶入本车道,碰撞报警系统将不能在安全停车范围内给出响应而容易产生碰撞。类似地,当弯曲度延伸时(见图1(b)),雷达系统易把邻近道路的车辆或路边的防护栏误认为是障碍而给出报警。当道路不平坦时,雷达传感器前方的道路是斜向上,小丘或小堆也可能被误认为是障碍,这些都降低了系统的稳定性。现在有一些滤波算法可以处理这些问题并取得了一定效果,但不能彻底解决。
1.2LDW系统中存在的场景识别问题
LDW系统中同样存在公共驾驶区场景识别问题。LDW系统依赖于一侧的摄像机(经常仅能测道路上相邻车辆的位置),很难区分弯曲的道路和做到多样的个人驾驶模式。LDW系统利用一个前向摄像机探测车辆前方道路的地理状况,这对于远距离测量存在着精确性的问题,所有这些都影响了TLC(Time-to-Line-Crossing)测量的准确性。现常用死区识别和驾驶信息修订法进行处理,但并不能给出任何先验知识去识别故障。
2多传感器信息融合技术在ITS系统中的应用
针对以上系统存在的一些问题,研究者们纷纷引入了多传感器信息融合技术,并提出了不同的融合算法。基于视觉系统的传感器可以提供大量的场景信息,其它传感器(如雷达或激光等)可以测定距离、范围等信息,对两方面的信息融合处理后能够给出更可靠的识别信息。融合技术可以采用Beaurais等人于1999年提出的CLARK算法(CombinedLikelihoodAddingRadar)和InstitudeNeuroinformatik提出的ICDA(IntegrativeCouplingofDifferentAlgorithms)算法等方法实现。
2.1传感器的选择
识别障碍的首要问题是传感器的选择,下面对几种传感器的优缺点进行说明(见表1)。探测障碍的最简单的方法是使用超声波传感器,它是利用向目标发射超声波脉冲,计算其往返时间来判定距离的。该方法被广泛应用于移动机器人的研究上。其优点是价格便宜,易于使用,且在10m以内能给出精确的测量。不过在ITS系统中除了上文提出的场景限制外,还有以下问题。首先因其只能在10m以内有效使用,所以并不适合ITS系统。另外超声波传感器的工作原理基于声,即使可以使之测达100m远,但其更新频率为2Hz,而且还有可能在传输中受到其它信号的干扰,所以在CW/ICC系统中使用是不实际的。
表1传感器性能比较
传感器类型优点缺点
超声波
视觉
激光雷达
MMW雷达价格合理,夜间不受影响。
易于多目标测量和分类,分辨率好。
价格相合理,夜间不受影响
不受灯光、天气影响。测量范围小,对天气变化敏感。
不能直接测量距离,算法复杂,处理速度慢。
对水、灰尘、灯光敏感。
价格贵
视觉传感器在CW系统中使用得非常广泛。其优点是尺寸小,价格合理,在一定的宽度和视觉域内可以测量定多个目标,并且可以利用测量的图像根据外形和大小对目标进行分类。但是算法复杂,处理速度慢。
雷达传感器在军事和航空领域已经使用了几十年。主要优点是可以鲁棒地探测到障碍而不受天气或灯光条件限制。近十年来随着尺寸及价格的降低,在汽车行业开始被使用。但是仍存在性价比的问题。
为了克服这些问题,利用信息融合技术提出了一些新的方法,利用这些方式可以得到较单一传感器更为可靠的探测。
2.2信息融合的基本原理
所谓信息融合就是将来自多个传感器或多源的信息进行综合处理,从而得出更为准确、可靠的结论。多传感器信息融合是人类和其它生物系统中普遍存在的一种基本功能,人类本地地具有将身体上的各种功能器官(眼、耳、鼻、四肢)所探测的信息(景物、声音、气味和触觉)与先验知识进行综合的能力,以便对其周围的环境和正在发生的事件做出估计。由于人类的感官具有不同度量特征,因而可测出不同空间范围的各种物理现象,这一过程是复杂的,也是自适应的。它将各种信息(图像、声音、气味和物理形状或描述)转化成对环境的有价值的解释。
多传感器信息融合实际上是人对人脑综合处理复杂问题的一种功能模拟。在多传感器系统中,各种传感器提供的信息可能具有不同的特片:对变的或者非时变的,实时的或者非实时的,模糊的或者确定的,精确的或者不完整的,相互支持的或者互补的。多传感器信息融合就像人脑综合处理信息的过程一样,它充分利用多个传感器资源,通过对各种传感器及其观测信息的合理支配与使用,将各种传感器在空间和时间上的互补与冗余信息依据某种优化准则结合起来,产生对观测环境的一致性解释或描述。信息融合的目标是基于各种传感器分离观测信息,通过对信息的优化组合导出更多的有效信息。这是最佳协同作用的效果,它的最终目的是利用多个传感器共同或联合操作的优势来提高整个系统的有效性。
2.3常用信息融合算法
信息融合技术涉及到方面的理论和技术,如信息处理、估计理论、不确定性理论、模式识别、最优化技术、神经网络和人工智能等。由不同的应用要求形成的各种方法都是融合方法的个子集。表2归纳了一些常用的信息融合方法。
表2信息融合方法
经典方法现代方法
估计方法统计方法信息论方法人工智能方法
加权平均法经典推理法聚类分析模糊逻辑
极大似然估计贝叶斯估计模板法产生式规则
最小二乘法品质因素法熵理论神经网络
卡尔曼滤波D-S证据决策理论遗传算法
模糊积分理论
2.4智能驾驶系统中信息融合算法的基本结构
由于单一传感器的局限性,现在ITS系统中多使用一组传感器探测不同视点的信息,再对这些信息进行融合处理,以完成初始目标探测识别。在智能驾驶系统中识别障碍常用的算法结构如图2所示。
3CLARK算法
CLARK算法是用于精确测量障碍位置和道路状况的方法,它同时使用来自距离传感器(雷达)和摄像机的信息。CLARK算法主要由以下两部分组成:①使用多传器融合技术对障碍进行鲁棒探测;②在LOIS(LikelihoodofImageShape)道路探测算法中综合考虑上述信息,以提高远距离道路和障碍的识别性能。
3.1用雷达探测障碍
目前经常使用一个雷达传感器探测前方的车辆或障碍。如前面所分析,雷达虽然在直路上的性能良好,但当道路弯曲时,探测的信号将完全可靠,有时还会有探测的盲点或产生错误报警。为了防止错误报警,常对雷达的输出进行标准卡尔曼(Kalman)滤波,但这并不能有效解决探测盲点问题。为了更可靠地解决这类问题,可以使用扫描雷达或多波束雷达,但其价格昂贵。这里选用低价的视觉传感器作为附加信息,视觉传感器经常能提供扫描雷达和多波束雷达所不能提供的信息。
3.2在目标识别中融合视觉信息
CLARK算法使用视觉图像的对比度和颜色信息探测目标,使用矩形模板方法识别目标。这个模板由具有不同左右边界和底部尺寸的矩形构成,再与视觉图像对比度域匹配,选择与雷达传感器输出最接近的障碍模板。
