时间:2023-03-03 15:57:26
引言:寻求写作上的突破?我们特意为您精选了12篇整式的运算练习题范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
结合笔者多年的教学经验,对整式加减去括号的基本原则进行了简单概括,具体可以分为三点。第一,在整式括号之外的因数若是正数,那么在去除括号之后,括号内各项的符号均不发生变化,与原来保持一致。比如,针对13(9y-3)+2(y-1)这个数字,括号外的13和2都是正数,那么在去除括号之后,9y保持原先的符号变为117y,-3保持原先的符号变为-39。第二,在整式括号之外的因数若是负数,那么在去除括号之后,括号内各项的符号均与之前相反,正变负、负变正。比如,针对-5(x-5)-6(x-3)这个式子,由于括号之外的-5和-6都是负数,因此去除括号之后,括号里的x项就变成负的,常数项则变成正的。第三,整式加减去括号的实质就是将括号外的因数和括号内的各项分别相乘,之后逐项累积即可。比如,针对5(2x-2)-3(-3x+5)这个式子,对整式分别进行逐项相乘,可以分别得到10x、-10、9x及-15这四项,再将其累积起来,就可以得到10x-10+9x-15=19x-25。
二、整式加减去括号的教学策略
(一)以视频法直观演示去括号的步骤
在实际教学过程中,由于数学自身具备的较强理论性,使得学生在理解过程中容易出现偏差,这就需要教师在教学中通过更直观的手段对知识点进行展示,让学生能够清楚地认识到其中的奥妙。视频法对于整式加减去括号的教学具有积极意义,其可以对去括号的步骤直观演示,让学生深入了解。在教学中,教师应该先将教学资源制作成视频,尤其是去括号步骤需要制成视频,在教学课堂中播放。比如,针对2(5x+3b)-3(2x-2b)进行去括号时,若是选择逐项计算,就可以在视频中动态显示2和5x相乘得到10x,2和3b相乘得到6b,-3和2x相乘得到-6x,-3和-2b相乘得到6b。通过这样的动态演示,可以让学生直观清晰地认识到去括号的基本流程和实际意义,对此有深入掌握。
(二)一题多解全面展示整式去括号的精髓
对于一个整式加减题目,去括号的方式可以是不同的,并非局限在一种方式上,因此教师在实际教学过程中可以对一道题目采用不同的方式进行求解,以便学生能够从多个不同的角度认识整式加减去括号。比如,针对-2(5a-2b)-4(2a-2b)这样一个题目,教师首先可以采用逐项相乘法,将每个整式括号的项直接拿出来和括号外的因数相乘,直接去除括号,这样原式=-2×5a-2×(2b)-4×2a-4×(-2b)=-10a+4b-8a+8b=12b-18a。另外,还可以将括号外的因数直接拿到括号内和各项相乘,然后再去掉括号。这样原式就可以变成:
[-2×5a-2×(-2b)]+[-4×2a-4×(-2b)]
=[-10a+4b]+[-8a+8b]=-10a+4b-8a+8b=12b-18a
由此可见,将括号内的项拿出去和因数相乘,将括号外的因数拿进来和括号内的各项相乘,其结果是一样的。因此,通过这两种不同的方式进行解题,可以让学生认识到整式加减去括号的实质,从而提高其解题的有效性。
(三)设置一定的练习题巩固学生掌握知识
(1)知识结构
(2)重难点分析
①本节的重点Ⅰ.最简二次根式概念
Ⅱ.利用二次根式的性质把二次根式化简为最简二次根式.
重点分析本章的主要内容是二次根式的性质和运算,但自始至终围绕着二次根式的化简和运算.二次根式化简的最终目标就是最简二次根式;而二次根式的运算则是合并同类二次根式,怎样判定同类二次根式,是在化简为最简二次根式的基础上进行的.因此本节以二次根式的概念和二次根式的性质为基础,内容虽然简单,在本章中却起着穿针引线的作用,教师在教学中应给于极度重视,不可因为内容简单而采取弱化处理;同时初二学生代数成绩的分化一般是由本节开始的,分化的根本原因就是对最简二次根式概念理解不够深刻,遇到相关问题不知怎样操作,具体操作到哪一步.
②本节的难点是化简二次根式的方法与技巧.
难点分析化简二次根式,实际上是二次根式性质的综合运用.化简二次根式的过程,一般按以下步骤:把根号下的带分数或绝对值大于1的小数化成假分数,把绝对值小于1的小数化成分数;被开方数是多项式的要因式分解;使被开放数不含分母;将被开方数中能开的尽方的因数或因式用它的算术平方根代替后移到根号外面;化去分母中的根号;约分.所以对初学者来说,这一过程容易出现符号和计算出错的问题.熟练掌握化简二次根式的方法与技巧,能够进一步开拓学生的解题思路,提高学生的解题能力.
③重难点的解决办法是对于最简二次根式这一概念,并不要求学生能否背出定义,关键是遇到实际式子能够加以判断.因此建议在教学过程中对概念本身采取弱化处理,让学生在反复练习中熟悉这个概念;同时教学中应充分对最简二次根式概念理解后应用具体的实例归纳总结出把一个二次根式化为最简二次根式的方法,在观察对比中引导学生总结具体解决问题的方法技巧.
另外,化简运算在本节既是重点也是难点,学生在简洁性和准确性上都容易出现问题,因此建议在教学过程中多要求学生观察二次根式的特点――根据其特点分析运用哪条性质、哪种方法来解答,培养学生的分析能力和观察能力――多要求学生注意每步运算的根据,培养学生的严谨习惯.
2.教法建议
素质教育和新的教改精神的根本是增强学生学习的自主性和学生的参与意识,使每一个学生想学、爱学、会学。因此教师设计教学时要充分考虑到学生心理特点和思维特点,充分发挥情感因素,使学生完全参与到整个教学中来。
⑴在复习引入时要注意每个学生的反映,对预备知识掌握比较好的学生要用适当的方式给于表扬,掌握差一些的学生要给予鼓励和适当的指导,使每一个学生愉快的进入下一个环节。
⑵学生自主学习时段,教师要注意学生的反馈情况,根据学生的反馈情况和学生的层次采取适当的方式对需要帮助的学生给予帮助,中上等的学生可以启发,中等的学生可以与他探讨,偏后的学生可以帮他分析.
一.教学目标
1.了解最简二次根式的意义,并能作出准确判断.
2.能熟练地把二次根式化为最简二次根式.
3.了解把二次根式化为最简二次根式在实际问题中的应用.
4.进一步培养学生运用二次根式的性质进行二次根式化简的能力,提高运算能力.
5.通过多种方法化简二次根式,渗透事物间相互联系的辩证观点.
6.通过本节的学习,渗透转化的数学思想.
二.重点难点
1.教学重点会把二次根式化简为最简二次根式
2.教学难点准确运用化二次根式为最简二次根式的方法
三.教学方法
程序式教学
四.课时安排
2课时
五.教学过程
1.复习引入
教师准备本节内容需要的二次根式的性质和与性质相关例题、练习题以及引入材料.
预备资料
⑴.二次根式的性质
⑵.二次根式性质例题
⑶.二次根式性质练习题
引入材料
看下面的问题:
已知:=1.732,如何求出的近似值?
