整式的运算练习题范文

时间:2023-03-03 15:57:26

引言:寻求写作上的突破?我们特意为您精选了4篇整式的运算练习题范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

整式的运算练习题

篇1

结合笔者多年的教学经验,对整式加减去括号的基本原则进行了简单概括,具体可以分为三点。第一,在整式括号之外的因数若是正数,那么在去除括号之后,括号内各项的符号均不发生变化,与原来保持一致。比如,针对13(9y-3)+2(y-1)这个数字,括号外的13和2都是正数,那么在去除括号之后,9y保持原先的符号变为117y,-3保持原先的符号变为-39。第二,在整式括号之外的因数若是负数,那么在去除括号之后,括号内各项的符号均与之前相反,正变负、负变正。比如,针对-5(x-5)-6(x-3)这个式子,由于括号之外的-5和-6都是负数,因此去除括号之后,括号里的x项就变成负的,常数项则变成正的。第三,整式加减去括号的实质就是将括号外的因数和括号内的各项分别相乘,之后逐项累积即可。比如,针对5(2x-2)-3(-3x+5)这个式子,对整式分别进行逐项相乘,可以分别得到10x、-10、9x及-15这四项,再将其累积起来,就可以得到10x-10+9x-15=19x-25。

二、整式加减去括号的教学策略

(一)以视频法直观演示去括号的步骤

在实际教学过程中,由于数学自身具备的较强理论性,使得学生在理解过程中容易出现偏差,这就需要教师在教学中通过更直观的手段对知识点进行展示,让学生能够清楚地认识到其中的奥妙。视频法对于整式加减去括号的教学具有积极意义,其可以对去括号的步骤直观演示,让学生深入了解。在教学中,教师应该先将教学资源制作成视频,尤其是去括号步骤需要制成视频,在教学课堂中播放。比如,针对2(5x+3b)-3(2x-2b)进行去括号时,若是选择逐项计算,就可以在视频中动态显示2和5x相乘得到10x,2和3b相乘得到6b,-3和2x相乘得到-6x,-3和-2b相乘得到6b。通过这样的动态演示,可以让学生直观清晰地认识到去括号的基本流程和实际意义,对此有深入掌握。

(二)一题多解全面展示整式去括号的精髓

对于一个整式加减题目,去括号的方式可以是不同的,并非局限在一种方式上,因此教师在实际教学过程中可以对一道题目采用不同的方式进行求解,以便学生能够从多个不同的角度认识整式加减去括号。比如,针对-2(5a-2b)-4(2a-2b)这样一个题目,教师首先可以采用逐项相乘法,将每个整式括号的项直接拿出来和括号外的因数相乘,直接去除括号,这样原式=-2×5a-2×(2b)-4×2a-4×(-2b)=-10a+4b-8a+8b=12b-18a。另外,还可以将括号外的因数直接拿到括号内和各项相乘,然后再去掉括号。这样原式就可以变成:

[-2×5a-2×(-2b)]+[-4×2a-4×(-2b)]

=[-10a+4b]+[-8a+8b]=-10a+4b-8a+8b=12b-18a

由此可见,将括号内的项拿出去和因数相乘,将括号外的因数拿进来和括号内的各项相乘,其结果是一样的。因此,通过这两种不同的方式进行解题,可以让学生认识到整式加减去括号的实质,从而提高其解题的有效性。

(三)设置一定的练习题巩固学生掌握知识

篇2

(1)知识结构

(2)重难点分析

①本节的重点Ⅰ.最简二次根式概念

Ⅱ.利用二次根式的性质把二次根式化简为最简二次根式.

重点分析本章的主要内容是二次根式的性质和运算,但自始至终围绕着二次根式的化简和运算.二次根式化简的最终目标就是最简二次根式;而二次根式的运算则是合并同类二次根式,怎样判定同类二次根式,是在化简为最简二次根式的基础上进行的.因此本节以二次根式的概念和二次根式的性质为基础,内容虽然简单,在本章中却起着穿针引线的作用,教师在教学中应给于极度重视,不可因为内容简单而采取弱化处理;同时初二学生代数成绩的分化一般是由本节开始的,分化的根本原因就是对最简二次根式概念理解不够深刻,遇到相关问题不知怎样操作,具体操作到哪一步.

②本节的难点是化简二次根式的方法与技巧.