CLARK算法首先对雷达信号进行卡尔曼滤波,用于剔除传感器输出的强干扰,这出下列状态和观测方程处理:
D(t)=R(t)+v(t)
式中,R(t)为前方障碍的真实距离(未知),R(t)是其速度(未知,)D(t)为距离观测值,Δt为两次观测的问题时间,w(t)和v(t)为高斯噪声。给定D(t),由Kalman滤波器估计R(t)和R(t)的值,并把估计值R(t)作为距离输入值,使用R(t)和D(t)的差值确定所用矩形模板的偏差。由于使用雷达探测的位置与雷达作为补偿。
使用上述算法可以有效提高雷达探测的可靠性,但当图像包含很强的边缘信息或障碍只占据相平面一个很小的区域时,仍不能得到满意的结果。因此,除对比度外,又引入视觉图像的颜色域。
3.3相合似然法
在探测到障碍后,CLARK算法将这些信息整合到道路探测算法(LOIS)中。LOIS利用变形道路的边缘应为图像中对比度的最大值部分且其方位应垂直于道路边缘来搜索道路。如果只是简单地将两个信息整合,则障碍探测部分的像素被隐藏,其图像梯度值不会影响LOIS的似然性。这样可以防止LOIS将汽车前方障碍的边缘误认为是道路的边缘来处理。但是当道路的真实边缘非常接近障碍的边缘时,隐藏技术则失效。
为了使隐藏技术有效,可以在障碍和道路探测之间采取折中的处理方法。这种折中的处理方法就是相合似然法。它将探测障碍固定的位置和尺寸参数变为可以在小范围内变化的参数。新的似然函数由LOIS的似然和小探测障碍的似然融合而成。它使用七维参数探测方法(三维用于障碍,四维用于道路),能同时给出障碍和道路预测的最好结果。其公式如下:
式中,Tb、Tl、Tw为相平面内矩形模板的底部位置、左边界和宽度的三个变形参数,[xr(t),xc(t)]为变形模板相平面的中心。[yr(t),yc(t)]为由雷达探测并经Kalman滤波的障碍在相平观的位置。将地平面压缩变化为相平面,的实时估计,为相平面内一个路宽的值(3.2m)。tan-1的压缩比率在相平面内不小于Tmin(路宽的一半),不太于Tmax(路宽)。通过求解七维后验pdfP(k'''',b''''LEFT,b''''RIGHT,vp,Tb,Tl,Tw|[yr(t),yc(t)],ObservedImage)的最大值获得障碍和道路目标。
传播学作为一门独立的学科从创建到现在,不过是几十年的历史,然而传播作为一种社会性的现象则是和人类社会的产生是同步的。并且,媒介和传者与受者两者一样,是作为最基本的传播要素而出现的,它是信息传递和接受的手段、载体。在最初的传播历史中,媒介表现为语音、语言和一些简单的符号等形式,随着科技的发展,媒介的技术含量越来越高。随着现代印刷机的发明,传播第一次有了现代性的意义,开始跨越以前人类想象力的极限,摆脱了时间性与地域性的制约,使地球上每一个个体都身陷于现代传媒的巨大旋涡之中。伴随着工业革命的继续发展,电台、电视等媒介也竞相跃上传播的舞台,并且,每一个媒介的产生,都在很大意义上影响了人类的生存境况,甚至同人类社会的变迁与文明的发展有着莫大的关系。特别是电视的发明与成熟,其作用更是巨大,这也使得媒介技术分析的现实意义迅速而明晰地凸显出来。在媒介分析理论界中至今享有盛誉的理论大师:雷蒙·威廉斯、麦克卢汉、梅罗维兹都有着自己对独特的理论思辩。
20世纪的最后十余年的时间里,更是科技日新月异、信息技术更新提速的年头,数码技术、光纤卫星通讯技术、电脑网络技术大放异彩。在所有这些技术逐渐走向融合和协调的基础上,世界性的因特网迅速崛起,成为人类历史上前所未有的崭新媒介,它不但打破了地域限制和国家疆界,还打破了文字、声音、图象等各种符号形式的隔膜,更使得个人的单向传播(自我传播)、人际传播、组织传播、大众传播等各个层次类型和规模的传播走向统一。其影响的触角也正伸向人类社会生活的各个方面,渗透到全世界的各个角落。对于传媒界而言,这些变化中包含着新的挑战和机遇,对于传播学研究界而言,这些令人激动的变化构成推动媒介分析研究的动力:一方面,要对信息传播新技术、新媒介、新环境、新实践作出深刻的分析和解释,离不开传播学理论的指导。另一方面,传播领域层出不穷的新变化,将一系列有关信息传播高新技术同社会发展的关系新传播研究课题摆在了学术界面前。将传播学理论研究和应用研究相结合,从前人的成果中获取启示,而又追求联系实际充实传播学理论,这是时代赋予传播学界的双重任务。媒介分析作为以媒介技术为焦点、以媒介分析及其发展同人类社会变迁的关系为核心的研究部类,正为这样的研究提供了极好的切入口。
一提到媒介分析理论,很多人第一个想起的名字便是麦克卢汉,殊不知,麦克卢汉的媒介分析理论在很大程度上是受英尼斯的影响,他自己也把英尼斯称为“良师”。早在20世纪50年代初期,英尼斯就在他的专著《帝国与传播》、《传播系统的偏向性》中广泛分析了人类转播的各种形式、各种技术手段,提出了一种把传播技术及其发展同人类社会变迁、文明发展史联系起来考察的媒介理论。比起麦克卢汉的媒介分析理论,英尼斯的媒介理论要早问世十多年。
英尼斯从20世纪40年代初起,在他生命的最后10来个年头里,他把传播置于人类历史运转的核心位置进行研究,并在此基础上形成了他的媒介理论。这一理论认为,一切文明都有赖于对空间领域和时间跨度的控制,与之相关的是传播媒介的时空倾向性,因而文明的兴起与衰落同占支配地位的传播媒介息息相关。英尼斯认为任何传播媒介都具有时间偏向或空间偏向,也就是说,传播媒介或具有长久保存但却难于运输的倾向性,或具有易于运输却难以保存的倾向性,前者便于对时间跨度的控制;如羊皮纸、石头等,英尼斯将其称为“偏向时间的媒介”;后者便于对空间的控制,如轻便的纸张,英尼斯将其称为“偏向空间的媒介”。根据英尼斯的观点,就这两种媒介同权利结构的关系而言,“偏向时间的媒介”有助于树立权威,从而利于形成等级森严的社会体制;“偏向空间的媒介”则有助于远距离管理和广阔地域的贸易,有助于帝国领土扩展,从而有利于形成中央集权但等级制度不强的社会体制。英氏还探讨了媒介的时间偏向和空间偏向两者之间的平衡对社会稳定的影响。他的媒介理论认为,建立在强调时间偏向的传播手段或强调空间偏向的传播手段基础上的两种不同的权威和知识垄断——宗教的或国家政府的,道德的或科技的,是帝国兴衰的主要动力、文明兴衰的主要动力。这种理论还把时间偏向和空间偏向视为辨证的统一体,认为一味地向时间倾斜和向空间倾斜会造成社会不稳定,一个稳定的社会离不开维护时间倾向和空间倾向间平衡地机制。