解法1:
解法2:
比较两种解法,解法1很繁,解法2较简便,比例说明,将二次根式化简,有时会带来方便.
2.概念讲解与巩固
学生阅读教师预备的材料,理解后自主完成教师准备的正选练习题,每完成一套与教师交流一次,在教师的指示下继续进行.教师要及时了解学生对最简二次根式概念的反馈情况,如果掌握比较理想,则要求进入下一步操作,否则应与学生进行适当沟通,如需要可从备选练习题选择巩固.
概念讲解材料
满足下列条件的二次根式,叫做最简二次根式:
(1)被开方数的因数是整数,因式是整式;
(2)被开方数中不含能开得尽方的因数或因式.
如:都不是最简二次根式,因为被开方数的因数(或系数)为分数或因式为分式,不符合条件(1),条件(1)实际上就是要求被开方数的分母中不带根号.
又如也不是最简二次根式,因为被开方数中含有能开得尽方的因数或因式,不满足条件(2).注意条件(2)是对被开方数分解成质因数或分解成因式后而言的,如.
判断一个二次根式是不是最简二次根式的方法,就是逐个检查定义中的两个条件是否同时满足,同时满足两个条件的就是,否则就不是.
概念理解学习材料1
例1下列二次根式中哪些是最简二次根式?哪些不是?为什么?
分析:判断一个二次根式是不是最简二次根式的方法,就是逐个检查定义中的两个条件是否同时满足,同时满足两个条件的就是,否则就不是.
解:最简二次根式有,因为
被开方数中含能开得尽方的因数9,所以它不是最简二次根式.
说明:判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察。
概念理解巩固材料1
正选练习题1
判断下列各式是否是最简二次根式?
备选选练习题1
判断下列各式是否是最简二次根式?
概念理解学习材料2
例2判断下列各式是否是最简二次根式?
分析:(1)显然满足最简二次根式的两个条件.
(2)或
解:最简二次根式只有,因为
或
说明:最简二次根式应该分母里没根式,根式里没分母(或小数).
概念理解巩固材料2
正选练习题2
判断下列各式是否是最简二次根式?
备选选练习题2
判断下列各式是否是最简二次根式?
概念理解
学习材料3
例3判断下列各式是否是最简二次根式?
分析:最简二次根式应该分母里没根式,根式里没分母(或小数)来进行判断发现和是最简二次根式,而不是最简二次根式,因为
在根据定义知也不是最简二次根式,因为
解:最简二次根式有和,因为
,
.
概念理解巩固材料3
正选练习题3
判断下列各式是否是最简二次根式?
备选选练习题3
判断下列各式是否是最简二次根式?
题目可根据学生实际情况选择2-3道.
概念理解学习材料4
例4判断下列各式是否是最简二次根式?
分析:被开方数是多项式的要先分解因式再进行观察判断.
(1)不能分解因式,显然满足最简二次根式的两个条件.
(2)
解:最简二次根式只有,因为
.
说明:被开方数比较复杂时,应先进行因式分解再观察.
概念理解巩固材料4
正选练习题4
判断下列各式是否是最简二次根式?
备选选练习题4
判断下列各式是否是最简二次根式?
题目可根据学生实际情况选择2-3道.
3.化简二次根式为最简二次根式方法学习与巩固
学生阅读教师预备的材料,理解后自主完成教师准备的正选练习题,每完成一套与教师交流一次,在教师的指示下继续进行.教师要及时了解学生对二次根式化简的反馈情况,如果掌握比较理想,则要求进入下一步操作,否则应与学生进行适当沟通,如需要可从备选练习题选择巩固.
化简方法学习材料1
例1把下列二次根式化为最简二次根式
分析:本例题中的2道题都是基础题,只要将被开方数中能开的尽方的因数或因式用它的算术平方根代替后移到根号外面即可.
解:
化简方法巩固材料1
正选练习题1
化简
备选练习题1
化简
题目可由教师根据学生情况准备.
化简方法学习材料2
例2把下列二次根式化为最简二次根式
分析:本例题中的2道题被开方数都是多项式,应先进行因式分解.
解:
说明:被开方数中能开的尽方的因数或因式的算术平方根移到根号外面后要注意符号问题.
在化简二次根式时,要防止出现如下的错误:
等等.
化简二次根式的步骤是:
(1)把被开方数(或式)化成积的形式,即分解因式.
(2)化去根号内的分母,即分母有理化.
(3)将根号内能开得尽方的因数(式)开出来.
化简方法巩固材料2
正选练习题2
化简
备选练习题2
化简
题目可由教师根据学生情况准备.
化简方法学习材料3
例3把下列二次根式化为最简二次根式
分析:被开方式比较复杂时,要先对被开方式进行处理。
解:
说明:运算中要注意运算的准确性和合理性.
化简方法巩固材料3
正选练习题3
化简
备选练习题3
化简
题目可由教师根据学生情况准备.
4.小结
⒈同类二次根式的概念
⒉二次根式加减运算的方法
本节的主要内容是讲解二次根式的加减法,而二次根式的加减法的关键是把二次根式化为最简二次根式,再把同类二次根式合并.二次根式的加减法运算实质是合并同类二次根式,前提是要充分了解同类二次根式的概念,因此同类二次根式的概念是本节的一个重点.
本节的难点二次根式的加减法运算
二次根式的加减法首先是化简,在化简之后,就是类似整式加减的运算了.整式加减无非是去括号与合并同类项,二次根式的加减在化简之后也是如此,同类二次根式类似同类项.但是学生初次接触二次根式的加减法,在运算过程中容易出现各种各样的错误,因此熟练掌握二次根式的加减法运算是本节的难点.
本节的主要内容是讲解二次根式的加减法,而二次根式的加减法的关键是把二次根式化为最简二次根式,再把同类二次根式合并.
(1)在知识引入的讲解中,有两种不同的处理方法:一是按照教材中的方法,先给出几个二次根式,把他们都化成最简二次根式,在进行比较或者加减运算,从而引出二次根式的加减法和同类二次根式;二是先复习同类项的概念或进行一两道简单的正式加减的题目,通过类比引出同类二次根式和二次根式的加减法.两种处理方法各有优劣,教师在教学过程中可根据学生的实际情况进行选择,当然也可以把这两种方法综合应用,但有些过繁.
(2)在教材例1的教学中,教师可以根据学生情况进行细分处理,例如分成几个小问题:①把被开方数都是整数的放在一个小题中,②把被开方数都是分数的放在一个小题中,③把被开方数带有简单字母的放在一个小题中,④把字母次数略高于2的放在一个小题中,……使问题的解决有一个由浅入深的渐进过程,便于学生参与其中,也容易使学生获得成就感.
(3)在组织学生进行二次根式的加减法教学中,同样将例题细分成几个层次进行教学,例如:①不需要化简能直接进行相加减的,②需要化简但被开方数都是简单整数的,③被开方数都是有理数但既有整数又有分数的,④被开方数含有字母的,等等.
(4)在二次根式加减法的组织教学中,虽然教材已经不要求二次根式加减法的法则,但可以组织学生自己总结法则,既有利于学生的参与,又能提高学生的观察、分析和归纳能力.