难点分析化简二次根式,实际上是二次根式性质的综合运用.化简二次根式的过程,一般按以下步骤:把根号下的带分数或绝对值大于1的小数化成假分数,把绝对值小于1的小数化成分数;被开方数是多项式的要因式分解;使被开放数不含分母;将被开方数中能开的尽方的因数或因式用它的算术平方根代替后移到根号外面;化去分母中的根号;约分.所以对初学者来说,这一过程容易出现符号和计算出错的问题.熟练掌握化简二次根式的方法与技巧,能够进一步开拓学生的解题思路,提高学生的解题能力.

③重难点的解决办法是对于最简二次根式这一概念,并不要求学生能否背出定义,关键是遇到实际式子能够加以判断.因此建议在教学过程中对概念本身采取弱化处理,让学生在反复练习中熟悉这个概念;同时教学中应充分对最简二次根式概念理解后应用具体的实例归纳总结出把一个二次根式化为最简二次根式的方法,在观察对比中引导学生总结具体解决问题的方法技巧.

另外,化简运算在本节既是重点也是难点,学生在简洁性和准确性上都容易出现问题,因此建议在教学过程中多要求学生观察二次根式的特点――根据其特点分析运用哪条性质、哪种方法来解答,培养学生的分析能力和观察能力――多要求学生注意每步运算的根据,培养学生的严谨习惯.

2.教法建议

素质教育和新的教改精神的根本是增强学生学习的自主性和学生的参与意识,使每一个学生想学、爱学、会学。因此教师设计教学时要充分考虑到学生心理特点和思维特点,充分发挥情感因素,使学生完全参与到整个教学中来。

⑴在复习引入时要注意每个学生的反映,对预备知识掌握比较好的学生要用适当的方式给于表扬,掌握差一些的学生要给予鼓励和适当的指导,使每一个学生愉快的进入下一个环节。

⑵学生自主学习时段,教师要注意学生的反馈情况,根据学生的反馈情况和学生的层次采取适当的方式对需要帮助的学生给予帮助,中上等的学生可以启发,中等的学生可以与他探讨,偏后的学生可以帮他分析.

一.教学目标

1.了解最简二次根式的意义,并能作出准确判断.

2.能熟练地把二次根式化为最简二次根式.

3.了解把二次根式化为最简二次根式在实际问题中的应用.

4.进一步培养学生运用二次根式的性质进行二次根式化简的能力,提高运算能力.

5.通过多种方法化简二次根式,渗透事物间相互联系的辩证观点.

6.通过本节的学习,渗透转化的数学思想.

二.重点难点

1.教学重点会把二次根式化简为最简二次根式

2.教学难点准确运用化二次根式为最简二次根式的方法

三.教学方法

程序式教学

四.课时安排

2课时

五.教学过程

1.复习引入

教师准备本节内容需要的二次根式的性质和与性质相关例题、练习题以及引入材料.

预备资料

⑴.二次根式的性质

⑵.二次根式性质例题

⑶.二次根式性质练习题

引入材料

看下面的问题:

已知:=1.732,如何求出的近似值?

解法1:

解法2:

比较两种解法,解法1很繁,解法2较简便,比例说明,将二次根式化简,有时会带来方便.

2.概念讲解与巩固

学生阅读教师预备的材料,理解后自主完成教师准备的正选练习题,每完成一套与教师交流一次,在教师的指示下继续进行.教师要及时了解学生对最简二次根式概念的反馈情况,如果掌握比较理想,则要求进入下一步操作,否则应与学生进行适当沟通,如需要可从备选练习题选择巩固.

概念讲解材料

满足下列条件的二次根式,叫做最简二次根式:

(1)被开方数的因数是整数,因式是整式;

(2)被开方数中不含能开得尽方的因数或因式.

如:都不是最简二次根式,因为被开方数的因数(或系数)为分数或因式为分式,不符合条件(1),条件(1)实际上就是要求被开方数的分母中不带根号.

又如也不是最简二次根式,因为被开方数中含有能开得尽方的因数或因式,不满足条件(2).注意条件(2)是对被开方数分解成质因数或分解成因式后而言的,如.

判断一个二次根式是不是最简二次根式的方法,就是逐个检查定义中的两个条件是否同时满足,同时满足两个条件的就是,否则就不是.

概念理解学习材料1

例1下列二次根式中哪些是最简二次根式?哪些不是?为什么?