英尼斯的媒介理论最重要的一个特点是作者对科技理性的怀疑态度,尽管英氏很看重媒介技术发展史在文明发展史上的作用,但他并未从新的传播媒介的出现中看到解决现代文明中如下重要问题的希望:如何发展道德的力量去和物质科学所释放出来的力量向抗衡,以维持一种社会的平衡。例如,他在《传播系统的偏向性》一书中,英尼斯对知识的机械化中所隐伏的问题作了如下的评论:“机械化强调了复杂性和混乱,它造成了知识领域的垄断。对于任何文明而言,如果它不屈服于这种知识的垄断的影响,对此进行一些批判性的调查和提出批判性的报告已成为极其重要的事项。思想自由正处于被科学、技术和知识的机械化及伴随他们的西方文明摧毁的危险之中。”也许尽管英尼斯在对待科技的态度方面的悲观论调和怀旧情绪并不可取。但是他对现代西方文明过于强调物质科技的力量,忽视道德力量的批判性思考确是每一个习惯于独立思考的知识分子所必须尊重的。
假如说英尼斯是将媒介技术与人类文明发展史联系起来进行思考的先驱,那么麦克卢汉则是继续开拓这一领域、并在传播学领域研究中确立以媒介技术为焦点的研究传统的关键人物。麦克卢汉提出的媒介理论以其一系列大胆新颖的论点,迅速在西方学术界引起了重视,非但如此,他还在美国媒体与大众之间掀起了一阵麦氏风暴。
麦克卢汉最为重要的一个论点应该是“媒介即讯息”,这即是麦克卢汉与另一学者合著的一本重要著作的书名,也是其媒介理论的发人深思的主题。麦氏从功能和效果两个方面阐述了“媒介即讯息”的论点。首先,麦氏从媒介技术的功能作用的角度理解“内容”,提出任何媒介的“内容”总是另一媒介。“言语是文字的内容,正如文字是印刷的内容一样。而印刷则是电报的内容。如果有人要问,‘那么言语的内容是什么?’那么就有必要回答说,‘它是思想的实际过程,这本身就是非言语的’”。此外,麦克卢汉还从媒介技术的社会影响、效果的角度赖理解“内容”,认为一种新的媒介一旦出现,无论它传递的是什么样的讯息内容,这种媒介本身就会引发社会的某种变化,这就是它的内容,也就是它带给人类社会的讯息。
麦克卢汉另一个重要的观点就是其“媒介是人体的延伸”理论。他把媒介技术比作人体或人类感官的延伸,并提出了“感官的平衡”的概念。他指出,使用不同的传播技术会影响人类感觉的组织。例如,文字与印刷媒介是视觉器官——眼睛的延伸,广播是听觉器官——耳朵的延伸,而电视则是全身感觉器官的延伸。麦氏根据人类历史上占主导地位的传播方式手段的演变,把人类社会分为三个主要时期:口头传播时期、文字传播时期以及电子传播时期。在每个时期,人类感官之间的相互作用以及思维的方式都有其自己的特点。与此相应的是部落文化、脱离部落文化和重归部落文化。他认为人的感觉需要平衡,任何一种感觉一旦占据主导地位,那么另外的感觉的作用被人们所疏远,这样的个体不会是健全的。而新兴的电子传播时期,将会使人重新走向和谐,使人的各种感觉重新达到平衡状态。另外,麦还有关于“冷媒介、热媒介”的理论。
二人把媒介技术置于人类文明发展史的大背景进行考察,强调媒介技术本身的作用,在传播学研究中开创了以媒介技术为焦点的新的研究传统。这是此二人学说的重要历史地位。但是,他们的理论也存在着重要的缺陷:陷入了唯技术决定论的悖论。他们的媒介理论都失之于过分强调媒介技术的作用,把媒介描绘称导致社会变动的最大动力。从而被学界批评为陷入唯技术决定论的极端。这是我们在阅读他们的著作,吸取其精华思想时所必须警醒的。除此之外,两人在写作中,常常对一些基础的定义未作明确的界定,而为了追求一种夸张的风格造成了思维逻辑上的混乱。这一点也同样需要读者加以注意。
与此二人形成鲜明反差的是英国著名学者,西方批判学派中的社会文化学派的理论先锋、西方的文化批评家雷蒙·威廉斯。威廉斯毕生致力于文化研究,于他而言,大众传媒研究是其中一个重要组成部分。他认为,文化研究就是研究整个生活方式的组成部分之间的关系。首先,他认为,对媒介文化研究要运用一种整体的、历史的、动态的观点。其认为,文化现象(包括媒介文化)是和所有社会现象紧密联系的一部分,它们的变化牵涉到所有社会现象包括内在结构的变化,是一个永不停止的运动过程,“在任何时候,它都即包括对现代的反应,也包括对历史的延续。”其次,他把文化研究同社会制度联系在一起,试图探询文化制品与社会制度之间的关系。这可以从他以下观点看出来:第一,强调社会传播过程就是意义和定义在社会上建立并且历史地演变的过程,强调传播和社会制度机构、习俗之间关系密切。第二,指出大众传播的商业形式并非象某些人吹嘘的那样是自由的大众传播模式,而是一种实际上由商业系统控制社会的模式。第三,指出文化现象的复杂性以及传媒文化中的种种问题的社会性。他反对非此即彼的简单两分法去看待社会文化问题,大众文化中存在着内容低劣等问题,但并不是孤立的,他主张把他们看作社会问题,其背后有着复杂的社会原因,这其中包括:对过去真正的通俗文化传统的蔑视;作为人类文化伟大成就的伟大文化传统又被搞成少数人的独占;投机商们的乘虚而入。
对于传媒科技发展与社会关系这一问题,威廉斯批评了传播界占有显赫地位的两位大师的理论,一是拉斯韦尔的传播模式,二是麦克卢汉的媒介理论。威廉斯对拉斯韦尔的传播模式颇为不满,他认为这一模式遗漏了对真正社会与文化过程至关重要的“意向”问题,如果忽略了为什么目的而传播,那么就等于忽略了所有真正的社会与文化过程。这涉及到传播过程所指向的意向和利益等问题。他进一步指出,西方传媒的真正意向常常与有关当局公开宣言的意向有很大的区别,并与那些假象的一般的社会过程中的情形有很大区别。只有对意向的正确分析,才能更深的理解西方传媒的内在制度。
威廉斯也在以下几个方面对麦克卢汉的媒介理论提出了自己的批评,首先,他认为在麦氏的媒介理论中,实际上见不到社会的踪影,它丝毫不能解释不同的媒介特征与特定的历史文化情境及意向之间的相互关联。麦氏的理论虽然关注到不同媒介不特殊性,但只是把它们臆断地指派给媒介的心理功能。其次,麦氏的理论不但认可西方社会与文化的现状,而且尤其认可这种社会文化状况的内在倾向。也就是说,它缺乏对西方社会与文化状况及其发展趋势的理性批判,最后,麦的理论中还存在着严重的逻辑混乱的缺陷。
在提出对这两者进行批评的同时,威廉斯也谈到了自己对媒介文化意向与社会科技发展关系的看法:第一,所有技术的创造与发展都是为了有助于已知的人类实践,这是基本的意向因素,但却不是唯一的。第二,在许多情况下,技术往往产生原先并未预料到的使用情况与效果,他们也是对初使意向的真正的修正。第三,真正的决定是一个过程,一个牵涉到整个现实的社会过程,受到各种因素的制约。
