时间:2022-09-27 00:03:49
引言:寻求写作上的突破?我们特意为您精选了4篇自动化设备论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
一、电力通讯自动化设备
(一)载波通讯设备
一个完整的载波通讯系统,按功能划分,大体分为调制系统、载供系统、自动电平调节系统、振铃系统和增音系统。其中前四部分是载波机的主要组成。
1.载波机。电力线载波机概括起来由四部分组成:自动电平调节系统、载供系统、调制系统和振铃系统。载波机类型不同,各自系统的构成原理、实现方式等都有所不同。调制系统:双边带载波机传输的是上下两个边带加载频信号,只要经过一级调制即可将原始信号搬到线路频谱;单边带载波机传输的是单边带抑制载频的信号,一般要经过两级或三级调制将原始低频信号搬往线路频谱。自动电平调节系统:此系统的设置是为补偿各种因素所引起的传输电平的波动。在双边带载波机中,载频分量是常发送的,在接收端,将能够反映通道衰减特性变化的载频分量进行检波、整流,而后去控制高载放大器的增益,即可实现此目的;单边带载波机,设置中频调节系统,发信端的中频载频一方面送往中频调幅器,另一方面经高频调幅器的放大器送往载波通路,对方收信支路用窄带滤波器选出中频,放大后,一方面送中频解调器进行同步解调另一方面作为导频,经整流后,再去控制收信支路的增益或衰减,从而实现自动电平调节。振铃系统:为保证调度通讯的迅速可靠,电力线载波机均设置乐自动交换系统以完成振铃呼叫自动接续的任务。双边带载波机是利用载频分量实现自动呼叫,单边带载波机则设有专门的音频振铃信号。载供系统:其作用是向调制系统提供所需载频频率。在双边带载波机中,发信端根据调制系统的需要,一般设有中频载频和高频载频,而且收信端除设有一个高频载频振荡器外,中频解调器的载频则主要靠对方端送过来的中频载频,以实现载频的“最终同步”。
2.音频架、高频架。在载波通讯中,如果调度所和变电站相距较远,为了保证拨号的准确性和通讯质量,在调度所侧安装音频架,而在变电站侧安装高频架,两架之间用音频电缆连接起来。载波机按音频架、高频架分架安装后,用户线很短,通讯质量明显提高,另外给远动通路信号电平的调整也带来方便。同时,话音通路四线端亦在调度所,便于与交换机接口组成专用业务通讯网。
(二)微波通讯设备
根据微波站的作用,所承担任务的不同,微波站分为不同类型。根据站型的不同,其设备也有所不同。但一般来说,包括以下设备:终端机、收发信机、天馈线、微波配线架、电源、蓄电池、铁塔等。
1.收、发信机。微波收、发信机的主要任务就是在群路信号与微波信号之间进行频率变换。在发信通道,频率变换过程是将信号的频率往高处变(群路信号变为微波信号),即上变频。在收信通道,频率变换过程是将信号的频率往低处变(微波信号变为群路信号),即下变频。
2.终端机。微波通讯系统中,必须有复用设备作为终端机,其作用是:在发信端,将各用户的话路信号,按一定的规律组合成群频话路信号;在收信端,将群频话路信号,按相应规律解出各个话路信号。
(三)光纤通讯设备
光纤通讯系统主要包括光端机和光中继机以及脉冲编码调制PCM数字通讯设备。
1.光端机。光端机是光纤通讯系统中主要设备。它由光发送机和光接收机组成。在系统中的位置介于PCM电端机和光纤传输线路之间。光发送机由输入接口、光线路码型变换和光发送电路组成。光接收机由光接收定时再生、光线路码型变换和输出接口等组成。光端机中还有其他辅助电路,如公务、监控、告警、输入分配、倒换、区间通讯、电源等。在实际应用中,为了提高光端机的可靠性,往往采用热备用方法,使系统在主备状态下工作,正常情况下主用部分工作,当主用部分发生故障时,可自动切换到备用部分工作,目前应用较多的是一主一备方式。光端机各主要组成部分作用如下:输入接口:将PCM综合业务接入系统送来的信号变成二进制数字信号。