概率统计教学范文

时间:2023-03-06 15:58:42

引言:寻求写作上的突破?我们特意为您精选了4篇概率统计教学范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

概率统计教学

篇1

方差是苏科版初中数学九年级(上册)第三章第四节的内容,此前学生已经学习过平均数、中位数和众数,这三个数据是刻画数据集中趋势的主要统计量。数据的集中趋势仅仅是数据分布的一个特征,反映的是一组数据向其中心值聚集的程度。本节课就是要研究数据之间的差异,考查数据的波动情况,即数据的离散程度,这是对数据分析的另一重要指标。这是对前面八年级所学有关统计内容的延续。

知识与技能:掌握极差、方差的概念,会计算极差、方差,理解它们的统计意义;了解极差、方差是刻画数据离散程度的统计量,并在具体情境中加以应用。

过程与方法:通过一系列富有启发性、层层深入的问题,经历对数据的分析,能用样本方差估计总体方差。

情感态度与价值观:培养学生认真、耐心、细致的学习态度和学习习惯;培养学生探求知识的勇气,体会教学活动的探索性和创造性。

案例解析

教学设计 10月中旬,我校将要举行校运动会了,同学们都踊跃报名。但由于每个项目都有人数限制。为了我们班级能取得更好的成绩,现在要从报名参加100米跑步比赛的两位同学中选拔一人参加比赛。老师特意要来了他们两个人平时的训练成绩,请看下表(单位:秒)。你会选谁?(设计意图:利用学生熟悉的情境体现数学来源于生活,又服务于生活。)

探究活动 课堂上,有学生说:分别计算两个人的平均成绩,谁的平均成绩好,就选谁。教师肯定地说:好主意!分小组计算两位选手的百米赛跑平均成绩,通过计算发现两位选手的百米赛跑平均成绩均为10.9秒。平均成绩相同,两位选手的水平就一模一样吗?观察这些数据,我们还可以从哪些方面来考量这两位选手的成绩,比如成绩的稳定性、最好成绩等。最后,学生小组讨论,得出两组数据特点:小爽的成绩波动幅度大,小兵的波动幅度小。

教师问:波动幅度大小是怎么看的?有学生回答:小爽的最好成绩是10.7秒,最慢的成绩是11.1秒,相差0.4秒。小兵的最好成绩是10.8秒,最慢成绩是11.1秒,相差0.3秒。

教师总结:我们把一组数据的最大值和最小值的差叫做极差。极差反映了一组数据的变化范围,在一定程度上描述了这组数据的离散程度。(板书)在有些情况下,我们只需要知道极差就够了,如天气预报只报最高气温和最低气温,因为对于一般人来说,只需要知道这两个极端值,气温的变化范围就可以了。但是极差只是利用了一组数据两端的信息,不能反映出中间数据的分散情况,那么怎样才能衡量整个一组数据的波动大小呢?老师提供一种方案供大家参考:将两位选手的成以点的形状标注在平面直角坐标系里,然后用折线连接,确定平均数为中心线,从而观察波动情况。散点(如下图)可以比较明显的看到有多少数据在波动,数据偏离中心的幅度有多少。但这种绘制图像的方法仍然是定性的综合印象。怎样才能定量的计算整个数据的波动大小呢?(设计意图:为了直观地看出两组数据的离散程度(波动情况),绘制了两个“散点图”使学生对数据偏离平均数的情况有一个直观的认识,为引入“方差”的概念做好铺垫。)

学生:计算偏差,每个数据与平均数的差。

老师:如何累计偏差?

学生1:计算偏差的和。(学生先想到求代数和,但很快能自己发现问题)

学生2:不能求和,正负偏差会相互抵消的。小爽的偏差和就为0,而小兵为-0.1,和刚才的观察结果不符合。

老师:那如何使正负偏差不相互抵消呢?

