金融大数据论文范文

时间:2023-03-01 16:23:21

引言:寻求写作上的突破?我们特意为您精选了4篇金融大数据论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

金融大数据论文

篇1

1.强化数据治行理念大数据革命必将颠覆银行传统观念和经营模式。通过营造“数据治行”的文化,建立分析数据的习惯,落实全行的数据标准和数据治理,切实提升“大数据”开发利用的综合能力,将现有数据转化为信息资源,让决策更加有的放矢,让发展更加贴近市场需求。

2.建设大数据平台构建处理能力强、扩展性好、开放度及共享度高的大数据存储加工平台,整合行内外、各种形态、跨历史周期的海量数据,并构建统一、全面、稳定的企业级数据模型,为大数据的分析利用提供基础的数据、环境、模型及配套工具等全方位立体式支撑。

3.打造数据分析应用体系构建适应大数据分析的多功能、跨渠道、多粒度的分析挖掘模型和应用体系,为服务质量改善、经营效率提升、金融模式创新提供支持。通过对海量数据的深度分析,全方位调整产品结构、营销模式,从根本上提高风险管理、成本绩效管理、资产负债管理和客户关系管理水平。

4.实现智慧银行的目标智慧银行是指,通过大数据技术不断优化业务办理流程,高效配置金融资源,敏锐洞察并引领客户需求的高度智能化的金融商业形态。智慧银行可提供“银行始终在客户身边”的全场景金融服务,为客户创造最佳服务体验。

二、农业银行大数据平台概述

经过多年的努力探索,农业银行在大数据平台建设的道路上锐意开拓,大胆创新,逐步形成了以四大基础平台、五类数据服务为核心的大数据平台。

1.四大基础平台(1)企业级数据仓库随着银行业数据利用能力的逐步提升,业务分析呈现跨领域分析、高度整合分析、长周期历史分析等特点,企业级数据仓库通过对行内跨领域海量数据的高度整合和模型化,形成对客户、账务、产品等的统一视图,使大数据分析成为可能。农业银行企业级数据仓库以存储和处理结构化数据为主要目标,全面涵盖了农业银行存、贷、中间业务等行内业务条线的核心类数据,实现PB级数据的高效存储,可以满足全行在各个领域数据分析和价值发现的各类需求,并为全行数据治理提供有力的支撑。如通过网点的多维度、全方位、长历史周期数据挖掘给出网点资源配置建议,提升运营效率,优化业务流程。(2)信息共享平台信息共享平台以存储和处理行内非结化数据为主,辅以来自行外的社会数据。基于非结构化数据的分析和深度挖掘,在客户关系管理、中小企业信贷、风险管理、品牌建设等众多领域发挥了重要的作用。如基于对社交网络各类非结构化数据的综合分析可以获取行外目标客户;通过机器学习、语音识别、情绪识别等技术,对客服语音记录进行深度挖掘,发现客户的需求。(3)实时流计算平台传统数据计算平台多以批量计算为主,数据处理能力较强,但时效性较差。农业银行的实时流计算平台采用业界最先进的流计算框架,实现数据的快速采集、交换、处理和应用,主要用于实时营销、实时客户服务、欺诈监控、大额动账监控、系统运营监控等各类对时效性要求比较高的业务场景。如结合持卡人的行为偏好为客户实时推荐精准的营销信息、优惠信息和特惠商户信息,并为特定客户群体提供实时的有针对性的服务提示。(4)高性能数据处理平台海量数据的分析挖掘亟须一个高性能环境的支撑,农业银行高性能数据处理平台采用大内存处理、分布式、闪存等新技术,以高性能计算为主要特点,实现对海量结构化数据、非结构数据等进行综合处理、全面分析和深度挖掘。如通过大数据语义分析和情绪分析追踪海量网络信息蕴藏的经济金融“微信号”,借此判断未来的市场走势,为前瞻性风险管理提供参考。