分析:判断一个二次根式是不是最简二次根式的方法,就是逐个检查定义中的两个条件是否同时满足,同时满足两个条件的就是,否则就不是.

解:最简二次根式有,因为

被开方数中含能开得尽方的因数9,所以它不是最简二次根式.

说明:判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察。

概念理解巩固材料1

正选练习题1

判断下列各式是否是最简二次根式?

备选选练习题1

判断下列各式是否是最简二次根式?

概念理解学习材料2

例2判断下列各式是否是最简二次根式?

分析:(1)显然满足最简二次根式的两个条件.

(2)或

解:最简二次根式只有,因为

说明:最简二次根式应该分母里没根式,根式里没分母(或小数).

概念理解巩固材料2

正选练习题2

判断下列各式是否是最简二次根式?

备选选练习题2

判断下列各式是否是最简二次根式?

概念理解

学习材料3

例3判断下列各式是否是最简二次根式?

分析:最简二次根式应该分母里没根式,根式里没分母(或小数)来进行判断发现和是最简二次根式,而不是最简二次根式,因为

在根据定义知也不是最简二次根式,因为

解:最简二次根式有和,因为

.

概念理解巩固材料3

正选练习题3

判断下列各式是否是最简二次根式?

备选选练习题3

判断下列各式是否是最简二次根式?

题目可根据学生实际情况选择2-3道.

概念理解学习材料4

例4判断下列各式是否是最简二次根式?

分析:被开方数是多项式的要先分解因式再进行观察判断.

(1)不能分解因式,显然满足最简二次根式的两个条件.

(2)

解:最简二次根式只有,因为

.

说明:被开方数比较复杂时,应先进行因式分解再观察.

概念理解巩固材料4

正选练习题4

判断下列各式是否是最简二次根式?

备选选练习题4

判断下列各式是否是最简二次根式?

题目可根据学生实际情况选择2-3道.

3.化简二次根式为最简二次根式方法学习与巩固

学生阅读教师预备的材料,理解后自主完成教师准备的正选练习题,每完成一套与教师交流一次,在教师的指示下继续进行.教师要及时了解学生对二次根式化简的反馈情况,如果掌握比较理想,则要求进入下一步操作,否则应与学生进行适当沟通,如需要可从备选练习题选择巩固.

化简方法学习材料1

例1把下列二次根式化为最简二次根式

分析:本例题中的2道题都是基础题,只要将被开方数中能开的尽方的因数或因式用它的算术平方根代替后移到根号外面即可.

解:

化简方法巩固材料1

正选练习题1

化简

备选练习题1

化简

题目可由教师根据学生情况准备.

化简方法学习材料2

例2把下列二次根式化为最简二次根式

分析:本例题中的2道题被开方数都是多项式,应先进行因式分解.

解:

说明:被开方数中能开的尽方的因数或因式的算术平方根移到根号外面后要注意符号问题.

在化简二次根式时,要防止出现如下的错误:

等等.

化简二次根式的步骤是:

(1)把被开方数(或式)化成积的形式,即分解因式.

(2)化去根号内的分母,即分母有理化.

(3)将根号内能开得尽方的因数(式)开出来.

化简方法巩固材料2

正选练习题2

化简

备选练习题2

化简

题目可由教师根据学生情况准备.

化简方法学习材料3

例3把下列二次根式化为最简二次根式

分析:被开方式比较复杂时,要先对被开方式进行处理。

解:

说明:运算中要注意运算的准确性和合理性.

化简方法巩固材料3

正选练习题3

化简

备选练习题3

化简

题目可由教师根据学生情况准备.

4.小结

篇3

⒈同类二次根式的概念

⒉二次根式加减运算的方法

本节的主要内容是讲解二次根式的加减法,而二次根式的加减法的关键是把二次根式化为最简二次根式,再把同类二次根式合并.二次根式的加减法运算实质是合并同类二次根式,前提是要充分了解同类二次根式的概念,因此同类二次根式的概念是本节的一个重点.

本节的难点二次根式的加减法运算

二次根式的加减法首先是化简,在化简之后,就是类似整式加减的运算了.整式加减无非是去括号与合并同类项,二次根式的加减在化简之后也是如此,同类二次根式类似同类项.但是学生初次接触二次根式的加减法,在运算过程中容易出现各种各样的错误,因此熟练掌握二次根式的加减法运算是本节的难点.

本节的主要内容是讲解二次根式的加减法,而二次根式的加减法的关键是把二次根式化为最简二次根式,再把同类二次根式合并.