学生:小组讨论后得出两种方法:①给每个偏差加上绝对值后再相加;②给每个偏差平方后再相加。

老师:我们以一组数据(下图)为例来分析一下该选用哪种方案更好些。

(设计意图:由学生提出方案后,学生会积极运算,想快速得出结果,验证自己的方案)

学生分组计算,第一种方案各数据与平均数的偏差的绝对值的和均为20,但按照第二种方案求各组数据的偏差平方和,甲组为164,乙组为104.所以我们应该选用第二种方案,给每个偏差平方后再相加。在很多问题里,含有绝对值的式子不便于运算,而且在衡量一组数据的离散程度(波动大小)的“功能”上,将各偏差平方更强些。

老师:数据的偏差的平方和与什么还有关系?请分别计算下列两组数据偏差的平方和。

让学生自己动手计算,求平均数时激发学生用简便方法计算,找一位学生到黑板上板演。

老师:观察与计算为什么有矛盾?

学生:因为两组数据的个数不一样。

老师:那么在数据个数不一样的情况下,如何合理计算偏差呢?

学生:计算偏差平方的平均数。

老师:请同学们分别计算上述两组数据偏差平方的平均数。

学生:计算两组数据偏差平方的平均数。

老师:现在观察与计算还矛盾吗?我们把一组数据偏差平方的平均数叫做这组数据的“方差”。(板书方差定义)

教师总结:一组数据的方差越大,说明这组数据的离散程度越大,也就是数据的波动越大,越不稳定。方差越小,说明这组数据的离散程度越小,数据的波动越小,越稳定。请同学们总结计算方差的步骤。

学生小组讨论后给出下列步骤:①计算数据的平均数;②计算偏差;③计算偏差的平方和;④除以数据的个数。

老师:学完方差的概念后,请同学们帮助老师一起来选拔一位同学参加校运动会的百米赛跑。

学生:通过计算,小爽的方差为0.018,小兵的为0.007。小兵的方差小,成绩稳定,选小兵。

(设计意图:使学生深刻体会到数学来源于生活。又反过来服务于生活,不仅使学生对学习数学产生浓厚兴趣,而且培养了学生应用数学的意识。)

课堂小结 本节课你学到了什么?在利用本课知识时,你想提醒同学们注意哪些方面?你还有什么收获?(设计意图:通过学生的总结,不仅可以进一步巩固所学知识,还可以培养学生以积极的情感态度,探索问题,进而体会数学应用的科学价值。)

篇2

针对以往的数学教程的不完善教育部实施了教学改革,其中对课程标准最明显的变动是增加了"概率与数理统计"这一内容,这在课程领域是一个突破.概率与数理统计是实际应用性很强的一门数学课程,它在经济管理、金融投资、保险精算、企业管理、投入生产分析、经济预测等众多经济领域都有广泛的应用.概率与数理统计是高等院校财经专业的公共基础课,它既有理论又有实践,即讲方法又讲动手能力.在初中阶段概率与数理统计作为义务教育阶段数学课程的四个学习领域之一.从第一学段安排有关内容主要因为现代社会需求每一个合格的公民必须具备一定的收集数据、描述数据、分析数据的能力.这样能要从小培养随机现象是这部分内容的一个重要研究对象.从随机现象中寻找规律,这对学生来说是一个全新的观念.如果缺乏对随机现象的丰富体验,学生往往较难建立这一观念.因此,应该从小就把随机的思想渗透到数学课程中去,这样不仅给以后的数学学习带来方便,而且能使学生所学的数学更加贴近现实,避免了理论脱离实际现象的产生.

三 新课标中的统计与概率内容

要使学生形成统计观念,最有效的方法是让他们真正投入到统计的全过程中:发展并解决问题,运用适当的方法收集和整理数据,运用合适的统计图表、统计量等来展示数据,分析数据作出决策,对自己的结果进行交流、评价与改进等。同样要使学生对随机现象有初步的理解,必须在实验的过程中,理解概率的意义,体会概率与频率的关系。只有通过大量的实验,才能丰富学生对于概率意义的理解,形成随机观念。

⒈第一学段通过具体操作活动,使学生对数据处理的过程有所体验,在活动中学习一些简单的收集、整理和描述数据的知识和方法(如统计表、象形统计图、平均数),并能根据数据回答一些简单的问题(也就是简单的统计推断)。本学段的学生更多地关注事物的新奇性和趣味性,他们的数学学习是否有效与自身已有的生活经验和知识背景密切相关,他们一般只能从感性的程度理解统计与概率的知识。因此,这一学段的学习侧重于初步的感受与体会,力求通过具体的操作活动和现实生活中的例子,让学生充分体验学习这部分内容的必要性和重要性。