光线路码型变换:简称码型变换,将输入接口送来的普通二进制信号变换为适于在光纤线路中传送的码型信号。光发送电路:包括光驱动电路、自动光功率控制电路和自动温度控制电路。光驱动电路将码型变换后的信号变换成光信号向对方传输。光接收电路:将通过光纤送来的光脉冲信号变换成电信号,并进行放大,均衡改善脉冲波形,清除码间干扰。定时再生电路:由定时提出和再生两部分组成,从均衡以后的信号流中抽取定时器,再经定时判决,产生出规则波形的线路码信号流。光线路码型反变换:简称码型反变换。将再生出来的线路信号还原成普通二进制信号流。光端机一般采用条架结构,单元框方式。不同速率下工作的光端机,单元框的组成情况也不同。
2.光中继机。在进行长距离光传输时,由于受发送光功率、接收机灵敏度、光纤线路衰耗等限制,光端机之间的最大传输距离是有限的。例如34Mbit/s光端机的传输距离一般在50~60km的范围,155Mbit/s光端机的传输距离一般在40~55km的范围,若传输距离超过这些范围,则通常须考虑加中继机,相当于光纤传输的接力站,这样可以将传输距离大大延长。由于光中继机的作用可知,光中继机应由光接收机、定时、再生、光发送等电路组成。一般情况下,可以看成是没有输入输出接口及线路码型正反变换的光端机背靠背的相连。因此,光中继机总的来说比光端机简单,为了实现双向传输,在中继站,每个传输方向必须设置中继,对于一个系统的光中继机的两套收、发设备,公务部分是公共的。3.数字通讯设备。一般来说,数字通讯设备包括PCM基群和高次群复接设备。PCM基群设备是将模拟的话音信号通过脉冲编码、调制,变成数字信号,再通过数字复接技术,将多路PCM信号变成一路基群速率为2048Mbit/s信
号进行传送,以及将收到的PCM基群信号通过相反的处理过程,还原成模拟的话音信号的一种设备。
二、电力通讯网络的工作模式
通讯的目的是为了传送、交换信息。虽然信息有多种形式(如语音,图像或文字等),但一般通讯系统的组成都可以概括为:信源是指信息的产生来源,这些信息都是非电信息,要转换成电信号,需要一种变换器,即输
入设备。交换设备是沟通输入设备与发送设备的接续装置。它可以经济地使用发信设备,提高发信设备的利用率。发送设备的任务是将各种信息的电信号经过处理(如调制、滤波、放大等)使之满足信道传输的要求,并经济有效地利用信道。载波通讯中,载波机的发信部分就是一种发送设备。信道是信息传输的媒介,概括地讲分有线信道和无线信道。信号在传输过程中,还会受到来自系统内部噪声和外界各种无用信号的干扰各种形式的噪声集中在一起用一个噪声源表示。接收设备和输出设备的作用与发送设备和输入设备作用相反,它们是接收线路传输的信息,并把它恢复为原始信息形式,完成通讯。在电力工业中,现已形成以网局及省局为中心的专用通讯网,并且已开通包括全国各大城市的跨省长途通讯干线网络。在现行的通讯网中光纤通讯已占主导地位。随着电力工业的发展,大电站、大机组、超高压输电线路不断增加,电网规模越来越大;通讯技术发展突飞猛进,装备水平不断提高,更新周期明显缩短。数字微波、卫星通讯、移动通讯、对流层散射通讯、特高频通讯、扩展频谱通讯、数字程控交换机以及数据网等新兴通讯技术在电力系统中会得以逐渐推广与应用。
三、结语
在合理规划、设计和实施各种网络的基础上,如何为电力系统提供种类繁多、质量可靠的服务,就成为摆在电力通讯部门面前的一个重要课题,而建立一个综合、高效的电力系统通讯资源管理系统则是解决这一问题的一项重要基础工程,具有十分重要的理论意义和应用价值。
2电力自动化设备综合监控管理系统分析
基于当前电力系统运行维护中存在的诸多不足,必须积极提升电力系统运行的自动化、智能化、精确化、高效化以及经济化。本文以某电力工程项目为例,简要分析电力自动化设备综合监控管理系统在电网运行中的实际应用。
