时间:2023-03-03 15:55:26
引言:寻求写作上的突破?我们特意为您精选了12篇精密测量技术论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
中图分类号:TN141文献标识码: A 文章编号:
测量工作在矿山勘探、设计、开发和生产运营的各个阶段起着重要的保障作用,随着空间信息技术、数字信息技术和自动化、智能化技术的飞速发展,新型测绘仪器迅速出现与普及,使矿山测量在工作内容和技术方法等方面发生了深刻的变革。运用现代数字化测量技术进行矿山测量有助于提高矿山测量精度,降低测量工作劳动强度,提高矿山测量效率。
航空摄影测量技术在矿山测量中的应用已经历了较长的时间,并积累了丰富的经验,较之传统的测图方法,利用航空摄影测量技术成图速度快、成本低、精度高,是一种应用极为广泛的测图方法。
精密单点定位技术的出现,为航空摄影提供了新的解决方案。目前国际服务组织所提供的精密星历和精密钟差的精度已经很高。随着接收机性能的不断改善,载波相位精度不断提高,以及大气改正模型和改正方法不断深入,为精密单点定位技术应用航空摄影中提供了可能性。[1]
本文以矿区大小比例尺地形图测绘生产为例,介绍了并进行基于精密单点定位的GPS/ POS辅助空中三角测量试验,分析并比较了空中三角测量方法的加密精度,得出了基于精密单点定位的GPS/ POS辅助摄影进行大小比例尺航测成图时新的像控布点、像控测量以及GPS/ POS辅助空中三角测量加密的方法。
1精密单点定位技术
精密单点定位(PPP-Precise Point Positioning)指得是利用载波相位观测值以及IGS等组织提供的高精度的卫星星历及卫星钟差来进行高精度单点定位的方法。利用IGS提供的高精度的GPS精密卫星星历和卫星钟差,以及单台双频GPS接收机采集的载波相位观测值,采用非差模型进行精密单点定位。精密单点定位的优点在于在进行精密单点定位时,除能解算出测站坐标,同时解算出接收机钟差、卫星钟差、电离层和对流层延迟改正信息等参数,这些结果可以满足不同层次用户的需要(如研究授时、电离层、接收机钟差、卫星钟差及地球自转等)。[1]
2GPS辅助空中三角测量的定义及方法
GPS辅助空中三角测量是利用GPS定位技术获取航摄仪曝光时刻摄站的三维坐标,然后将GPS摄站坐标视为带权观测值与摄影测量数据进行联合平差,确定目标点位,并评定其质量的理论、技术和方法。[4]
3IMU/DGPS辅助航空摄影测量定义及方法
IMU/DGPS辅助航空摄影测量是指利用装在飞机上的GPS接收机和设在地面上的一个或多个基站上的GPS接收机同步而连续地观测GPS卫星信号,通过GPS载波相位测量差分定位技术获取航摄仪的位置参数,应用与航摄仪紧密固连的高精度惯性测量单元(IMU,Inertial Measurement Unit)直接测定航摄仪的姿态参数,通过IMU, DGPS数据的联合后处理技术获得测图所需的每张像片高精度外方位元素的航空摄影测量理论、技术和方法。
将基于IMU/DGPS技术直接获取的每张像片的外方位元素,作为带权观测值参与摄影测量区域网平差,获得更高精度的像片外方位元素成果。这种方法即IMU/DGPS辅助空中三角测量方法(国际上称Integrated Sensor Orientation,简称ISO)。[6]
4 试验及其结果分析
本文就以两个测区进行试验,试验1GSD为0.272m,相对航高为2000m,成图比例尺为1:25000,试验2 GSD为0.15m,相对航高为1100m,成图比例尺为1:2000,以试验在矿区基于精密单点定位技术的航空摄影测量方法成图的应用。
4.1 试验资料
试验1为了满足某矿区信息化管理的需求,为矿区决策、规划、普查、资源整合、开发、资料申报及建立矿区全区域地形图信息化管理数据库系统提供基础资料,某矿区实施全区域地形图信息化管理数据库系统-1:25000地形图航测成图工程。测区地处太行山南段与中条山北缘的结合部,地形复杂,地貌特征以山地为主。要保质保量的按时完成工程任务只有依靠科技创新,采用新技术,新方法和新装备才能解决常规测绘技术无法解决的难题。
在本工程航空摄影、像片控制测量、空中三角测量和调绘等环节中均采用了新技术。航空摄影时采用了先进的SWDC数码摄影系统;像片控制测量中同时采用了精密单点定位技术和似大地水准面模型两项新技术;空中三角测量使用GPS辅助空中三角测量等。
试验2为了保证某矿区更好的发展规划和数字地形图的现势性,建设成数字化、生态型、工业旅游型中国煤炭工业品牌矿井,为生产建设提供科学、可靠的基础数据,某矿区利用航测方法成1:2000地形图测绘工程,本工程采用新技术POS航摄技术。
4.2试验数据分析
为了分析利用精密单点定位技术进行GPS/POS辅助航空摄影测量方法所能达到的加密精度,通过试验和数码相机的固有优点,得出一些结论。图1为试验1的像控布点方案,图2为试验2的像控布点方案,表1列出了GPS/POS辅助空中三角测量精度统计表,表2列出了光束法区域网平差精度统计表。
图1 试验1布点方案
图2 试验2布点方案
表1 GPS/POS辅助空中三角测量精度统计表
表2 光束法区域网平差精度统计表
在GPS/POS辅助航空摄影时必须架设地面基准站,是需花费人力物力而且费时的工作,尤其是当测区范围较大,在带状管线项目中需要设置多个基准站时,作业难度相当大。此次精密单点定位技术与数码相机结合应用的成功探索,减少了航飞时基站布设的工作量。通过上述试验说明,在GPS/POS辅助航空摄影测量中,可以无需布设地面基准站。GPS/POS辅助航空摄影按照常规航空摄影技术规程进行摄影作业是可行的。
从表1、表2可以看出, GPS辅助光束法区域网平差与自检校光束法的结果是一致的。这表明,该测区的航摄资料是可用的,GPS摄站坐标的解算是正确的,利用该试验区来进行GPS辅助光束法平差的精度分析是值得信赖的。
采用现行几种航空摄影空中三角测量测量方法,加密点的精度均可满足所处地
形相应比例尺航测内业加密的精度要求。试验1、试验2的精度均符合GB/T 7930-2008《1:500、1:1000、1:2000地形图航空摄影测量内业规范》、GB/T 12340-2008《1:25000、1:50000、1:100000地形图航空摄影测量内业规范》的规定。对于常规光束区域网平差来说精度主要取决于地面控制点的分布与间距,区域越大,所需的地面控制点越多,本次试验1分别布设了69个地面控制点;对于小比例尺成图GPS辅助空中三角测量测量而言只需在区域网的四角布设4个平高地面控制点,其不随区域网的大小而变化。对于GPS辅助空中三角测量测量从表1可以看出,随着地面控制点的减少,区域网平差的精度有所降低,当无地面控制点时尤为明显。所以,要达到测量规范所要求的精度,必须采用合理的地面控制方案;对于POS辅助空中三角测量测量来说,布点方案须经实验区确定,在试验2测区共计600平方公里共布设39个像控点(包括检测点),节省了80%的像控点,节约了60%的做像控费用。
由于精密单点定位所获取的摄站坐标还不能完全达到空中三角测量所需要的控
制点的精度要求,区域网平差中利用地面控制点进行强制的系统误差补偿是必不可少的,从表1可看出无地面控制的检查点的残差带有明显的系统误差。在区域的四角布设4个地面控制点被认为是一种可完全改正GPS系统漂移误差的实用方法。实际作业中,在区域的四角布设4个平高控制点是必要的,它们可用于GPS单点定位误差、WGS84系与国家统一坐标系不一致所引起的坐标变换误差以及测定空间偏移分量误差等系统误差的改正。从表1成1::25000地形图可以看出,未加入地面控制点时,GPS存在系统误差;加入地面控制点后,进行了GPS漂移改正,平差解算结果精度得以明显提高。[7]
本次试验中像控点测量采用GPS精密单点定位(PPP)技术与利用高精度似大
地水准面模型进行GPS高程测量的方式施测。采用PPP技术仅使用单台GPS接收机就可以精确确定点位位置,实现高精度定位导航的功能。单机作业,灵活机动,大大节约用户成本,定位精度不受作用距离的限制。
5 结语
通过上述试验可得出基于精密单点定位技术的GPS辅助及惯导航测技术在矿区成图中使用可节约了传统像片控制测量的作业成本,优化了传统空中三角测量加密工序的技术流程,缩短了航测成图周期,可高效、高质量的服务于矿区成图。精密单点定位技术在航测成图中的应用不仅改变了过去先航摄,接着外业象控测量,最后内业空中三角测量加密的工序流程,而且提高了精度,减少作业的工序提高了作业效率,并实现了无地面基站,为最终实现数字摄影测量的自动化生产奠定了坚实的基础。
目前精密单点定位技术还处于研究实验阶段,在航空摄影测量中的应用才刚刚开始,相信随着精密星历与精密钟差的进一步发展,精密单点定位算法进一步成熟化,将精密单点定位技术应用航空摄影中成为一种必然的趋势。
参 考 文 献
[1] 精密单点定位技术在辅助航空摄影中的应用研究[学位论文].中国地质大学硕士学位论文.