总之,媒介技术是媒介发展的一个重要层面,它往往能引起巨大的传播方式的变革,从而导致社会本身巨变。所以媒介技术不仅仅是一个技术性的定义,其蕴涵的社会含义值得更多有识之士对其进行更深入的研究。
二、视觉传达艺术设计的创新设计理念
(一)对设计理念和视觉语言进行创新
随着人们审美观念的提高,人们的精神需求和品味也更加不容易得到满足,因此,商业企业在对设计师的设计理念方面的要求也要求越来越高,只有在设计理念方面不断的改革创新下设计的艺术作品才能与社会需求接轨,有利于视觉传达艺术长期有效的发展。在视觉传达艺术的色彩、文字光、影与文字方面进行创新设计,不仅能体现当前时代的特色,还能提高公众对美学的感知和认识。同时在视觉语言上的创新也十分重要,视觉传达艺术主要从图形语言话和语言图形化入手,视觉语言主要包括图形、文字和色彩的美学和视觉元素进行创新。视觉语言的创新更加吸引客户的实现,更好地进行宣传。
(二)实现多元化和个性化创新
设计师在设计艺术品时,利用艺术风格的多元化来展现出艺术品本身具有的个性化。在传统的视觉传达艺术的设计方式单一、缺乏个性和新颖。因此,设计师应改变传统的设计方式,把传统模式进行创新向多元化和个性化发展。设计师应抓住时展的需求,设计出具有现代特色的作品,将设计理念的多元化以及个性化,通过设计品的视觉传达艺术展现在人们的视线中。个性化的设计能在和其他作品相比中脱颖而出,设计师应该根据每个产品自身的特点设计出具有个性化特色的作品。满足人们日益提高的精神需求。
(三)设计理念的民族特色和绿色创新理念
随着社会的不断变化,人们精神越来越不容易得到满足,在这个到处充满创新和改革的时代,设计理念除了要多元化和个性化以外,还应该加入具有民族特色的创新理念。使设计理念的元素更加丰富,吸引群众目光的同时也发扬了我国的传统民族文化。在设计理念的不断创新和变化,企业也不能忽略对社会环保问题,绿色环保问题已成为现代人最为重视的一个问题,如果设计师能把绿色充分融入到视觉传达艺术的设计理念中,人们在追求美感还能增强绿色环保意识,从而提高了人们的生活环境质量,把视觉传达艺术更好的展现出来。
SystemView的操作图符库包含功能强大、易于使用图形模板设计模拟和数字以及离散和连续时间系统的环境.如FIR滤波器设计(包括:低通、带通、高通、带阻、Hilbert和微分)、IIR滤波器设计(包括:多极Bessel,Butterworth,Cheby-shev和Linear Phase)和FFT类型:magnitude,squared、光谱分析器、能量谱密度和相位.
1.2 信号分析、处理功能
SystemView分析窗口是能够提供系统波形的交互式分析窗口、动态探针、实时显示的可视环境.它还提供完成系统仿真、数据生成并处理操作的接收端计算器.另外,SystemView允许用户如同系统内建的库一样使用自己用C/C++编写插入的用户代码库;能自动执行系统连接检查,并显示出错的图符等特点,便利于用户系统的诊断.
2实验过程的流程及基于SystemView的电路原理模块的设计流程
实验过程流程如图1所示,在教学过程中,结合具体的教学内容,借助于SystemView仿真平台,根据原理、规律,应用软件提供的模块,设计电路,并确定电路中的各模块器件参量,运用仿真平台提供的虚拟仪器进行在线动态测量[8-14],这样以人机交互的方式,可使每位学生亲自动手接触电路,连接元件,依据电路设计要求更改相应元件参量,从而达到培养学生的设计、创造能力.SystemView电路模块设计流程如图2所示,可按照理论要求,方便地调整和修改模块器件参量,分析各器件参量对系统产生的影响与作用.这样将连线、测试、修改、分析、仿真结果的观察相统一,与理论描述相对照比较,把实验与理论有机相结合,加深了学生对理论的认识及理解,提高学生逻辑思维能力.
3电路设计与仿真实践
以“数字基带传输系统[15]”为例进行电路设计及实时仿真.3.1电路模型分析数字信号基带传输系统主要由脉冲形成器、发送滤波器、传输信道、接收滤波器和识别等功能电路组成[2,10].3.2模型搭建及仿真
启动SystemView仿真平台[14],进入设计窗口.设计创建实验电路过程如下:1)模块选取在SystemView原理图编辑窗口中,从左边的图符库中选择需要的图符,将各图符模块选取到设计窗口中.2)实验电路图符的连接将每个图符依据数字基带传输系统电路原理模型,在设计窗口中连接起来形成如图3所示仿真电路.系统仿真电路中各图符块的参量设置如表1所示.
3)电路文件的保存电路创建完成后将该电路保存为“TEST”,以便进行调用、测试.设置SystemView系统视窗并仿真:设置“时间窗”参量:Start Time 0s;Stop Time 0.5s;Sample Rate 10 000Hz.运行系统之后,进入“分析窗”,进行观察、分析.
4仿真结果及分析
眼图是利用实验手段方便地估计系统性能时在示波器上观察到的一种图形,衡量基带传输系统性能的重要方法,借助于它可以达到有效地改善系统性能.通过SystemView分析窗“绘制新图”功能,在“System Sink Calculator”对话框中的Style和Time Slice按钮,设置好“Start Time(sec)”和“Repeat Length(sec)”栏内参量,获得数字基带传输系统的眼图.如图4所示,在低通滤波器为巴特沃兹滤波器(Fc=60Hz)条件下,当信道中噪声方差(Std Dev)为0.1V时,接收滤波器的输出波形眼图与噪声方差为0.3V的眼图分别如图4(a)和(b),可以观察到,“眼睛”张开情况;改变低通滤波器的带宽,如巴特沃兹滤波器(Fc=30Hz)条件下,当信道中噪声方差(Std Dev)为0.1V时,接收滤波器的输出波形眼图与噪声方差为0.3V的眼图分别如图5(a)和(b),直观地观察出“眼睛”的情况;当信道中噪声方差(StdDev)为0.1V,巴特沃兹滤波器的信道带宽不同时,抽样判决比较后输出的信号眼图如图6(a)和(b)所示.接收端通过抽样判决来重现基带信号,当噪声过大、低通滤波器的带宽较窄时,抽样判决就会产生错误,产生误码.通过以上眼图的观察研究,明显地得出:噪声大小对眼图的影响,噪声越小,线条越细,越清晰,“眼睛”张开越大,误码率越小.同时观察到信道带宽对眼图的影响情况,眼皮厚度反映了加入噪声的幅度和信道带宽,信道中加入的噪声干扰越大及信道越窄,眼图越模糊,越杂乱等这些较抽象的物理现象及使学生深刻理解高斯滤波器、抽样比较电路的物理功能.