2.1电力自动化设备综合监控管理系统构成
该项目主要采用JZN03型电力监控管理系统。电力自动化设备综合监控管理系统研究文/陈刚随着计算机、通信以及自动化技术的快速发展,电力系统运行逐渐朝自动化、智能化方向发展,电力自动化设备综合监控管理系统被越来越广泛地应用于电力系统运行,在保障电力安全生产中发挥着及其重要的作用。本文简要分析电力系统运行维护现存不足,并以某电力工程项目为例,对电力自动化设备综合监控管理系统的构成与功能实现进行简单分析,以供同仁参考。摘要依据监控功能划分,该系统主要分为现场监控层、通信网络层以及系统管理层三大层面。
2.2电力自动化设备综合监控管理系统功能
2.2.110kV中压配电系统的监控功能实现
(1)10kV中压配电柜的监测。利用微机综合保护装置,通过网络电力仪表用通讯方式来实现对微机综合保护装置以及10kV真空断路器所提供参数与信号的实时监测,并对浏览者、管理员、操作者以及工程师的操作权限进行了相应定义。主要监测参数:三相电压/电流、零序电压/电流、电能、功率、功率因数以及频率等。主要监测信号:短路器/负荷开关状态、弹簧储能状态、自动/手动状态等状态信号;接地故障、故障跳闸、内部故障、控制回路断线等故障信号;断路器位置、接地刀位置、隔离手车位置等位置信号。
(2)变压器的监测。利用RS485通信接口,通过支持Modbus-RTU协议的现场总线用通讯方式来实现对变压器温控器的实时监测,并将相关检测参数与信号输送至监控计算机中。主要监测参数:三相绕组的温度。主要监测信号:超温报警、故障报警以及冷却风机停止/运行信号。
(3)直流屏的监测。采取类似于变压器的监测手段来实现对直流屏的实时监测。主要监测参数:输出母线电压/过电压/欠电压、蓄电池电压/电流/内阻等。主要监测信号:失电报警、单体电池失效告警、浮充/均充/预告警等报警信号;系统接地故障、直流故障、控制器故障、高频开关电源模块故障等故障信号。
2.2.2系统管理功能的实现
(1)监控界面。借助友好的人机界面,便于运行人员能够更为准确地、及时地了解并掌握电力系统的整体运行情况,断路器以及其它配电设备的实时工作/故障状态能够在监控界面上通过不同颜色鲜明显示出来,并且实际运行参数可供用户随时查阅。
(2)用户管理。对于用户实行分级管理,分为系统管理员、一般操作员与工程配置员3个等级,通常由系统管理员来设置运行人员的操作权限,并通过用户名与口令字来进行确认,从而确保操作的安全性、可靠性。
(3)事件报警。对开关的运行状态变位、故障报警、越线报警以及通讯异常报警等报警信号进行实时监测与准确记录,并第一时间内弹出相应的报警提示窗口或实现报警图形。例如,当断路器出现故障后,只有完全消除故障后,监控画面上的故障图标才会消失。
(4)报警信息查询。对报警类型、报警对象、报警内容、报警时间以及报警状态等进行有效查询,便于用户准确分析事故与高效维护系统。
一、工艺流程
人工上件清洗液喷洗压缩空气吹干热风烘干人工卸件。
二、主要结构
本装置由机身、箱体、气动门、输送机构、水箱、清洗液喷洗系统、压缩空气吹干系统、清洗液加热系统、热风烘干系统和电气控制系统等组件共同组成,机体外形尺寸:控制在1800*900*1500mm(长*宽*高)之内。
2.1机身机身采用结构件形式,全部由钢板焊接而成,是基础部分,箱体中各工作腔以及输送机构等其他组件均设置其上,为了接收清洗液而将水箱摆放在其底部的膛内。台面上为便于设置输送机构的滑轨和推杆导向槽以及回水孔等,采用不小于40毫米厚的钢板,机身两端面/侧面、地脚和筋板为15毫米厚的钢板。输送推杆导向槽深30毫米,宽45毫米,纵向贯通整个台面,回水孔两处,位于喷洗吹干腔的下方,该处设置接水漏斗将清洗液引回水箱,烘干腔下方开设热风导引口亦将热风引入水箱散热。