[2]王成龙等.基于SWDC的国家基础航空摄影测量可行性研究[J]. 测绘工程,2009,18(1)
[3]袁路晴等.超轻型飞机搭载SWDC系列数字航摄仪的航空摄影测量一体化作业思路[J].铁路勘察,2007,6.
[4] 袁修孝.GPS辅助空中三角测量原理及应用[M] .北京:测绘出版社,2001.
[5] 袁修孝.GPS辅助空中三角测量及其质量控制[D] .武汉大学博士论文,1999.
1982年,张祥朝出生于历史悠久、人杰地灵的河北巨鹿,自小勤奋聪慧,考入中国科学技术大学精密机械与精密仪器系,从此与当时方兴未艾的精密工程研究结下了不解之缘。
凭借一贯的出色表现,他在毕业时获得全额奖学金,赴世界著名的英国哈德斯菲尔德大学精密技术中心攻读博士学位,师从英国工程院院士蒋向前教授,2009年毕业后留任该大学研究学者;2011年12月进入复旦大学工作,沿着本科毕业论文《大孔径高精度平面干涉仪的设计》和博士毕业论文《用于精密坐标计量的自由曲面拟合》的延伸脉络继续展开研究,且始终秉承严谨的态度对待科研工作,每一步都走得格外沉稳有力。
方寸间洞隐烛微
精密制造技术的发展一日千里,关键元件的表面形状越来越复杂,精度越来越高,产生了一系列的自由曲面和微纳结构功能元件,其应用范围也扩大到航空、航天、医学等领域。
在“工业4.0”战略引导新一代工业革命的大背景下,超精密功能元件制造的智能化与精准化成为先进制造的重点发展方向。于是,张祥朝针对当前加工、检测设备相分离,工件的重复装夹导致加工效率和检测精度难以提高的现状,致力于研究关键功能元件的快速在线/在位测量,对其开展了持续而深入的探索。
对于面形复杂的自由曲面和非球面光学元件,单点金刚石切削是主流的加工方式。他们基于相位偏折术和波长扫描干涉测量技术,发展了和精密机床相融合的子孔径拼接面形检测技术。巧妙地借用机床自身的精密运动机构,加以辅助的伺服监控,可以复杂面形的快速测量。并发展了可靠的机床误差分离技术以及六自由度数据拼接技术,避免了重复采样等因素引起的误差,从全频段保证了测量数据的真实性和可靠性。该方法克服了传统离线测量方法适用范围小、测量精度低、且对环境要求苛刻的缺点,尤其适用于超精密光滑表面的在位检测。
在张祥朝承担的总装备部预研项目、科技部重大专项等科技攻关项目中,他和团队为保形整流罩等关键光学元件研制了快速检测装置,测量精度达到了λ/10量级。相关技术显著提高了我国相关装备的使用性能,于2016年获得教育部科技进步奖二等奖。
而精密工程的另一个的发展方向是小型化和集成化。以MEMS为代表的微纳制造技术和光电子技术日新月异,但同时也对微纳结构元件的精准检测提出了挑战。
针对微结构元件特征尺寸小、陡度高、测量信号难以采集等特点,张祥朝及其团队发展了基于多波长干涉扩展量程、基于双树复小波的波前重构、基于智能化模式识别的相位解包裹、基于光纤导光的全域扫描测量、基于压缩感知的信噪分离等一系列新技术,攻克了一个又一个难题,将微纳结构元件的三维多尺度形貌完整地展现了出来。目前,他和中国工程物理研究院紧密合作,正在针对压印辊筒等复杂结构大尺寸元件研制原位精密技术,在光电技术前进的道路上再攀高峰。
繁复中溯源寻头
有句名言:怕什么真理无穷,进一步有进一步的欢喜。对张祥朝来说,他也喜欢这样进一步的“欢喜”,在无穷的真理、奥妙的科研面前,他所能做的,就是刨根问底,溯源寻头。
由于超精密功能元件的面形和纹理的复杂性,不同尺度、不同方向、不同形态的特征分量之间存在复杂的纠缠耦合,给复杂功能元件表面质量的控制带来极大的难题,也严重制约了先进功能元件的可靠设计与精准表征。
现今,自由曲面的设计加工和检测已经成为提升国家经济发展的重要支撑技术和衡量国家精密工程发展水平的重要指标。
2013年,张祥朝作为“超精密光学自由曲面面形误差评定算法”这一国家自然科学基金项目的主要负责人,从基础数学理论着手,攻克了不同目标函数下拟合算法的全局收敛、评定结果的稳定性与偏畸校正、数据采样及误差补偿等一系列难题,提出了一系列性能优越的自由曲面面形评定算法。项目结题获得“优秀”(A),应基金委邀请在总结大会上作宣讲报告。该成果获得国际同行的广泛关注,法国国际计量实验室(LNE)邀请张祥朝作为中方负责人,在欧盟Horizon2020重点项目的支持下,合作建立自由曲面的标准拟合算法体系。
对于形态复杂的微观纹理特征,张祥朝拓展了当前表面计量领域的小波分析方法,基于方向性超小波技术,发展了一系列复杂纹理特征识别与表征方法。不但根据其具体形态特征,发展了合适的基函数,并且从数学框架视角,分析了不同数学表示方法的移变性、频谱混叠、采样失真等基础性问题,并提出了有效的解决手段.能够有效分离刀痕、划痕、缺陷等形态分量,从而可以据此有针对性地开展工艺分析与性能评价。该成果完善了复杂功能形面的设计一加工一检测一评定链条.为提高复杂功能元件的可靠性.改善光电系统的性能奠定了坚实的基础。
中图分类号: P216 文献标识码: A
1前言
在以往的水准测量工作中,只能使用光学精密水准仪,而且操作过于繁多,外业工作量大,数据需要人工记录,受人为因数干扰较大。并且内业计算量多,平差计算复杂。近几年,随着电子、信息、电子计算机和空间科学的飞快发展,数字水准仪以其自动化程度高、功能全、使用方便、高精密度以及良好的可靠性逐步替代精密光学水准仪在国家高等级水准测量和高精度的工程测量中被广泛使用。
随着科技的发展,GPS(全球定位系统)和全站仪技术的也发展迅速,GPS和全站仪已经逐步进入水准测量的领域中,在低等级水准导线测量和碎步测量中占有一席之位,但是在国家一、二等水准测量和高精度的工程测量中,GPS和全站仪却不能够替代精密光学水准仪,因为GPS和全站仪水准测量的精密度完全达不到规范和技术的要求,远底于光学精密水准仪。但是数字水准仪器的精度要远高于光学精密水准仪器,数字水准仪的出现,完全打破了数字测量仪器不能进入高精度水准测量的界限。
2 实验数据的采集和传输
2.1实验数据的采集
为了验证数字水准仪器能够进行二等水准测量 ,在测量的前期工作中,围绕学校进行踏勘,选择合适的点位作为水准点,布设水准导线(如图2.1)。假设出起始水准点的高程坐标作为已知坐标,使用拓扑康DL―102型电子水准仪进国家二等水准测量,按闭合水准导线的路径完成数据采集。在使用拓扑康电子水准仪之前应进行一些功能设置,进行二等水准测量时选择采用N次水准测量,指的是多次进行中丝读数。然后取多次读书平均值,在进行实测时N设置为2 次,并将仪器的读数选择精确型,既最小读数为0.1mm,在输入测站限差为0.6 mm,就可以开始数据采集的工作。
图2.1 水准导线布设图
2.2实验数据的传输
当外业数据采集完毕后,要将数据整理传输到计算机内,要把电子水准仪内存中的数据传到计算机中进行设置通讯参数设置,波特率一般设置为9600,奇偶性一般设置为无检验,回车换行设置为On。
3 实验数据的分析和成果
3.1实验数据的整理
为了验证使用数字水准仪进行水准测量能够达到国家二等水准测量规范的要求,其测量结果整理如下:
表 3.1 水准测量往测成果表
表 3.2 水准测量返测成果表
表 3.3 测站边长成果表
3.2实验数据分析
在水准测量中,检验水准导线是否合格,要符合其检验标准(如表3.4)。
表3.4 二等水准测量精度标准
视距长度(m) 前后视距差(m) 往返测高差之差(mm) 路线闭合差(m)
注:R为检测测段长度,km;
L为路线长度,km。
在二等水准测量中,视距长度和前后视距差有严格的限定。为检验视距和前后视距差是否符合测量精度,将其列出(如表3.5)。
表3.5 水准测量前后视距差
注:表中的前后视距为平均值
由表3.5得知,前后视距差的最大值为0.9765m,小于精度标准1m,说明前后视距差符合二等水准测量的精度要求;视距的最大值为44.720m,小于精度标准50m,也符合要求。
在二等水准测量中,往返测高差之差限差的检查也很重要,为了检测往返测高差之差是否符合精度要求,将高差之差计算结果和限差列出表格作比较(如表3.6)。
表3.6 往返测高差之差检核表
注:表中高差取两点间的绝对值
由表3.6可以看出,往返测高差之差小于限定误差,说明其精度符合要求。
当上述水准测量的精度检验完毕后,应检测水准测量的闭合差,利用公式(3.1)和公式(3.2)来计算(其中L为路线长度)。
(3.1)
(3.2 )
由公式3.1计算得出闭合差=2.575mm,容许闭合差=4.337mm,
4 结束语
数字水准仪在进行高等级导线测量的方法和步骤同光学精密水准仪是一致的,但是其外业数据采集和内业数据整理的工作效率和数据的准确性要远远高于光学精密水准仪。用其进行高等级的水准测量,消除或削弱了许多误差,提高了测量工作的效率,而且较光学水准仪测量时的工作人员少,节省了人力资源。
参考文献
[1] 周祖渊.电子数字式水准仪的性能及测量原理[N].重庆交通学院学报,2005-2(B1):1-2.