目前传输维护需要动态、图形化、报表功能、提取资料快速、完备性等功能相融合的传输资源管理系统来实现传输资源全程管理来保证资源数据的准确性及实时性。石家庄分公司目前应用的资源管理系统包括:直真资源管理系统、亿阳资源管理及调度系统、惠远2M资源管理系统、海智线路资源管理系统。
1 传输资源管理范围及组成
传输网管管理的资源数据按来源分为动态数据与静态数据。动态数据包括:网元、拓扑、托架、机盘、端口、CTP、交叉连接及子网连接。静态数据包括:省、地市、区域、站点、机房、ODF、DDF、综合柜、光交接箱、接头盒、管道、管道段、管孔、子管、人手井、杆路、杆路段、吊线、电杆、直埋、直埋段、标石、光缆及电路。
2 动态更新功能
动态更新功能的目前主要针对于能与传输网管相连的直真系统,就是电路资源管理系统。相作为作为传输专业的资源维护人员,面对随时都会进行的新增设备、传输环网调整、配合BSC、交换、支撑等部门的网络调整及电路申请都需要花费大量时间创建新数据并更新大量传输资源资料,资源管理系统的动态更新能极大的减少工作量来提高工作效率。目前直真资源管理系统中动态资源准确性从两方面得到了保障,一是技术上保证其准确,首先一次性采集入库所有动态数据,通过分析EMS上报的对象改变类型通知,实现动态数据的实时增删;二是从管理流程上建立一项机制,对于各厂家EMS作出的任何可能影响其北向接口的操作均需要事前通知综合网管 。直真传输资源管理系统通过与设备厂家网管(例华为T2000网管)接口对接实现设备、通道资源等数据同步,来实现对设备及电路等资源信息的动态维护和管理。传输网静态资源管理,主要是通过数据库的形式,再现全网资源情况,实现对传输资源的有效管理,同时提供把资源能力迅速转化为电信业务能力的有效手段,通过对资源利用的描述和统计,为运行维护和工程建设提供有效的支撑。静态资源的准确性作为与动态资源相辅相成的基础数据也在一定程度上保障了动态资源数据的可靠性。静态资源的数据准确性从两方面得到了保障,一是从技术上保证数据整理时统一模板中的数据可以由系统逐条录入,也可以通过导入程序批量入库。在逐条录入的时候通过使用枚举、非空、数据类型等限制提高录入的准确性。二是传输网络工程新增设备、线路等静态资源后,由数据维护人员采用数据整理时的统一模板整理,由传输网管维护人员负责数据的检查与导入。直真系统通过建立采集任务来对新设备进行数据采集,采集完毕后维护人员将设备的站点、机房、网元归属、端子端口信息、ODF、DDF等静态信息以EXCEL表格形式导入直真系统来进行网元信息补充。对电路通道更新直真系统也是通过与设备厂家接口对各EMS上电路路径更新的数据进行采集来实现电路通道动态更新管理。当前直真资源管理系统主要是综合网管和中兴、烽火、华为三个厂家的corba接口不稳定。综上所述,传输资源管理系统应以动态更新为根本朝综合资源管理系统迈进,传输作为连接的纽带将无线和交换专业相结合,以电路调单为基础,把电路的全程资料统一管理,最大限度的为各专业提供一个更新快速、完整、准确的资料库。
3 报表功能
2013年,集团公司对各项报表的要求日益严格,为了更好的完成各项传输报表,提高报表质量,各分公司都要花费一定时间来整理上报各项数据。传输报表包括:传输网络月报、网络季报、财务月报、财务季报、单节点单链统计、各交换局互开电路表等传输资源报表。各报表包含的内容涵盖了传输自建及租用资源线路、设备、电路、网络资源占用情况及规模。传输资源系统应具备统计查询、分析功能,实现对所有传输资源的各种信息统计查询、统计分析功能,并提供灵活报表生成、定制等功能;实现对各种资源数据的多种查询方式的综合查询功能,包括:基本属性信息、资源占用情况、关联信息等查询、分析功能。
4 总结
传输网络资源管理作为传输网的重要组成部分,日益成为运营商所关注的一个焦点,通过对既有资源的有效利用和调配,能够快速的转化为业务能力,为市场竞争提供有力的支撑。目前的电信行业竞争已经从网络资源的规模竞争,逐步发展到以客户为中心的网络运行质量保障、运行成本控制、服务竞争阶段。因此,河北移动关注的问题也逐渐变为如何提供更好的通信服务,提高通信服务价值,继续保持并增加利润。资源管理系统可以通过对资源进行有效的管理和经营,充分发挥出资源的潜力,是解决这一问题的重要手段和前提。
让我们再听听作者们的体认。
葛水平说,自己与赵树理先生惟一有关系的就是都出生在山西。在当代文学的历史叙述中,以赵树理为代表的山西作家群,一直具有“流派”性质。其实,赵树理的创作生涯中也有不少困惑,而且这些困惑是他本人所不能解决的。如果说我们和前辈作家有联系的话,就是地域特征的规约,使我们共同关注了普通人。山西是农业省份,乡土中国文化在这里一直流淌,这是一种不自觉的文学接续。与“后”有关系的是我们的出生。葛水平说,值得庆幸的是,现在作家的创作环境与赵树理那个年代比较起来要自由得多,文学所承担的重负也不能简单比较。让她感慨的是,今天还有多少作家能够像赵树理那样专注和有敬畏之情、能够像赵树理那样坚韧和持久?这也是我们只能在赵树理之“后”而难超越的最终原因。无论在山西还是在全国其它地方,赵树理等文学前辈已经成为我们的尺度和丰碑,也是构成今天的“焦虑”之一。但一个时代有一个时代的文学,岁月拉开的不仅是物理时间的距离,同时拉开的还有社会、人文环境以及对文学理解的距离。这一切不在我们的把握之中,因此文学最终与命名无关,与之相关的是我们如何对人类的基本价值和文学价值进行坚守与捍卫。
这个突破性的研究揭示了筛器蜘蛛(Uloborus Walckenaerius)的捕捉丝的方向集水效应,提出了“多协同效应”机制,为新型仿生集水材料研究提供思想理论基础。
据统计,我国计算机技术领域2000年共41167篇,2005年增加到72979篇,增加了31812篇,增长幅度达77.27%。其中,2001年较2000年增加了4949篇,增长幅度为12.02%;2002~2003年,的增长量分别为16958篇及22793篇,年增长率均达到36%以上;2004年,的数量较2003年增加了20904篇,数量虽然仍在增加,但增长速度有所减慢,只达到24.34%;2005年,发表的论文数量突然大幅度下降,较2004年减少33792篇,下降幅度达到31.68%。总体上看,从2000~2004年,我国的计算机技术领域的数量持续增长,增长速度是波浪式发展的态势,2005年,数量及增长速度都出现下降,但较2000年仍增长了77.27%。2000~2005年计算机技术情况见表1。
2计算机技术论文产出结构分析
2.1计算机技术各领域论文产出权重的年度变化
从2000~2005年,计算机技术各领域数量占整个计算机技术领域的比重每年虽然都有变化,但总的分布格局未被打破。计算机的应用所占比重一直居于每年的主导地位,除2003年占39.19%外,其它几年均在40%以上;计算机软件年所占比重在27%左右,居第二位;计算机硬件年所占比重在22%左右,略低于计算机软件,居第三位;计算机技术理论在整个计算机技术领域所占比重最小,年所占比重在7%左右,居四个领域的最后一位。从各领域的权重发展变化状况分析,计算机的应用呈上下波动,总体下降的局面;计算机软件总体发展平衡,略有降低;计算机硬件呈缓步上升的势头;计算机技术理论作为计算机发展的基础,呈现不断上升的态势。计算机技术各领域论文产出权重的年度变化见表2。
2.2计算机技术论文各领域产出数量的年度变化
2000~2005年,从计算机各领域的数量及增长率来年看,计算机技术理论呈现正负相间的增长格局,年增长率于2002年达到高峰,为76.18%,2005年比2004年下降了27.64%,为6年间的降幅最大值,但总体来说,2000~2005年发表的论文数量从2818篇增加到6407篇,增加了3589篇,增长率达到127.36%;计算机软件从2001~2004年一直呈现增长态势,2002~2003年增长速度较快,年增长率为38.00%、34.38%,而2005年则出现负增长,降幅达到27.9%;计算机硬件论文的发表从2001年至2004年呈现持续的大幅增长,其中2001~2003年连续3年增长率均在45%左右,但2005年数量大幅下降,较2004年减少了10640篇,降幅达到计算机技术各领域年下降幅度的最大值39.85%;计算机的应用年度情况与计算机软件论文年度变化情况相类似,于2001年始增长,2003-2004年出现较快的增长,年增长率为30%左右,2005年也同样地出现负增长,下降幅度为29.83%。计算机技术论文各领域产出的年度变化情况见表3。