2.五类数据服务农业银行基于四大基础平台的优势,大力发展应用系统建设,形成了五大类数据服务形式有机结合的数据服务体系。(1)指标检索服务通过构建全行统一的指标库,为各个业务条线提供常用指标的检索服务,在此基础上提供各类经营管理、监管报送等指标采集、加工及报送服务。(2)即席查询服务采用特定的工具,构建功能强大的查询支持库,满足各类灵活查询、临时查询及特殊复杂查询需求。如果说报表是经营管理的瞭望塔,那么灵活的即席查询就是执行经营决策的指南针。以客户营销为例,即席查询服务可以为全行的客户经理提供多角度的客户信息查询,针对当前市场热点,提供具体的业务指导。(3)定制化信息服务通过iReport智能资源视窗对信息进行统一管理、分层检索、灵活配置和个性展示,并针对用户的不同需求、不同层次及不同偏好,提供定制化、个性化的信息订阅,联动邮件、短信、微信等渠道提供主动信息推送服务。(4)多维分析服务多维分析可以帮助业务人员实现多维度、多视图、多层次的分析,并可以通过下钻、上钻、切片、旋转等操作,提供更加动态、智能的数据分析,发现数据背后的规律。如从机构、时间、客户、产品类型、渠道、营销活动等多个维度对产品盈利情况进行综合分析,进而有效推动产品优化和创新。(5)深度数据挖掘服务海量数据中蕴含的规律和价值通常不直观,大数据的显著特点之一就是海量数据的知识发现和数据挖掘。农业银行基于大数据平台构建了多个特定领域或主题的数据挖掘实验室,包括客户洞察及精准营销、信用评价及风险评估、舆情分析与客户情感管理等,紧跟市场发展动态,直面业务热点、难点,充分挖掘大数据的巨大价值,为业务发展和经营决策提供更加深入的洞察和更加有力的支撑

三、农行大数据应用实践

农业银行在构建大数据体系时坚持以应用为核心,统筹部署数据平台开发与业务应用,加强业务创新与数据利用的良性迭代,实现传统业务和新型业态的融合发展,充分发挥了数据对全行业务发展和经营管理的支撑作用。借助大数据这把利剑,实现了“营销更精准、服务更贴心、管理更精细、监管更透明、风险更可控、决策更智能”,有效促进了全行经营理念、业务运营、组织流程的不断创新,为全行业务发展和经营管理提供了有力的科技引擎。以下三类应用案例可充分说明情况。

1.精准营销基于大数据的客户营销“三步曲”:获取客户、客户画像、精准营销(如图1所示)。通过大数据强大的信息获取和处理能力,充分挖掘行内外的潜在客户;通过大数据实现对客户的360°立体画像,在掌控客户行为、洞察客户情感的基础上,准确地预测客户需求,从而实现精准营销及交叉营销。以贵宾客户信用卡精准营销为例,农业银行通过综合行内外数据,应用聚类分析、关联规则发现、决策树等数据挖掘算法,构建了完整的精准交叉营销模型库和应用体系,动态实现目标客户识别、客群划分、优先级划分、产品推荐、渠道推荐等功能。在合适的时间,以合适的渠道,通过合适的方式,为合适的客户推介甚至定制合适的产品,实现差异化、个性化的精准营销。2.热点分析农业银行基于大数据平台构建了热点问题专题分析模型库,对当前的热点事件进行定期跟进、深度分析和动态监测,为策略制定、产品创新及运营模

篇2

一、绪论

(一)背景

随着我国互联网是迅速发展,互联网模式迅速占据各行各业,而我国的互联网经济也取得了飞速的发展。截止2015年我国的网民已经达到了9亿人,这个庞大的数字表明我国的互联网市场的巨大潜力。此外,政府的大数据政策也开始向互联网行业倾斜,表明了互联网大数据时代的美好机遇的到来。互联网金融的融资理财等模块的发展也取得了很大的进步,第三方支付交易规模已经达到了11.9万亿,第三方移动支付交易规模达到了9.5万亿。

通过在大数据背景下研究互联网金融的盈利模式,可以对于我国今后互联网金融的发展提供良好的理论基础,同时针对大数据环境下互联网金融和传统金融相比存在的优劣势做出对比,可以为传统金融的转变提供良好的方案此外为互联网金融的问题给出良好的解决措施,从而有利于我国互联网金融的健康发展。

(二)相关理论和概念

互联网金融是传统金融行业与互联网精神相结合的新兴领域。互联网“开放、平等、协作、分享”的精神向传统金融业态渗透,对人类金融模式产生根本影响,具备互联网精神的金融业态统称为互联网金融。