[2] 柴文川.电子水准仪测量系统及其应用[EB/OL].200.200.0.254/kns50/.
[3] 陈海民.水准测量的平差计算方法[N]. 邵阳学院学报.2003-2-1(B2):4-5.
中图分类号: P228.4 文献标识码: A 文章编号:
一.引言。
工程测量通常是指在工程建设的勘测设计、施工和管理阶段中运用的各种测量理论、方法和技术的总称。传统工程测量技术的服务领域包括建筑、水利、交通、矿山等部门,其基本内容有测图和放样两部分。现代工程测量己经远远突破了仅仅为工程建设服务的概念,它不仅涉及工程的静态、动态几何与物理量测定,而且包括对测量结果的分析,甚至对物体发展变化的趋势预报。
二.工程测量实施的阶段性分析。
1.规划设计阶段。
主要是提供大比例尺地形图。采用的方法主要有地面人工测图和摄影测量成图两类。
(1). 地面人工测图。是根据由总体到局部的原则,先在测区内建立平面和高程控制网点(见工程控制测量),然后根据控制点测绘地物、地貌。近年来,随着电子速测仪和机助制图系统的发展,可以应用多功能整体式或组合式的电子速测系统取得地物和地貌特征点的三维坐标数据,输入制图系统自动成图。
(2). 摄影测量成图。是对地面进行摄影,对像片加以判读、量测和处理,以获得所需资料。最先应用的是地面摄影测量,即在地面上用摄影经纬仪摄取测区的像片,据以成图。后来发展为航空摄影测量,它已成为目前测绘地形图的最主要、最有效方法。
近年来,随着摄影器材和测图仪器的改进,除了模拟测图方式以外,发展了解析测图方式,即利用立体坐标量测仪对像片量测进行解析处理,获得地形的数据资料。解析测图仪除了与一般模拟立体测图仪一样测图外,还可进行区域网点加密和数字化测图,获得数字地图。地面形态的数字表达称为“数字地面模型”,它可用来解决工程设计中绘制断面图、计算土石方量等问题。
2.施工阶段工程测量工作。
主要是按照设计和施工的要求,先建立施工控制网点,然后根据控制网点,在实地上以适当的精度放样出建筑物与生产设备各部分的位置,作为施工和安装的依据。放样工作包括平面位置放样和高程放样。平面位置放样通常采用极坐标法、直角坐标法以及交会法等。高程放样通常是根据高程控制网点用水准测量方法进行。近年来,已在施工测量中应用了激光测量仪器,例如:激光准直仪、激光垂线仪、激光平面仪、激光经纬仪、激光水准仪等(见工程测量仪器)。这不仅提高了测量的精度和速度,而且有助于实现自动化。
3. 经营管理阶段的工程测量工作。
主要是为了监视工程建筑物的现状,保证安全运营所进行的建(构)筑物变形观测。包括垂直位移(沉降)、水平位移、倾斜、挠曲,以及风振、日照等变形观测项目,其特点是要求建立较高精度的变形观测控制网和稳固的基准点。对于观测的精度要求与所采用的方法,因各项工程的要求不同,差异较大。野外观测工作完成以后,经过平差计算和初步整理,应用统计检验的方法来分析变形观测成果的可靠性,应用回归分析的方法探讨变形的规律性。垂直位移(沉降)观测,通常采用精密水准测量方法。使用液体静力水准测量法,可将液面的高程变化转换成电感输出,有利于实现观测自动化。建筑物的水平位移观测,由于它本身受力条件的不同,位移的方向不同,观测方法也就不同。对于任意方向的位移观测,常采用角度前方交会法,对于发生在某一特定方向的位移观测常采用基准线法。基准面的建立,可应用经纬仪的视线、拉紧的钢丝或者激光束。观测点相对于基准面的偏离值,可以用人工观测,也可以利用光电传感技术,实现自动化。建筑物的位移、倾斜、挠曲和瞬时变形观测,除了采用大地测量方法外,也可以应用近景摄影测量技术。
三.工程测量技术的现状。
1. 地面测量仪器。
20 世纪 80 年代以来出现许多先进的地面测量仪器,为工程测量提供了先进的技术工具和手段,如:光电测距仪、精密测距仪、电子经纬仪、全站仪、电子水准仪、数字水准仪、激光准直仪、激光扫平仪等,为工程测量向现代化、自动化、数字化方向发展创造了有利的条件,改变了传统的工程控制网布网、地形测量、道路测量和施工测量等的作业方法。三角网已被三边网、边角网、测距导线网所替代;光电测距三角高程测量代替三、四等水准测量;具有自动跟踪和连续显示功能的测距仪用于施工放样测量;无需棱镜的测距仪解决了难以攀登和无法到达的测量点的测距工作;电子速测仪为细部测量提供了理想的仪器;精密测距仪的应用代替了传统的基线丈量。
2.GPS定位技术。
GPS是美国从20世纪70年代开始研制,历时20年,耗资200亿美元,于1994年全面建成,具有海、陆、空进行全方位实施三维导航与定位能力的新一代卫星导航与定位系统。随着GPS定位技术的不断改进,软、硬件的不断完善,长期使用的测角、测距、测水准为主体的常规地面定位技术,正在逐步被以一次性确定三维坐标的高速度、高精度、费用省、操作简单的GPS技术代替。
在我国 G P S 定位技术的应用已深入各个领域,国家大地网、城市控制网、工程控制网的建立与改造已普遍地应用 G P S 技术,在石油勘探、高速公路、通信线路、地下铁路、隧道贯通、建筑变形、大坝监测、山体滑坡、地震的形变监测、海岛或海域测量等也已广泛的使用 G P S 技术。随着D G P S 差分定位技术和 R T K 实时差分定位系统的发展和美国 A S 技术的解除,单点定位精度不断提高,G P S 技术在导航、运载工具实时监控、石油物探点定位、地质勘查剖面测量、碎部点的测绘与放样等领域将有广泛的应用前景。
3. 数字化测绘技术。
数字化测绘技术在测绘工程领域得以广泛应用,使大比例尺测图技术向数字化、信息化发展。大比例尺地形图和工程图的测绘,历来就是城市与工程测量的重要内容和任务。
常规的成图方法是一项脑力劳动和体力劳动结合的艰苦的野外工作,同时还有大量的室内数据处理和绘图工作,成图周期长,产品单一,难以适应飞速发展的城市建设和现代化工程建设的需要。随着电子经纬仪、全站仪的应用和 GEOMAP 系统的出现,把野外数据采集的先进设备与微机及数控绘图仪三者结合起来,形成一个从野外或室内数据采集、数据处理、图形编辑和绘图的自动测图系统。
4. 摄影测量技术。
摄影测量技术已越来越广泛的在城市和工程测绘领域中得以应用,由于高质量、高精度的摄影测量仪器的研制生产,结合计算机技术中的应用,使得摄影测量能够提供完全的、实时的三维空间信息。不仅不需要接触物体,而且减少了外业工作量,具有测量高效、高精度,成果品种繁多等特点。在城市和工程大比例尺地形测绘、地籍测绘、公路、铁路以及长距离通讯和电力选线、描述被测物体状态、建筑物变形监测、文物保护和医学上异物定位中都起到了一般测量难以起到的作用,具有广泛的应用前景。由于全数字摄影测量工作站的出现,为摄影测量技术应用提供了新的技术手段和方法,该技术已在一些大中城市和大型工程勘察单位得以引进和应用。
六.结束语
在人类活动中,工程测量是无处不在、无时不用,只要有建设就必然存在工程测量,因而其发展和应用的前景是广阔的。
参考文献:
[1] 严召进 工程测量技术分析与探讨. [期刊论文] 《中国新技术新产品》 -2010年2期
[2] 王丽君 GPS RTK测量关键技术分析及在辽阳某工业区测量案例研究 [期刊论文] 《科技资讯》 -2011年6期
[3] 涂兴德. 土坝工程施工测量技术分析 [期刊论文] 《科技与生活》 -2010年16期
[4] 颜学华 张怀兴 王本奎 全站仪测量技术分析及应用 [期刊论文] 《科技与企业》 -2012年21期
中图分类号:P335+.1文献标识码: A 文章编号:
一、自动化仪器仪表的简介
1. 自动化仪器仪表的定义
自动化仪器仪表是用于化学、物理方面的技术工具和设备,可以检出测量各种物理量、物质成分。从广义来说,仪器仪表也可具有自动控制、报警、信号传递等功能。显微镜、望远镜能使人们扩展自己的视野,体温计能让人们测量自己的身体的温度;此外,还有一些仪器仪表如磁强计、射线计数计具有特殊功能,可以感受和测量到人的感觉器官所不能感受到的数据因子。
