时间:2023-03-01 16:25:18
引言:寻求写作上的突破?我们特意为您精选了12篇数学概念教学论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
在学校的概念课教学研讨中,笔者教授了七年级下《9.1.1不等式及其解集》的概念课,探讨了概念课的教学模式。下面笔者就谈谈她对概念教学的粗浅认识。
一、创设情境,注意概念的引入
要成功地上好一堂新概念课,教师的注意力应集中到创设情景、设计问题上,让学生在教师创设的问题情景中,学会观察、分析、揭示和概括,教师要则为学生思考、探索、发现和创新提供尽可能大的自由空间,帮助学生去体会概念的形成、发展和概括的过程。此外,概念的引入也是非常重要的内容。从平常的教学实际来看,对概念课的教学产生干扰的一个不可忽视的因素是心理抑制。教师方面,会因为概念单调枯燥而教得死板乏味;而学生方面,又因为不了解概念产生的背景及作用,缺乏接受新概念的心理准备而产生对新概念的心理抑制。要解决师生对概念课的心理抑制问题,可加强概念的引入,帮助学生弄清概念产生的背景及解决的方法。由于形成准确概念的先决条件是使学生获得十分丰富和符合实际的感性材料,通过对感性材料的抽象、概括,来揭示概念所反映的本质属性。因此在教学中,教师要让学生密切联系数学概念在现实世界中的实际模型,通过对实物、模型的观察,对图形的大小关系、位置关系、数量关系的比较分析,在具有充分感性认识的基础上引入概念。
二、重点培养学生的概括能力
在学生的概念学习中,要重点培养学生的概括能力。概括是形成和掌握概念的直接前提。学生学习和应用知识的过程就是一个概括过程,迁移的实质就是概括。概括又是一切思维品质的基础,因为如果没有概括,学生就不可能掌握概念,从而由概念所引申的定义、定理、法则、公式等就无法被学生掌握;没有概括,就无法进行逻辑推理,思维的深刻性和批评性也就无从谈起;没有概括,就不可能产生灵活的迁移,思维的灵活性与创造性也就无从谈起;没有概括,就不能实现思维的“缩减”或“浓缩”,思维的敏捷性也就无从体现。学生掌握概念,只接受他们的概括水平的制约,要实现概括,学生必须能对相应的一类具体事例的各种属性进行分化,再经过分析、综合、比较而抽象出共同的、本质的属性或特征,然后再概括起来;在此基础上,再进行类化,即把概括而得到的本质属性推广到同类事物中去,这既是一个概念的运用过程,又是一个在更高层次上的抽象概括过程;然后,还要把新获得的概念纳入到概念系统中去,即要建立起新概念与已掌握的相关概念之间的联系,这是概括的高级阶段。从上所述可知,对概念的具体例证进行分化是概括的前提,而把概念类化,使新概念纳入到概念系统中去,又成为概念学习深化的重要步骤,因此,教师应该把教会学生对具体例证进行分化和类化当成概念教学的重要环节,使学生掌握分化和类化的技能技巧,从而逐渐学会自己分析材料、比较属性,并概括出本质属性,以逐步培养起概括能力。另外,数学概括能力中,很重要的是发现关系的能力,即发现概念的具体事例中各种属性之间的关系,发现新概念与已有认知结构中相关概念之间关系的能力。
三、运用变式,寻求概念的本质
变式是变更对象的非本质属性的表现形式,变更观察事物的角度或方法,以突出对象的本质属性,突出那些隐蔽的本质要素,一句话,变式是指事物的肯定例证在无关特征方面的变化,让学生在变式中思维,可以使学生更好地掌握事物的本质和规律。
变式是概念由具体向抽象过渡的过程中,为排除一些由具体对象本身的非本质属性带来的干扰而提出来的。一旦变更具体对象,那么与具体对象紧密相联的那些非本质属性就消失了,而本质属性就显露出来。数学概念就是通过对变式进行比较,舍弃非本质属性并抽象出本质属性而建立起来的。值得注意的是,变式不仅可以在概念形成过程中使用,也可以在概念的应用中使用。因此,我们既可以变更概念的非本质属性,也可以变换问题的条件和结论;既可以转换问题的形式或内容,也可以配置实际应用的各种环境。总之,就是要在变化中求不变,万变不离其宗。这里,变的是事物的物理性质、空间表现形式,不变的是事物在数或形方面的本质属性。变化的目的是为了使学生有机会亲自经历概念的概括过程,使学生所掌握的概念更加精确、稳定和易于迁移,避免把非本质属性当成本质属性。
变式的运用要注意为教学目的服务。数学知识之间的联系性是变式的依据,即利用知识的相互联系,可以有系统地获得概念的各种变式。另外,变式的运用要掌握好时机,只有在学生对概念有了初步理解,而这种理解又需要进一步深化的时候运用变式,才能收到好的效果;否则,如果在学生没有对概念建立初步理解时就运用变式,将会使学生不能理解变式的目的,变式的复杂性会干扰学生的概念理解思路,先入为主而导致理解上的混乱。
四、精心设置课堂练习,通过反复练习掌握概念
1巧借“概念图”回顾教学内容,帮助学生巩固数学概念
在高中数学教学中,由于受到课堂教学时间、教学计划和教学内容安排等诸多因素的限制,很多学生对教学内容的认识、理解和学习都存在片面性,无法将教学内容有机结合起来形成整体.如果学生在课后没有及时对其进行分析、思考和巩固,就会导致对数学概念和数学知识无法做到综合应用.因此,数学教师需要在课堂教学中,巧借“概念图”帮助学生回顾教学内容,这样既可以帮助学生巩固数学概念和数学知识,又可以帮助学生对教学内容进行消化吸收.例如:在苏教版高中数学必修二第二章第一节“直线与方程”的讲解中,教学内容既包括倾斜角和斜率等数学概念,又包括直线方程的表达形式、距离求解和两直线间位置关系等内容,而每部分教学内容又涉及很多的数学公式.学生在分课程学习的过程中,很难做到一窥全貌.教师可以在整节知识讲解结束后,单独安排一节课的教学时间,引领学生以“概念图”的形式对教学内容进行回顾(如图2),以加深学生对数学知识的理解和掌握.在教师的概念图中,不仅将数学概念和数学公式逐一列出,而且对数学概念和数学公式应用的条件也有详细的说明.同时,数学教师在讲解的过程中,还可以与学生进行积极的互动交流,以引导的方式让学生回顾相关的数学概念和数学知识,从而加深学生对教学内容的印象.
2巧借“概念图”加强知识联系,帮助学生推导数学公式
高中数学教学内容中包含着很多数学公式,这给学生的理解和记忆造成了一定的困难.因此,高中数学教师在课堂教学中,可以巧借“概念图”,将不同数学公式之间千丝万缕的联系清晰直观地呈现出来,这样既可以帮助学生综合应用数学公式,又可以帮助学生学会推导数学公式,降低学生记忆数学公式的难度.例如:在苏教版高中数学必修四第三章“三角恒等变换”的讲解中,教学目标要求学生既要掌握数学公式的理解和运用,又要了解数学公式的推导过程,尝试运用所学数学知识推导两角和与差及二倍角公式.很多学生对两角和与差及二倍角公式的运用较为熟练,但是对于其推导过程却不太熟悉,只能通过死记硬背的方式掌握数学公式.数学教师可以将和角公式、差角公式和二倍角公式以“概念图”的形式进行呈现(如图3),帮助学生更好地理解、掌握和运用这些数学公式.在概念图中,学生可以很清楚地认识到不同数学公式之间的关系,以及相互推导的关键环节,这样既减少了学生记忆数学公式的时间,提高了学生记忆数学公式的效率,又帮助学生加深了对数学公式推导过程的理解,为学生更好地运用数学公式解题创造了有利的条件.襛巧借“概念图”进行解题,提高学生解题水平概念图不但可以帮助学生掌握数学概念之间的联系,而且可以帮助学生求解较难数学题目,让学生找到正确的解题方法和解题思路.因此,高中数学教师在教学中,可以利用“概念图”指导学生分析和思考题目,建立已知条件和求解问题之间的“概念图”.例题:已知函数f(x)=loga(2-ax)在区间[0,1]上为减函数,求a的取值范围.分析:本题为对数函数中的综合题,虽然题目中的已知条件较少,但是在底数和真数中均含有参数a,即使对底数进行分类讨论,也不太容易求解最终的答案.教师可以利用“概念图”进行讲解(如图4).首先,教师可以让学生将题目中的已知条件列举出来,如原函数是由u=2-ax和f(x)=logau构成的复合函数,定义域为[0,1],原函数在定义域中为减函数.然后教师以“概念图”的形式,让学生思考题目中复合函数同增异减性质和定义域及单调递减条件之间的联系.最后,学生很容易通过“概念图”,想到利用复合函数单调性进行求解,并得到正确答案.高中数学教师在指导学生解题时,可以巧借“概念图”帮助学生将题目中的已知条件和隐含条件有机结合起来,从而使学生找到正确的解题思路和解题方法,逐步提高学生的解题能力.总之,高中数学教学内容抽象深奥,数学概念和数学公式较多,如果教师单纯以课堂理论知识讲解的形式开展教学活动,就会使课堂教学枯燥无味,学生失去了学习的兴趣,课堂教学效果自然也难以尽如人意.而高中数学教师在课堂教学中巧借“概念图”,利用其形象直观、层次分明和条理清晰等特点,既可以帮助学生构建完整的知识体系,又可以加深学生对教学内容的理解和掌握,从而在提高课堂教学质量和教学效率的基础上,培养学生的数学思想,增强学生处理数学问题的能力.