⒉第二学段通过日常生活和周围的环境中熟悉的素材,使学生经历简单的数据处理过程。在此过程中进一步学习收集整理和描述数据的知识和方法(统计图表、平均数、众数、中位数等),根据数据作出简单的决策和预测,并能对某些简单问题设计统计活动、检验某些判断,进一步体会事件发生可能性的含义。

⒊第三学段通过自然、社会和科学技术领域中的现实问题,使学生主动地从事统计的过程,进一步体验统计是进行决策的有利手段,并初步接触抽样、随机抽样等内容,进一步学习收集、整理和描述数据的方法(如极差、方差、频数分布),体会概率的意义,能计算简单事件发生的概率。对于这学段统计内容学习要注重理解和在实际问题中的应用,即能够在新的问题情境中,特别是在具有现实背景的问题情境中,准确地解决问题。

⒋本学段统计学习的重要内容是抽样。这部分内容是通过丰富的实例,体会抽样的必要性和随机抽样的重要性;经历抽样的过程,并根据样本的平均数、方差等计算估计总体的特征,体会用样本估计总体的思想。例如:调查本班的同学,调查在操场上打球的学生,在校门口随便找一些同学,每年级男生女生按比例各抽几个人,按各班名册随便点几个人等等。

初中阶段的概率与统计内容的学习重点是统计与概率的思想方法的学习、理解与应用。对概念、公式、法则重在理解和应用,即能够在新的问题情境别是在具有现实背景的问题情境中,准确地理解和使用相关的概念、术语或公式。

高中阶段的概率与统计内容主要是将学生在义务教育阶段所学的统计与概率的基础上通过实际问题情境,学习随机抽样、样本估计总体、线性回归的基本方法,体会用样本估计总体及其特征的思想;通过解决实际问题,较为系统的经历数据收集与处理的全过程,体会统计思想与确定性思维的差异.学生将结合具体的实例,学习概率的某些基本性质和简单的概率模型,加深对随机现象的理解,能通过实验、计算器模拟估计简单随机事件发生的概率。其中本模块学习的随机抽样、样本估计总体、变量的相关性三部分内容贯穿于中学阶段的始终。

⒈随机抽样是高中数学课程统计学习目标非常重要的一个方向。简单的随机抽样是抽样中最简单的方法,也是最基本的抽样方法,因此,学生在学习时要领悟其基本思想.简单的随机抽样是使总体中所有抽样单位都有相等的概率被抽取到样本中去的一种抽样方法。

⒉在解决统计问题的过程中,进一步体会用样本估计总体的思想,会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征;初步体会样本频率分布和数字特征的随机性。

另外,要学生明确样本的信息与总体的信息还存在着一定的差异.样本所提供的信息只是总体的部分信息,在一定程度上反映了总体的有关特征,但不完全确定。也就是说,按照同一个规则进行抽样,每次抽样所获得的信息都不能保证完全一样的,是一个变化的量,这是抽样的随机性所决定的。

高中阶段的概率与统计的学习有助于学生形成数据处理过程中进行初步评价意识和自我评价意识;有助于学习方法与提高学习能力。在统计与概率的学习中,要求学生形成对数据处理过程初步评价意识,这将有助于学生对统计思维与确定性思维的理解。另外,数据处理的过程存在着统计思想与统计方法的差异,这样可能导致统计分析的结果的差别,学生的 初步评价意识有助于改善统计分析过程可能出现的各种问题.评价意识将有助于学生客观地认识统计的过程、统计的分析方法,有助于理性思维的培养。

高中数学新教材以较多的篇幅充实了概率统筹内容,旨在介绍一些新的基本数学思想与内容,同时使教材内容更加体现数学应用意识,其重要性是不言而喻的。通过实际问题使学生初步理解在现实世界中大量事件的不确定性,同时能用概率知识进行一些简单的判断与决策。

总之,统计与概率的教学,应重视问题的实际背景和意义,强调制定决策的过程以及统计与概率在社会生活和科学领域中的应用,注重学生的自主探索和在此基础上的合作交流,重视模拟和实验,不要把这部分内容处理成纯计算的内容,也不能灌输给学生过多的专业术语.