(5)在二次根式加减法的整个教学环节中,教师都要及时纠正学生的错误认识,比如:①不是最简二次根式就不是同类二次根式,②该化简的没有化简,或化简的不正确,③该合并的没有合并,不该合并的给合并了,或者合并错了,等等类似情况.教师在教学中可以出一些容易出错的题目让学生进行辨别,以利于知识的巩固.
教学设计示例1
一、素质教育目标
(一)知识教学点
1.使学生了解最简二次根式的概念和同类二次根式的概念.
2.能判断二次根式中的同类二次根式.
3.会用同类二次根式进行二次根式的加减.
(二)能力训练点
通过本节的学习,培养学生的思维能力并提高学生的运算能力.
(三)德育渗透点
从简单的同类二次根式的合并,层层深入,从解题的过程中,让学生体会转化的思维,渗透辩证唯物主义思想.
(四)美育渗透点
通过二次根式的加减,渗透二次根式化简合并后的形式简单美.
二、学法引导
1.教师教法引导法、比较法、剖析法,在比较和剖析中,不断纠正错误,从而树立牢固的计算方法.
2.学生学法通过不断的练习,从中体会、比较、二次根式加减法中,正确的方法使用,并注重小结出二次根式加减法的法则.
三、重点·难点·疑点及解决办法
1.教学重点二次根式的加减法运算.
2.教学难点二次根式的化简.
3.疑点及解决办法二次根式的加减法的关键在于二次根式的化简,在适当复次根的化简后进行一步引入几个整式加减法的,以引起学生的求知欲与兴趣,从而最后引入同类二次根式的加减法,可进行阶梯式教学,由浅到深、由简单到复杂的教学方法,以利于学生的理解、掌握和运用,通过具体例题的计算,可由教师引导,由学生总结出计算的步骤和注意的问题,还可以通过反例,让学生去伪存真,这种比较法的教学可使学生对概念的理解、法则的运用更加准确和熟练,并能提高学生的学习兴趣,以达到更好的学习效果.
四、课时安排
2课时
五、教具学具准备
投影片
六、师生互动活动设计
1.复习最简二根式整式及的加减运算,引入二次根式的加减运算,尽量让学生回答问题.
2.教师通过例题的示范让学生了解什么是二次根式的加减法,并引入同类的二次根式的定义.
3.再通过较复杂的二次根式的加减法计算,引导学生小结归纳出二次根式的加减法的法则.
4.通过学生的反复训练,发现问题及时纠正,并引导学生从解题过程中体会理解二次根式加减法的实质及解决的方法.
七、教学步骤
(-)明确目标
学次根式化简的目的是为了能将一些最终能化为同类二次根式项相合并,从而达到化繁为简的目的,本节课就是研究二次根式的加减法.
(二)整体感知
同类二次根式的概念应分二层含义去理解(1)化简后(2)被开方数还相同.通过正确理解二次根式加减法的法则来准确地实施二次根式加减法的运算,应特别注意合并同类二次根式时仅将它们的系数相加减,根式一定要保持不变,并可对比整式的加减法则以增加对合并同类二次根式的理解,增强综合运算的能力.
第一课时
(-)教学过程
【复习引入】
什么样的二次根式叫做最简二次根式?(由学生回答)
与的形式与实质是什么?
可以化简为.
继续提问:,可以化简吗?
,可以化简吗?
这就是本节课研究的内容——二次根式的加减法.
【讲解新课】
1.复习整式的加减运算
计算:
(1);
(2);
(3).
小结:整式的加减法,实质上就是去括号和合并同类项的运算.
2.例题
(1)计算.
解:.
(2)计算.
解:.
小结:
(1)如果几个二次根式的被开方数相同,那么可以直接根据分配律进行加减运算.
(2)如果所给的二次根式不是最简二次根式,应该先化简,再进行加减运算.
定义:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式.
3.例题
例1下列各式中,哪些是同类二次根式?,,,,,,.
解:略.
例2计算.
解:
.
例3计算.
解:
.
二次根式加减法的法则:
二次根式相加减,先把各个二次根式化成最简二次根式,再把同类二次根式进行合并,合并方法为系数相加减,根式不变.
(可对比整式的加减法则)
例4计算:
(1).
解:
.
(2).
解:
.
(二)随堂练习
计算:
(1);
(2);
(3).
练习:教材P192中1、2(1)、(2)、(3)、(4)、(5);教材P193中1、2.
(三)总结、扩展
同类二次根式的定义.
二次根式的加减法与整式的加减法进行比较,强调注意的问题.
(四)布置作业
教材P193中(1)、(2)、(3)、(4)、(5)、(6);教材P194中4(1)、(2)、(3)、(4).
(五)板书设计
标题
1.复习题5.例题(1)、(2)、
教学是一个双向的过程,教师向学生传递信息,学生也要对课堂知识有所反馈,这样才能形成一个有效的课堂学习过程。所以,教师在数学课堂上,要适当地进行课堂提问、数字游戏等活动来活跃课堂气氛,检验学生对知识的掌握水平。
例如,在学习整式的乘法规律时,学生很容易搞混an?am和(an)m的运算规则,教师可以在教授学生运算规律之后,在多媒体课件上显示出这类的题目,让学生进行抢答的活动。当教师显示出一题,学生就可以快速运算后举手说出答案,算得又快又准的学生可以得到小奖品。如题目是33×32,正确的运算方式是等于33+2,也就是3的5次方,而错误的算法得出的答案是3的6次方。通过抢答环节,可以充分调动学生的学习积极性,让学生在短暂的时间内集中思考、锻炼思维。更重要的是,经过抢答时的做题,巩固了学生对整式乘法运算的知识,加深了学生记忆,以后再遇到这种题型就会自然地想起解题的方法。
二、增强学生学习的自信心
由于初中数学存在一定的难度,要求学生要有良好的解题思维和逻辑能力,不少学生在面对难题的时候就会产生烦躁、逃避的消极学习态度。面对这种情况,教师要加以引导,调节数学题的难度,确保学生掌握了基础知识,再层层递进地增加题目的难度。例如,在做三角函数应用题之前,教师要帮助学生再巩固一遍三角函数的运算方法,并要求学生自己写出表格,填上数值。加深记忆之后再做题,就会减少学生对难题的畏惧感,增加他们做题的自信心。
三、锻炼学习的合作思维
在数学课堂上,最好的提高效率方法就是对学生进行分组学习。教师可以让学生自由分组,最好按座位来形成学习小组以便交流和讨论。形成学习小组后,教师在课堂上可以把一些问题都交给小组讨论完成。
例如,在学习了一元二次方程的解题方法之后,教师可以出几道练习题,如x2-9x-136=0、x2+28x+171=0给学生训练,要求以小组为单位解答题目,如何分工合作由小组自己讨论决定,每个小组的组长要把解答过程统一写在组长的作业本上。解答完毕并在本子上做好的小组就可以举手告诉教师以便教师进行成果的验收。对于解答得又快又好的小组教师可以进行适当的奖励,而对于遇到解题问题的小组,教师就要加以指导,检查学生的学习方法和纠正思维方式。在这个学习过程中,学习能力较强的学生可以带动小组成员提高解题的自信心、培养良好的数学思维,达到共同进步的