作者:周建平 单位:江苏苏州市陆慕高级中学
讲授准确、严密,是对教师最基本的要求。但数学概念是抽象概括而成的,本身非常严密。在概念教学时必须吃透教材,否则,就可能偏离编者的意图,而作出不恰当或错误的讲述。
例如“圆柱侧面积公式”的推导,教材是这样阐述的,“把圆柱体的侧面展开,得到一个长方形(如下图)。这个长方形的长等于圆柱底面的周长……”进而推导出侧面积公式。显然,教材是出于“推导”的方便,并紧扣“展开图”来阐述的。其实,圆柱的侧面展开图并非唯一性,即还可得到平行四边形或其它图形。但有的教师却忽视了这点,说成:“圆柱的侧面展开图,就是一个长方形。”这样一来,当学生遇到以此“说法”的判断题时,便不加思索地打上“√”了。
又如六年制第九册第3页,教材以“12×0.5=6”和“12×0.1=1.2”这两个例子引出:“乘数比1小的时候乘得的积比被乘数小。”教材这一说明是在被乘数不为0的场合而言的,当被乘数为0时,它就站不住脚了。然而,有些教师为了强化学生“估算”意识,往往丢开“被乘数不为0”的前提条件,而反复去强调(复述)“原话”,结果遇到以“原话”作为判断题时,大多数学生作出了相反的判断。
因此,作为教师,必须深入钻研教材,力求领会编者意图,才能准确无误地进行讲授。这是提高概念教学质量的重要前提。
二、教实
小学生认知特点是以具体形象思维为主,他们形成概念,必须要有一定的、典型的感性认识作支柱。因此,在教学过程中,应根据实际的需要,充实一些材料和体例,以丰富学生的感知;其次要讲透概念中的词义,使学生对概念有较全面的认识和理解。
例如“互质数的定义”,教材通过求18和12公有的约数是哪几个,进而介绍什么叫公约数和最大公约数。然后直接阐述:“公约数只有1的两个数,叫做互质数。”最后举了两个例子:3和5是互质数,8和9也是互质数。由于教材中的例子均未涉及到1,这就容易使学生产生“互质的两个数不包括1”的错觉。从不少学生以“1不是质数,也不是合数”为由,来否定“1和2是互质数”的做法,就说明了这一点。因此,概念教学应重视提供感性材料,以促进学生自我内化。如下面的设计:
1.找出下面各组数的公约数
①3和10的公约数有();②1和4的公约数有();③3和15的公约数有()。
2.教学互质数的定义:从上面的三组数中发现,第①②组的公约数只有1,我们把“公约数只有1的两个数,叫做互质数。”其中:公约数——指两数公有的约数;只有1——指不含公约数2、3、4…;两个数——指相同或不相同的两个自然数。
3.强化和反馈性练习:在下面各组数中,哪几组数是互质数?为什么?
①1和1②1和2③2和6④4和9⑤11和11⑥1和任意一个自然数
这样教学,就显得内容充实、具体,学生对概念也就有较全面的认识。尤其是通过各种题组的判断,不但强化了互质数的概念,而且有利于得到准确的信息反馈,以便调整教程和把好质量关。
三、练活
学习的目的在于运用,在运用中把知识转化为能力。但机械、呆板的练习却难以提高学生的技能。因此,平时练习要有一定的灵活性,才能使学生在千变万化的问题中应付自如。下面就概念教学中,如何训练学生思维的灵活性,谈两点做法和体会。
1.改变“概念”的叙述方式(以活化概念),培养学生分析判断能力。如下面的判断题:
①因为“分数除以整数(0除外),等于分数乘以这个整数的倒数。”所以,“分数除以自然数,等于分数乘以这个自然数的倒数。”()
②因为“圆锥的体积等于和它等底等高的圆柱体积的1/3。”所以“圆柱的体积等于和它等底等高的圆锥体积的3倍。”()
③因为“公约数只有1的两个数,叫做互质数。”所以“最大公约数是1的两个数,它们一定是互质数。”()
通过改述后的判断,既深化了概念的内涵,又训练了学生分析、判断的能力。
2.发挥习题的“弹性”优势,训练学生应变能力。
例1(六年制第十册第71页第6题):“把2/3和4/5化成分母是15而大小不变的分数。”练习后,可抓住有利之机,引出下面的问题:
①在“2/3<()/15<4/5”的括号里,可填上什么自然数?
②在“2/3<()/30<4/5”的括号里,又可填几个自然数?它们分别是____、____、____。
数学概念都是从现实生活中抽象出来的,如正负数、数轴、直角坐标系、函数、角、平行线等,都是由于科学与实践的需要而产生的。讲清它们的来源与实物作比较,这样学生既不会感到抽象,而且容易形成生动活泼的学习氛围。
(1)注意概念的引出
例如:怎样用数表示前进3米?后退3米?收入200元与支出200元等这些相反量呢?引出正负数的概念;用温度计、杆称这些实物,引出数轴这个概念;由对不同实物的分类,引出同类项概念等。首先从对实物的感受激发学生学习的兴趣,再由抽象的特征浓缩成数学概念,学生容易接受。
(2)注意概念的及时整理
对于概念的引出,要把握好时间度,如过早的下定义,等于是索然无味的简单灌输,但定义过迟,学生容易失去兴趣,同时使已有知识呈现零乱状态。因此,教师在教学过程中,要及时整理和总结,在学生情绪高涨的时候及时总结出定义。
(3)注意概念的多角度说明
因为教师提供的感性材料往往具有片面性,所以常造成学生错误地扩大或缩小概念。因此要从多角度各方面加以补充说明。如“垂线”这个概念,不但要用“”号来表示,而且要用多种特殊图形和实物来透视概念的含义。
二、注重刻划概念的本质,对概念进行分析。
一个概念在其形成过程中,往往附带着许多无关特征。因此教师应抓住重点,善于引导学生,这样学生便能把握着概念突现出来的实质,尽量减少乃至消除相关不利因素的干扰。
(1)讲清概念的意义
例如:“不等式的解集”这一概念,抓住“集”这一特征进行分析,即不等式所有解的集合。更通俗地说,就是把不等式所有的解集合在一起(象学生排队集合一样),组成了不等式的解集,最终表示成x>a等形式。只有理解了这个定义,学生在解决问题的时候,就不会有丢解的现象。
(2)抓住概念中的关键字眼作分析。
例如:“同类项就是含有相同的字母,并且相同字母的指数也相同的项。”这个概念中,抓住“相同”这一关键字作分析,相同的是什么?是字母和它的指数
两部分;“最简分式”的概念中,抓住“不含公因式”这一关键字眼。只有学生真正理解了概念,那么在解决问题的时候,才能得心应手,不会出现错误。
(3)抓住概念间的内在联系作比较。
对于有内在联系的概念,要作好比较,加深学生对概念本质的理解。例如:“一元一次方程”的概念,是建立在“元”、“次”、“方程”这三个概念基础之上的。“元”表示未知数,“次”表示未知数的最高次数,次数是就整式而言的,所以“一元一次方程”是最简单的整式方程。这样学生便于抓住“一元一次方程”的本质,并为以后学习其它方程的概念打下基础。
再如:“乘方”与“幂”之间的关系,“直角”与“90°”之间的关系,“方程的解”与“不等式的解”之间的关系,“最简分式”与“最简根式”之间的关系等等。做好有内在联系的概念、相似概念的比较,学生应用起来才会得心应手。
三、注重实际应用概念,对概念进行升华。
学习数学概念的目的,就是用于实践。因此要让学生通过实际操作去掌握概念,升华概念。概念的获得是由个别到一般,概念的应用则是从一般到个别。学生掌握概念不是静止的,而是主动在头脑中进行积极思维的过程,它不仅能使已有知识再一次形象化具体化,而且能使学生对概念的理解更全面、更深刻。
(1)多角度考察分析概念。
例如,对一次函数概念的掌握,可通过下列练习:
①如果Y=(m+3)X-5是关于X的一次函数,则m=______.
②如果Y=(m+3)X-5是关于X的一次函数,则m=______.
③如果Y=(m+3)X+4X-5是关于X的一次函数,则m=______.
④如果Y=是关于X的一次函数,则m=______.