自动化仪器仪表又被称作信息机器,因为它的主要功能是信息形式的转换,可以将输入信号转换成输出信号。信号按时间域或频率域表达,信号的传输则可调制成连续的模拟量或断续的数字量形式。
2. 自动化仪器仪表的分类
自动化仪器仪表是多种科学技术的综合产物,有很多种类,有的按用途分类,有的按功能分类,不同的分类方法对应着不同的产品,本文主要介绍两种分类方法。
(1)按不同用途来分类
仪器仪表有各种用途,有的用在运输上,比如汽车仪表、拖拉机仪表;有的用在航空上,比如船用仪表、航空仪表;有的用在地质上,比如地质勘探测试仪器、地震测试仪器;另外随着科学技术的发展,很多仪器仪表应运而生,比如教学仪器、医疗仪器、环保仪器等。
(2)按不同功能来分类
随着我国自动化技术的成熟和各种行业的需要,产生了各种功能的仪器。比如工业自动化仪表按功能可分为检测仪表、记录仪表、计算仪表等;检测仪表按被测物理量又分为温度测量仪表、压力测量仪表、流量测量仪表等。
二、我国自动化仪器仪表行业发展的现状
自动化的内容在近10 年来随着电子信息技术和光电技术等相关学科的发展而发生了许多变化。从纵深上讲,可以涵盖从最底层的自动化感应部件、各种检测传感器、变送器、各种间接测量设备、各种执行机构等到自动回路调节器、自动控制单元、各种大中小型装置控制系统到综合优化调度与协调系统和企业综合管理信息系统等。从应用的行业性质上分,自动控制系统可以分成以流程过程控制为主的过程控制系统(如各种DCS、回路调节系统等) 和以运动和传动控制为主运动控制系统( 各种逻辑控制PLC 和传动控制系统如CNC 等,工业自动化仪器仪表主要是针对自动控制系统而言。
2002 年我国工业自动化仪表制造业共有309 个企业,实现工业总产量136.24 亿元,销售收入133.75 亿元,利润总额8.99 亿元。行业综合水平总体上达到国际八十年代水平。30%的产品实现了数字化,达到国际八十年代末期水平; 约15%的产品实现了智能化,达到国际九十年代水平。品种门类较为齐全,有一定的成套能力。可能承接60 万千瓦火电站、核电站、30 万吨合成氨、30 万吨乙烯、500 万吨炼油、10000 立方米空分、4000 立方米高炉、120 吨转炉、日产30 万立方米城市煤气站、日处理40 万吨污水、日产5000 吨水泥等大型工程的控制系统和仪表成套项目。
三、当前的仪器仪表技术存在的主要问题
仪器仪表行业技术发展虽然迅速,但较国外先进的高性能、高实用性的领先技术比起来,我们还存在着10~15年的差距,当前的仪器仪表技术还存在着一定的问题:
1、自主创新成果比例过少,应用技术不足
我国仪器仪表行业的初期是通过引进国外的先进技术,近几年,也有不少科技型企业加大了自主研发力度,但从总体上说,自主创新的成果还是非常少,并且技术的实用性欠缺。对于一些关键核心工艺加工制造技术力量非常薄弱。产生这种现象的原因是因为中外合资与先进技术引进与自主研发严重脱轨。
2、中低档产品居多,研发投入不足
我国现阶段的仪器仪表产品较国外比较,大部分都属于中低档产品,产品创新能力弱,高端精准仪器仪表数量非常少。其原因是现阶段的仪器仪表行业缺少对于高端检测、数字化精进技术人才,限于各大企业和单位的指导思想和投入规模,研发投入也不够,包括设备资金、人才培养等各方面的投入。
四、我国自动化仪器仪表的发展趋势
近年来,经济全球化的发展要求技术的全球化,计算机和智能机器的发展对仪器仪表的发展有很大的促进,我国应该在现有的技术基础上,借鉴国外的微电子技术,掌握关键技术,生产更多国有品牌,提升国际竞争力。我国自动化仪器仪表技术的发展前景广阔,与国际自动化仪器仪表的发展相比,可以分为智能化、高精度化和网络化等趋势。
1. 智能化
智能化技术是仪器仪表的一种发展趋势,与国外产品相比,国内产品在智能化方面有很多不足,我国仪器仪表在智能化方面与国外存在明显差距,因此,我国应该加大创新力度,改变创新模式,在智能化方向改革创新。自动化仪器仪表的智能化是指采用大规模集成电路技术、接口通信技术,利用嵌入式软件协调内部操作,使仪表具有智能化处理的功能。采用智能化的产品可以很好的自主调节控制,利于信号的传递,提高了工业效率,更能适应国际技术的发展。
2. 高精度化
自动化仪器仪表对技术要求很高,只有高度精密化才能提升我国产品的核心竞争力。国外很多仪器仪表产品具有高精度化的特点,我国的产品在这方面明显落后,因此提高仪器仪表的精密是大势所趋,也是应对国际激烈竞争的必然选择。当前的重点是研究和发展多维精密加工工艺,精密成型工艺,球面、非球面光学元件精密加工等工艺。
3. 网络化
在国外市场以现场总线技术为代表的数字通信网络技术得到了快速发展,但是我国自动化仪器仪表在总线技术方面还不完善,许多产品功能还不完备,核心技术的掌握也差强人意,因此,网络化是我国自动化仪器仪表的发展趋势和方向。发展网络化就要充分利用计算机数字化通信技术,完成信息的转换,构造一个庞大的信息化网络,这样信号流通顺畅,更能提高生产效率。
总结
自动化仪器仪表是很多自动化元件组成的,包括各种功能的自动、智能和微型技术工具。仪器仪表有不同的用途,对应的功能也不同,有的具有测量、显示功能,有的具有记录、报警功能。近年来随着经济的发展和科学技术的进步,微电子、计算机、网络通信等日新月异发展的新技术对自动化仪表产生了深远的影响。我国自动化仪器仪表发展历史久远,随着新技术的出现不断出现新的仪器,对我国经济的发展起了很大的促进作用,从目前来看,我国自动化仪表技术发展迅速,但与国际上比起来还是有一定的差距。自动化仪表的改进有重大的应用前景,我国应该加大资金扶持力度,转变创新方式。
【参考文献】
[1]杜天旭.谢林柏仪器仪表的发展历程及趋势[期刊论文]-重庆文理学院学报(自然科学版) 2009(4)
[2]赵群.张翔.谢素珍.李辉自动化仪表与控制系统的现状与发展趋势综述[期刊论文]-现代制造技术与装备2008(4)
[3]唐公涛.尹升宝浅谈工业自动化仪表的发展趋势[期刊论文]-科技创业家 2011(4)
引言
在光通信纤维阵列用玻璃基板上刻高精度V型槽(通用型槽间距即纤芯距为127±0.5um和250±0.5um)的关键技术被日韩等少数国家垄断,国内使用的光纤阵列用V型槽基板均需要依靠进口,价格昂贵,严重制约了我国光纤到户(FTTH)工程的进程。而光通信纤维阵列用V型槽基板是光纤到户工程中必不可少的光器件,主要用于对光纤精确定位生产各种衔接光纤干线与家用光纤之间的信号传输的光器件。
日本在光通信纤维阵列用V型槽基板的加工设备开发上起步较早,也具有较为成熟的技术方案。目前,日本等国家生产光通信纤维阵列用V型基板全部采用高精度的专用切割机,而此类设备日本等发达国家对我国实施禁运,国内部分企业与机构也曾尝试对此方面进行研究,皆因为技术难度较高,而最终以失败告终,因此在国内尚属于空白。
在先进的生产制造过程中,非接触的在线检测发挥着越来越重要的作用。在线检测的对象在被测过程中是不断变化着的,因此对检测传感器不仅要求其精度高、稳定可靠、有良好的动态性能、能对快速信号实时响应监控,而且一般要非接触式测量,并便于安装。
本文提出一种新型的光纤偏振光干涉仪,它将偏振光干涉技术和光纤传感技术相结合,能对玻璃基板V型槽的纤芯距进行高精度的在线检测的非接触测量。
1、实验原理设计
即
该线偏振光 的偏振方向与x轴夹角为 。
(1)
被测物位移变化一个波长则合成光的偏振方向转动了角。因此,通过检测出偏振方向角,即可得到位移。所以,可将干涉仪的位移测量精度,由一般检测干涉条纹的位相细分转变为检测偏振光的偏振方向角的角度细分;而检测角度细分要比检测位相细分精度高,从而可得到较高的测量精度。
由式(1) 可得位移的变化量。如,当角度检测精度时,则可测得位移精度;而当 时,则 ,因此光纤偏振光干涉仪可以具有很高的灵敏度和精度。
2、 测量实例及结果
转贴于