2.2箱体采用结构件形式,由Q235板材焊接组装而成,该部分是本装置工作的核心部分,外形根据实际需要设定,其由隔板分隔成两个工作腔,按照工艺流程,首先是清洗液喷洗和压缩空气吹干共用工作腔,另一个是热风烘干工作腔。箱体的两个端面和中间隔板的底部中间位置开设通道门,在输送方向上相互贯通米。各工位之间在输送通道上由设置在箱体上的三个气动门相通断,各连接处做到密封不渗漏。
2.3气动门在箱体的端面外侧和烘干腔隔板一侧,设有由气缸控制的气动门,共三个,尺寸自行设定。气缸采用前法兰型,带有缓冲,立式安装于箱体的上盖板上,用J型接头与门体连接,门体由台阶压板导向。气动管路并联连接,共同动作,气缸带动门体沿台阶压板导向进行上升下降,由此形成各工作腔之间以及装卸工位之间的输送通道的互通与隔断。三个气缸上均设有磁性开关并互锁,与输送机构实现顺序动作,在进气处设有气动三联件,电磁换向阀等进行控制。
2.4水箱水箱单独设置,由扶手来拖动,以便清洗液的更换和排放,摆放于机身底部空膛内,与机身和箱体采用软管连接。,水泵根据实际情况选用,侧面设有电加热管、液位计和进排水接口等。考虑到清洗液温度需控制在40-60℃,可不设隔热层。
2.5输送机构采取步伐输送方式,每个工步间隔自定,该装置由气缸、滑动导轨、推杆和料筐等共同组成。两条半圆形滑动导轨,平行固定在机身台面上的推杆槽两侧,推杆放置在推杆导向槽内,上面与台面平,其上设置轴承和单方向棘爪,由气缸带动,气缸采用轴向底座型带有磁性开关,用Y型接头与推杆连接。气缸带动推杆向前,推杆上的棘爪沿滑动导轨方向推动料筐向下一个工位进给,进给到位后,气缸带动推杆退回,推杆上的棘爪在料筐的重力作用下压下,不再起作用,为此料筐停留在进给后的工位上,不跟随推杆往回退。气缸前进后退一次,料筐前进一个工步,气缸带动推杆如此往返动作,一步一步地将装有料筐从一个工位输送到下一个工位。2.6清洗液喷洗系统该系统由水泵、电磁截止阀、盘型喷头、软管和立式前法兰气缸等组成,立式前法兰气缸设置于喷洗吹干工作腔的上盖板上,行程自定,其管路中设节流阀,以调节气缸动作速度的快慢,气缸动作带动喷头做上下往复运动,喷头上均匀开设无数个小细孔。当输送到位后,气动门关闭,电磁阀切换到喷洗状态,对放置于料筐内的工件进行上下扫描式喷淋冲洗,以便将油污湿润-渗透-乳化-分散而完成清洗过程。喷洗完后,水泵切换至卸荷,清洗液直接流回水箱,管路内换成压缩空气,进入吹气状态。
2.7压缩空气吹干系统为确保工件在烘干之前表面水珠较少,在喷洗完成之后,用干净的压缩空气进行吹干。从外形尺寸上考虑,为避免占用空间太大,将吹干和喷洗两道工序布置在了同一个工作腔内进行,当喷洗完后,通过电磁换向阀换向,让水泵卸荷,同时打开压缩空气,压缩空气利用清洗液喷洗管路和喷头,先将管道内的清洗液吹掉,同时仍由气缸带动喷头做上下往复运动,对工件进行扫描式吹气。
2.8热风烘干系统采用电热管加热和轴流风机送风,放置烘干腔的顶部,电热管周围加装隔热层,烘干腔内温度常温至120℃可调,由热电偶反馈控制,工件靠热风的吹佛将其表面的水气烘干,在烘干腔底部用铜管将热风引入水箱作为通路,借助于铜管的散热,也可以对水箱内的清洗液起到加热的作用,最后将热风引出水箱之外。
2.9清洗液加热系统采用不锈钢电加热方式.温度控制采用热电偶和数显式温控仪控制,温度在20-90℃之间连续可调,电加热管设置在水箱内,自动控制水箱内清洗液的温度。
在科技技术发展迅速的今天,电气自动化控制设备的稳定性将成为衡量我国电子行业发展水平的其中一个关键指标。它能够最大程度的降低人工劳动的强度,减少了安全事故发生及保证生产活动的正常运作。
一、控制设备稳定性的重要意义