3结语
3.1计算机技术领域总体发展速度较快,而且正在步入转型期
2005年是现代计算机发明60周年,也是个人电脑发明30周年。可以不夸张地讲,建立在计算机技术基础上的计算机以及计算机网络,推动了整个世界的高速发展;创造了今天世界的繁荣。计算机是新技术革命的一支主力,也是推动社会向现代化迈进的活跃因素。计算机科学与技术是第二次世界大战以来发展最快、影响最为深远的新兴学科之一。但是目前计算机技术的发展正进入一个从技术到设备的转型期,发展速度有所减缓,但这并不妨碍计算机产业已在世界范围内发展成为一种极富生命力的战略产业。
根据对同时段数量统计,2000~2005年间,中国计算机技术领域数量的年平均增长率为15.5%,低于中国工业技术领域22.0%的增长率。但2000~2004年间,计算机技术领域数量的年平均增长率为27.3%,高于工业技术领域22.0%的增长率。2005年,计算机技术论文的发表出现负增长,但仍占工业技术领域的11.34%,表明计算机技术已在2000~2004年间处于快速的发展时期,2005年,与全球计算机技术发展一样出现拐点和发展颈瓶(见表4)。
3.2计算机的应用是计算机技术研究的重点
计算机的应用是近年来重点发展的领域,涉及广泛,包括科学计算(或称为数值计算)、过程检测与控制、信息管理(数据处理)、计算机辅助系统人工智能、信息高速公路及电子商务等。目前,计算机的应用已从工业技术领域深入到社会及人们的日常生活之中,国际互联网Internet和多媒体技术的发展已使人们能够以光的速度在全球范围相互传输信息,遨游广阔的世界,它极大地推动全球范围科技、文化的交流,推动金融、电子商务的发展,促使传统产业发生巨大的变化,人们生存在一个无所不在的数字化世界中。计算机的应用已从少数专家掌握的技术变成了普通人可以参与的活动,从而极大地推动了计算机技术的发展。
2000~2005年,我国计算机的应用数量从19441增加到30118篇,6年间增长了144.3%,论文数量在计算机技术领域中所占比重最大,为41.23%,远高于计算机技术其他领域的比重(计算机理论所占比重为7.78%、计算机软件占27.45%、计算机硬件占23.54%)。从以上数据可知,计算机的应用是计算机技术中最受重视的领域,已成为计算机技术中最具开拓价值及产业化的领域(见表5)。
3.3计算机硬件发展迅速
计算机硬件是计算机技术的物质体现形式,主要包括个人电脑(PC机)、外部设备及网络设备,其中PC机包括台式PC机、笔记本电脑、PC服务器和工作站等。我国整个计算机产业的发展重点在硬件制造业上,约占计算机产业总产出70%左右。随着我国经济建设步伐的加快,几大信息工程相继实施,对我国计算机硬件工业产生了巨大的推动作用。在日益激烈的市场竞争中,我国已涌现出一大批具有自主知识产权的知名品牌,如联想、方正等。我国的计算机硬件研究也在产业发展中获得了长足的进步。
2000年至2005年,我国计算机硬件数量从7212增加到16060篇,6年间增长了122.7%,年平均增长率在计算机技术所有领域中最快,为23.32%,高于计算机技术其他领域的比重(计算机理论年平均增长率为23.24%、计算机软件为14.64%、计算机硬件为11.98%,见表6)。从以上数据可知,计算机硬件研究在计算机技术中发展最快,也是产业化最迅速发展的领域。
Abstract: This paper describes an adaptive cooperative technique and opportunistic role-selection scheme based on a traditional cooperative scheme. We create an opportunistic cooperative framework where two users compete to transmit their own information to a common destination. Depending on the instantaneous channel conditions, either of the users can be the information source and the other user is an amplify-and-forward relay. To reduce the likelihood of system outages, an optimal centralized role selection scheme called C-ROSE is proposed. This scheme maximizes the received signal-to-noise ratio at the destination. Our dynamic, flexible role-selection scheme can ameliorate transmission reliability in order to create an effective cooperative communication system.
Key words:cooperative communications; outage probability; role selection
中图分类号:TN929.5 文献标志码:A 文章编号:1009-6868 (2013) 04-0046-03
在协作分集系统中,当有多个相同类型的节点(如信源、中继或目的端节点)可供选择时,可通过机会地选取具有最高端到端信噪比的节点参与协作来提高传输鲁棒性。2006年,Bletsas等人针对典型的多中继协作场景首次提出了机会选择思想[1-2]。随后,这种思想被拓展到多源协作系统[3-6]和多目的端协作系统[7-10]中。上述工作的共同点在于:每个节点的角色(即信源、中继或目的端)都是预先确定的,且不随系统中瞬时信道状态的变化而变化。尽管这种预先确定的(固定的)角色配置有其自身优点,它却不能保证每次信息传输时均采用信道质量最好的链路,因此存在一些缺陷:
(1)公平性不足。
(2)能量有效性不足。
针对上述不足之处,文献[11]推导了一种具有两发射机、两接收机的四节点ad-hoc网络的信息理论容量上下界。分析表明:发射机(接收机)间的协作分集可以提供一种高信噪比加性增益。进而,针对相同的系统模型,Ng等人同时考虑了接收机协作和发射机协作,并刻画了其协作开销(以网络中分配的功率和带宽为指标)[12]。最近,通过在上述系统模型中增加中继节点并考虑含有多个信源-目的端对的一般场景,Ju等人[13]提出了几种最优和子优的传输策略并分别计算了对应的中断概率。尽管上述工作[11-13]研究了信源或目的端节点间的相互协作,机会角色选择的概念尚未建立起来。更重要的是,机会角色选择的内在工作机理尚未得到深入研究,不同链路对于系统中断性能的影响仍然是未知的。为解决上述问题,文章将构建一种两用户机会角色协作框架,并提出一种中心化的机会角色协作策略。通过这种动态的机会角色选择机制,全面提高系统端到端传输可靠性。
1 系统模型与协议描述
1.1 系统模型
在无线ad-hoc网络中,终端设备间以彼此对等的方式相互通信而不需要有线网络者或基础设施做更好支撑[11]。为克服路径损耗或障碍物等因素影响,信源与目的端间的通信可借助一些中间节点来实现,由此形成了中继链路。同时,由于每个终端设备所具有的能量是有限的,每个节点都会试图借助临近节点帮助转发信息以减少能耗。对于这些场景,机会规划可以有效利用随机信道条件来提高传输鲁棒性,但同时也会带来节点间的相互竞争。如图1所示,考虑一种协作分集系统,其中两个用户S 1和S 2向同一目的端D发送信息。所有终端均为单天线设备且工作于半双工模式。此外,假设任意两节点间的信道均满足互逆性且遭受独立的瑞利平坦慢衰落[14]。