中图分类号:G632 文献标识码:B 文章编号:1002-7661(2014)08-243-01
初中数学作业是初中数学教学必不可少的环节之一,如何使作业更省时、更高效,直接影响着学生数学素质的提高,学校教学质量的提升及教师教学的成败。因此,初中数学应做到对学生进行分层作业,设计作业不应仅停留在知识的层面,而应蕴含丰富的教育因素,应有利于调动学生的学习积极性,着眼于全体学生的可持续发展,让学生自主选择合适的作业,并进行分层布置,促进整体教学效果的提高。
一、初中数学作业分层设计的必要性
传统数学作业的弊端:一是习题形式单调、陈旧。主要以计算题和应用题为主,不能从多方面检查和训练学生对知识的理解和掌握情况。二是时间、内容一刀切.大部分教师在布置作业时,往往要求学生(优秀生和学困生)在一定的时间内完成相同的内容,期望达到同一目标,忽视了学生的个性特点。三是习题中缺乏应用,缺乏与实际问题或其他学科的联系。学生看不到数学问题的实际背景,也不会通过数学化的手段解决实际问题,这对学生建立积极的、健康的数学观,掌握数学建模方法是极为不利的。而设计不同层次的作业,能让学生更好地对所学知识加以巩固,也能让教师从不同的角度了解学生知识的掌握情况,从而为教师进一步改进教学方法、调整教学结构提供有力的依据。
二、数学作业分层设计的措施
1、改变教育观念
教师要加强学习新课标,提高数学教学思想和业务水平,创新教学方法,教育学生养成新的数学学习观,学有用的数学,学自己生活中的数学,端正学习数学态度。
2、深入调查研究
把班级中能“独立完成作业”“请同学帮完成作业”“简单作业自己做、难作业抄袭”“不管什么作业都抄袭”的学生名单找出来,分门别类,确定人数和比例。用问卷和访谈的方法了解他们对数学教学和数学作业布置的要求、建议或意见,调整教学计划,制定相应对策。
3、召开类型会议
鼓励能“独立完成作业”学生继续努力,发挥独立思考精神,完成高难度高质量的作业,但不能帮别人完成作业,只能适当点拨别人应该怎样做,不应该怎样做;对“请同学帮完成作业”学生进行思想教育,讲清请别人完成作业的害处,帮助他们树立信心,独立完成作业;对“简单作业自己做、难作业抄袭”同学,既表扬他们好的一面,也对他们的不足之处进行适当的批评;对“不管什么作业都抄袭作业”学生进行解剖麻省,找出他们为什么这样做的深层原因,分析危害性,对症下药,然后在情感态度和个别辅导方面都为他们提供优质服务和待遇。
三、分层布置的做法
1、分层。根据学生的数学学习能力,学习态度,数学考试成绩等情况对学生大致分为五个层次:优等生组、中上等学生组、中等学生组、中下等学生组、后进学生组。我在分组时便给学生讲清分组的目的和重要性,以消除学生的消极心理,让他们积极配合我的工作。在布置作业时,针对不同的组布置不同的作业,然后在组内对各个成员的作业进行评比。比如,在学习“整式的加减法”时,我给后进生组布置数字简单的一步运算,让他们熟悉整式加减法的性质,通过多次训练,熟能生巧,然后逐渐加深难度,为进一步学习奠定基础。对中等学生组我将提高作业难度,把他们的作业数字进一步反复,由后进生的一步运算扩展到二步运算,在训练中让他们向优等生趋近;对于优等生,由于他们的基础好,通过预习就能完成对这节课的基础知识和基本技能的掌握,再让他们进行课本作业已经意义不大,为了让他们有进一步提高的空间,我对他们设计专门的练习题,进行整式三、四步的混合运算,由于所分的组的学生处于同一学习水平,相互之间具有可比性,让组内学生进行作业比赛,通过比赛让学生有成就感,从而提高学生学习的积极性和主动性。同时,对于课外作业实行分层布置,优等生量少,难度大;中等生组在务实基础的情况下布置有提高性的作业,后进生以课本基础题为根本,同时布置以前学过的知识,让学生复习巩固,在复习中学习新知识,逐步提高,最后让学生在作业中得到发展。定期进行检测,在检测中,如果能力达到中等生组的水平就实现学生的“晋级”,进入中等生组,依次类推,中等生也可以通过检测进入优等生组。
2、布置
布置作业要适量分层次,对有能力的学生,鼓励他们课前预习,并做课后练习,以检验预习效果,带着问题进课堂。在教学中我根据各组成绩情况布置相应的作业。作业分必做和选做,否则会加重学生的课业负担,加重抄袭现象,同时每周也可增加一些智力题、创造性作业供学有余力的学生去做。每天的作业采用优化的弹性作业结构设计:分基本作业、提高作业、超额作业。凡完成本课时所必须完成的作业,视为基本作业,允许优生不做,中差生人人要完成。考虑到学生好、中、差的实际,将题目作些变化,视为提高作业,供提高组和精英组完成。设计一些难度较大的作业,视为超额作业,便于精英组同学完成。
参考文献:
[1] 上海市第二初级中学.探索教改新路实施“分层教育”[J].教育发展研究.
[2] 周 俊 肖婵婵.分层导学调动学生学习积极性.中学数学研究,2000(6).
(1)使学生理解同类项的概念,能正确辨别同类项.
(2)使学生掌握合并同类项法则,并能利用合并同类项法则来化简整式.
2.过程与方法
(1)通过观察、比较、交流等活动认识同类项,了解数学分类的思想;并能准确判断出同类项.
(2)通过探究、交流、合作、反思等活动获得合并同类项的法则,体验探求规律的思想方法;并熟练运用法则进行合并同类项的运算,体验化繁为简的数学思想.
3.情感、态度与价值观
激发学生学习热情,培养独立思考和合作交流的能力,让学生体验成功的喜悦.
二、教学重点、难点
重点:同类项的概念、合并同类项的法则及应用.
难点:准确判断同类项;正确合并同类项.
三、教学过程
(一)创设情境,引出课题
师:一天早晨,小兰和小芳都去买早点,小兰买了4个包子和2杯豆浆,小芳买了2个包子和1杯豆浆,小兰和小芳一共买了多少早点?
生:6个包子和3杯豆浆.
师:为什么不是9个包子或9杯豆浆呢?
生:包子和豆浆不同类,所以不能把“3”和“6”直接相加.
设计意图:从学生亲身经历的生活情景导入,激发学生的求知欲,使学生体会到“数学就这么简单”,从而为课题的引出做好了铺垫.
师:同学们回答得很好,事物根据不同的标准,可以有不同的分类.今天,我们就一起来认识一下数学中的分类问题.
(二)合作交流,探求新知
1.同类项概念
议一议:说出下列各组单项式的特点.(小组讨论完成)
(1)8n与-5n; (2)2ab3与14ab;
(3)23a2b与-2a2b;(4)-9y2x3与4x3y2;
(5)6与-135; (6)a2b3c与0.5a2b3c.
设计意图:让学生经历观察(观察每组单项式的系数、字母、字母的指数特点)、比较(比较各组中的单项式之间的异同)、归纳(归纳各组共有的规律)的过程,并提出自己的猜想,在合作交流中获得新知,共享成功的喜悦.