“大数据”是指以多元形式,自许多来源搜集而来的庞大数据组,往往具有实时性。在企业对企业销售的情况下,这些数据可能得自社交网络、电子商务网站、顾客来访纪录,还有许多其他来源。这些数据,并非公司顾客关系管理数据库的常态数据组。

博弈论又被称为对策论(Game Theory)既是现代数学的一个新分支,也是运筹学的一个重要学科。博弈论主要研究公式化了的激励结构间的相互作用。是研究具有斗争或竞争性质现象的数学理论和方法。

二、传统金融盈利模式分析

(一)传统金融机构盈利模式分析

广义上说我国传统的金融机构有银行,基金,保险,证券公司等,这些公司都属于我国传统进行机构,传统金融的盈利模式分为不同的机构进行简单介绍。

1.银行。我国的银行主要盈利模式是吸纳存款给存款人发放利息,同时对外房贷,收取贷款利息,其中贷款利息和存款利息的差额就的利润,中间业务收入,同行拆借,承兑汇票贴现利息收入,信用证,托管业务等。这些构成了银行的盈利来源。

2.证券。证券是多种经济权益凭证的统称,因此,广义上的证券市场指的是所有证券发行和交易的场所,狭义上,也是最活跃的证券市场指的是资本证券市场、货币证券市场和商品证券市场。

3.保险。保险公司(insurance company)是销售保险合约、提供风险保障的公司。保险公司可以这样分类:人寿保险公司和财产保险公司。按照中华民国保险法之规定,两者必须分开经营。所以有的保险公司成立了集团公司,下设独立核算的人寿保险公司和财产保险公司。再保险公司是保险公司的保险公司,对保险公司承担的风险进行分散和转嫁。

(二)传统金融在互联网背景下发展的局限性

第一,产品品种优势不明显,投资门槛高,客户体验度差。银行的流程繁琐和复杂,使得一些客户避而远之,加上银行近些年的理财产品不以客户为中心,客户理念差。

第二,渠道单一。对于传统金融机构来说,更多的是来自物理渠道的客户,商业银行的客户群体多来自网点的客户,而线上客户缺乏,也没有线上客户来源,线上市场推广策略缺乏,缺乏市场前瞻性。

第三,传统的管理战略思想导致银行发展缓慢。银行带有浓重的政治色彩,一直都是国家控股,对于银行的战略管理也是以国家战略管理为核心而展开的,因此,银行的变革一直在比较缓慢的。

第四,缺乏良好的人才选拔机制和内部晋升渠道。现代管理中,具有竞争力的人才才能给公司带来发展,银行人才的竞争和选拔也缺乏合理性,传统银行很多都是关系户,导致银行内部人才缺乏公平竞争机制。

三、互联网金融盈利模式分析

(一)互联网金融的运作模式

第一,第三方支付企业指在收付款人之间作为中介机构提供网络支付、预付卡发行预受理、银行卡收单以及其他支付服务的非金融机构。代表企业:支付宝、易宝支付、拉卡拉、财付通为代表的互联网支付企业,快钱、汇付天下为代表的金融型支付企业。

第二,P2P小额贷款。P2P金融又叫P2P信贷,指个人与个人间的小额借贷交易,一般需要借助电子商务专业网络平台帮助借贷双方确立借贷关系并完成相关交易手续。

第三,众筹融资模式。众筹融资模式是基于“互联网+金融”所创新的一种模式,意义不仅在金融创新本身,而在于对传统金融领域和金融业态提出的挑战,并且在一定意义上具有颠覆性。

第四,虚拟电子货币模式。虚拟货币是一种计算机运算产生或者网络社区发行管理的网络虚拟货币,可以用来购买一些虚拟的物品,也可以使用像比特币这样的虚拟货币购买现实生活当中的物品。

(二)互联网金融主要盈利收入来源

我国目前互联网金融发展迅速,很多的经营模式以规模制胜,P2P模式中的主要利润来源是赚取中间的差价,借款人和贷款人之间的利息差为主要利润来源。虚拟货币的主要利润来源就是卖虚拟货币的收入扣除相应的成本之后所得利润。对于众筹融资模式来说,盈利模式大多数以收取佣金的形式来实现收益,其次,很多众筹平台也采取分成模式或广告模式,也就是众筹成功之后从其收取一定的广告费。