(1)在知识引入的讲解中,有两种不同的处理方法:一是按照教材中的方法,先给出几个二次根式,把他们都化成最简二次根式,在进行比较或者加减运算,从而引出二次根式的加减法和同类二次根式;二是先复习同类项的概念或进行一两道简单的正式加减的题目,通过类比引出同类二次根式和二次根式的加减法.两种处理方法各有优劣,教师在教学过程中可根据学生的实际情况进行选择,当然也可以把这两种方法综合应用,但有些过繁.

(2)在教材例1的教学中,教师可以根据学生情况进行细分处理,例如分成几个小问题:①把被开方数都是整数的放在一个小题中,②把被开方数都是分数的放在一个小题中,③把被开方数带有简单字母的放在一个小题中,④把字母次数略高于2的放在一个小题中,……使问题的解决有一个由浅入深的渐进过程,便于学生参与其中,也容易使学生获得成就感.

(3)在组织学生进行二次根式的加减法教学中,同样将例题细分成几个层次进行教学,例如:①不需要化简能直接进行相加减的,②需要化简但被开方数都是简单整数的,③被开方数都是有理数但既有整数又有分数的,④被开方数含有字母的,等等.

(4)在二次根式加减法的组织教学中,虽然教材已经不要求二次根式加减法的法则,但可以组织学生自己总结法则,既有利于学生的参与,又能提高学生的观察、分析和归纳能力.

(5)在二次根式加减法的整个教学环节中,教师都要及时纠正学生的错误认识,比如:①不是最简二次根式就不是同类二次根式,②该化简的没有化简,或化简的不正确,③该合并的没有合并,不该合并的给合并了,或者合并错了,等等类似情况.教师在教学中可以出一些容易出错的题目让学生进行辨别,以利于知识的巩固.

教学设计示例1

一、素质教育目标

(一)知识教学点

1.使学生了解最简二次根式的概念和同类二次根式的概念.

2.能判断二次根式中的同类二次根式.

3.会用同类二次根式进行二次根式的加减.

(二)能力训练点

通过本节的学习,培养学生的思维能力并提高学生的运算能力.

(三)德育渗透点

从简单的同类二次根式的合并,层层深入,从解题的过程中,让学生体会转化的思维,渗透辩证唯物主义思想.

(四)美育渗透点

通过二次根式的加减,渗透二次根式化简合并后的形式简单美.

二、学法引导

1.教师教法引导法、比较法、剖析法,在比较和剖析中,不断纠正错误,从而树立牢固的计算方法.

2.学生学法通过不断的练习,从中体会、比较、二次根式加减法中,正确的方法使用,并注重小结出二次根式加减法的法则.

三、重点·难点·疑点及解决办法

1.教学重点二次根式的加减法运算.

2.教学难点二次根式的化简.

3.疑点及解决办法二次根式的加减法的关键在于二次根式的化简,在适当复次根的化简后进行一步引入几个整式加减法的,以引起学生的求知欲与兴趣,从而最后引入同类二次根式的加减法,可进行阶梯式教学,由浅到深、由简单到复杂的教学方法,以利于学生的理解、掌握和运用,通过具体例题的计算,可由教师引导,由学生总结出计算的步骤和注意的问题,还可以通过反例,让学生去伪存真,这种比较法的教学可使学生对概念的理解、法则的运用更加准确和熟练,并能提高学生的学习兴趣,以达到更好的学习效果.

四、课时安排

2课时

五、教具学具准备

投影片

六、师生互动活动设计

1.复习最简二根式整式及的加减运算,引入二次根式的加减运算,尽量让学生回答问题.

2.教师通过例题的示范让学生了解什么是二次根式的加减法,并引入同类的二次根式的定义.

3.再通过较复杂的二次根式的加减法计算,引导学生小结归纳出二次根式的加减法的法则.

4.通过学生的反复训练,发现问题及时纠正,并引导学生从解题过程中体会理解二次根式加减法的实质及解决的方法.

七、教学步骤

(-)明确目标

学次根式化简的目的是为了能将一些最终能化为同类二次根式项相合并,从而达到化繁为简的目的,本节课就是研究二次根式的加减法.

(二)整体感知

同类二次根式的概念应分二层含义去理解(1)化简后(2)被开方数还相同.通过正确理解二次根式加减法的法则来准确地实施二次根式加减法的运算,应特别注意合并同类二次根式时仅将它们的系数相加减,根式一定要保持不变,并可对比整式的加减法则以增加对合并同类二次根式的理解,增强综合运算的能力.