教师引导学生用自己的语言叙述发现的规律,让学生相互补充,最后教师再总结,并板书同类项概念.
练一练:
1.让四人一小组,并让一位学生随意说出一个单项式,另一位学生说出它的同类项,其他两位学生判断.
(设计意图:让每一位学生都积极参与课堂,并通过学生的争辩、解析进一步加深对同类项概念的理解.)
2.找出下列多项式中的同类项.
(1)4a+8-a-5;
(2)6x2-y2+2x2-3y2-4x2;
(3)-3x2y+7x2y2+9x2y-2xy2-1;
(4)3a2-5a+a2+4a+3-2a2+5.
(设计意图:由原来学生之间的相互考查转化为教师出题考查学生,让学生更加牢固地掌握同类项概念,突破教材难点.)
2.合并同类项法则
师:现在同学们已经学会辨别同类项了,那么同类项又如何进行加减运算呢?请看下面的题目.
想一想:
1.运用有理数的运算律填空.
100×2+252×2=( )×2;
100×(-2)+252×(-2)=( )×(-2).
2.填空.
252t+100t=( )t= ;
252t-100t=( )t= ;
3x2+2x2=( )x2= ;
3ab2-4ab2=( )ab2= .
(设计意图:从数到式,从具体到抽象,从特殊到一般,让学生经历逐步抽象的过程,从中渗透类比的学习方法.)
让学生完成上面的填空,然后回答下面的问题.
(1)请用自己的语言概括什么叫做合并同类项.
(2)请用自己的语言概括怎样合并同类项.(板书合并同类项法则)
待学生回答问题后,让学生进行合并同类项的练习.
【例1】 合并下列各式的同类项.
(1)5y3-8y3;
(2)4a2-3b2+2ab-4a2-4b2;
(3)-3x2y+5-3xy2+2x2y+2xy2-9.
(设计意图:教师板书解题过程,让学生体会每步的计算依据,并进一步加深对合并同类项法则的理解.)
练一练:
1.请运用合并同类项法则来计算下列各式.
(1)12x-20x;
(2)-6ab+ba+8ab-2b;
(3)10x2-3+13x2-1;
(4)4x2-7x+1-4x2+7x-5.
(设计意图:一个法则,一组例题,一组练习,这样的单元训练,反馈及时,有利于知识的及时内化,并能让学生快速领悟应用法则时需要注意的事项.)
2.让每个学生写一对同类项,然后请数学科代表选取三个学生写的三对同类项,再把这六项重新打乱顺序,编成一道合并同类项的题目,让学生们做,最后请做完题的学生上讲台讲评自己的解答过程.
(设计意图:改变以往教师出题,学生做题的模式,让学生对所学知识进行重组与创新,培养学生的发散思维和创新思维,同时让学生体验题目的产生过程,感受自己提出问题,自己成功解决问题的快乐.)
四、教学反思
合并同类项是“数”的运算发展到“式”的运算的关键点.根据“数式通性”,在有理数运算的基础上,通过类比来研究合并同类项法则,初步完成从“数”到“式”运算的思维转变;同时合并同类项法则的应用是整式加减的基础,也是以后学习解方程、解不等式的基础,因而合并同类项的教学是本章的重点内容.
【文章编号】 1004―0463(2015)16―0123―01
本设计的理论和现实依据是学生是在老师的指导下从已有的数学现实出发,经过自己的思考,得出有关数学结论,形成数学知识、技能和能力,发展情感态度和思维品质。然后由他们探索问题,相互解答疑惑,达成共识,逐步形成知识点,再运用知识巩固与提高。笔者所任教的班级学生,都有一定的探求新知识的能力。但基础不够扎实,如计算容易出错、考虑问题不够严谨等。在学习本节课之前,已经学习过解一元一次方程。对于解一元一次方程大部分同学已经掌握,但由于是在七年级学习,有一定的时间间隔,部分同学可能已经遗忘,给上本节课留下少许的困难。但绝大部分同学稍加回忆,应能接近以前的水平。本节课的内容处在分式这章的后半部。分式这章内容安排如下的:首先介绍分式及分式的基本性质,接着进行分式的加、减、乘、除的运算,之后是根据实际问题列出分式方程(但未求解)。紧跟其后的是本节课内容――解分式方程,最后一节是根据实际问题列出分式方程并求解。由此可见解分式方程涵盖了本章前面的内容,是本章知识的综合与提高。学习好这部分内容,不但掌握了初二阶段有关分式方程的内容,也为初三学习可化为一元二次的分式方程打下了良好的基础。通过将分式方程转化为整式方程(一元一次方程)渗透了一种重要的数学思想――转化思想,即将原问题进行变形,使之转化为我们所熟悉的或已解决的或易于解决的问题。
一、教学目标
1. 知识目标是掌握解分式方程的步骤,理解解分式方程时验根的必要性。
2. 能力目标是会按照解分式方程的步骤解分式方程。
3. 情感与价值观是培养学生自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度。运用“转化”的思想,将分式方程转化为整式方程,从而获得成就感和学习数学的自信。
教学重点是探索解分式方程的步骤,熟练掌握分式方程的解法。 体会解分式方程验根的必要性。教学难点是如何将分式方程转化为整式方程;体会分式方程验根的必要性。
二、新课设计
1. 由学生自主探索或互相讨论完成,老师巡视学生完成情况,对于学生可能出现的几种典型的解法用投影仪展示,让同学讨论,得出较好的解法。由于本节课的内容是紧接在分式的运算之后,多数学生会对方程进行通分,发现分母相同,得出分子应相等,解出x的值。这种情况与直接去分母效果相同,但解法较繁琐。第二种情况是与解含有分母的整式方程相联系,模仿整式方程的解法去分母,化为整式方程,求解整式方程得解。估计采用第二种方法的学生是少数。另外,若没有学生采用第二种方法,我会展示自己依第二种方法的解答过程,以供学生进行讨论、比对,在讨论中感悟到第二种方法更简便。突破本节课的难点。
教学活动是师生间双向信息的交流,这种交流是以信任为基础,以情感为纽带的。只有构建起和谐融洽的师生关系,师生间情真意切才能使学生满腔热情的投入学习。正所谓“亲其师,信其道”。如果教师对学生冷漠、鄙视、厌恶、嫌弃,他们就会产生消极情绪,并向逆向转化;反之,教师对学生爱护、关怀、理解、体贴,他们就会产生积极的情感反映,并可能向正向转化。大量的实例表明:无论怎样的学生,都会在情感的感召下,受到触动而接受教育,精诚所至,金石为开。因此情感教育是教师为每个学生的人生大厦铺垫的最初基石。有了这样基石,学生爱学、乐学的求知欲才能得到激发。我常常和学生说的一句话就是“课堂上我们是师生,生活中我们是朋友”。建立了融洽的师生关系,学生就会很自觉,高兴地做老师要求他们做的事,师生间的距离缩短了,教师便可以了解每个学生的内心世界,做到因人施教。
数学比较贴进生活实际,具有很强的知识性、现实性和趣味性。对此,我觉得应该做到这样几点:首先要注重课堂教学中的引入环节。在课堂引入中,应设计各种形式、运用各种手段把学生调动起来,唤起他们的参与意识。如教学“七巧板”时,一开始就用事先准备好的七巧板拼出一些优美的图案,再让他们自由合作进行制作,也拼出一些优美的图案,这样通过简单的表演,把问题设置于适当的情境下,从而营造了一个生动有趣的学习环境。相信在这样轻松的环境下,学生会兴趣盎然、积极主动地投入到学习中。另外,还可以以讲故事的形式、质疑的形式、列举生活中数学现象的形式引入教学,以简单明了、深入浅出、气氛畅然的开始调整学生的心理状态,激发他们的学习兴趣。第二要充分让学生参与实践操作,要让课堂学习和生活实践联系起来。比如,《丰富的图形世界》和转盘游戏、七巧板,图案设计、彩剪与镶边等,都要让学生亲自动手,亲自体验、感受,从而加深对它们的认识。教师要求尽可能利用自制教具优化课堂结构,以激发学生的学习兴趣。在教学中,可以把学生分成几个小组,一道准备实验器材、进行实验演示。通过实验操作,既规范了学生的劳动、行为习惯,又使他们在参与活动中认识“自我”。另外,即使是比较枯燥,欠生动的内容也应想方设法调动学生的积极性,比如说:《有理数的运算》与《整式的运算》等,在课堂中应设计一些有意义的学习活动,比如让学生在比赛中完成,抽题进行抢答或增加一些数学游戏等形式。