四、大数据及互联网金融视角下国有商业银行盈利模式研究

(一)博弈论角度分析商业银行和互联网金融选择

1.假设前提

第一,金融市场中只存在了商业银行和互联网金融两个参与者。

第二,经济人假设。商业银行和互联网金融机构是两个理性经济人,以个人最大利益为出发点,基于自身利益最大化做出决策。

第三,在应对互联网金融同时商业银行可以采取措施有合作和不合作,即选择集合为(合作,不合作)。互联网金融在应对商业银行时采取的措施有合作和不合作两种选择,即选择集合为(合作,不合作)。

第四,互联网金融和商业银行的博弈过程是完全的信息动态博弈,即在博弈过程中,商业银行很清楚的了解到互联网金融的交易模式及其有点,在互联网金融机构也了解商业银行的优势所在。

2.博弈过程

商业银行和互联网金融博弈模型

博弈过程的开始我们以商业银行首先做出选择,上图所示。最上方商业首先进行选择信息集(合作,不合作),如果商业银行选择不合作,那么博弈结束,各自都以自己的利益最大化为目标开始自己的发展。

如果商业银行选择合作,那么就开始由互联金融机构开始选择,这个时候互联网金融机构可以选择合作还是不合作,选择不合作,那么互联网金融机构就可以借助商业银行的优势综合自己的优势来大力发展自身,而商业银行则不能利用互联网金融的优势去发展自身。如果互联网金融机构选择合作,那么相互之间就可以进行优势互补,从而达到双赢的局面。

从上图可以看出来,商业银行在博弈中的处境和地位,选择不合作那么就会处于劣势,可能会被互联网金融抢占原有的市场,如果选择合作的时候,互联网金融业选择合作那么双方都可以得到一个很好的发展局面,如果互联网金融不选择合作,那么商业银行就会成为牺牲品,优势被互联网金融所利用,逐渐被互联网金融边缘化。

互联网金融机构选择是否合作,都可以看得出来其的发展结构。如果选择不合作,那么必然受到道德风险的阻碍,根据自身利益最大化做出选择,那么在短期内必然受到信用方面的负面影响。所以从长远来看,互联网金融机构根据自身利益最大化原则是比要和商业银行进行合作。如果为了避免不合作情况的发生,商业银行会选择与互联网金融机构签订一份相互合作的协议,以维持合作的状态。

(二)大数据互联网背景下商业银行创新盈利模式

互联网迅速发展,商业银行的客户大数据必然是其发展的基础。大数据能力将成为银行的核心竞争力。所谓的“核心竞争力”,关键的要素是“不可复制”、“不可替代”。

数据是大银行的战略资产。随着数据挖掘技术的发展,银行可谓是数据密集型行业,其资产不仅是贷款等,还包括数据。要把数据作为重要资产保护、经营,这是大银行区别于小银行,也是现代银行区别于传统银行的关键之处。而且数据财富是没有天花板的,可以不断挖掘、不断创造,最近国际上很多机构都在探讨如何量化数据等无形资产的价值。

商业银行通过对自己原有客户群体的数据挖掘提炼客户需求,提高客户服务质量,从而改变当前银行的困局。创新服务模式,提高服务效率和便捷性。每个用户都会办理银行卡,利用这个基础进行相关客户端软件安装,对于有余额的客户提供理财服务,发展互联网银行多种理财方式和渠道。

未来商业银行的业务模式中将转移到以大数据客户资源为核心,以数据资源为主要竞争力量和利润来源,来扩大和发展银行相关业务。

五、结论

篇3

[ 2 ] 江洪,钟永恒.国际科学数据共享研究[J].现代情报,2008(11):56-58.

[ 3 ] 黄鼎城,郭增艳.科学数据共享管理研究[M]北京:中国科学技术出版社,2002:36.

[ 4 ] 黄鼎城,郭增艳.科学数据共享管理研究[M]北京:中国科学技术出版社,2002:130-140.

[ 5 ] 欧盟委员会副主席Neelie Kroes:希望每个欧洲人都

参与数字化[EB/OL].[2013-10-11].http://.cn/5f00653e83b753d652a86001/20125e74/46708/6b2776df59d454584f1a526f4e3b5e2dneelie-kroes-5e0c671b6bcf4e2a6b276d324eba90fd53c24e0e-65705b575316.