学生通过以上训练,对一次函数的概念及解析式一定会理解。
(2)对于容易混淆的概念,做比较训练。
例如学生学习了矩形、菱形、正方形的概念以后,可做以下练习:
下列命题正确的是:
①四条边相等,并且四个角也相等的四边形是正方形。
②四个角相等,并且对角线互相垂直的四边形是正方形。
③对角线互相垂直平分的四边形是正方形。
④对角线互相垂直且相等的四边形是正方形。
⑤对角线互相垂直平分,且相等的四边形是正方形。
⑥对角线互相垂直,且相等的平行四边形是正方形。
⑦有一个角是直角,且一组邻边相等的四边形是正方形。
⑧有三个角是直角,且一组邻边相等的四边形是正方形。
⑨有一个角是直角,且一组邻边相等的平行四边形是正方形。
⑩有一个角是直角的菱形是正方形。
教师在设计练习的时候,对相似概念一定要抓住它们的联系和区别,通过练习使学生真正掌握它们的判定方法和相互关系。
(3)对个别概念,要从产生的根源去考察:
例如“分式方程的增根”的概念。可从产生的根源去考察,教学时设计下列练习,让学生体会增根的概念:
①分式方程的根是。
二、新课改背景下小学高年级数学教学方法
随着小学数学教学的改革,为了紧随教学的改革,就需要小学数学老师不断的改进自己的教学方法,根据以往的教学经验进行方法的总结,不断的对教学方法进行创新、改革,提高小学高年级数学教学质量,培养学生对数学学习的兴趣还有自身的数学能力,为学生以后的发展奠定坚实的基础。
1.培养学生的发现能力
概念教学的基本目标是帮助学生形成概念,而学生形成概念的关键是发现事物或形的本质属性或规律。发现是创造的一种重要形式。现代著名心理学家布鲁纳认为:“发现不限于那种寻求人类尚未知晓的事物的行为,正确地说,发现包括着用自己的头脑亲自获得知识的一切形式。”由此可以看出,小学生用自己的头脑去亲自获得知识也是一种发现。因此,在数学教学中,教师要努力创造条件,给学生提供自主探索的机会,给学生充分的思考空间,让学生在观察、实验、归纳、分析的过程中去理解数学概念的形成和发展过程,进行数学的再发现、再创造,培养学生的发现能力。
2.培养学生的创新精神
创新精神是创造力发展的灵魂和动力。培养学生的创新精神是开发学生创造力最主要和最有效的措施。一个人的创造力能被开发到什么程度,能否为社会做出创造性的贡献,在很大程度上取决于他是否具备创新精神。如果一个人不想去创造,即使他的智力水平再高,创造力再高,一切也都等于零;而如果他具有愿意为科学和人类进步献身的高尚品德,那就会给他的创造力发展提供巨大的精神动力,他就可能会为社会做出创造性的贡献。因此,在进行数学概念的创造性教学时,要特别注意对学生创新精神的培养。例如可以通过多媒体手段进行教学,使学生对要学的新概念、新知识感兴趣,以激发学生的求知欲和好奇心;通过有效的激励手段,鼓励学生大胆质疑问难,大胆进行联想和猜测,以培养学生的挑战性和冒险性;通过思想教育,使学生树立为社会进步做出贡献的远大理想,培养学生爱祖国、爱人民的优良品质等。
3.培养学生的实践能力
创造是一种实践活动。实践为创造提供要求,为创造提供成功的可能,为检验创造成功与否提供检验的标准,因此可以说实践是创造的基础和源泉。只有积极参与实践,才能发现新问题,提出新见解、新思想、新方法,才能把握创造的机会进行成功的创造,提高创造能力。同样,创造力的提高,会促使一个人把新的思想、新的见解落实到实际中去,在创造活动中养成实践的习惯,进一步提高创造能力。由此可以看出,培养学生的实践能力对于提高学生的创造力起着至关重要的作用。这就要求在教学过程中,教师必须要抓住一切机会去培养学生的实践能力,从而达到提高学生创造力的目的。例如可以引导学生从已有的知识出发去探究新的数学知识;可以让学生通过实际操作发现新概念;可以让学生用学到的数学概念解决日常生活中的实际问题等。
以上各教学目标不是孤立的,而是互相联系、相辅相成、不可分割的。基础知识、基本技能是创造性教学的基础,创造性教学的目标则是双基目标发展的结果。因此在概念的创造性教学中,除了要确定双基目标外,还要确定培养创造力的目标,做到在打基础中学创造,在学创造中巩固基础,提高创造力。
二、小学数学概念创造性教学的教学原则
教学原则是教学工作中必须遵循的基本要求。进行概念的创造性教学首先必须要遵循基本的教学原则,如科学性和思想性统一的原则、面向全体和因材施教的原则、传授知识和发展智力相结合的原则等,这是因为它们是指导教师开展有效的教学工作,提高教学质量的一般性原则。其次还要遵循以下几项教学原则:
1.主体性原则
主体性原则,就是要尊重学生的主体地位,发挥教师的主导作用,在创造性教学过程中充分发挥教师和学生各自的主体精神和主体作用,教师创造性地教,学生创造性地学,使教、学的主体共同参与整个教学过程。教学是师生双方的共同活动,从知识水平、学生的思想品德教育、对学生心理特点的掌握和教学规律的运用来说,教师是教的主体;从教学是为了实现学生知识、能力、思想品德的转化来说,学生是学的主体。教学中如果没有学生主动的感知、思维,单凭教师的灌输,学生的认识无法实现;如果只有学生主动的感知、思维,而没有教师的引导,学生的认识同样无法实现。因此在进行创造性教学时必须遵循主体性原则,因为它是实现创造性教学的的前提。实施主体性原则要注意:教师要尽量控制自己的活动量,尽可能多地为学生提供独立活动的机会、时间和空间;要鼓励学生积极参与,激发学生创造性学习的主动性和积极性;要尊重学生的人格,唤起学生的主体意识,强化学生的自主精神,是学生真正成为学习的主人,进而使学生潜在的创造力得到发展。
2.探索性原则
探索性原则,就是教师要努力使教学活动富有探索性,为学生创设进行观察、探索、发现的学习环境,鼓励学生质疑问难,大胆联想,激发学生的学习兴趣和创造兴趣,引导学生通过亲身体验获取新知,把教学过程转化为学生自觉进行探索新知的过程,使学生积极主动地在学习中体验探索的乐趣。探索性原则是创造教育培养创造型人才的根本目的决定的。这是因为,传统的教学活动以传授为主,以“告诉”的方式让学生“占有”人类已有的知识经验,造成了置学生于被动地位,只能形成对讲授传播的依赖性和被动性,无法经历探索发现的过程,没有求异思维、驰骋想象的机会,抹杀了学生在求知过程中主动探索、积极思维的潜在能力。而儿童本身存在着创造潜能,需要亲历大胆怀疑、多方设想、探索发现、独立分析和解决问题的过程,才能将创造潜能转化成现实的创造能力。实施探索性原则要注意:教师要精心设计问题,引导学生进行观察、实验、讨论、发现;要给予学生充分的思考时间,重视学生的思维过程;要鼓励学生大胆进行联想和猜测,发展学生的直觉思维。
3.实践性原则
实践性原则,就是在教学中要重视理论联系实际,要结合实例进行教学,鼓励学生动口、动脑、动手,让学生参与到数学概念的形成过程;要组织有效的练习,引导学生运用所学到的知识去解决实际问题,使学生获得运用知识的能力。实践性原则是创造性教学的目的所决定的。创造性教学是为了培养学生的创造力,而创造力是与实践活动密不可分的,创造力在实践活动中得以表现,在实践活动中得到发展。只有积极参与实践,才能提高自己的创造力。实施实践性原则要注意:在教学中要把所讲授的数学概念同学生的生活和社会实际结合起来,引导学生联系实际的去理解和掌握概念,引导学生运用所学到的知识去解决实际问题;在教学过程中,要想方设法给学生提供实践的机会,鼓励学生观察、思考、质疑、想象、动手;特别要注意,凡是学生能自己想出来的、能讲出来的、能做出来的,教师决不能包办代替。
4.激励性原则
激励性原则,就是要帮助学生实现成功,让学生在学和做中能经常感受到成功的喜悦和愉悦,认识到自身的价值,以此来激励学生的求知欲和成就感,从而培养学生的自尊心和自信心,增强学生的创造动机和创造热情,使学生能不断地追求新知,积极进取,勇于创新。成功是一个人的基本需要之一。对小学生来讲,成功对他树立自信心是非常重要的。心理学实验表明:“一个人只要体验一次成功的欣慰,便会激起多次追求成功的欲望。”教学中经常激励学生并帮助他们经常体验成功,能使他们形成积极进取的心态,激发他们的创造热情,坚定他们的创新意志,进而形成稳定的创造动机。这也是在进行概念的创造性教学时要遵循激励性原则的原因。实施激励性原则要注意:教师要积极寻找学生的成功和进步,发现其闪光点,并及时给予鼓励;对学生的不足之处,要采取宽容态度,不要过多指责;要容忍学生幼稚的或不成熟的想法,尊重并激励学生的创新精神;要创造机会使学生能经常体验成功,使学生认识到自己的创造潜能。
以上各教学原则是一个密切联系的统一的整体。在创造性教学过程中,一定要深刻理解这些教学原则的内在涵义,结合学生和教材的特点,互相配合,发挥这些原则的整体作用。
三、小学数学概念创造性教学的教学方法
(一)引入概念的教学
概念的引入是概念教学的第一步,它是形成概念的基础。引入这个环节设计、组织的好,后面的教学活动就能顺利展开,学生就会对教师所提供的感性材料进行分析、比较,继而顺利地形成概念。
1.引入概念的方法
(1)实例引入
实例引入是指利用学生的生活实际和所熟悉的事物及实例,从具体的感知引出概念。数学是对客观世界数量关系和空间关系的一种抽象,因此在教学中要尽可能的使抽象的数学概念用学生所接触过的、恰当的实例进行引入。如教学“分数的意义”时,由于这个概念比较抽象,因此不能直接给出“分数”的定义,必须从具体到抽象帮助学生逐步形成“分数”的概念。教学时,可以通过列举大量的、学生所熟悉的日常生活中平均分配物品的实例,如平分一张纸、一个圆、一条线段、4个苹果、6面小旗等,来说明“单位1”和“平均分”,然后再用“单位1”和“平均分”引出“分数”这个概念。