二、方法最重要,习惯成自然
由于数学知识的抽象性,学生学习起来通常感到比较枯燥困难,这样就容易使学生失去学习兴趣,所以必须注重学习方法指导,培养良好的学习习惯。(1)充分利用课本上的练习题,帮助学生掌握知识。在授新课过程中,由于学生初次接触新的概念或数学方法,多数学生停留在“似懂非懂”的层次上,这就需要教师在讲完课后及时布置练习题。因为课本上习题不仅难度适中而且紧贴教学内容,所以容易帮助学生理解掌握所学知识、所学方法。例如:“数的开方”这一节知识是新接触的运算知识,且抽象难懂。该节知识的学习效果将直接关系到以后函数、平面解析几何在内大部分知识的理解和掌握。基于此,我专门安排了一节习题课,既加深了该节内容的理解又对同学们一些常见错误进行了改正,受到了良好的效果。(2)一题多变、由浅入深、循序渐进。几何全等三角形判定这一章是几何推理证明的入门阶段,学生掌握起来比较困难。为了帮助学生很好地入门并攻克难关,为今后的学习打下坚实的基础,可将一题进行多种变化,由浅入深,以旧带新,积极引导。给他们独立思考的时间,调动他们的主观能动性,即帮助他们掌握了推理证明,又激发了他们的学习兴趣。
三、死板的问题生动化,难学的问题简单化
教师首先要打破一言堂现象或简单的照本宣科般的讲授,教学内容相对固定,但授课形式可以灵活多变,单一的教学形式会令学生昏昏欲睡,提不起兴趣。教学中可出适当的趣味数学题。如讲《一元二次方程》时:我出了这样一道题:一群猴子分2队,高高兴兴在游戏;八分之一在平方,蹦蹦跳跳树林里;其余十二高声喊,充满活跃的空气;告我总数共多少,两队猴子在一起。像这样把枯燥的数学题改编成有趣的文字题,往往能引发同学们做题的兴趣。这样既能锻炼学生的思维能力,又能让学生灵活用脑,岂不是一举两得!
还可以把某些数学规律编成顺口溜。例如函数图像的平移规律可以记为“x(自变量)加减左右移,y(函数)加减上下移”。
对一些被认为是难点的内容和问题,可以运用特殊值法、特殊情形法、列举法等多种方法使其简易化,达到水到渠成的效果。
例如在学元一次方程组的解法时,以解x+y=5,x-y=3为例,由于这个方程组及其意义比较抽象,故而可使其具体化。先由应用题引入:已知两数的和为5,且这两数的差为3,求这两个数。首先明确x+y=5与x-y=3之间是有联系的,这种联系可以表述为“x+y=5且x-y=3”,在这里符号“ {”可译为“且”,进而引导学生明确这一方程组的解就是其中两个方程的公共解,这样处理,学生比较容易接受。
四、理论联系实践,提高学生兴趣
二、实施过程
在实施过程中我们的微技能研究大体经过了以下三个阶段
1、起始阶段
确定课题时我们组全员参加讨论,大家确定了一个大体的研究思路,先做后反思再改进。“先做”开始十分不顺,在专家的指导下我们确定以制作课堂分层练习稿为抓手开始实施我们组微技能研究工作。要制造分层练习稿选题是一个课堂分层练习稿的灵魂,刚开始我组经过讨论一致决定先利用课本,练习册,网络资料等资源寻找找课堂上的分层练习题。
因为这些题目的难度适合我们的学生,所以我积极的保留它。特别是初中高年级的学生在以前的学习中对知识的掌握不够,但是对于比较简单是的基础性题目还是兴趣比较大。在开始的阶段高年级不允许不出现“超纲”的题目。出题标准以学生的基础作为最高准则。
在课堂教学中我们还是会经常楚翔各种问题比如我们蔡老师在上《整式加减》是就遇到了下列案例: 整式加减是在学习了“有理数运算”基础上的提高。在布置做教科书“整式加减”课后的“综合运用”和“拓展探究”题时,我在教室内进行巡视和个别指导,大半节课后,基础好的同学已经做完了所有的题,开始没有事干了;而基础差的同学一节课就在一个题上磨蹭,丝毫没有进展。我看了很着急,问他们是怎么回事,他们说:“不会做”。原来是他们不会分析,时间一分一秒的过去,可他们却完全没有收获。他们每天的作业不是抄别人的就是不做,我也知道他们没办法,因为问题欠得太多了。
经过全组讨论和查阅相关资料我们确定了一下做法:针对学生的实际,把学生分成三个组。其中成绩好的为A组,成绩中等的为B组,成绩较差的为C组,我们老师不告诉同学分组的等级性。在分组时便给学生讲清分组的目的和重要性,以消除学生思想中的消极心理,让他们积极配合我的工作。在教学中我根据各组成绩情况布置相应的课堂分层练习。每天的作业采用优化的弹性作业结构设计:分基本性练习、提高性练习、探索性练习。凡完成本课时所必须完成的作业,视为基本性练习,允许优生不做,中差生人人要完成。考虑到学生好、中、差的实际,将题目作些变化,视为提高性练习,供B组和A组完成。设计一些难度较大的作业,视为探索性作业,便于A组同学完成,让他们在更大的空间展示自己的能力,尝试到学习的喜悦。
2、第二阶段
第二阶段我们的目标是让分层练习稿更加层次分明。我们组认为用优势力量完成可以看得见的,比较容易完成的,更符合我们学生实际的任务。我们刚开始并不知道我们的病因,这要感谢我们专家组的专家们帮我们找出病因。当然我们要认清自己路,专家找的是大方向而我们拿捏的是细节。我们组通过多次课堂实践得出我们组的分层练习稿存在问题,同时我们也要允许问题的存在,但是我们要尽量的解决出现的问题,不能因为问题的出现而气馁。
我们老师在前面不重“分层”只重练习到重“分层”重练习两手都要硬。所以我们通过讨论表决的方法。
在教学中不用死板的遵守我们不怎么喜欢的教条可以,在应用题的讲解课堂上把每道题目进行分层。我们组在讨论的时候从具体做法中不难发现大多数题目的寻找和改编我们用的方法比较简单,老师根据个人的经验先寻找一些题目再到高一个年级的班上找个中等的学生完成它或者从上届考试和练习的题目中寻找出错率很高的题目所以全组老师一致通过它们是探究性练习。在案例中我们不能难发现老师的经验起了很关键的作用。所以在这个阶段中我们虽然解决了层次问题的表面但实质并没有出现很大的变化。在多次老师和老师,老师和学生的交流中(我们多次开展初中数学老师和学生的座谈,并且倡导老师和学生之间的交流)。我们发现学生对书本上的题目兴趣高于陌生的题目。
2、第三阶段
前面我们通过交流的方法发现学生对书本上的题目兴趣高于陌生的题目。那么我们在查阅我们的“我为组内做贡献的”活动档案后经过全组讨论。提出以课本中的例题作为中心发展我们的练习稿。在发展中我们依然保留三个分层去掉学生难理解的分类名称,直接把练习稿分为A、B、C三类并在三类中以此出现以课本中的例题作为中心例题,仿题和变题
(变在不脱离课本的要求下接近中考)
三、反思
1、把数学课堂练习进行分层现了以人为本,兼顾了各个层次学生的学习情况,最大限度的调动了学生的学习积极性,有利于每个学生最大限度的发展。
1.使学生明确分式的约分概念和理论依据,掌握约分方法;
2.通过与分数的约分作比较,学习分式的约分,渗透“类比”的思想方法.