在每次两阶段信息传输前,S 1和S 2中的某个用户被机会地选为信息源,另外一个用户作为其放大转发(AF)中继。这里考虑一种能量受限的场景,即S 1和S 2只在两阶段中的某一阶段传输信息。对于该场景,开采S 1和S 2间的协作分集将获得更高的传输可靠性。文章将这种协作机制称为机会角色选择(ROSE)。
1.2 中心化角色选择策略
中心化ROSE策略(C-ROSE)是指在系统中某个节点集中收集所有链路的信道状态信息(CSI)来中心化配置各节点的协作角色。该策略依赖于目的端对CSI的集中式收集和比较判决。具体来说,C-ROSE策略在5个时隙内完成角色选择。在前两个时隙,用户S 1通过直传链路S 1D和两跳中继链路(S 2的放大转发操作将产生另外1 bit信令开销)S 1S 2D分别传输1 bit测试信令到目的端。进而,目的端执行最大比组合(MRC)来收集直传链路和中继链路信号。类似地,在接下来两个时隙,用户S 2通过直传链路S 2D和中继链路S 2S 1D分别发送1 bit测试信令给目的端D。目的端D通过MRC组合收集来自S 2的直传链路和中继链路信号,在D具有更高组合信噪比的用户被选为信息源,而另外一个用户被选为AF中继。由此,可在目的端D进行中心化角色判决。随后,目的端广播1 bit信令“0”或“1”来告知S 1和S 2其角色判决结果。该过程将占用一个附加时隙,于是产生总共5个时隙的选择延迟。注意,C-ROSE的延迟和信令开销不随系统中瞬时信道条件的变化而变化。
2 机会角色选择的研究意义
机会角色选择机制作为一种崭新的自适应协作方式,它源于传统的固定角色指配机制,但又有其不可比拟的优势:
(1)同样是利用中继协作技术的增益来提高系统的可靠性,机会角色选择机制充分利用了无线信道衰落的随机波动特性对各个节点角色进行实时的最优分配,从而全面提高了端到端的信息传输可靠性。
(2)与传统的固定节点角色机制相比,根据各条链路的CSI,合理地、机会地规划各节点的角色,有助于增强系统中各节点角色配置的动态性和灵活性,进而提高各节点信息传输的公平性。
(3)由于各节点能量或功耗是有限的,通过动态调度各节点参与协作的角色,能够均衡各节点能耗(或功耗),有效延长系统生命周期,保证系统能量的高效性。
(4)由于ROSE协作系统的节点对等特性和协作自组织特性,可尝试通过分布式ROSE策略以降低机会角色选择的信令开销和实现复杂度。
总之,ROSE协作系统研究是传统协作分集系统研究的深化和拓展,具有重要的理论研究意义和实用价值[12-13]。
3 亟待解决的问题
虽然协作分集系统中的机会角色选择策略有诸多优势,但也存在其特有的、亟待解决的问题:
(1)如何能够降低最佳方案选择的难度?
在机会角色选择协作系统中,每个节点都可能作为信源、中继或目的端,因此候选角色配置方案的种类会随着节点数量的增加而增加。由于最终角色配置方案的确定依赖于各节点间链路的瞬时信道衰落状态,而各角色配置方案共享相同的链路信道状态,这会使得各种角色配置方案之间紧耦合,从而增大候选角色配置方案间的相关性和最佳方案选择的难度。因此,如何在保持节点角色选择动态性和灵活性的同时,最大程度降低方案选择的难度成为一个关键性问题。
(2)如何通过研究信令反馈、交互传输错误引起的角色判决偏差使理论分析更符合实际应用?
任何理论研究都是以实际应用为最终目的。在角色选择机制协作系统中,大量的信令反馈与交互被引入,为了降低性能分析的复杂度,在分析的过程中往往默认信令传输不会出现差错,或是忽略为支撑信息传输而实际存在的信令传输,由此得到的性能分析结果只能看作是系统实际性能的上界[1-2],[15],这样做是不全面不客观的,会导致理论分析与实际应用之间存在性能偏差。因此,深入研究信令传输错误对ROSE协作系统性能的影响有助于全面、客观评估ROSE协作系统的实际可达性能,减小理论分析与实际性能间的偏差。
(3)如何合理分配信息和信令发射功率?
在传统的协作系统中,信令反馈和交互较少发生,因此可以在考虑功率分配问题时只关注用于信息传输的发射功率分配,而忽略用于信令传输的发射功耗。然而,对于信令反馈与交互频繁发生的ROSE协作系统,信令交互与信息传输变得同等重要,在系统(或每个节点)总发射功率一定条件下,增大用于信息传输的发射功率就意味着减小用于信令传输的发射功率,信令交互错误会扰乱节点角色的机会规划配置,导致系统传输中断。反之,一味增大信令发射功率虽然能选出最有利于信息传输的角色配置(及对应的无线链路),却会因为信息发射功率的枯竭而对系统传输可靠性产生严重影响。因此合理分配各节点用于信息和信令传输的发射功率,将同时保证信息和信令传输可靠性,最终全面提升ROSE协作系统传输性能。
4 结束语
文章首先构建了一种两用户机会协作框架,在该框架中根据瞬时信道条件,每个用户都能作为信源(或中继)来传输(或转发)信息给目的端。针对该协作框架,我们提出了一种中心化机会角色选择策略,即C-ROSE。可以看出,协作分集系统中机会角色选择策略研究作为一个崭新的前沿课题,可充分研究并利用无线信道的随机波动特性有效提升协作分集系统的抗衰落性能,是传统机会协作机制的拓展和深化。这不仅符合传统协作分集技术的发展趋势,具有重要的理论研究意义,而且对于构建稳固、高效、互惠的协作传输体系也具有重要的实际应用前景。
参考文献
[1] BLETSAS A, KHISTI A, REED D P,et al. A Simple Cooperative Diversity Method Based on Network Path Selection[J]. IEEE Journal on Selected Areas in Communications, 2006, 24(3): 659-672.
[2] BLETSAS A, SHIN H, WIN M Z. Cooperative Communications with Outage-Optimal Opportunistic Relaying[J]. IEEE Transactions on Wireless Communications,2007, 6(9): 3450-3460.
[3] ZHANG X, WANG W, JI X. Multiuser Diversity in Multiuser Two-Hop Cooperative Relay wireless Networks: System Model and Performance Analysis[J]. IEEE Transactions on Vehicular Technology,2009, 58(2): 1031-1036.
[4] CHEN S, WANG W, ZHANG X. Performance Analysis of Multiuser Diversity in Cooperative Multi-Relay Networks Under Rayleigh-Fading Channels[J].IEEE Transactions on Wireless Communications, 2009, 8(7): 3415-3419.
[5] SUN L, ZHANG T, LU L,et al. On the combination of cooperative diversity and multiuser diversity in multi-source multi-relay wireless networks[J]. IEEE Signal Processing Letters, 2010, 17(6): 535-538.
[6] DING H, GE J, DA COSTA D B,et al. A New Efficient Low-Complexity Scheme for Multi-Source Multi-Relay Cooperative Networks[J]. IEEE Transactions on Vehicular Technology, 2011, 60(2): 716-722.