(2)旧知引入
旧知引入是指利用学生已掌握的概念引出新概念。数学概念之间有着非常密切的联系,许多新概念是建立在已有概念的基础上,是旧概念的延伸和发展。利用学生已有概念引申、推导出新概念,可以强化新旧知识间的内在联系,帮助学生弄清知识的来龙去脉和前因后果,帮助学生建立概念体系,使学生学到的知识是系统的、完整的。利用这种方法引入,还能充分调动学生学习的积极性、主动性。如讲小数乘以整数或分数乘以整数的意义时,可以从整数乘法的意义引入;讲公约数、最大公约数的概念时,可以从约数这个已有概念引入。
(3)计算引入
计算引入是指通过计算发现问题,通过计算引出概念。教材中有些概念既不便用实例引入,又与已有概念联系不大,就可以通过对运算的观察分析,发现其中蕴含的本质特征,揭示数量或形的本质属性,达到引出概念的目的。如教学“倒数的认识”时,可以先给出几个乘积是1的两个数相乘的算式,如“3/8×8/37/15×15/73×1/31/80×80”,让学生计算出结果,再观察、分析,从中发现规律,继而引出“倒数”定义。
(4)联想引入
联想引入是指依据客观事物之间的相互联系,由一事物想到另一事物的引入方法。由于数学知识间存在着类似、平行、递进、对比、从属、因果等关系,这就使学生的大脑能将两个看似互不相及的知识联系起来,使学生的思维像展翅的雄鹰在知识的天空中翱翔。教学中启发学生展开丰富的想象,引发多端的联想,会使学生的创造性思维能力在自由联想的天地中获得最大发展。如在教学“百分数”时,上课伊始就给学生提出这节课要学习“百分数”,要求学生根据课题进行联想,学生依据自己的直觉大胆想到“百分数与分数有关”、“百分数与百有关”、“百分数可能是一种特殊的分数”等,然后再引导学生学习新课。这样引入,既可提高学生的学习兴趣,又能使学生的创造性思维得到发展。
2.引入概念的教学中应注意的问题
(1)引入概念不能局限于某一种方法,要依据教材的内容特点和学生的认知规律,选择适当的引入方法。引入概念,它的任务并非是单一的,所起的作用也不是唯一的,因此在教学中所采用的引入方法往往是各种方法的协调运用。如教学“分数的基本性质”,既可以用“旧知引入”,即根据除法与分数之间的关系,利用“商不变的规律”引入;也可以用“计算引入”,即让分数的分子和分母都乘以或都除以相同的数(零除外),通过计算,发现分数的大小不变,从而达到引入的目的;又可利用“联想引入”,让学生对课题展开联想,引入新课;还可以先采用“联想引入”,再采用“旧知引入”。
(2)要适当的运用变式。变式就是变换概念的非本质属性,突出本质属性,从而促进学生对概念的正确理解。在进行概念的引入教学时,往往由于教师所提供的感性材料的某些片面性,会使学生忽略对事物本质属性的认识,影响学生数学概念的形成。这就要求教师在举例或使用教具时,要适当的运用变式。如使用角、三角形、平行四边形、长方形、正方形、梯形、长方体、正方体、圆柱体、圆锥体等教具时,不能总是固定在一般位置上,而要采取变式的方法,变换教具的方位,然后再引导学生分析不同事物的各种性质,找出同类事物的共同的本质特征,这样学生才能不受事物的非本质属性(方位不同)的影响,正确的理解和掌握概念。
(二)形成概念的教学
形成概念的教学是整个概念教学过程中至关重要的一步。概念的形成是通过对具体事物的感知、辨别而抽象、概括出概念的过程,因此学生形成概念的关键就是发现事物或形的本质属性或规律。
1.形成概念的方法
(1)比较发现
比较发现是指通过比较事物之间的相同点和不同点,从而总结出本质属性或规律。这种方法是针对事物之间的异同点进行探索,能提供对事物较为全面的认识,是一种重要的科学发现方法。运用这种方法可以使学生正确认识数学知识间的异同和关系,防止知识间的割裂与混淆,使学生更好的理解和掌握数学概念。
如教学“质数和合数”时,先给出一些自然数,让学生分别找出这些数的所有约数,在比较每个数的约数的个数;然后根据约数的个数把这些数进行分类,①只有一个约数的,②只有1和它本身两个约数的,③除了1和它本身,还有别的约数的,即约数有三个或三个以上的;最后引导学生根据三类数的不同特点,总结出“质数”和“合数”的定义。
(2)类比发现
类比发现是指根据两个或两类事物在某些属性上都相同或相似,联想或猜想它们的其他属性也可能相同或相似,继而得到新的结论。它是依据客观事物或对象之间存在的普遍联系━━相似性,进行猜测得到结论的发现方法,它可以使学生明确知识间的联系,建立概念系统。教学中适当地对学生进行“类比发现”的训练,是培养学生创造性思维的一种重要手段。
例如:教学“比的基本性质”时,引导学生根据比与分数和除法之间的关系,即比的前项相当于分数的分子或除法中的被除数,比号相当于分数线或除号,后项相当于分母或除数,比值相当于分数值或商;再根据学习分数时学到了分数的基本性质和除法中有商不变的规律,大胆进行猜测,在“比”这部分知识中是不是也有一个比值不变的规律;最后通过验证,得到“比的基本性质”。
(3)归纳发现
归纳发现是指引导学生对大量的个别材料进行观察、分析、比较、总结,从特殊中归纳出一般的带有普遍性的规律或结论。归纳发现是一种不完全归纳,但它仍能从特殊事例中发现该类事物的一般规律,因此这种方法也是一种具有创造性的发现方法。教学中可以引导学生通过对具体实例的直接观察,进行归纳推理,得出结论;也可以让学生对实际例子进行分析,归纳出结论。
例如在讲“乘法分配律”时,先让学生计算:
①(32+25)×432×4+25×4
②(64+12)×364×3+12×3
计算后很容易发现每组中两个算式的结果相同。再引导学生观察、分析,可以看出左边算式是两个数的和与一个数相乘,右边算式是两个加数分别与这个数相乘,再把两个积相加。虽然两个算式不同,但结果相同,然后就可以引导学生归纳总结出“乘法分配律”。
(4)操作发现
操作发现是指讲授新的知识前,教师要求学生制作或给学生提供学具,上课时学生按照教师的要求进行操作、实验,使学生主动地、独立地发现事物的本质属性或规律。操作是一个眼、手、脑等多种器官协调的活动。让学生动手操作去发现概念,可以开发学生的右脑功能,使学生的左脑和右脑协调发展;利用操作发现还能充分体现以学生为主体,教师为主导的教学思想;能使学生经历知识产生与发展的过程,使学生经过亲身实践,在探求知识的过程中揭示规律,建立概念,掌握新知。
如讲解“三角形的面积计算公式”时,让学生那出课前准备好的不同的三角形(任意三角形、直角三角形、直角等腰三角形等),分组进行实验操作,拼摆出平行四边形、长方形或者正方形,然后找出原来三角形与所拼成图形各部分之间的关系,再根据它们的关系和所拼成图形的面积计算公式,就可以推导出“三角形的面积计算公式”。
(5)尝试发现
尝试发现是指在教学过程中,教师不直接把现成的结论告诉学生,而是在教师的指导下,让学生进行尝试活动,使学生在尝试中学习,在尝试中发现,在尝试中成功。尝试是人们认识客观事物尤其是未知事物的一种方式。许多发明创造都是通过尝试而成功的。教学中让学生尝试着去进行发现,成功了可以使学生了解知识的产生发展过程,更好的理解和掌握概念;如果失败,则可引导学生发现自己的错误,使学生了解错误产生的根源,为下一步的尝试成功打下基础。
如教学“带分数乘法”时,出示“”,让学生进行尝试计算,学生运用已有知识做出了以下几种解答:
然后让学生对几种方法进行评价,发现每种方法的优点及不足,最后总结出一般的带分数乘法的计算法则。
2.形成概念的教学中应注意的问题
(1)要适当运用对比。对于容易混淆的新旧概念,要通过分析、对比找出它们的异同点,既要找到它们的内在联系,又要找到它们的根本区别。例如,在学习“反比例”的意义时,“正比例”的意义往往影响学生对“反比例”意义的理解;也可能出现学生学习了“反比例”的意义后,而干扰学生对“正比例”的理解与掌握。这就需要及时地引导学生对这两个概念进行对比,找出两个概念的相同点(它们都是表示两个数量之间的一种关系),以及它们的不同点(“正比例”是在比值一定的情况下两个数量之间的关系,“反比例”则是在积一定的情况下两个数量之间的关系),这样学生就能清晰地建立“反比例”的概念,而不会与“正比例”产生混淆。
(2)要及时作出言语概括。数学中的有些概念是给予了科学的定义,而有些概念则不给定义,是通过描述或举例说明的方法给出的。在形成概念的教学过程中,需要把所学概念准确、精炼、及时地概括出来,使其条理化,便于学生记忆。在进行言语概括时,注意要让学生动脑总结,教师不要包办代替;总结准确的要加以肯定,予以表扬,不准确的要及时纠正,予以鼓励。进行言语概括还要注意适时,要根据知识的内在联系和学生的认知水平,在学生丰富了感性认识后,顺水推舟地揭示概念,如过早地概括出概念,学生就会对概念死记硬背,使概念的掌握流于形式;过晚就起不到组织、整理概念的作用,达不到传授知识、培养能力的目的。
(三)运用概念的教学
概念的形成是一个由个别到一般的过程,而概念的运用则是一个由一般到个别的过程,它们是学生掌握概念的两个阶段。通过运用概念解决实际问题,可以加深、丰富和巩固学生对数学概念的掌握,并且在概念运用过程中也有利于培养学生思维的深刻性、灵活性、敏捷性、批判性和独创性等等,同时也有利于培养学生的实践能力。
1.运用概念的方法
(1)复述概念或根据概念填空。例如:
①什么叫做比的基本性质?(复述比的基本性质)
②把单位“1”()分成若干份,表示()的数,叫做分数。(填关键词语)
(2)运用概念进行判断。例如:
①判断正误:
a.含有未知数的式子叫做方程。
b.“32+X=69”是方程。
②选择:下面哪些方程,哪些不是方程?为什么?