[ 6 ] 刘润达,赵辉,李大玲. 科学数据共享平台之数据联盟模式初探[J].中国基础科学,2010(6):27-32.

[ 7 ] 地震科学数据共享管理办法[EB/OL].[2013-10-11].http:///policy/gxbf.htm.

[ 8 ] 浙江建成全国首家省级地理空间数据平台[EB/OL].[2013-10-11].http://.cn/html/2013-02/22/content_21927.htm.

篇4

在过去的一年,仿佛一夜之间,大数据时代成为炙手可热的话题,相关的论文和著书可谓汗牛充栋。甚至在中国大连的夏季达沃斯论坛上,专门开辟一个分会场,激辩大数据论题。其实,早在2007年,人类制造的信息量有史以来第一次在理论上超过可用存储空间总量,近几年两者的剪刀差越来越大。2010年,全球数字规模首次达到了“ZB”(1ZB=1024TB)级别。2012年,淘宝网每天在线商品数超过8亿件。2013年底,中国手机网民超过6亿户。随着互联网、移动互联网、传感器、物联网、社交网站、云计算等的兴起,我们这个社会的几乎所有方面都已数字化,产生了大量新型、实时的数据。无疑,我们已身处在大数据的海洋。

有两个重要的趋势使得目前的这个时代(大数据时代)与之前有显著的差别:其一,社会生活的广泛数字化,其产生数据的规模、复杂性及速度都已远远超过此前的任何时代;其二,人类的数据分析技术和工艺使得各机构、组织和企业能够以从前无法达到的复杂度、速度和精准度从庞杂的数据中获得史无前例的洞察力和预见性。

大数据是技术进步的产物,而其中的关键是云技术的进步。在云技术中,虚拟化技术乃最基本、最核心的组成部份。计算虚拟化、存储虚拟化和网络虚拟化技术,使得大数据在数据存储、挖掘、分析和应用分享等方面不仅在技术上可行,在经济上也可接受。

在人类文明史上,人类一直执着探索我们处的世界以及人类自身,一直试图测量、计量这个世界以及人类自身,试图找到隐藏其中的深刻关联、运行规律及终极答案。大数据以其人类史上从未有过的庞大容量、极大的复杂性、快速的生产及经济可得性,使人类第一次试图从总体而非样本,从混杂性而非精确性,从相关关系而非因果关系来测量、计量我们这个世界。人类的思维方式、行为方式及社会生活的诸多形态(当然包括商业活动)正在开始发生新的变化。或许是一场革命性、颠覆性的变化。从这个意义上讲,大数据不仅是一场技术运动,更是一次哲学创新。

大数据金融

正如诸多文献所谈到的,大数据对许多行业的影响和冲击已经呈现。例如,商业零售、物流、医药、文化产业等。金融,作为现代经济中枢,其实也已透出了大数据金融的曙光。

过去的2013年,中国金融界热议最多的或许是互联网金融,更有人指出2013年是中国互联网金融元年。确实,第三方支付、P2P、网贷、众筹融资、余额宝、微信支付等发展迅速。众多传统金融业者也或推出自己的电商平台,或与互联网企业联手提供相应的金融产品和服务。

互联网金融,无论是业界、监管者或理论界,都在试图给出自己的理解和定义。但到目前为止,尚未有一个统一的、规范的概念。在我看来,互联网金融本来就是一个不确切的概念,也不可能有一个明确的定义。严格说来,所谓互联网金融只是大数据金融的一种展现或形态。换言之,前者是表,后者是里。

这是因为,无论是互联网还是金融业,其实质都是大数据(信息)。首先,对互联网企业而言,流量、客户等数据(信息)是其涉足金融业的基石。对金融企业而言,提供中介服务,撮合金融交易也是以数据(信息)为基础。其次,没有大数据技术的支撑,所谓互联网金融也难以快速、持续成长。20世纪90年代互联网浪潮的蓬勃兴起,至今已近二十年。但从世界范围看,所谓互联网金融却发展缓慢。当然,其中原因很多,但其主要原因则是大数据技术是近几年才快速发展起来的。最后,从金融企业来看,在数据中心建设,软硬件系统建设,数据(信息)挖掘、分析等方面也是做得有声有色,其庞大的客户数据、海量交易记录及众多信息源,使其在大数据应用方面也做了许多积极探索。因此,要准确反映近年新金融趋势,“大数据金融”比“互联网金融”更为贴切。