教学重点和难点
重点:分式约分的方法.
难点:分式约分时分式的分子或分母中的因式的符号变化.
教学过程设计
一、导入新课
问:下面的等式中右式是怎样从左式得到的?这种变换的理论根据是什么?
答:(1)式中的左边分式的分子与分母都除以2a2b2,得到右式,这里a≠0,b≠0.(2)式中的左边分式的分子与分母都除以(x+y),得到右式,这里(x+y)≠0.这种变换的根据是分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.
本性质.
问:什么是分数的约分?约分的方法是什么?约分的目的是什么?
答:把一个分数化为与它相等,但是分子、分母都比较小的分数,这种运算叫做约分.对于一个分数进行约分的方法是:把分子、分母都除以它们的公约数(1除外).约分的目的是把一个分数化为既约分数.分式的约分和分数的约分类似,下面讨论分式的约分.
二、新课
我们观察:
(1)中左式变为右式,是把左式中的分子与分母都除以2a2b2得到的,它是分式的分子与分母的公因式.
(2)中左式变为右式,是把左式中的分子与分母都除以它们的公因式(x+y)而得到的.
像(1),(2)中分式的运算就是分式的约分.即把一个分式的分子与分母的公因式约去,叫做分式的约分.
一个分式的分子与分母没有公因式时,这个分式叫做最简分式.
把一个分式进行约分的目的,是使这个分式变为最简分式.
为了把上述分式约分,应该先确定分式的分子与分母的公因式,那么分式的分子与分母的公因式是什么?
答:因为分式的分子与分母都是单项式,取分子、分母中相同因式的最低次幂和分子、分母的系数的最大公约数,把它们的积作为这个分式的分子与分母的公因式.
指出:分子或分母的系数是负数时,一般先把负号移到分式本身的前边.这就同时改变了分式本身与分子或分母的符号,所以分式的值不变.
例2约分:
分析:(1),(2)的分子、分母都是多项式,并且都能分解因式,可以先分解因式,再分别确定分子与分母的公因式.
请同学说出解题思路.
答:分式的分子、分母都是多项式,可以先分别因式分解,约分,把分式化为最简分式,再求值.
当x=45时,
请同学概括分式约分的步骤.
答:
1.如果分式的分子、分母是单项式,约去分子、分母的系数的最大公约数和相同因式的最低次幂.
2.如果分式的分子与分母都是多项式时,可先把分子、分母分解因式,然后约去分子与分母的公因式.
3.当分式的分子或分母的系数是负数时,应先把负号提到分式的前边.
请同学思考一个问题:将分式约分时,约去分式中的分子与分母的公因式,为什么分式的值不变?
答:因为所给的分式都是有意义的,也就是说,分母的值不等于零.而分式的分子与分母的公因式一定是分式的分母的一个因式,根据分式的基本性质,约分后分式的值不变.
三、课堂练习
1.约分:
2.指出下列分式运算中的错误,并把它改正.
四、小结
把一个分式的分子与分母的公因式约去,叫做分式的约分.
分式进行约分的目的是要把这个分式化为最简分式.
如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.
分式约分中注意正确运用乘方的符号法则,如
x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.
五、作业
1.约分:
2.约分:
3.先约分,再求值:
课堂教学设计说明
审视目前的数学课堂教学,低效、无效的现象依然存在,优化数学课堂教学结构,改进教学方法,提高课堂教学的有效性,是我们每一个数学教师苦苦追求的目标,结合我校数学组深入开展的“数学课堂有效性策略研究”课题和自己多年的教学实际,谈谈几点自己的想法.
一、创设情境的有效
俗话说“良好的开始是成功的一半”,因此创设一个良好的情境引入至关重要. 在平时的教学中,可以根据新课的内容决定引入的形式,如果本节课与以前的知识有类似的地方,可以从学生的经验和已有知识出发通过复习旧的知识点引入新课. 例如在学习“二次根式的加减”一节时,我首先让学生先进行整式的加减运算,由于题目简单,大多数学生对整式的加减运算都掌握得很好,所以很容易对新课感兴趣. 如果本节课与实际问题联系比较大,可从学生比较熟悉的生活问题引入. 例如在学习“图形的相似”一节时,说你认识刘翔吗?你知道多少刘翔的事情?从图上看,刘翔身上披着五星红旗,国旗上的五个五角星有什么特点?接着出示鸟巢、长城、轮船、正五边形,这些图形有什么联系?从而导入新课. 这种引入内容生动,富有趣味性,为学生创设熟悉与感兴趣的教学情境,让学生真正成为课堂学习的主体,拥有学习的主动权,学生的学习动力亦在不断地增强,从而大大提高学生学习的有效性.
二、自主合作的有效
在全体数学老师的共同努力下,我校数学组的“数学课堂有效性策略研究”课题研究中,在自主合作环节,可具体分为学生自学、尝试练习、小组合作、成果展示四个阶段.
1. 为了让学生自学的效率更高,教师给学生出示自学提纲及富有启发性的问题,让学生有针对性地学习,在学生自学的同时,教师来回巡视,随时观察学生的自学状况,观察学生的面部表情. 课堂上,教师要随时随地关注学生的反应,学生的一个眼神、一个动作、皱一下眉头、噘一下嘴,我们都应该关注,及时发现情况解决问题,使自学更有效.