4+3X=106+2X7-X>3
17-8=98X=018÷X=2
(3)运用概念进行推理。例如:
①填空:
a.如果a和b的最小公倍数是ab,那么a和b是()。
b.奇数+奇数=()奇数×奇数=()
奇数+偶数=()奇数×偶数=()
偶数+偶数=()偶数×偶数=()
②判断:
a.如果ab=7,那么a和b成反比例。
b.一个自然数,不是质数就是合数。
2.运用概念的教学中应注意的问题
教学中主要是通过练习达到运用概念的目的的。练习是使学生掌握基础知识和技能,培养和发展学生思维能力的重要手段。练习时需要注意以下几点:
(1)练习的目的要明确。在练习时必须明确每项练习的目的,使每项练习都突出重点,充分体现练习的意图,做到有的放矢,使练习真正有助于学生理解新学概念,有利于发展学生的思维。如为了帮助学生巩固新学概念和形成基本技能,可以设计针对性练习;为了帮助学生克服定式的干扰,进一步明确概念的内涵和外延,可以设计变式练习;为了帮助学生分清容易混淆的概念,可以设计对比练习;为了帮助学生扩展知识的应用范围,加深学生对新学概念的理解,培养学生的创造性思维,可以设计开放性练习;为了帮助学生沟通新学概念与其他知识的横向、纵向联系,促进概念系统的形成,培养学生综合运用知识的能力,可以设计综合性练习等。
(2)练习的层次要清楚。小学生认识事物不能一次完成,需要一个逐步深化和提高的过程。因此练习时要按照由简到繁、由易到难、由浅入深的原则,逐步加深练习的难度。如学过“商不变的规律”后,可以安排以下三个层次的练习:
a.90÷30=(90×)÷(30×2)15600÷1300=156÷
这一层是基本练习,它是刚学完新课之后的单项的、带有模仿性的练习,它可以帮助学生巩固知识,形成正确的认知结构。
b.根据72÷9=8,说出下面各题的结果:
720÷90=7200÷900=72000÷9000=
这一层是发展练习,它是在学生已基本掌握了概念和初步形成一定的技能之后的练习,它可以帮助学生形成熟练的技能技巧。
c.填空:
(1200×4)÷(400×)=3
(1200÷5)÷(400)=3
(1200)÷(400)=3
这一层是综合练习,它可以使学生进一步深化概念,提高解题的灵活性,培养学生的数学思维能力,实现由技能到能力的转化。
(3)要注意引导学生形成概念系统。数学是一门结构性很强的学科,任何一个数学概念都存在于一定的系统之中,并与其它有关概念有着区别与联系。因此在进行运用概念的教学时,要注意引导学生将所获得的每一新概念及时地纳入相应的概念系统,这样新旧概念才能融会贯通,才能真正透彻地理解新概念,才能使相关联的概念形成概念系统。这样做也有利于学生所获得的概念的保持与运用,有利于学生概念系统的形成,有利于学生认知系统结构的形成。如在学过圆柱体体积计算公式后,可以通过练习,联系以前学过的长方体、正方体等形体的体积计算公式,通过对比,可以发现这些形体的体积计算公式可概括为“底面积×高”。这样就沟通了知识间的内在联系,巩固了这一类概念的系统知识。
小学数学概念的创造性教学是指教师结合所要教学的数学概念,遵循创造性教学原则,运用创造性教学方法,以激发学生的创造动机,发挥学生的创造潜能,培养学生的创造性思维能力为目的而进行的教学活动。下面就小学数学概念创造性教学的教学目标、教学原则和教学方法谈点儿自己的看法和做法。
一、小学数学概念创造性教学的教学目标
教学目标是教学工作的目标,是教学的根本。进行小学数学概念的创造性教学首先要完成一般的教学目标,如使学生能正确地理解概念、牢固地掌握概念、正确地运用概念等一些有关基础知识、基本技能的教学目标,完成这些基本的教学目标是实现创造性教学的首要前提。在此基础上,还要完成以下几项教学目标:
1.培养学生的发现能力
概念教学的基本目标是帮助学生形成概念,而学生形成概念的关键是发现事物或形的本质属性或规律。发现是创造的一种重要形式。现代著名心理学家布鲁纳认为:“发现不限于那种寻求人类尚未知晓的事物的行为,正确地说,发现包括着用自己的头脑亲自获得知识的一切形式。”由此可以看出,小学生用自己的头脑去亲自获得知识也是一种发现。因此,在数学教学中,教师要努力创造条件,给学生提供自主探索的机会,给学生充分的思考空间,让学生在观察、实验、归纳、分析的过程中去理解数学概念的形成和发展过程,进行数学的再发现、再创造,培养学生的发现能力。
2.培养学生的创新精神
创新精神是创造力发展的灵魂和动力。培养学生的创新精神是开发学生创造力最主要和最有效的措施。一个人的创造力能被开发到什么程度,能否为社会做出创造性的贡献,在很大程度上取决于他是否具备创新精神。如果一个人不想去创造,即使他的智力水平再高,创造力再高,一切也都等于零;而如果他具有愿意为科学和人类进步献身的高尚品德,那就会给他的创造力发展提供巨大的精神动力,他就可能会为社会做出创造性的贡献。因此,在进行数学概念的创造性教学时,要特别注意对学生创新精神的培养。例如可以通过多媒体手段进行教学,使学生对要学的新概念、新知识感兴趣,以激发学生的求知欲和好奇心;通过有效的激励手段,鼓励学生大胆质疑问难,大胆进行联想和猜测,以培养学生的挑战性和冒险性;通过思想教育,使学生树立为社会进步做出贡献的远大理想,培养学生爱祖国、爱人民的优良品质等。
3.培养学生的实践能力
创造是一种实践活动。实践为创造提供要求,为创造提供成功的可能,为检验创造成功与否提供检验的标准,因此可以说实践是创造的基础和源泉。只有积极参与实践,才能发现新问题,提出新见解、新思想、新方法,才能把握创造的机会进行成功的创造,提高创造能力。同样,创造力的提高,会促使一个人把新的思想、新的见解落实到实际中去,在创造活动中养成实践的习惯,进一步提高创造能力。由此可以看出,培养学生的实践能力对于提高学生的创造力起着至关重要的作用。这就要求在教学过程中,教师必须要抓住一切机会去培养学生的实践能力,从而达到提高学生创造力的目的。例如可以引导学生从已有的知识出发去探究新的数学知识;可以让学生通过实际操作发现新概念;可以让学生用学到的数学概念解决日常生活中的实际问题等。
以上各教学目标不是孤立的,而是互相联系、相辅相成、不可分割的。基础知识、基本技能是创造性教学的基础,创造性教学的目标则是双基目标发展的结果。因此在概念的创造性教学中,除了要确定双基目标外,还要确定培养创造力的目标,做到在打基础中学创造,在学创造中巩固基础,提高创造力。
二、小学数学概念创造性教学的教学原则
教学原则是教学工作中必须遵循的基本要求。进行概念的创造性教学首先必须要遵循基本的教学原则,如科学性和思想性统一的原则、面向全体和因材施教的原则、传授知识和发展智力相结合的原则等,这是因为它们是指导教师开展有效的教学工作,提高教学质量的一般性原则。其次还要遵循以下几项教学原则:
1.主体性原则
主体性原则,就是要尊重学生的主体地位,发挥教师的主导作用,在创造性教学过程中充分发挥教师和学生各自的主体精神和主体作用,教师创造性地教,学生创造性地学,使教、学的主体共同参与整个教学过程。教学是师生双方的共同活动,从知识水平、学生的思想品德教育、对学生心理特点的掌握和教学规律的运用来说,教师是教的主体;从教学是为了实现学生知识、能力、思想品德的转化来说,学生是学的主体。教学中如果没有学生主动的感知、思维,单凭教师的灌输,学生的认识无法实现;如果只有学生主动的感知、思维,而没有教师的引导,学生的认识同样无法实现。因此在进行创造性教学时必须遵循主体性原则,因为它是实现创造性教学的的前提。实施主体性原则要注意:教师要尽量控制自己的活动量,尽可能多地为学生提供独立活动的机会、时间和空间;要鼓励学生积极参与,激发学生创造性学习的主动性和积极性;要尊重学生的人格,唤起学生的主体意识,强化学生的自主精神,是学生真正成为学习的主人,进而使学生潜在的创造力得到发展。
2.探索性原则
探索性原则,就是教师要努力使教学活动富有探索性,为学生创设进行观察、探索、发现的学习环境,鼓励学生质疑问难,大胆联想,激发学生的学习兴趣和创造兴趣,引导学生通过亲身体验获取新知,把教学过程转化为学生自觉进行探索新知的过程,使学生积极主动地在学习中体验探索的乐趣。探索性原则是创造教育培养创造型人才的根本目的决定的。这是因为,传统的教学活动以传授为主,以“告诉”的方式让学生“占有”人类已有的知识经验,造成了置学生于被动地位,只能形成对讲授传播的依赖性和被动性,无法经历探索发现的过程,没有求异思维、驰骋想象的机会,抹杀了学生在求知过程中主动探索、积极思维的潜在能力。而儿童本身存在着创造潜能,需要亲历大胆怀疑、多方设想、探索发现、独立分析和解决问题的过程,才能将创造潜能转化成现实的创造能力。实施探索性原则要注意:教师要精心设计问题,引导学生进行观察、实验、讨论、发现;要给予学生充分的思考时间,重视学生的思维过程;要鼓励学生大胆进行联想和猜测,发展学生的直觉思维。
3.实践性原则
实践性原则,就是在教学中要重视理论联系实际,要结合实例进行教学,鼓励学生动口、动脑、动手,让学生参与到数学概念的形成过程;要组织有效的练习,引导学生运用所学到的知识去解决实际问题,使学生获得运用知识的能力。实践性原则是创造性教学的目的所决定的。创造性教学是为了培养学生的创造力,而创造力是与实践活动密不可分的,创造力在实践活动中得以表现,在实践活动中得到发展。只有积极参与实践,才能提高自己的创造力。实施实践性原则要注意:在教学中要把所讲授的数学概念同学生的生活和社会实际结合起来,引导学生联系实际的去理解和掌握概念,引导学生运用所学到的知识去解决实际问题;在教学过程中,要想方设法给学生提供实践的机会,鼓励学生观察、思考、质疑、想象、动手;特别要注意,凡是学生能自己想出来的、能讲出来的、能做出来的,教师决不能包办代替。
4.激励性原则
激励性原则,就是要帮助学生实现成功,让学生在学和做中能经常感受到成功的喜悦和愉悦,认识到自身的价值,以此来激励学生的求知欲和成就感,从而培养学生的自尊心和自信心,增强学生的创造动机和创造热情,使学生能不断地追求新知,积极进取,勇于创新。成功是一个人的基本需要之一。对小学生来讲,成功对他树立自信心是非常重要的。心理学实验表明:“一个人只要体验一次成功的欣慰,便会激起多次追求成功的欲望。”教学中经常激励学生并帮助他们经常体验成功,能使他们形成积极进取的心态,激发他们的创造热情,坚定他们的创新意志,进而形成稳定的创造动机。这也是在进行概念的创造性教学时要遵循激励性原则的原因。实施激励性原则要注意:教师要积极寻找学生的成功和进步,发现其闪光点,并及时给予鼓励;对学生的不足之处,要采取宽容态度,不要过多指责;要容忍学生幼稚的或不成熟的想法,尊重并激励学生的创新精神;要创造机会使学生能经常体验成功,使学生认识到自己的创造潜能。