参考文献:

[1]北京师联教育科学研究所制定,《新课程与初中数学教学》.学苑音像出版社,2004 54-77

[2]北京师联教育科学研究所制定,《新课程与高中数学教学》.学苑音像出版社,2004 65-80

篇3

因此,在课程设置上,不能只局限于一套指定的教材,应该在一个统一的教学基本要求的基础上,教材建设应向着一纲多本和立体化建设的方向发展。在教学进度表中应明确规定该门课程的讲授时数、实验时数、讨论时数、自学时数(在以前基础上适当增加学时数),这样分配教学时间,旨在突出学生的主体地位,促使学生主动参与,积极思考。

2教学形式

1)开设数学实验课教学时可以采用以下几个实验:在校门口,观察每30s钟通过汽车的数量,检验其是否服从Poisson分布;统计每学期各课程考试成绩,看是否符合正态分布,并标准化而后排出名次;调查某个院里的同学每月生活费用的分布情况,给出一定置信水平的置信区间;随机数的生成等等。通过开设实验课,可以使学生深刻理解数学的本质和原貌,体味生活中的数学,增强学生兴趣,培养学生的实际操作能力和应用能力。

2)引进多媒体教学多媒体教学与传统的教学法相比有着不可比拟的优势。一方面,多媒体的动画演示,生动形象,可以将一些抽象的内容直观地反映出来,使学生更容易理解,同时增强了教学趣味性。如在学习正态分布时,可以指导学生运用Matlab软件编写程序,在图形窗口观察正态分布的概率密度函数和概率分布函数随参数变化的规律,从而得出正态分布的性质。另一方面,由于概率统计例题字数较多,抄题很费时间。制作多媒体课件,教师有更多的精力对内容进行详细地分析和讲解,增加与学生的互动,增加课堂信息量。对于教材中的重点、难点、复习课、习题课等都可制作成多媒体课件形式,配以适当的粉笔教学,这样既能延续一贯的听课方式,发挥教师的主导作用,又能充分体现学生的认知主体作用。比如在概率部分,把几个重要的离散型随机变量、连续型随机变量的分布率、概率密度、期望、方差等列成表格;在统计部分,将正态总体均值和方差的置信区间,假设检验问题的拒绝域列成表格形式,其中所涉及到的重要统计量的分布密度函数用图形表示出来。这样,学生觉得一目了然,通过让学生先了解图形的特点,再结合分位数的有关知识,找出其中的规律,理解它们的含义及联系,加深了学生对概念的理解及方法的运用,以便更容易记住和求出置信区间和假设检验问题的拒绝域。这样,不仅使学生对概念的理解更深刻、透彻,也培养了学生运用计算机解决实际问题的能力。

3)案例教学,重视理论联系实际《概率论与数理统计》是从实际生产中产生的一门应用性学科,它来源于实际又服务于实际。因此,采取案例教学法,重视理论联系实际,可以使教学过程充满活力,学生在课堂上能接触到大量的实际问题,可以提高学生综合分析和解决实际问题的能力。如讲授随机现象时,用抛硬币、元件寿命、某时段内经过某路口的车辆数等例来说明它们所共同具有的特点;讲数学期望概念时,用常见的街头用随机摸球为例,提出如果多次重复地摸球,决定成败的关键是什么,它的规律性是什么等问题,然后再讲数学期望概念在产品检验及保险行业的应用,就能使学生真正理解数学期望的概念并能自觉运用到生活中去;又如讲授正态分布时,先举例说明正态分布在考试、教育评估、企业质量管理等方面的应用,然后结合概率密度图形讲正态分布的特点和性质,让同学们总结实际中什么样的现象可以用正态分布来描述,这样能使学生认识到正态分布的重要性及其应用的广泛性,从而提高学生的学习积极性,强化学生的应用意识。