大数据金融有以下七大特征:

网络化的呈现。在大数据金融时代,大量的金融产品和服务通过网络来展现,包括固定网络和移动网络。其中,移动网络将会逐渐成为大数据金融服务的一个主要通道。随着法律、监管政策的完善,随着大数据技术的不断发展,将会有更多、更加丰富的金融产品和服务通过网络呈现。支付结算、网贷、P2P、众筹融资、资产管理、现金管理、产品销售、金融咨询等都将主要通过网络实现,金融实体店将大量减少,其功能也将逐渐转型。

基于大数据的风险管理理念和工具。在大数据金融时代,风险管理理念和工具也将调整。例如,在风险管理理念上,财务分析(第一还款来源)、可抵押财产或其他保证(第二还款来源)重要性将有所降低。交易行为的真实性、信用的可信度通过数据的呈现方式将会更加重要,风险定价方式将会出现革命性变化。对客户的评价将是全方位、立体的、活生生的,而不再是一个抽象的、模糊的客户构图。基于数据挖掘的客户识别和分类将成为风险管理的主要手段,动态、实时的监测而非事后的回顾式评价将成为风险管理的常态性内容。

信息不对称性大大降低。在大数据金融时代,金融产品和服务的消费者和提供者之间信息不对称程度大大降低。对某项金融产品(服务)的支持和评价,消费者可实时获知该信息。

高效率性。大数据金融无疑是高效率的。许多流程和动作都是在线上发起和完成,有些动作是自动实现。在合适的时间,合适的地点,把合适的产品以合适的方式提供给合适的消费者。同时,强大的数据分析能力可以将金融业务做到极高的效率,交易成本也会大幅降低。

金融企业服务边界扩大。首先,就单个金融企业而言,其最合适经营规模扩大了。由于效率提升,其经营成本必随之降低。金融企业的成本曲线形态也会发生变化。长期平均成本曲线,其底部会更快来临,也会更平坦更宽。其次,基于大数据技术,金融从业人员个体服务对象会更多。换言之,单个金融企业从业人员会有减少的趋势,或至少其市场人员有降低的趋势。

产品的可控性、可受性。通过网络化呈现的金融产品,对消费者而言,是可控、可受的。可控,是指在消费者看来,其风险是可控的。可受,是指在消费者看来,首先其收益(或成本)是可接受的;其次产品的流动性也是可接受的;最后消费者基于金融市场的数据信息,其产品也是可接受的。

普惠金融。大数据金融的高效率性及扩展的服务边界,使金融服务的对象和范围也大大扩展,金融服务也更接地气。例如,极小金额的理财服务、存款服务。支付结算服务等普通老百姓都可享受到。甚至极小金额的融资服务也会普遍发展起来。传统金融想也不敢想的金融深化在大数据金融时代完全实现。

大数据金融图景

尽管大数据技术还处于早期发展阶段,但大数据金融已透出了一片曙光。我们结合多方面的文献和事实,试图勾勒出大数据金融图景。

泛金融化。金融供给也许不再是传统金融业者的专属领地,许多具备大数据技术应用能力的企业都会或多或少涉足、介入金融行业。在未来的某一天,也许银行与非银行间,证券公司与非证券公司间,保险公司与非保险公司间的界限会非常模糊。金融企业与非金融企业间的跨界融合成为常态。同时,金融企业在提供传统金融服务的同时,其服务范围、内容也会泛金融化,会提供综合的、社会化的服务。

多层次的行业格局。大数据金融时代,金融服务层次将空前丰富,既有行业寡头,也有区域金融服务企业。同时,也存在大量的地方、社区金融企业,也会出现无实体店的金融企业。行业市场更加细分。不同层次的消费者都能享受到特定的金融服务。在此过程中,会催生许多与大数据金融相关的行业和企业。

免责声明:以上文章内容均来源于本站老师原创或网友上传,不代表本站观点,与本站立场无关,仅供学习和参考。本站不是任何杂志的官方网站,直投稿件和出版请联系出版社。
友情链接
发表咨询 加急咨询 范文咨询 杂志订阅 返回首页