随着电气自动化程度、智能化程度、复杂度的不断提高,控制设备稳定性技术逐渐成为了各大企业竞争中获取市场份额的得力工具。但由于电气自动化控制设备常需要长时间运行,及经受各种不利自然条件考验,电气自动化控制设备必须具有高度的可靠性才能够保证生产运作的稳定性。
因此,我们需要不断加强电气自动化控制设备的稳定性,提高设备正常运行率,才能推动电气自动化的全面进步和发展。减少在实际操作之中诸多故障的发生,更好地保证产品安全、人身安全以及经济效益。
二、影响控制设备的稳定性因素
电气自动化控制设备的快速发展对我国工业领域系统的正常运行有着不容小觑的影响,其稳定性是一切器械正常运行的基础。但散热、气候、电磁波、机械作用力、人为因素都容易导致控制设备出现不稳定现象。除此外,控制设备的元器件质量不符合要求也是都是导致控制设备稳定性指标偏低。只有对控制设备实行科学及时的保养及维护才能够进一步有效地提高电气自动化控制设备运行中的可靠性、可靠性使其运行更系统、更准确、更快捷。
三、提高控制设备的稳定性措施
影响电气自动化控制设备的稳定性因素是复杂多样的,若想要提高控制设备的稳定性,就必须根据控制设备的特点,采用适当的有效措施,将一切有可能导致控制设备稳定性指标偏低的原因扼杀于摇篮中。
3.1采用相应方案措施加强稳定性
(1)要提高设备使用寿命,在应该在控制设备设计阶段,谨慎分析产品的设计参数保证产品性能及使用条件,按照设计要求对设备正确安装使用,并在运行之后对设备作出定期的检查,确保设备的稳定性;
(2)按实际情况,根据产量合理地来设定产品的结构形式以及产品类型。生产方式类型、批量的不同对生产经济性也有不同的影响和差异,故应由产量的大小决定生产批量的规模;
(3)在保证产品稳定性的前提下,运用价值工程理念,以最经济的方式进行设计零部件产品的生产和维护,控制生产成本同时降低产品的维护使用费用;
(4)在满足产品技术要求的条件之下,采用最经济合理的原材料和元器件,以降低产品的生产成本,维护公司利益。
金辉公司在二三期建设中,在设计阶段就根据公司实际情况统一变频器和某些低压元器件的使用牌子,这大大方便了以后的维护,并且降低了维护所需备件的费用。
3.2正确选择与使用元器件
在选择与使用电气自动化控制设备中的零部件、元器件上,我们应当尽量使用由正规厂家生产的通用零部件或着产品。并避免修配和选配的情况发生,尽量地减少装配工人的体力消耗,加强自动流水生产。
对同类元器件在品种、型号和制造厂商等参数进行比较并根据电路性能的要求和工作环境的条件优先选用质量稳定、可靠性高的标准元器件,最大限度地压缩元器件的品种规格和减少生产厂家。
3.3控制设备散热防护的作用
影响电子设备稳定性因素里,温度是尤为关键。当控制设备产生散热不良的现象,轻则影响控制设备的稳定性重则损坏控制设备,导致生产停机。影响控制设备散热的一个原因是环境温度过高,当控制设备长期在此异常的环境温度下工作时,就容易出现失效问题,我司的一台在线测厚仪曾出现环境温度过高影响而测量的一个问题,当时的情况是,该测厚仪安装在纵拉区域,纵拉区域在生产时由于加热温度特别高,约为50-60oC,测厚仪通信控制板卡的适宜工作温度为20-40oC,运行时间一长导致工控机无法和测厚仪连接,无法读取现场数据,后来在该测厚仪机柜内加装了冷却空调,降低了控制设备的环境温度,该测厚仪通信就一直能正常工作了;影响控制设备散热的另一个原因是控制设备自身产生的热量散热不良而积聚,此类问题很好解决,在设计时需注意有足够的空间供其散热,必要时加装散热风扇或散热器,这都对控制设备散热有良好作用,从而提高控制设备的稳定性。
3.4电子设备的气候防护
气候条件对电子设备影响是很大的,特别是在低温高湿条件下,空气湿度达到饱和时,电子设备容易受到潮湿空气的侵蚀,使机内元器件、印制电路板上产色和凝露现象,极容易造成绝缘材料表面电导率增加,及零部件电气短路、漏电等等情况的发生。甚至会导致覆盖层起泡至脱落,失去其保护功能。