2. 在尝试练习阶段,学生根据自己自学的情况来完成老师准备的尝试练习题,让学生自主地求得新知识. 为了让这一环节更加有效,这就更需要老师去发现学生存在的问题,特别是老师对学生的学习状况比较了解的情况下,重点关注数学思维不活跃的同学,如果有可能的话,老师可以单独对出现问题的学生进行讲解,使学习更有针对性. 因学生的基础不同,练习的时间也不同,如果有的学生已经做完了,可以出示1~2个稍微有点难度的思考题,让优秀生有事可干,解决“吃不饱”的问题,避免细小时间的浪费. 在这一环节教师要注意对时间的把握,大多数学生能完成基础部分的题目,就可以进行下一个环节.
3. 分组是合作学习的基础,为了充分发挥学生个体及学习小组的优势,在组建小组时尽量使成员在性格、才能倾向、个性特征、学习成绩等诸方面保持合理的差异. 小组合作学习的目的是要让人人参与学习过程, 人人尝试成功的喜悦,在合作学习的过程中,老师要参与到小组的合作过程中,让每个成员都发言,特别是学困生发言的积极性要保护,如果处理不好优生与学困生的关系,非但达不到目的,相反会加剧两极分化,优生更优,差生更差. 活动中,每人要各司其职, 既是学习的参与者,又是活动的组织者,使每名学生都平等合作,快乐学习,在有限的时间内,达到最好的学习效率.
4. 在成果展示阶段,针对一个题每一名学生都可以发表自己的看法,有的学生说解题过程,有的学生说解题的关键,有的学生说本题的易错点,有的学生说本题的其他解法,有的学生说自己做这题时的感受,学生的分工比较明确. 学生的思路明确,语言表达清晰,真正做到了一题多解,对这一类题有了很深刻的认识. 学生自学的知识很零碎,在尝试练习及小组合作成果展示中出现的问题也不连贯,这时教师要及时点拨,可以让学生把刚学的知识归纳到数学体系中,用数学思想来解决问题.
中图分类号:G632 文献标识码:A 文章编号:1002—7661(2012)19—0065—01
在教学实践中,学生往往正向思维较为活跃,而逆向思维相对薄弱,任其发展,久之久之会形成思维定势,不利于学生智力的开发、能力的培养和素质的提高。一般的学生从正向思维转向逆向思维是存在着一定的困难的,而有能力的学生在完成这种转变时是迅速且自如的,这就是能力不同的学生在思维的运动性方面的素质差异。这种思维的运动性,是创造性思维的一个重要组成部分。所以注重对学生的逆向思维训练,是培养学生创造性思维能力的一个重要方面。
一、关注“互逆”、“对应”的知识
数学知识有许多“相反、互逆”的概念、公式、法则和定理,若能恰当地引导学生对它们进行双向思考,关注这些数学知识,无疑会提高学生的逆向思维能力。
1、关注“互逆”关系
对数学中的互逆关系,在教学过程中要下工夫把它们讲清楚,使学生知道互逆关系的两个实体是相互依赖,互为存在的。并引导学生对互逆关系进行“由此及彼”的思考、研究和比较。例如,在学习“相反数”概念时,像+6和—6这两个数,只有符号不同,一正一负,我们说+6的相反数是—6,反之,—6的相反数是什么呢?(+6)。就是说+6和—6“互为相反数”,它们是成对出现的。这样,在对知识和技能产生正迁移的同时,也为灵活运用知识打下了坚实的基础。
2、关注“对应”关系
数学中对应的思想方法为训练逆向思维提供了有利条件。为了训练学生的逆向思维,在教学中,可有意识地编排顺、逆双向配对的练习题供学生训练。如:
4的相反数是____; ____的相反数是4
—5的倒数是____; ____的倒数是—5
以上练习题,由于顺、逆双向对比,学生通过练习,可以逐步养成逆向思维的习惯,提高逆向思维的能力。在逆向思维过程中有诸多的抑制和干扰因素,不利于学生逆向思维的正常进行,因此在教学过程中要注意强化训练。
二、注意知识的逆向运用
关注了可以逆向运用的知识,就要注意在教学中对这些可逆知识加以运用,以提高学生逆向思维的能力。
1、注意公式及法则的逆运用
在公式及法则中,不乏具有可逆的公式和法则的存在。在教学中要抓住机遇,强化公式及法则的逆运用,训练学生逆向思维。如:讲授因式分解时x2(a+b)x+ab=(x—a)(x—b);与整式乘法(x—a)(x—b)= x2(a+b)x+ab进行比较。由于教学中有意识地强化了它们互逆运用训练,学生将来用因式分解法解一元二次方程时,便水到渠成了。
2、注意定理及命题的逆运用
在已学习某些定理及典型命题以后,引导学生思考它们的逆命题,并判断其真假,再进行逆向灵活运用,是培养学生逆向思维的又一途径。如:如果同位角相等,那么两直线平行;如果两直线平行,那么同位角相等。
三、训练“反面求解”的方法
1、训练反面求解方法
在解题过程中经常遇到顺向求解较为困难的习题,若采用“正难则反”、“反面求解”方法,往往会达到事到半功倍之效。
例,a为何值时,x=1不是方程2x—a=3x+5的根?
析:本题正面思考有相当难度,如改用反面求解则显得简单。假设x=1是原方程的根,则a=—6。显然,当a≠—6时,x=1不是原方程的根。
2、训练反面论证方法
虽初中学生接触反证法不多,但对于培养他们用反证法去解决问题仍然很重要。
例, 证明:一个三角形至少有一个角大于或等于60°。
析:如果用正向思维,对每一个三角形都去进行证明,这是不可能做到的,但采用逆向思维,我们可以把它等同于其反问题的不成立(反问:一个三角形的三个角可以都小于60°) 。然后,我们只要证明这个反问题是错的,那么原题即可得证:若这个反问题成立,则至少有一个三角形的三个角的和小于3×60°=180°,这与三角形的三个角的和等于180°的定理是违背的,因此,反问题不成立,原题得证!
3、训练逆向推理方法
逆向推理法(逆推法)就是从结论出发,逐步逆推,从而找出符合条件的结论,它是逆向思维的表现之一。
例, 将抛物线y=ax2+bx+c向左平移2个单位,再向下平移3个单位,得一新抛物线y=2x2+8x+3。试确定a、b、c之值。
析:这道题目按原图象变化进行思考,运算复杂,且有难度。若从结论出发,进行逆向推理,则简单易解。现在如下推理,依题意将抛物线y=2x2+8x+3 =2(x+2)2—5 (结论)向右平移2个单位,再向上平移3个单位,即得原抛物线(已知),然后利用比较系数确定原解析式中的a、b、c。
四、营造逆向思维的氛围
训练逆向思维不是一朝一夕的事情,在教学中,要注意多选编些逆向思维的习题供学生练习,以营造逆向思维的氛围,达到训练逆向思维的目的。
1、鼓励学生倒过来想问题,以构造逆向思维情境
对一些数学问题,要注意引导学生将它们倒过来想,放在新的数学情境中去认识、去思考,使学生对旧问题产生新情趣,对数学产生浓厚的学习兴趣。例如,给出一个方程(组),要求学生编拟不同类型的应用题。这样的数学活动,一则可激发学生学习的积极性,使学生觉得数学大有学头;二则可培养学生思维的深刻性,使学生认识到思得愈深,造得愈绝,解得愈妙;三则充分营造了逆向思维的氛围,使学生在愉快的情境中进行逆向思维的活动。