以上各教学原则是一个密切联系的统一的整体。在创造性教学过程中,一定要深刻理解这些教学原则的内在涵义,结合学生和教材的特点,互相配合,发挥这些原则的整体作用。三、小学数学概念创造性教学的教学方法
(一)引入概念的教学
概念的引入是概念教学的第一步,它是形成概念的基础。引入这个环节设计、组织的好,后面的教学活动就能顺利展开,学生就会对教师所提供的感性材料进行分析、比较,继而顺利地形成概念。
1.引入概念的方法
(1)实例引入
实例引入是指利用学生的生活实际和所熟悉的事物及实例,从具体的感知引出概念。数学是对客观世界数量关系和空间关系的一种抽象,因此在教学中要尽可能的使抽象的数学概念用学生所接触过的、恰当的实例进行引入。如教学“分数的意义”时,由于这个概念比较抽象,因此不能直接给出“分数”的定义,必须从具体到抽象帮助学生逐步形成“分数”的概念。教学时,可以通过列举大量的、学生所熟悉的日常生活中平均分配物品的实例,如平分一张纸、一个圆、一条线段、4个苹果、6面小旗等,来说明“单位1”和“平均分”,然后再用“单位1”和“平均分”引出“分数”这个概念。
(2)旧知引入
旧知引入是指利用学生已掌握的概念引出新概念。数学概念之间有着非常密切的联系,许多新概念是建立在已有概念的基础上,是旧概念的延伸和发展。利用学生已有概念引申、推导出新概念,可以强化新旧知识间的内在联系,帮助学生弄清知识的来龙去脉和前因后果,帮助学生建立概念体系,使学生学到的知识是系统的、完整的。利用这种方法引入,还能充分调动学生学习的积极性、主动性。如讲小数乘以整数或分数乘以整数的意义时,可以从整数乘法的意义引入;讲公约数、最大公约数的概念时,可以从约数这个已有概念引入。
(3)计算引入
计算引入是指通过计算发现问题,通过计算引出概念。教材中有些概念既不便用实例引入,又与已有概念联系不大,就可以通过对运算的观察分析,发现其中蕴含的本质特征,揭示数量或形的本质属性,达到引出概念的目的。如教学“倒数的认识”时,可以先给出几个乘积是1的两个数相乘的算式,如“3/8×8/37/15×15/73×1/31/80×80”,让学生计算出结果,再观察、分析,从中发现规律,继而引出“倒数”定义。
(4)联想引入
联想引入是指依据客观事物之间的相互联系,由一事物想到另一事物的引入方法。由于数学知识间存在着类似、平行、递进、对比、从属、因果等关系,这就使学生的大脑能将两个看似互不相及的知识联系起来,使学生的思维像展翅的雄鹰在知识的天空中翱翔。教学中启发学生展开丰富的想象,引发多端的联想,会使学生的创造性思维能力在自由联想的天地中获得最大发展。如在教学“百分数”时,上课伊始就给学生提出这节课要学习“百分数”,要求学生根据课题进行联想,学生依据自己的直觉大胆想到“百分数与分数有关”、“百分数与百有关”、“百分数可能是一种特殊的分数”等,然后再引导学生学习新课。这样引入,既可提高学生的学习兴趣,又能使学生的创造性思维得到发展。
2.引入概念的教学中应注意的问题
(1)引入概念不能局限于某一种方法,要依据教材的内容特点和学生的认知规律,选择适当的引入方法。引入概念,它的任务并非是单一的,所起的作用也不是唯一的,因此在教学中所采用的引入方法往往是各种方法的协调运用。如教学“分数的基本性质”,既可以用“旧知引入”,即根据除法与分数之间的关系,利用“商不变的规律”引入;也可以用“计算引入”,即让分数的分子和分母都乘以或都除以相同的数(零除外),通过计算,发现分数的大小不变,从而达到引入的目的;又可利用“联想引入”,让学生对课题展开联想,引入新课;还可以先采用“联想引入”,再采用“旧知引入”。
(2)要适当的运用变式。变式就是变换概念的非本质属性,突出本质属性,从而促进学生对概念的正确理解。在进行概念的引入教学时,往往由于教师所提供的感性材料的某些片面性,会使学生忽略对事物本质属性的认识,影响学生数学概念的形成。这就要求教师在举例或使用教具时,要适当的运用变式。如使用角、三角形、平行四边形、长方形、正方形、梯形、长方体、正方体、圆柱体、圆锥体等教具时,不能总是固定在一般位置上,而要采取变式的方法,变换教具的方位,然后再引导学生分析不同事物的各种性质,找出同类事物的共同的本质特征,这样学生才能不受事物的非本质属性(方位不同)的影响,正确的理解和掌握概念。
(二)形成概念的教学
形成概念的教学是整个概念教学过程中至关重要的一步。概念的形成是通过对具体事物的感知、辨别而抽象、概括出概念的过程,因此学生形成概念的关键就是发现事物或形的本质属性或规律。
1.形成概念的方法
(1)比较发现
比较发现是指通过比较事物之间的相同点和不同点,从而总结出本质属性或规律。这种方法是针对事物之间的异同点进行探索,能提供对事物较为全面的认识,是一种重要的科学发现方法。运用这种方法可以使学生正确认识数学知识间的异同和关系,防止知识间的割裂与混淆,使学生更好的理解和掌握数学概念。
如教学“质数和合数”时,先给出一些自然数,让学生分别找出这些数的所有约数,在比较每个数的约数的个数;然后根据约数的个数把这些数进行分类,①只有一个约数的,②只有1和它本身两个约数的,③除了1和它本身,还有别的约数的,即约数有三个或三个以上的;最后引导学生根据三类数的不同特点,总结出“质数”和“合数”的定义。
(2)类比发现
类比发现是指根据两个或两类事物在某些属性上都相同或相似,联想或猜想它们的其他属性也可能相同或相似,继而得到新的结论。它是依据客观事物或对象之间存在的普遍联系━━相似性,进行猜测得到结论的发现方法,它可以使学生明确知识间的联系,建立概念系统。教学中适当地对学生进行“类比发现”的训练,是培养学生创造性思维的一种重要手段。
例如:教学“比的基本性质”时,引导学生根据比与分数和除法之间的关系,即比的前项相当于分数的分子或除法中的被除数,比号相当于分数线或除号,后项相当于分母或除数,比值相当于分数值或商;再根据学习分数时学到了分数的基本性质和除法中有商不变的规律,大胆进行猜测,在“比”这部分知识中是不是也有一个比值不变的规律;最后通过验证,得到“比的基本性质”。
(3)归纳发现
归纳发现是指引导学生对大量的个别材料进行观察、分析、比较、总结,从特殊中归纳出一般的带有普遍性的规律或结论。归纳发现是一种不完全归纳,但它仍能从特殊事例中发现该类事物的一般规律,因此这种方法也是一种具有创造性的发现方法。教学中可以引导学生通过对具体实例的直接观察,进行归纳推理,得出结论;也可以让学生对实际例子进行分析,归纳出结论。
例如在讲“乘法分配律”时,先让学生计算:
①(32+25)×432×4+25×4
②(64+12)×364×3+12×3
计算后很容易发现每组中两个算式的结果相同。再引导学生观察、分析,可以看出左边算式是两个数的和与一个数相乘,右边算式是两个加数分别与这个数相乘,再把两个积相加。虽然两个算式不同,但结果相同,然后就可以引导学生归纳总结出“乘法分配律”。
(4)操作发现
操作发现是指讲授新的知识前,教师要求学生制作或给学生提供学具,上课时学生按照教师的要求进行操作、实验,使学生主动地、独立地发现事物的本质属性或规律。操作是一个眼、手、脑等多种器官协调的活动。让学生动手操作去发现概念,可以开发学生的右脑功能,使学生的左脑和右脑协调发展;利用操作发现还能充分体现以学生为主体,教师为主导的教学思想;能使学生经历知识产生与发展的过程,使学生经过亲身实践,在探求知识的过程中揭示规律,建立概念,掌握新知。
如讲解“三角形的面积计算公式”时,让学生那出课前准备好的不同的三角形(任意三角形、直角三角形、直角等腰三角形等),分组进行实验操作,拼摆出平行四边形、长方形或者正方形,然后找出原来三角形与所拼成图形各部分之间的关系,再根据它们的关系和所拼成图形的面积计算公式,就可以推导出“三角形的面积计算公式”。
(5)尝试发现
尝试发现是指在教学过程中,教师不直接把现成的结论告诉学生,而是在教师的指导下,让学生进行尝试活动,使学生在尝试中学习,在尝试中发现,在尝试中成功。尝试是人们认识客观事物尤其是未知事物的一种方式。许多发明创造都是通过尝试而成功的。教学中让学生尝试着去进行发现,成功了可以使学生了解知识的产生发展过程,更好的理解和掌握概念;如果失败,则可引导学生发现自己的错误,使学生了解错误产生的根源,为下一步的尝试成功打下基础。
如教学“带分数乘法”时,出示“”,让学生进行尝试计算,学生运用已有知识做出了以下几种解答:
然后让学生对几种方法进行评价,发现每种方法的优点及不足,最后总结出一般的带分数乘法的计算法则。
2.形成概念的教学中应注意的问题
(1)要适当运用对比。对于容易混淆的新旧概念,要通过分析、对比找出它们的异同点,既要找到它们的内在联系,又要找到它们的根本区别。例如,在学习“反比例”的意义时,“正比例”的意义往往影响学生对“反比例”意义的理解;也可能出现学生学习了“反比例”的意义后,而干扰学生对“正比例”的理解与掌握。这就需要及时地引导学生对这两个概念进行对比,找出两个概念的相同点(它们都是表示两个数量之间的一种关系),以及它们的不同点(“正比例”是在比值一定的情况下两个数量之间的关系,“反比例”则是在积一定的情况下两个数量之间的关系),这样学生就能清晰地建立“反比例”的概念,而不会与“正比例”产生混淆。
(2)要及时作出言语概括。数学中的有些概念是给予了科学的定义,而有些概念则不给定义,是通过描述或举例说明的方法给出的。在形成概念的教学过程中,需要把所学概念准确、精炼、及时地概括出来,使其条理化,便于学生记忆。在进行言语概括时,注意要让学生动脑总结,教师不要包办代替;总结准确的要加以肯定,予以表扬,不准确的要及时纠正,予以鼓励。进行言语概括还要注意适时,要根据知识的内在联系和学生的认知水平,在学生丰富了感性认识后,顺水推舟地揭示概念,如过早地概括出概念,学生就会对概念死记硬背,使概念的掌握流于形式;过晚就起不到组织、整理概念的作用,达不到传授知识、培养能力的目的。
(三)运用概念的教学
概念的形成是一个由个别到一般的过程,而概念的运用则是一个由一般到个别的过程,它们是学生掌握概念的两个阶段。通过运用概念解决实际问题,可以加深、丰富和巩固学生对数学概念的掌握,并且在概念运用过程中也有利于培养学生思维的深刻性、灵活性、敏捷性、批判性和独创性等等,同时也有利于培养学生的实践能力。
1.运用概念的方法
(1)复述概念或根据概念填空。例如:
①什么叫做比的基本性质?(复述比的基本性质)
②把单位“1”()分成若干份,表示()的数,叫做分数。(填关键词语)
(2)运用概念进行判断。例如:
①判断正误:
a.含有未知数的式子叫做方程。
b.“32+X=69”是方程。
②选择:下面哪些方程,哪些不是方程?为什么?