本项目结合光学精密测量技术实现通用切割机主轴的精确定位,通过设计稳定的工作平台,选用硬度合适的刀具,选择最佳的切削参数,完成V形槽的亚微米超精密机械加工,尽可能减少由于机械方面引起的切割误差。
实际切割原理如图2所示,在实际中,算机通过控制偏振角度 的值来控制刀移动的位置来实行对玻璃基板上对V槽纤芯距的切割。实际切割的产品如图3所示。该图是8通道纤芯距为250um的V型槽的放大图。
如图4是计算机显示屏显示的控制情况。从图可以看出,该系统可以很好地监控实际加工情况。
3、 结论
本项目开发出具有独立知识产权的基于迈克尔逊干涉仪实时测量监控系统。该系统已经用于玻璃基板V型槽加工的实时检测中,有效地保证的光通信用玻璃基板V型槽的精度要求,并在国内率先批量生产出高良率的光纤通信用玻璃基板V型槽,有利于推动我国光纤到户工程。
参考文献
0引言
随着电子测量技术的不断发展,越来越多的电子测量新技术也不断地应用到物理实验中,特别是物理实验仪器,目前大多数的实验仪器越来越往一体化方向发展,一个实验或多个实验只要在一台仪器就可以完成,这种仪器的优点是讲义容易编写,仪器维护管理也比较方便,但它的不足之处是淡化了物理实验思路、过程和物理实验本身具有的帮助学生提高实验技能和培养科研素质的作用。由这种实验仪器开出的实验项目,学生只要通过简单的连线就能得出测量结果,面对这样的实验,比较多的同学反映,虽然可以较快地完成实验,但体会不了其实验思路,学不到实验方法、技能,也提不起兴趣。因此,更多的学生只是为了实验而实验,自然也就达不到做实验的目的。这样的项目,效果不佳,不利于培养学生的动手能力和独立思考能力。因此,作者对原有的一体化传感器实验仪的力传感器实验部分进行有效的改进,应用模块化的实验思路提出一种改进方法,该方法按模块化组合的方式构建了即可独立使用又能组合在一起的实验平台,同时在检测电路方面引入了数据采集和计算机通信等具有现代电子测量新技术的内容,使该实验不但具有清晰模块化物理思想又可以让学生通过实验学习到新技术、新知识,而且还能培养学生的独立思考分析能力,在实验过程中可对测量结果自行分析并进行修正,重复实验,以达到最佳实验结果,培养和提高了他们自主实验的能力。下面介绍其原理、方法。
1实验原理
在力学中用来作称量或者做微小应变力测量的器件和材料有很多,金属应变式电阻应变片是常用的测量材料之一,其原理是应用金属的电阻应变效应。假设有一段截面积为S,长度为L的电阻丝,在未受压力时,其原始电阻为R,当电阻丝受外力应变时,其长度变为,面积相应减小,电阻率则因晶格发生变化而改变,如果其变化量为,则由大量实验可以证明:,其中称为电阻的灵敏系数。
由金属箔应变片做成的应变片力传感器正是基于这样的原理做成的,它由基底、敏感
栅、覆盖层和引线等组成。本实验采用由这种金属箔应变片做成的双孔压力传感器,其示意如图1所示,这种传感器的上梁表面和下梁表面对称地贴有四片金属箔式应变片。当我们在传感器的承重圆盘上增加法码时,粘贴在上表面的两片应变片将受到拉伸,粘贴在下表面的两个应变片将受到挤压,它们的电阻值将发生变化,通过测量电路就可以将电阻的应变量转换成电压信号输出在仪表上显示。图2~4为几种常用的电路检测方法,其中和组成调零电路,以减小电路产生的误差,提高检测精度。
图1 双孔压力传感器图2 单臂接法
图3双臂接法图4四臂接法
以上三种电路其输出电压如下公式所示:
(单臂)(1)
(双臂)(2)
(四臂)(3)
其对应的输出灵敏度为:
(4)
(5)
(6)
2实验方法
在大学物理实验教学中主要采用上述三种电路的连接方式,一般的一体化实验仪器也带有如上图2~4所示电路的实验模块,这三种连接方法也是常用的实验依据。该文提出的方法是在不改变其电路基本接法的情况下,提出如图5所示的由桥臂输出检测模块、信号调理模块、数据采集模块和计算机组成微弱信号检测实验平台,另一方面将桥臂电路中的电位器和电阻分别由精密可调电位器和精密电阻代替软件数值处理,这样改进的好处是在实验中引入了现代电子测量技术,减小了检测元件带来的额外误差,提供了实验精度小论文。
图5 力传感器实验平台组成
信号调理则由自行设计的双通道精密可调高增益直流放大器,该增益放大器的放大倍数可高达1000倍,共模抑制信噪比可达104,其单通道电路如6所示。应变片桥臂检测电路输出的微小变化量经该放大器放大后,由计算机实时采集数据采集模块的输出电压,并可通过采集软件进行数据处理。
图6 精密可调高增益直流放大器
该实验平台的组成如图7所示,精密力传感器模块由力传感器和桥臂检测电路组成;应变片传感器模块由应变片力传感器和桥臂检测电路组成;信号调理器1、2则由具有低通滤波功能的高增益直流放大器模块组成;数据采集模块则采用PASCO500接口,该接口有三个模拟电压采集通道,同时又具有与计算机通信的功能,在计算机中可方便应用软件进行数据采集,通过在软件中设置采集物理量之间的关系(即x-y坐标)即可实时测量。由于接口通道中采集到的是电压,因此,需要将精密力传感器输出的采集电压转换为对应的被测压力(克),所以,必须应用软件中提供的公式计算器进行关系换算,这也是我们选择PASCO接口实现本实验的原因之一。实验中,用两个采集通道来完成,A通道作为精密力传感器对相应的不同测量物体压力进行同步转换,B通道则用来测量不同被测物体对应的应变片电压输出。为了实现A通道的功能,只需使用PASCO系统提供的“实验计算机”软件模块进行公式换算即可完成,其软件模块设置界面如图8所示。
图7 实验平台实现框图图8 实验计算机
4 实验结果
本实验采用350Ω的应变片,供电电压为±2伏,采用三种不同的电路接法,并按图7所示方框图连接,然后,按图8所示的软件模块鼠标点击“INPUT”软件按键选择A通道输入即可显示@A.电压,由计算机键盘输入“*C”;在界面显示的“计算名称”、“简称”和“单位”等空白处相应输入“质量”、“m”和“克”,按回车键,即可完成将测量的电压转换为质量的设置。其中“*C”为修正系数,由不同电路连接方式相应输出的电压值与质量的比例关系确定,经过这样修正后,可提高测量精度。图9~11为按该实验平台采集到的三种电路连接方式测量应变片力传感器随外加压力(小铜块)变化输出的关系曲线。这三种曲
图9 单臂电路输出
图10 双臂电路输出
图11 四臂电路输出
线是经过线性拟合得到的,只要按简单的选点就可以得出电压(V)-力(F)的变化斜率。经软件数据计算工具,可求得它们的灵敏度分别为:
(单臂),(双臂),(四臂)
由此可得出它们的灵敏度比例为1:2:4,其中四臂的灵敏度最高,这个结果同上述的理论公式4~6是一致的,表明该实验方法是可行的。如果测量的结果与公式有偏差,可以在“实验计算机”中输入调整修正系数,直到测量结果与公式符合为止,通常只要进行两三次修正,即可得到正确结果。
5.结论
以上的实验综合体现了集电桥、力传感器、数据采集、计算机通信等模块于一体的实验思路,既灵活又统一。由该文提出的实验方法而构建的实验平台不仅可以让学生学习了解各独立模块的功用,还可以让学生了解如何应用现代电子测量的新技术、新手段进行实验。该方法充分体现了模块化自主实验的思想,突破了一体化仪器实验的不足,丰富了物理实验的思路和过程,帮助学生建立模块化组合的实验思想,提高了学生对物理实验的兴趣,培养了学生的自主实验技能,达到了物理实验所应有的功用,为物理实验提供了另一种思路,我们用此方法进行了多个传统物理实验的改进工作,并应用到物理实验教学中,取得了良好的效果。
[参考文献]
一、概述
全球定位系统GPS(GlobalPositioningSystem)是美国陆海空三军联合研制的卫星导航系统,具有全球性、全天侯、连续性、实时性导航定位和定时功能,能为各类用户提供精密的三维坐标、速度和时间。GPS应用到测量行业,设计了静态、快速静态以及RTK等作业模式。