[7] YANG N, ELKASHLAN M, YUAN J. Impact of Opportunistic Scheduling on Cooperative Dual-Hop Relay Networks[J]. IEEE Transactions on Communications, 2011, 59(3): 689-694.
[8] YANG N, ELKASHLAN M, YUAN J. Outage Probability of Multiuser Relay Networks in Nakagami-m Fading Channels[J]. IEEE Transactions on Vehicular Technology, 2010, 59(5): 2120-2132.
[9] DING H, GE J, DA COSTA D B, et al.Spectrally Efficient Diversity Exploitation Schemes for Downlink Cooperative Cellular Networks.[J] IEEE Transactions on Vehicular Technology, 2012, 61(1): 386-393.
[10] KIM J, MICHALOPOULOS D S, SCHOBER R. Diversity Analysis of Multiuser Multi-Relay Networks[J]. IEEE Transactions on Wireless Communications, 2011, 10(7): 2380-2389.
[11] HOST-MADSEN A. Capacity Bounds for Cooperative Diversity[J]. IEEE Transactions on Information Theory, 2006, 52(4):1522-1544.
[12] NG C T K, JINDAL N, GOLDSMITH A J, et al.Capacity Gain From Two-Transmitter and Two-Receiver Cooperation[J]. IEEE Transactions on Information Theory, 2007, 53(10):3822-3827.
[13] JU M, KIM I M, KIM D I. Opportunistic Source/Destination Cooperation in Cooperative Diversity Networks. IEEE Transactions on Wireless Communications, 2010,9(12): 3822-3937.
[14] SKLAR B. Rayleigh Fading Channels in Mobile Digital Communication Systems, Part II: Mitigation[J]. IEEE Communications Magazine,1997, 35(7): 102-109.
[15] DING H, GE J, DA COSTA D B,et al.Link Selection Schemes for Selection Relaying Systems with Transmit Beamforming: New and Efficient Proposals From a Distributed Concept[J]. IEEE Transactions on Vehicular Technology, 2012, 61(2): 533-552.
作者简介
多项原创成果
入选“”
早在香港科技大学读博期间,刘云淮就开始了弱连接条件下无线自组织网络架构和节点协同技术研究,迄今已逾十年。
众所周知,若无线通信弱,网络节点间连接特性则会发生改变,针对这一现状,刘云淮从概率式网络模型出发,通过探寻无线网络中的基本机理,设计出一系列拓扑控制方法,包括针对Sink节点到其他节点通讯模式的Conreap算法,以及针对节点间通讯模式的Brasp算法,得到欧美同行很高评价。美国佐治亚理工大学计算机工程系教授、可靠通信实验室主任Raheem Beyah认为“概率型网络模型更真实的反映无线通讯中的链路行为”,加拿大Alberta大学计算机科学系教授Mike MacGregor表示“概率型网络模型能更好的反映网络行为,为节点最优分布奠定了理论基础”。
基于概率型网络模型,刘云淮针对传统网络信息感知模型进行了大胆改革。在无线传感器网络中,传统感知模型为圆盘结构,存在确定半径,圆盘内的信息可以通过感知节点获取,但圆盘外的信息则无法感知,因此无法反映真实的传感器行为。反复实验下,刘云淮带领团队提出了基于链路的概率型感知模型,可以把链路性、概率性和多感知融合性这三个现实传感器的独特特性反映出来,并把误差缩小在百分之十以内。
网络是信息交换的载体。它的“四通八达”与否,直接影响着信息传输程度。
那么,清除一切网络传输中的障碍,是否就一定能够确保信息通畅呢?
针对这一问题,刘云淮认为恰恰相反,“少量干扰行为是激发网络传输性能的关键”。
利用干扰回避、干扰消除和干扰对齐等管理技术,他原创提出基于干扰的副信道通信模式,增加一些携带一定控制信息的干扰信号,制造可以最终被消除掉的主动干扰,在传输过程中反倒可以提高网络“活力”,增加网络传输量,提高传输效率,从而提高网络整体性能。
刘云淮并未满足于此,基于此模式,他充分扩展了数学中Quorom理论的成果,设计实现了高效低功耗的分布式节点协同机制,减少了传统中传输失败和网络丢包现象。从网络节点间的感知精度出发,在实验过程中,提出了频谱感知节点传感器网络,设计并实现了协同边界定界算法,大幅度提高了网络传输中精确信息的获取量。
真实的无线网络系统,要在一系列核心技术的支持下才能正常运转。在多径反射效应下的节点测距方法上,刘云淮开创了无线网络领域研究的先河。他以频率为突破口,通过相同节点在不同频率下的信号强度测量,经过数学模拟,采用傅里叶变换的方式求解,可以获得更精确的距离。同时,在网络热点的判断问题上,刘云淮首次提出了非密度的、基于移动性的网络热点分布模型,设计实现了移动节点的热点感知方法,为今后的数据挖掘和信息获取提供了有力支撑。并针对网络传输丢包的问题,设计了新的多信道分配算法,以均匀分布节点缓冲区,加大了网络传输速度。
凭借在弱连接条件下无线网络关键问题上的诸多创新性成果,刘云淮迄今为止已经在本领域最权威的国际期刊《IEEE Journal on Selected Areas in Communications》《IEEE Transactions on Mobile Computing》《IEEE Transactions on Parallel and Distributed Systems》以及著名国际学术会议如ACM Mobicom,ACM Sensys,ACM SIGKDD,IEEE INFOCOM,IEEE ICDCS等。并且在2008年获得IEEE ICDCS最佳论文奖,是638篇论文中唯一获奖论文。
在国际计算机网络研究领域,较高的科研天分与勤勉的科研态度让刘云淮很快声名鹊起,并在2015年成为国家“”青年拔尖人才中的一员。
关系国计民生
荣获“优秀青年科学基金”
科研,是为人类发展服务。刘云淮深谙此理。
近年来,以智能手机为代表的移动通讯设备加快了网络感知趋势的发展。以个人为中心,从海量数据中获取高精准信息的群智感知和群智计算开始成为目前移动网络的研究热点。
历经五年学习,2000年刘云淮于清华大学毕业后,即前往惠普做了一名工程师。两年一线工程师的经历,让他养成了一种与市场同步的科研理念,也敏锐地意识到无线网络的研发命脉。随后,他来到香港科技大学再次深造,开始在实验室里反复印证自己脑海中的系列想法,迅速打开了无线网络架构及节点协同技术领域的“大门”。
近十年弱连接条件下无线自组织网络架构和节点协同关键技术研究工作,让刘云淮积累了大量实战经验。来到公安部第三研究所物联网中心之后,顺应社会发展,为深入拓展这一研究,他开始把眼光瞄向移动群智感知网络层面。由他申请的项目课题,已经获得国家自然科学基金“优秀青年科学基金”支持。
传统由基站提供服务的有组织无线网络,单一节点间的链接能力较弱,在弱连接广泛存在的情况下,通信传输日渐艰难。因此,基于特定传感器的无线传感器网络越来越不适应信息大爆炸的现代社会,变革已经成必然。
正所谓一花独放不是春,百花齐放春满园。社会的快速发展,正要求群策群力。
群智感知的概念即发源于此,其关键是利用大量无意识协作,低干扰和低负担的非专业感知源来获取信息,具有广泛的应用性,国际社会纷纷迈开了群智感知网络研究的脚步。但很快发现,群智感知网络研究过程中,面临着网络差异性大、数据量大、数据质量低劣、数据异常等诸多难题。