4+3X=106+2X7-X>3
17-8=98X=018÷X=2
(3)运用概念进行推理。例如:
①填空:
a.如果a和b的最小公倍数是ab,那么a和b是()。
b.奇数+奇数=()奇数×奇数=()
奇数+偶数=()奇数×偶数=()
偶数+偶数=()偶数×偶数=()
②判断:
a.如果ab=7,那么a和b成反比例。
b.一个自然数,不是质数就是合数。
2.运用概念的教学中应注意的问题
教学中主要是通过练习达到运用概念的目的的。练习是使学生掌握基础知识和技能,培养和发展学生思维能力的重要手段。练习时需要注意以下几点:
(1)练习的目的要明确。在练习时必须明确每项练习的目的,使每项练习都突出重点,充分体现练习的意图,做到有的放矢,使练习真正有助于学生理解新学概念,有利于发展学生的思维。如为了帮助学生巩固新学概念和形成基本技能,可以设计针对性练习;为了帮助学生克服定式的干扰,进一步明确概念的内涵和外延,可以设计变式练习;为了帮助学生分清容易混淆的概念,可以设计对比练习;为了帮助学生扩展知识的应用范围,加深学生对新学概念的理解,培养学生的创造性思维,可以设计开放性练习;为了帮助学生沟通新学概念与其他知识的横向、纵向联系,促进概念系统的形成,培养学生综合运用知识的能力,可以设计综合性练习等。
(2)练习的层次要清楚。小学生认识事物不能一次完成,需要一个逐步深化和提高的过程。因此练习时要按照由简到繁、由易到难、由浅入深的原则,逐步加深练习的难度。如学过“商不变的规律”后,可以安排以下三个层次的练习:
a.90÷30=(90×)÷(30×2)15600÷1300=156÷
这一层是基本练习,它是刚学完新课之后的单项的、带有模仿性的练习,它可以帮助学生巩固知识,形成正确的认知结构。
b.根据72÷9=8,说出下面各题的结果:
720÷90=7200÷900=72000÷9000=
这一层是发展练习,它是在学生已基本掌握了概念和初步形成一定的技能之后的练习,它可以帮助学生形成熟练的技能技巧。
c.填空:
(1200×4)÷(400×)=3
(1200÷5)÷(400)=3
(1200)÷(400)=3
这一层是综合练习,它可以使学生进一步深化概念,提高解题的灵活性,培养学生的数学思维能力,实现由技能到能力的转化。
在教学互质数的意义时,教师可以通过表格式让学生对质数、质因数、互质数进行比较,使学生充分认识它们之间的关系,找出它们之间区别,弄清楚互质数是针对两个数而言的,不一定非质数不可,而是存在公约数只有1这一特性。然后再运用质数与质数,合数与合数,质数与合数的举例比较,使学生不仅全面认识互质数的性质,重要的是还进一步理解了质数和质因数的意义。
二、通过纵向比较,挖掘概念的共同性
数学概念不仅存在差异性,还存在着共同特性。许多数学概念看似“风马牛不相及”,但它们隐含着一定的共性,如果准确地把握它们的共性,运用这种特性可以帮助学生理解概念、掌握概念。小学生对事物的认识水平明显不如成人,所以,有相当一部分学生在一段时间内不能或没有把握数学概念之间的共性,从而使他们在学习数学概念时,学习效果不理想,所以需要教师在钻研教材时,注意挖掘各概念之间存在的共同性,在教学的前阶段做好铺垫教学,教学中阶段进行强化教学,教学后阶段拓展深化,使这类知识形成一个整体,也能提高对一系列概念的理解与巩固。
在教学比的基本性质时,首先复习分数的基本性质和商不变性质,然后引导学生认清比与分数、除法之间的关系,接着让学生将分数中的分子、分母,除法中的被除数、除数转换成比式中的前项与后项,并用具体的数字加以计算,从而得出结论,使三者概念融为一体,连成一串,学生学起来觉得轻松。
教和学是培养人的过程,其中包含了全人的概念。人本主义属于后现代范畴的一部分,主要目标是把学习者引入到学习过程的情感参与中来,每个学习者都被看作一个独立的个体存在。情感参与与英语教学艺术性关系很大。学生增加感情投入,激发英语学习的积极性和主动性,不仅仅为了分数或名次而学习,而且是为从内在和本质上提升自身的人文素养而学习,发展和完善自我,以跟得上时代和社会前进的脚步。学生唯有懂得自己到底需要什么,追求什么,才不会对生活与学习产生无谓的迷茫或误解。就英语教师而言,为了保持身心健康和实现和谐发展,也不能仅仅把教学或课堂当成简单的工作任务或工作场所,应从内在的情感因素出发,挖掘英语教学的各种美及魅力所在,以更为饱满的热情投身到自己热爱的事业上来,从简单的教书匠成为工程师、艺术家。讲课在某种意义上来说就是语言的艺术,英语教师在课堂上除了需要注意仪态外,还要根据教材的选择,进行合适的教学设计,开展有效的教学活动。其中,语言的运用除了简单的语音、语调、书写外,在传递知识文化时还要具有思想性和艺术性,充分考虑学生的主体地位,满足学生们自主性、主动性发展的需求,循序渐进地调动学生的想象力、学习兴趣和热情,结合和谐、积极、正面的学习心理来营造丰富、生动、富有美感的教学氛围。
(二)艺术美的体现
教学就是一门艺术,艺术美随处可见。与其他科目的教学相比,英语教学的确存在着个性,但不能因此而忽略共性。根据社会建构主义理论模式,英语学习过程中有四个重要构成部分:教师、学习者、任务以及环境。由此可见,教师和学习者可以充分合理地利用不同的教学任务和环境来营造美的氛围,追求美的境界。所谓任务,除了最常用的课本外,现如今网络等外部资源也日益彰显其地位,学生具有了一定的自主学习能力,能够在教师的有效指导下进行知识的扩充学习。所谓环境,除了最主要的教室之外,课堂之外的学校环境、社会环境以及学术环境等也能起到非常重要的作用,教师在教学之余,应该有机地将这几种环境结合起来,追求最大化的产出。英语教学作为一门文科类学科,拥有不可动摇的美学意义和地位,它可以和语文或者国学教育放在一起思量,合理把握权重,可以创造出令人满意的效果。美的外在显现有很多不同的划分标准,依据教学的统一性和英语教学自身的特殊性,笔者认为英语教学的艺术美表现为以下两点。
1.英语教学的形态美
优雅的形态能够给人带来美的陶醉和享受,同时也在一定程度上反映出个人的修养和素质。在教学过程中,英语教师的形态在整个教学过程中起着至关重要的作用。一般而言,教师的形态多指教师身体语言的具体体现,比如面部表情、手势动作、身体姿势、穿着打扮等。出于语言的特殊性,教师可在很大程度上发挥想象力和创造力,因而教师的情感因素也应纳入考虑。另外,教师的人格魅力在英语教学过程中同样具有重要的影响力,教师乐观和热情的教学态度在很大程度上影响着学生的学习态度和学习动机,尤其是对于那些英语语言学习能力较差的学生。简单说,英语教学的形态美包括美的姿态、美的情感和美的板书等视觉感受方面。
2.英语教学的形式和内容美
英语教学的形式和内容美是和英语语言本身密不可分的。英语属于印欧语系,而我们的母语汉语属于汉藏语系。英语是由26个字母构成的非表意类语言,其形式不代表意义,因此这也给中国的英语学习者带来了一些困扰和难题。英语本身虽然只是符号,但它包含很多美的事物,如感情上美的共鸣,逻辑上美的展现,艺术上美的启迪等。同时,“教无定法”也给英语教学带来了很大的灵活性和便利性。英语教师完全可以发挥自己的创造力和想象力,形成属于自己个性化的教学。在形式上,教师可以利用修辞手法和认知概念来阐释具体语言现象和问题。在内容上,教师可以从教学材料的选取和组织上入手,进行改进,突出体现英语语言的艺术美感。就英语语言本身,教师可以通过语音、语调、语气、语趣等,更加和谐地体现形式和内容美。
二、概念隐喻及其应用
上述英语教学的艺术美体现中提及了认知和隐喻,概念隐喻作为一种普遍的语言现象,与人类的认知、思维方式、想象力等关系密切,如何利用其基本原理和理念,来更好地开展英语教学,是值得深入研究的话题。
(一)概念隐喻与英语教学的文化美
隐喻是语言中最常用的一种表达方式,是我们认识世界和促使语言发生变化的重要手段之一。根据始源域的不同,将概念隐喻分为三大类:空间隐喻、实体隐喻和结构喻。顾名思义,空间隐喻来源于人类直接的身体体验,运用自身和外界事物的空间方位等关系来表达其认识。实体隐喻则是指人们对实体或物质的看法,若将某种抽象的现象、特征、概念等隐喻为实体时,就可对其进行描述和量化剖析等。而结构喻是用一种相对具体的、熟悉的概念结构去建构另外一个相对抽象的、陌生的概念,两者之间有相似的结构体系。概念隐喻具有系统性与文化一致性两大特点。隐喻与语言实质上是相互渗透依存的统一体,而文化本身就是综合复杂的隐喻。中英文在概念隐喻上存在着文化差异,小至动物、植物、颜色,大到教育、医疗、福利等。因此在英语教学中,教师合理利用这些文化差异,能够更好地激发学生的学习兴趣,提高学生的学习效率。如《新视野大学英语》第二版每一单元部分,都提出了供学生思考的问题,英语教师可以在此基础上,合理地修订或补充,开发学生对文化美与文化差异的意识和探索。
(二)概念隐喻与英语教学的基本技能
英语教学的基本技能包括五点,即听说读写译,这五个方面是一个统一的有机整体,忽视其中任一点,都谈不上掌握了完整的英语能力。某一词语或语法结构的特定选择是基于一定意义的,这里的意义多指语言表达和语言使用者心理表征之间所形成的关系。
1.词汇的习得
认知词汇是以词汇的原义为中心,通过隐喻认知模式中的原域,投射到其他不同的认知目标域中,形成了词汇的引申义。随着社会和科技的发展进步,今天的社会涌现出了很多新兴的词汇,任何一种语言都要与时俱进,此现象不可避免。英语词汇的语义也在不断扩展,英语词汇经历了共时和历时的演绎,产生了一词多义、同反近义词和词的语境等变化。英语词汇从基本范畴的词汇到引申词汇,此间的过渡可以通过各种有效的方法和手段获得。基于英语词汇的这一特点,教师在英语教学中可以有效利用此特征进行词汇教学,由一个词的记忆可以引申联想到很多其他词,有利于提高词汇习得的效率。