其中RTK模式的工作原理,就是在已知高等级点上安置接收机为参考站,对卫星进行连续观测,并将其观测数据和测站信息,通过无线电传输设备,实时地发送给流动站,流动站GPS根据相对定位的原理,实时解算出流动站的三维坐标。
传统的导线测量,不仅要求相邻点之间通视GPS,而且精度分布不均匀,在较大的区域布设时,精度往往都不高。而采用常规的GPS静态测量、快速静态方法虽然精度高,但效率低,而且不能实时提供定位坐标和精度。利用RTK技术,则不受天气、地形、通视等条件的限制,操作简便,并节省了人力,不仅能够达到导线测量的精度要求,而且误差分布均匀,没有误差累积问题,提高了作业效率期刊网。对图根点的检测是精度检核的重要技术手段,在RTK图根控制测量需进行检核。
二、RTK图根控制的检测
1.项目概况
兴业县葵阳镇整村推进土地整治项目是广西区重点项目,地势平缓开阔,南北都是丘陵,中间是水田和三个村庄,交通便利。位于东经109°45′~49′,北纬22°41′~44′之间。测区总面积6.8平方公里,成图比例尺为1:1000,已做好12个E级GPS控制点的测量工作,准备检测E级GPS点后开始对已埋设图根点的标石、钢钉或木桩作控制测量。
2.测量技术要求
RTK测量卫星状态的高度截止角在15°以上的卫星个数≥5个,PDOP值≤6。
RTK平面控制点测量主要技术要求如下表:
等级
相邻间点平均边长/m
点位中误差/cm
边长相对中误差
与基准站的距离/km
观测次数
起算点等级
一级
500
≤±5
≤1/20000
≤5
≥4
四等以上
二级
300
≤±5
≤1/10000
≤5
≥3
一级以上
三级
200
≤±5
≤1/6000
我国应该抓住这一机遇,大力推进卫星导航与定位学科的发展,为培养大量高精尖专业人才,争夺卫星导航与定位国际市场奠定良好基础。本文旨在调研国内外卫星导航与定位技术学科的发展现状,对国内外最具代表性的高校和研究机构进行对比分析,为我国该学科的发展提出了若干建议。
一、引言
卫星导航与定位技术是利用各种用户终端接收由卫星导航定位系统播发的、并沿着视线方向传送的信号,对目标进行导航、定位和授时。将卫星导航与定位技术与传统的导航定位技术相比较可知,卫星导航与定位技术具有高时空分辨率、全天候、连续地提供导航、定位和定时的特点。
经过几十年的发展,卫星导航与定位技术取得了巨大的进步,已经成为当今世界高技术群中对现代社会最具影响力的技术之一,并且已然渗透到国民经济的各个领域,应用于海上舰船、陆地车辆、航空与航天飞行器的导航,以及大地测量、石油勘探、精细农业、精密时间传递、地球与大气科学研究以及移动通信等多领域。未来卫星导航与定位技术将进入以保障地球系统环境安全、发展战略性新兴空间信息产业、探索地球系统的新阶段。
卫星导航与定位技术是事关国民经济社会发展、国家科技进步、国家安全等方面的综合技术领域,是国家科技实力与竞争力的重要标志之一[1]。世界主要军事大国以及经济体都竞相发展独立自主的全球卫星导航系统(Global Navigation Satellite System,GNSS),包括:美国的GPS(Global Positioning System)、俄罗斯的GLONASS(Global Navigation Satellite System),欧盟的GALILEO(Galileo Navigation Satellite System)以及中国的北斗卫星导航系统BDS(BeiDou Navigation Satellite System)。
当前,卫星导航与定位技术正在从单一的GPS时代转变为多星座并存兼容的GNSS新时代,卫星导航体系全球化和增强多模化;从以卫星导航为应用主体转变为PNT(定位、导航、授时)移动通信和Internet等信息载体融合的新阶段。BDS的逐步建成为我国卫星导航与定位技术的进一步发展提供了良好契机[2]。我国应该抓住这一机遇,大力推进卫星导航与定位学科的进一步发展,为培养大量高精尖专业技术人才,争夺卫星导航与定位的国际市场奠定良好基础。本文旨在调研国内外卫星导航与定位技术学科的发展现状,对国内外最具代表性的高校和研究机构进行了对比分析,为我国卫星导航与定位技术学科的发展提出若干建议。
二、卫星导航与定位技术学科发展
目前,国内研究卫星导航与定位技术的高校和机构主要包括:武汉大学、同济大学、中南大学、河海大学、山东科技大学、长安大学、上海天文台、中国测绘科学研究院和中国科学院测量与地球物理研究所等[3,4]。本文以武汉大学作为国内卫星导航与定位学科的研究代表。武汉大学卫星导航定位技术研究中心始建于1998年,以建设世界一流学科为目标,经过十余年的努力,在卫星导航及相关领域开展了广泛深入的研究,为我国自主卫星导航系统的新技术、新方法和新应用的发展做出了巨大贡献。
目前已建成亚洲唯一的国际IGS分析中心、国际IGS数据中心,全球连续监测评估系统(IGMAS)数据中心以及武汉大学北斗试验跟踪网。发表高水平SCI论文数量也与日俱增,包括《Journal of Geophysical Research》、《Journal of Geodesy》和《GPS Solution》等。每年培养卫星导航与定位的硕士研究生、博士研究生达到两百余人。为了实现世界一流学科建设的目标,需要以世界领先学科为标杆,通过与世界领先学科的对比与分析,找出本学科发展的优势和不足,明确发展定位。为此,我们深入调研了澳大利亚新南威尔士大学和美国麻省理工学院的测绘学科的发展动态,从人才培养、队伍建设、科学研究、国际交流、社会服务几个方面进行了全方位的对比分析。
(一)澳大利亚新南威尔士大学
澳大利亚新南威尔士大学(UNSW)测量与空间信息工程系成立于1960年,隶属于土木与环境工程学院,该学院在2012-2014年QS世界大学学科排名中位列前20。测量与空间信息工程系是世界一流的大地测量与卫星导航研究团队,是澳大利亚排名第一的地球观测研究机构。测量与空间信息工程系以GNSS卫星导航定位为主要研究方向,在卫星导航接收机设计和信号处理算法、组合导航、室内导航、遥感技术及应用等领域具有雄厚的实力。主要的研究方向包括:多GNSS系统导航定位、卫星接收机设计和信号处理算法、多传感器融合算法及应用、室内定位、大地测量参考框架、遥感技术与应用以及激光雷达测量等。该系现有1名教授,3名副教授和4名高级讲师,其中Rizos教授在2011年当选为国际大地测量学会(IAG)主席。
为大地测量研究以及应用领域培养了大量优秀的人才,现有在读博士研究生33名。该系自1960年成立之日起,便与美国、德国、英国等著名大学、研究机构和产业部门建立了长期的、广泛的国际合作关系。2010年以来,共450余篇,其中SCI论文近200篇。培养了许多优秀的博士和硕士毕业生,获得了许多学生奖,同时毕业生受到用人单位的一致好评。导航定位领域的毕业生中,许多已经成为澳大利亚最多产、最有创新能力和最有影响力的研究人员。
(二)美国麻省理工学院(MIT)
美国麻省理工学院(MIT)大地测量与地球动力学系隶属于地球、大气和行星科学学院,该学院在地质、地球物理等领域有百余年的悠久历史。该系主要研究方向包括:卫星精密定位定轨理论、方法和软件、地壳形变监测、激光测高、地球内部构造等。现有研究和教学人员10人,为大地测量领域培养了大批优秀人才,很多已经成为了本学术领域的领军人物。大地测量与地球动力学系是世界著名GNSS高精度数据处理软件GAMIT的主要研发机构,过去二十余年GAMIT软件在卫星精密定轨定位、地壳形变监测、地球环境变化等领域得到了广泛的应用,并取得了大量的成果。上世纪90年代,以该系为依托建立了IGS分析中心(MIT),为IGS提供精密的GNSS产品,其产品质量长期位列各分析中心前茅,为推动GNSS技术在精密导航定位领域的应用做出了突出贡献。美国麻省理工学院的在GNSS数据分析方面研究处于世界领先水平。