第一课时

(-)教学过程

【复习引入】

什么样的二次根式叫做最简二次根式?(由学生回答)

与的形式与实质是什么?

可以化简为.

继续提问:,可以化简吗?

,可以化简吗?

这就是本节课研究的内容——二次根式的加减法.

【讲解新课】

1.复习整式的加减运算

计算:

(1);

(2);

(3).

小结:整式的加减法,实质上就是去括号和合并同类项的运算.

2.例题

(1)计算.

解:.

(2)计算.

解:.

小结:

(1)如果几个二次根式的被开方数相同,那么可以直接根据分配律进行加减运算.

(2)如果所给的二次根式不是最简二次根式,应该先化简,再进行加减运算.

定义:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式.

3.例题

例1下列各式中,哪些是同类二次根式?,,,,,,.

解:略.

例2计算.

解:

.

例3计算.

解:

.

二次根式加减法的法则:

二次根式相加减,先把各个二次根式化成最简二次根式,再把同类二次根式进行合并,合并方法为系数相加减,根式不变.

(可对比整式的加减法则)

例4计算:

(1).

解:

.

(2).

解:

.

(二)随堂练习

计算:

(1);

(2);

(3).

练习:教材P192中1、2(1)、(2)、(3)、(4)、(5);教材P193中1、2.

(三)总结、扩展

同类二次根式的定义.

二次根式的加减法与整式的加减法进行比较,强调注意的问题.

(四)布置作业

教材P193中(1)、(2)、(3)、(4)、(5)、(6);教材P194中4(1)、(2)、(3)、(4).

(五)板书设计

标题

1.复习题5.例题(1)、(2)、

篇4

教学是一个双向的过程,教师向学生传递信息,学生也要对课堂知识有所反馈,这样才能形成一个有效的课堂学习过程。所以,教师在数学课堂上,要适当地进行课堂提问、数字游戏等活动来活跃课堂气氛,检验学生对知识的掌握水平。

例如,在学习整式的乘法规律时,学生很容易搞混an?am和(an)m的运算规则,教师可以在教授学生运算规律之后,在多媒体课件上显示出这类的题目,让学生进行抢答的活动。当教师显示出一题,学生就可以快速运算后举手说出答案,算得又快又准的学生可以得到小奖品。如题目是33×32,正确的运算方式是等于33+2,也就是3的5次方,而错误的算法得出的答案是3的6次方。通过抢答环节,可以充分调动学生的学习积极性,让学生在短暂的时间内集中思考、锻炼思维。更重要的是,经过抢答时的做题,巩固了学生对整式乘法运算的知识,加深了学生记忆,以后再遇到这种题型就会自然地想起解题的方法。

二、增强学生学习的自信心

由于初中数学存在一定的难度,要求学生要有良好的解题思维和逻辑能力,不少学生在面对难题的时候就会产生烦躁、逃避的消极学习态度。面对这种情况,教师要加以引导,调节数学题的难度,确保学生掌握了基础知识,再层层递进地增加题目的难度。例如,在做三角函数应用题之前,教师要帮助学生再巩固一遍三角函数的运算方法,并要求学生自己写出表格,填上数值。加深记忆之后再做题,就会减少学生对难题的畏惧感,增加他们做题的自信心。

三、锻炼学习的合作思维

在数学课堂上,最好的提高效率方法就是对学生进行分组学习。教师可以让学生自由分组,最好按座位来形成学习小组以便交流和讨论。形成学习小组后,教师在课堂上可以把一些问题都交给小组讨论完成。

例如,在学习了一元二次方程的解题方法之后,教师可以出几道练习题,如x2-9x-136=0、x2+28x+171=0给学生训练,要求以小组为单位解答题目,如何分工合作由小组自己讨论决定,每个小组的组长要把解答过程统一写在组长的作业本上。解答完毕并在本子上做好的小组就可以举手告诉教师以便教师进行成果的验收。对于解答得又快又好的小组教师可以进行适当的奖励,而对于遇到解题问题的小组,教师就要加以指导,检查学生的学习方法和纠正思维方式。在这个学习过程中,学习能力较强的学生可以带动小组成员提高解题的自信心、培养良好的数学思维,达到共同进步的

友情链接