2.基本技能的提高
基本技能的提高基于词汇的掌握认知水平,语法也发挥着不可取代的作用。听说读写译,都和图式的概念相关。而不管图式如何,又都与概念隐喻密不可分。英语教师可以引导学生有意识地注意到大脑储存的信息,在已知背景知识的基础上进行深入的理解建构。在听说方面,运用已知信息对听到的内容进行解码的过程,是背景知识与听说材料互相作用的过程。大脑中通过概念隐喻建立起来的单词、词组和句型能够有助于学习者紧扣主要信息,过滤掉无关内容。这样不仅能够帮助学生减轻听说记忆负担和焦虑,更能促进他们对关键信息的把握,对听说的内容进行迅速解码。在读写译方面,要熟透脚本,脚本是指“专门为经常出现的事件序列设计的知识结构”。语篇阅读中,有时隐喻表现为一个贯穿其中多次出现的喻体,有时是一个基本隐喻与其他衍生之间的照应,因此,要合理地理解事物的相似点及相应的一系列关系,并利用隐喻思维层的扩充来完善理解。
随着我国经济的快速发展,对技能型人才的需求急剧增加,职业教育也越来越受到社会的重视,但中等职业学校的学生,普遍存在着数学基础差、底子薄、学习兴趣不高的弱点,作为一名职业高中数学教师,为了使学生通过学习数学,掌握必要的数学基础知识,具备必需的相关技能与能力,我在平时的教学实践中,尝试了以下做法。
一、转换角色,改变已往的教学行为
面对新课程,教师首先要转换角色,确认自己新的教学身份,成为学生学习活动的组织者、引导者、参与者。
首先,教师作为学生学习的组织者,一个非常重要的任务就是为学生提供合作交流的空间与时间。在教学中,可以根据不同的内容采取独自学习、同桌讨论、小组合作探究、全班交流等课堂教学组织形式,以活跃课堂气氛,提高学生对数学的学习兴趣。
其次,教师作为学生学习的引导者,其引导的特点是含而不露、指而不明、开而不达、引而不发。当学生在学习过程中迷路时,教师不是轻易的告诉方向,而是引导他如何辨明方向。当学生面对学习中的遇到的困难产生畏难情绪时,教师不是拖着走,而是点起他内心的激情,鼓励他不断地向上攀登。
再次,教师是学生学习活动的参与者,其行为方式主要是:观察、倾听、交流。教师应以朋友的身份参与学生的学习探索过程,实现由传道、授业、解惑向学习活动的组织者、引导者、合作者转变。例如,在学生对讨论的问题争议不休、并且与正确结论之间发生偏差时,教师可以说:“能让老师发表一下意见吗?”,以和蔼可亲的态度,“商量”的语气,以“参与者”、“合作者”的身份与学生共同讨论。这样教师既起到“引导者”的作用,又为学生创设了一种没有精神压抑的、以人为本的学习环境,使学生在探索数学知识的同时也经历了丰富的情感体验。
如:在讲“反函数”这一节内容时,学生的思维往往容易出现“混乱”,搞不清为什么有的函数有反函数,有的函数没有反函数。这时需要教师积极引导学生的思维,让他们懂得“函数”是一种特殊的“映射”,“反函数”作为一种“函数”,也必须符合“映射”的定义,从而得出:在定义域和值域之间只有是“一一映射”的函数才有反函数。于是在课堂练习中“求y=x2(x≤0)的反函数时,能否把条件x≤0去掉?”,其结论当然是“不能”。如果去掉,则给一个y值时,就不是唯一确定的x值与其对应,从而该函数的定义域和值域之间就不是“一一映射”,所以在没有附加条件时,函数y=x2就没有反函数。
二、制作数学模型,调动学习兴趣
动手制作数学模型是立体几何教学的重要措施,数学模型易于表现空间图形的真实形状和各元素之间的实际位置关系,它可以帮助学生掌握新知识,建立空间观念。比如,在讲三垂线定理及其逆定理时,我号召学生用一块硬纸板和几根小木棒,制作了简易的数学模型,学生通过演示数学模型,就很容易地理解和掌握了三垂线定理及其逆定理的实质,就能得心应手地解决与之相关的题目。这样,通过让学生动手制作数学模型,降低了思维难度.从而使他们对学习过程本身产生兴趣,进而发展到对学习内容产生兴趣。
三、以学生为中心,分层教学、因材施教
在教学过程中,教师要对学生的个体差异仔细观察,并充分估计,做到尊重差异、承认差异。从学生的实际情况出发,打破传统教学的“整体”教学观的束缚,注重整体与个体并重,采取分层教学、分类施教。
教师在备课时要因人而异地设计教学环节,做到扬长避短、分类指导。课堂的提问,新旧知识的迁移,新知识的讲解等方面,都要针对学生差异,设计不同层次的问题。关注学生全体的同时,侧重不同层次学生的发展,以使能力较强的学生发展了思维,能力中等的学生产生了兴趣,能力较差的学生掌握了方法。
如,在讲完一个概念后,让学生复述;讲完一个例题后,将条件适当改变,请中等或较高水平的学生上台板演;对于基础较差的学生,可以多提问一些简单的问题,让他们有较多的锻炼机会,并及时地充分肯定学生的一点一滴的进步。坚持这样做,就会激发学生的学习热情,让他们热爱数学,自觉地学习数学。
四、联系生活实际,培养学生的数学应用意识
由于大多数职业高中学生毕业后,走向工作岗位,他们片面地认为数学跟工作和生活联系不大,因而有部分学生在数学课上睡觉、聊天、看小说等。为了改变这种现状,在平时的教学中,我充分利用学生已有的生活经验,引导学生把所学的数学知识应用到现实中去,以体会数学在现实生活中的应用价值。
如,讲《分类计数原理与分步计数原理》时,我选用了一个这样的例子:某城市的电话号码由8位数字组成,其中从左边算起的第一位只能是6或8,其余7位可以从前10个自然数0,1,,9中任意取,允许数字重复。试问:该城市最多可装电话多少门?
1要把握函数的实质
17世纪初期,笛卡尔在引入变量概念之后,就有了函数的思想,把函数一词用作数学术语的是莱布尼兹,欧拉在1734年首次用f(x)作为函数符号。关于函数概念有“变量说”、“对应说”、“集合说”等。变量说的定义是:设x、y是两个变量,如果当变量x在实数的某一范围内变化时,变量y按一定规律随x的变化而变化。我们称x为自变量,变量y叫变量x的函数,记作y=f(x)。初中教材中的定义为:如果在某个变化过程中有两个变量x、y,并且对于x在某个范围内的每一个确定的值,按照某个对应法则,y都有唯一确定的值与之对应,那么y就是x的函数,x叫自变量,x的取值范围叫函数的定义域,和x的值对应的y的值叫函数值,函数值的集合叫函数的值域。它的优点是自然、形像和直观、通俗地描述了变化,它致命的弊端就是对函数的实质——对应缺少充分地刻画,以致不能明确函数是x、y双方变化的总体,却把y定义成x的函数,这与函数是反映变量间的关系相悖,究竟函数是指f,还是f(x),还是y=f(x)?使学生不易区别三者的关系。
迪里赫莱(P.G.Dirichlet)注意到了“对应关系”,于1837年提出:对于在某一区间上的每一确定的x值,y都有一个或多个确定的值与之对应,那么y叫x的一个函数。19世纪70年代集合论问世后,明确把集合到集合的单值对应称为映射,并把:“一切非空集合到数集的映射称为函数”,函数是映射概念的推广。对应说的优点有:①它抓住了函数的实质——对应,是一种对应法则。②它以集合为基础,更具普遍性。③它将抽像的知识以模型并赋予生活化,比如:某班每一位同学与身高(实数)的对应;某班同学在某次测试的成绩的对应;全校学生与某天早上吃的馒头数的对应等都是函数。函数由定义域、值域、对应法则共同刻划,它们相互独立,缺一不可。这样很明确的指出了函数的实质。
对于集合说是考虑到集合是数学中一个最原始的概念,而函数的定义里的“对应”却是一个外加的形式,,似乎不是集合语言,1914年豪斯道夫(F.Hausdorff)采用了纯集合论形式的定义:如果集合fС{(x,y)|x∈A,y∈B}且满足条件,对于每一个x∈A,若(x,y1)∈f,(x,y2)∈f,则y1=y2,这时就称集合f为A到B的一个函数。这里f为直积A×B={(x,y)|x∈A,y∈B}的一个特殊子集,而序偶(x,y)又是用集合定义的:(x,y)={{x},{x,y}}.定义过于形式化,它舍弃了函数关系生动的直观,既看不出对应法则的形式,更没有解析式,不但不易为中学生理解,而且在推导中也不便使用,如此完全化的数学语言只能在计算机中应用。
2加强数形结合
数学是人们对客观世界定性把握和定量刻画、逐渐抽像概括、形成方法和理论,并进行广泛应用的过程。在7—12年级所研究的函数主要是幂函数、指数函数、对数函数和三角函数,对每一类函数都是利用其图像来研究其性质的,作图在教学中显得无比重要。我认为这一部分的教学要做到学生心中有形,函数图像就相当于佛教教徒心中各种各样的佛像,只要心中有形,函数性质就比较直观,处理问题时就会得心应手。函数观念和数形结合在数列及平面几何中也有广泛的应用。如函数y=log0.5|x2-x-12|单调区间,令t=|x2-x-12|=|(x-?)2-12.25|,t=0时,x=-3或x=4,知t函数的图像是变形后的抛物线,其对称轴为x=?与x轴的交点是x=-3或x=4并开口向上,其x∈(-3,4)的部分由x轴下方翻转到x轴上方,再考虑对数函数性质即可。又如:判定方程3x2+6x=1x的实数根的个数,该方程实根个数就是两个函数y=3x2+6x与y=1/x图像的交点个数,作出图像交点个数便一目了然。超级秘书网
3将映射概念下放
[摘要](四号黑体)空一格打印内容(四号宋体,200-300字)
[关键词](四号黑体)
关键词内容(小四号宋体、每两个关键词之间空两格)
目录(居中、四号黑体)
引言(小四号宋体)