与上述两个研究机构相对比可知,武汉大学在卫星导航定位研究方向方面,相对全面;在研究的深度方面,与澳大利亚新南威尔士大学水平相当,与美国麻省理工学院相比还有一些距离;从办学规模来看,武汉大学优势明显。因此,应该在需要巩固现有成绩的基础上,进一步提升国际影响力,建成具有世界一流水平的卫星导航定位技术的研发与创新平台。需要提高的方面包括如下四点:增加高端数量与质量,尤其是SCI检索论文;加强国际间的交流和合作,争取举办有影响力的大型国际会议;扩宽人才培养和就业渠道,为国际大地测量界输出更多高层次的优秀人才;增加国际学术机构和国际学术期刊的任职,掌握国际话语权。
三、结语
近年来,伴随着国民经济建设的高速发展,高层建筑在形体和结构上显得日益复杂,加之施工工艺不断改进,这就对建筑物的变形监测提出了很多新的要求。由于高层建筑物有很多不利的监测环境,而施工工艺的改进又对形变监测工作提出了快速、高精度的要求,这些都让传统监测方法工作时显得力不从心,所以利用新的技术手段和研究新的监测方法尤显重要。GPS系统由卫星星座、接受机和地面控制站三大部分组成。作为20世纪一项高新技术,它因速度快、全天候、自动化、测站间无需通视、可同时测定点的三维坐标及精度高等优点,而获得了广泛应用。
1 GPS与传统测定方法的比较
1.1传统方法测定高层建筑动态变形的特点
在测定高层建筑变形量时,传统的测定方法有加速度传感器法、激光铅直仪法、全站仪法、近景摄影测量技术等。论文写作,GPS建筑变形。
加速度传感器法所测得的位移误差较大。激光铅直仪法只能提供建筑物局部的、相对的变形信息,测量精度较低,易受气候、风等因素影响。对较低的建筑物较为适用,对于高大建筑物(高度300 m以上),精度会受到较大的影响。全站仪法测定的是建筑物的绝对变形信息,可用于各类建筑物,但在恶劣气候条件(如台风、大雨等)下,因激光跟踪目标困难,所以使用受到限制。近景摄影测量技术由于摄影距离不能过远,大多数的测量部门不具备摄影测量所需的仪器设备,因此,尚不能普及应用。
所以不难看出,加速度传感器法、激光铅直仪法、全站仪法、近景摄影测量技术等观测技术,在精确度、自动化程度等方面,已不能满足高层建筑的动态监测要求。
1.2 GPS测定高层建筑动态变形的优势
随着军用技术转民用的限制逐渐降低和高速发展的硬件和软件技术,GPS技术的优势已经越来越明显。
(1)可以全天候观测。实时动态(简称RTK)测量技术是以载波相位观测量为根据的实时差分GPS(RTD GPS)测量技术。可通过实时计算定位结果,便可监测基准站与用户站观测成果的质量和解算结果的收敛情况,从而可实时地判定解算结果是否成功。
(2)仪器精度高。GPS相对定位精度在50 km内达; 100~500 km达,1000km以上可达。且独立布点不会有误差积累,测量过程自动进行,不会有人为因素造成的错误,测量数据稳定可靠。
(3)自动化程度高。用GPS接收机进行测量时,仅需一人将天线准确地安置在测站上,量测天线高,接通电源,启动接收机,仪器即自动开始工作。在结束测量时,只需关闭电源,收起接收机,便完成野外数据采集。
(4)可减少误差。在变形监测中,只要天线在监测过程中能保持固定不动,接收机天线的对中误差、整平误差、定向误差、量取天线高的误差等并不会影响变形监测的结果。
(5) 操作方便。仪器体积小,重量轻,容易携带搬运,劳动强度小,外业工作量小。
(6)应用前景广。GPS技术具有全球、无误差积累等优点。使观测工作效率大大提高,同时也节省了大量的人力和物力。
2GPS变形监测技术
2.1 GPS变形监测模式
GPS用于变形监测的作业模式可概括为周期性和连续性两种。当变形体的变形速率相当缓慢,在局部时间域和空间域内可以认为稳定不动时,可利用GPS进行周期性变形监测,监测频率可为数月、一年或甚至更长时间。连续性变形监测采用固定监测仪器进行长时间的数据采集,获得变形数据系列,此时监测数据是连续的,具有较高的时间分辨率。周期性监测模式一般采用静态相对定位测量方法。论文写作,GPS建筑变形。连续性监测模式,适用于对自动化要求高,数据采集周期短的监测项目。在数据处理方法上,可选择静态相对定位和动态相对定位两种方法。在一些高层建筑物等工程的动态监测中,可运用GPS连续监测模式。论文写作,GPS建筑变形。该模式实现24小时的连续观测,使监测、监控、决策实现远距离控制,但该模式要求GPS接受设备必须永久固定在变形点上成本较高。
2.2 GPS在变形监测中的测量方法
按监测对象及要求不同,GPS在变形监测中可选择静态测量法,快速静态测量法和动态测量法三种。
1)静态测量法:静态测量法,就是把多于3台GPS接收机同时安置在观测点上同步观测一定时段,一般为1小时至2小时不等,用边连接方法构网,用后处理软件解算基线,经平差计算求定观测点三维坐标。这种方法定位精度高,适用于长边,测边相对精度可达。论文写作,GPS建筑变形。论文写作,GPS建筑变形。
2)快速静态测量法:这种方法尤其适用于对监测点的观测。其工作原理是:把两台GPS接收机安置在基准点上固定不动连续观测,另1~4台接收机在监测点上移动,每次观测5~10分钟(采样间隔为2秒),经事后处理,解算出各监测点的三维坐标。
3)动态测量法:该方法又分准动态测量方法和实时动态测量法。实时动态测量方法原理是:在基准站上安置一台GPS接收机,对所有可见GPS卫星进行连续观测,并将观测数据通过无线电传输设备,实时地发送给在各监测点上移动观测(1~3秒钟)的GPS接收机,移动GPS接收机在接收GPS信号的同时,通过无线电接收设备基准的观测数据,再根据差分定位原理,实时计算出监测点三维坐标及精度。
一般基准网应采用静态测量方法,当基准网的边长超过10 km,要考虑基准网的起算点与国际IGS站联测,基线向量解算时采用精密星历,保证基线解算的精度。对监测点进行测量时,可采用快速静态测量法。在桥梁监测时,可选择实时动态测量,如果距离近,基准点与监测点有5颗以上共视GPS卫星时,精度可达1~2 cm。
3 GPS测量数据处理
GPS数据处理过程可划分为基线解算和网平差两个阶段。
GPS基准网的基线解算,应采用GAMIT或Bernese软件和IGS精密星历。平差计算应采用PowerADJ科研办软件。对高精度GPS的数据处理分为两个主要方面:一是对GPS原始数据进行处理获得同步观测网的基线解;二是对各同步网进行整体平差和分析,获得GPS网的整体解。这些软件数据处理的重点都在于同步网的基线处理,而在网平差分析方面,特别是多个子网的系统误差分析、粗差分析及随机误差处理方面,暂无好的处理方法。
4 结语
GPS这种全新的定位手段,在工程实践中已逐步得到认同。目前,我国正处于经济发展的历史性的发展时期,各种基础设施的大量建设,各种新材料、新技术的采用,使建筑工程这一传统产业呈现勃勃生机。论文写作,GPS建筑变形。随着GPS技术的进一步开发,特别是有关高层建筑施工领域的应用技术包括基础理论的研究、实践方法的探索、信号接受手段的更新、信号处理方法和软件的开发等的发展,再加上若干工程的应用、积累和提高,GPS技术将成为在高层及超高层建筑方面广泛使用的方法。
参考文献
[1]刘大杰等.全球定位系统GPS的原理与数据处理[M].上海:同济大学出版社,2008:40-55.
[2]余绍铨等.GPS测量原理及应用[M].武汉:武汉测绘科技大学出版社,2007:60-65.
2 精密GPS测量的理论基础
1.精密星历
因为星历也存在着误差,当GPS信息发播的卫星位置不正确时,将产生星历误差。通常,此误差的径向分量最小,而切向误差和横向误差则可能大一个数量级。幸运的是:这两种较大的分量误差不影响定位精度,只有卫星位置误差沿视线方向的投影才产生定位误差。由于卫星误差反映了位置预报,故星历误差随着最后一个地面注入站注入信息的时间而增长。此外,SA是星历误差的重要组成部分。据研究资料表明,对于24小时的干报而言,测距误差中星历误差约占2.1 m,此误差同各卫星钟密切相关.而且,这些误差对C/A码和P码是相同的.
大区域,米级精度实时定位为特征的广域差分系统正从研究阶段走向实用阶段。高精度GPS相对定位在较大范围内的地球动力学现象实时监测和大型精密工程测量里的应用也成为现实。由于GPS卫星广播星历,特别是事实施SA政策以后的卫星广播星历的误差影响,在上述高精度定位中,实时确定高精度的GPS卫星星历是保证定位精度的关键之一.卫星广播星历是用GPS的跟踪站的伪距测量值定轨外推的 。其精度加上SA政策的影响后为100米或更差,随着IGS数据的处理工作的不断完善,利用全球站数IGS数据处理中心用全球的几十到几百个站的一天或多天的 数据定轨,精度可达10厘米。
2.整周跳变的探测与修复
GPS载波相位测量,只能测量载波滞后相位1周以内的小数部分,不能测量 载波滞后 相位的整周数()。其后的载波滞后相位整周数变化值(始后周数)是通过由多普勒积分由电子记数器累积读得的。由于 gps信号接受机自身故障或 gps信号意外中断,导致载波锁相环路的短盏失锁,而引起的多普勒记数的短盏中断,当载波锁相环路重新锁定后,多普勒记数又重新开始,以致造成载波滞后 相位整周数变化值(始后周数)的不连续记数。这种多普勒记数的中断现象,称为整周跳变,简称为周跳。
当GPS载波相位观测值没发生周跳时,卫星 一、次通过的载波滞后相位整周数是连续的,各时元的观测值都会还有一个共同的整周未知数N0,即时元t1 的整周模糊度 ,当发生周跳时其后所有的载波相位观测值都会含有一偏差值,该偏差就是中断期间所丢失的整周数,即周跳后的载波相位测量中的含有未知数N0+daita
2、电离层误差
由于电离层中存在自由电子,GPS信号在电离层中传播时将产生时延。时延值同自由电子数成正比。就一阶项而言,此时延值也同载波频率平方的倒数(1/f2)成正增长。载波平滑接收机的滤波器设计时应顾及此特性。
要改正受电离层时延影响的观测值,最简单的方法是采用时延内部的周日模型。利用GPS信息能够不断更新这些参数。此模型的有效精度,温带区约±2~±5m。
第二种技术是采用双频接收机。利用L1/L2频率的双频观测值可直接解算电离层时延。L1和L2到达时间之差可直接进行代数解算。对于一台质量较好的双频接收机而言,在基本消除电离层影响后,应能提供±1~±2m的测距精度。第三种方法是采用“码/载波相位扩散技术”(简称CCD技术)。就一阶项而言,电离层对码观测值的影响为 ,相位观测值的影响为 。由此可见,电离层对两种观测值的影响数值相同,符号相反。将这两种观测值加权组合即可基本削弱电离层误差,使单频接收机的测程扩大到400km,精度到±1cm+2×10-6D。第四种方法是基于准实时更新。它将用于广域差分GPS。此技术在全球温带也能得出±1~±2m或更高的精度。
3、对流层误差
另一种误差源是由于对流层引起的真空光速、气温、气压和湿度的变化。这些变化都将影响电波的传播速度。码和载波的观测值均受到同样的时延。对于多数用户和一般环境而言,采用可靠的对流层模型,有效精度可达到±1m或更高。周跳的探测与修复。
4数据处理
GPS数据处理的好坏将影响到定位成果的精度,因而,GPS数据处理成了GPS测量的重点内容之一。本文就数据处理问题作了一些论述及探讨,现将前面几章的论述总结如下:
(1) 基线解算的过程实际上主要是一个平差的过程,平差所采用的观测值主要是双差观测值。在基线解算时,平差要分三个阶段进行,第一阶段进行初始平差,解算出整周未知数参数的和基线向量的实数解动;在第二阶段,将整周未知数固定成整数;在第三阶段,将确定了的整周未知数作为已知值,仅将待定的测站坐标作为未知参数,再次进行平差解算,解求出基线向量的最终解-整数解。
(2) 基线解算一般情况下尽量不用人工干预,但基线解算质量通不过时,就需对残差图,进行分析,找出影响解算质量的因素并采取应对措施。
(3) GPS相对定位的观测量是WGS84坐标系中两点间的基线向量和相应的协方差阵,为检核GPS测量的精度和成果的可靠性,在WGS84坐标系中做无约束平差,消除图形闭合图形不符值。再进行约束平差,并将成果转换到工程应用所需的国家坐标系或独立坐标系的成果。
Abstract: With the advancement of science and technology development and engineering construction, engineering measurement technology gradually developed, engineering measurement technology development is inseparable from the development of mapping technology, the development of more inseparable from the engineering construction, China's economic development engineering surveytechnology development opportunities, the current development of the Engineering Survey Technology major performance GPS technology, digitization surveying and mapping technology, the ground measuring instruments, photographic measurement technology, the use of these technologies makes the engineering survey technology development towards automation, digitization, intelligent direction. Engineering measurement technology for economic development and national defense construction services, and with the economic development and scientific and technological progress continue to reform and change, this paper summarizes the development status of the engineering survey, outlook engineering measurement technology trends.Keywords: engineering measurement techniques; development status; development trend
中图分类号:TB22 文献标识码:A 文章编号:2095-2104(2012)
工程测量是指在工程建设的设计、管理、施工等各个阶段中,开展测量工作的理论、方法和技术,属于综合性应用测绘科学技术,工程测量的应用范围十分广泛,对经济的发展和国防建设也有重要的贡献。
一、工程测量技术的发展现状
(一)数字化测绘技术的应用
随着城市化的发展和工程测量技术的进步,大比例尺工程图和地形图的测绘技术也在朝着信息化、数字化的方向发展,这依赖于数字化测绘技术的应用。传统的成图方法十分复杂,需要工作人员进行艰苦的野外工作,脑力劳动和体力劳动要结合,还要处理很多数据,成图的周期比较长,产品也比较单一,随着GEOMAP系统和电子经纬仪的应用,工作人员可以把采集到的数据和微机、数控绘图仪结合起来,形成一个自动化的测图系统,系统可以提供纸图或者软盘,有利于基础地理信息系统的自动化发展。
(二)GPS技术的应用
GPS技术首先在美国出现,于1994年正式建成,是一种卫星导航和定位系统,能够对海陆空进行全方位的导航和定位,GPS技术的出现使科学技术发展的重大突破,为科技的发展做出了重大贡献,随着各国对GPS技术的应用及创新,GPS技术也在不断完善和发展,能够一次性确定三维坐标高精度、高速度、省费用、易操作的技术逐渐取代了传统使用测距、测角、测水进行常规定位的技术。我国GPS技术应用的比较广泛,国家大地网、工程控制网等普遍进行了改造,应用了GPS技术,因此GPS技术渗透于高速公路、石油勘探、地下铁路、大坝监测、山体滑坡、通信线路、地震、海域检测等领域中,GPS技术的发展也使得定位的精度不断提高。
(三)摄影测量技术的应用
随着工程测量技术的发展,摄影测量技术逐渐往高精度、高质量方向发展,摄影测量仪器与计算机技术结合起来,能够提供更为全面的三维信息,能够大大减少户外的工作量,提高了测量的精度、质量,增加了成果的品种,能够有效解决大比例尺地形测绘、建筑物变形测绘、医学异物定位、文物保护等难以解决的问题。全数字摄影测量站为摄影测量技术提供了新技术和新手段,该技术得到广泛运用,发挥了重要作用。航空摄影测量应用与我国一百多个城市和工程测量单位中,用来进行工程勘测。
(四)地面测量仪的应用
地面测量仪的大量出现使工程测量的程序由繁到简,也为工程测量提供了精密测距仪、数字水准仪、电子经纬仪、激光扫平仪、全站仪等先进的测量工具,地面测量仪的应用促进了工程测量技术的现代化,有效节约了成本开支,提高了工程测量效率,地面测量仪还具有自动跟踪的功能,施工放样测量可以使用连续函数测距仪,不再需要棱镜,提高了工作效率,电子速测仪的应用能够提高测量的精密性,能够提供详细的测量数据,传统计量基准被取而代之。
二、工程测量技术的发展趋势
(一)三维测量系统得到发展
传统的一维、二维数据收集方法已经不适应现代社会的发展,三维甚至是四维的测量系统将取代一维、二维测量系统,测量的形式也将由现场交互式变为远程测控式。测量平台也会由静态转为动态,从固定地面转为机载、车载、卫星控制,提高测量灵活性。随着工业生产现代化水平的提高、大型建筑物和设备的重建和质量的控制、工程生产的过程控制、产品的质量检测要求提高等,都需要三维测量技术的发展,促进了三维测量技术从三维工业测量、土木工程测量深入到人体科学测量。
(二)数据分析技术的进步
在过去,工程测量中的数据分析主要是利用坐标运算、几何计算、平差计算等方式进行分析,运算的方法过于单一,精确度无法保障,工程测量技术的发展会促进数据分析技术的进步与发展,传统的数据分析方法逐渐被空间点处理、可视化处理、点云数据分析、逆向工程等方式取代,通过三维空间坐标的设计与设计模型的对比,实现测绘数据与理论数据库完美结合。传统的工程测量需要把收集到的数据带回去处理,工程测量技术的发展解决了空间数据测量、收集、存储、管理、分类等方面的问题,能够在进行工程测量的同时对图像进行编辑,能够使信息得到及时更新。
(三)测量领域的延伸
以往的工程测量技术偏重与宏观领域的测量,随着工程测量技术的不断发展,测量领域将突破宏观的限制,逐渐往微观世界的方向发展,测量的精确度也越来越高,在进行微观领域测量的同时,宏观领域的测量也不断深入和发展。在进行宏观领域的测量时,工程建设的难度和规模都有所增加,要想满足工程建设测量的需要,就必须提高工程测量的精确度,在进行微观领域的测量时,要充分结合计算机技术,促进微型计量方向的发展,缩小测量的尺度和维度,发展与微型测量技术相适应的图像处理技术等。对于大型工程建设和变形观测数据的处理,要在发展信息系统的同时,促进地理、物理、大地测量、水文地质、土木建筑等学科的结合,解决工程建筑中出现的各种问题。
(四)工程测量往网络化方向发展
科学技术的发展促进了工业生产往一体化、网络化的方向发展,工程测量离不开对计算机技术、网络技术、数据交换技术的运用,这就为网络化发展的方向提供了可能。社会节奏的加快要求工程测量的工序也要由繁入简,工程测量的网络化可以使大型机电设备、工程质量在检测时直接利用先进的测量仪器进行作业,提高了工程测量效率。
总 结:
本文从GPS技术、数字化测绘技术、地面测量仪器、摄影测量技术四个方面总结了工程测量技术的发展现状,说明了工程测量技术渗透在经济建设中的各个行业,并对经济发展发挥着重要的作用,因此,我们应该总结工程测量技术发展的现状,对工程测量技术的发展趋势做出一定的预测,促进工程测量技术往网络化、服务化、法制化方向发展,为社会做出更大的贡献。
参考文献:
[1]郑凤刚.吴瑕.ZHENG Feng-gang.WU Xia 后方交会法在泗南江电站洞室工程施工测量中的应用[期刊论文]-云南水力发电2009,25(z1)
[2]徐国斌.朱国成.邱王军水利水电施工项目风险识别管理分析[期刊论文]-城市建设理论研究(电子版)2011(23)