另外,也可选择一些具有实际背景的典型的案例,例如概率与密码问题、敏感问题的调查、血液检验问题等等。通过对典型案例的处理,使学生经历较系统的数据处理全过程,在此过程中学习一些数据处理的方法,并运用所学知识和方法去解决实际问题。新晨

3考核方法

考试是一种教学评价手段。现在学生把考试本身当作追求的目标,而放弃了自身的发展愿望,出现了教学中“教”和“学”的目的似乎是为了“考”的奇怪现象。有些院校概率统计课程只有理论课,没有实验课,其考试形式是期末一张试卷定乾坤,虽然有平时成绩,主要以作业和考勤为主,占的比率比较小(一般占2O),并且学生的作业并不能真实地反映学生学习的好坏,使得教师无法真正地了解每个学生的学习情况,公平合理地给出平时成绩。而这种单一的闭卷考试也很难反映出学生的真实水平。

所以,我们首先要加强平时考查和考试,每次课后要留有作业、思考题,学完每一章后要安排小测验,在概率论部分学完后进行一次大测验。其次注重科学研究,每个学生都要有平时论文,学期论文,以此来检查学生掌握知识情况和应用能力.此外还有实验成绩。最后是期末考试,以A、B卷方式,采取闭卷形式进行考试。将这4个方面给予适当的权重,以均分作为学生该门课程的成绩。成绩不及格者.学习态度好的可以允许补考。否则予以重修。分数统计完后,对成绩分布情况进行分析,通过总体分布符合正态分布程度和方差大小判断班级的总体水平,并对每道题的得分情况进行分析,评价学生对每个知识点的掌握情况和运用能力,找出薄弱环节,以便对原教学计划进行调整和改进。总之,通过科学的考核评价和反馈,促进教学质黾不断改进和提高。

篇4

二、选取有趣例题,激发学生学习兴趣

美国心理学家布鲁纳说:“学习最好的刺激是对所学学科的兴趣。”学生一旦对数学产生兴趣,就会乐此不疲、甚至废寝忘食,他们会克服一切困难,充满信心地学习数学、学好数学,变“要我学”为“我要学”。选取与现实生活紧密相连的、生动直观的现实生活例子,可以让学生更容易参与进来,激发他们的学习兴趣,同时,也利用了概率知识解决了现实生活问题,最终达到学习的目的。例如,这样一道例题:在美国,有一档由名为蒙提•霍尔的主持人主持的问答竞赛节目。参与竞赛的嘉宾中间能坚持到最后的那一位将有机会打开3扇门中的一扇,其中一扇门后面摆着一辆轿车,另外两扇门后面则是山羊。嘉宾选中哪扇门,哪扇门后面的东西就归嘉宾所有(当然,人都喜欢轿车胜过山羊)。主持人先请嘉宾猜一扇门,然后主持人打开剩下两扇门中的其中一扇后面是山羊的门,并问嘉宾是否要改变选择。

是否改变选择,取决于改变选择猜中轿车的概率高还是不改变最初的选择猜中轿车的概率高,抑或是两种情况概率一样。在美国的杂志上曾有很多数学家对此问题争论不休。如果做一下实验便能得到如表1中的结果。不改变最初的选择猜中轿车的概率为1/3,同样可得出改变最初的选择猜中轿车的概率为2/3。

实际上,在主持人随意打开一扇门的前提条件下,剩下两扇门中其中一扇门后是有轿车的,那么选择任一扇门中奖的概率自然是1/2。但是,如果嘉宾先选择一扇门的话,那么这个问题则变成一个概率问题,可用乘法定理来进行计算。第一次选中车的概率为1/3,不改变选择,第二次概率为1,此外,第一次未选中车的概率为2/3,不改变选择,第二次概率为0。两结果相加得到以下结果同理,若主持人打开门后嘉宾改变选择,获得车的概率就为2/3了。教师要善于创设教学情境,使学生产生新奇感、新鲜感,诱发其学习兴趣,一旦有了兴趣,就会产生极大的学习动力。类似的例题还有很多,如“生日问题”、“三囚犯问题”等,例题选取得好坏是教学成功与否的关键。

三、利用多媒体教学,改变传统教学模式

免责声明:以上文章内容均来源于本站老师原创或网友上传,不代表本站观点,与本站立场无关,仅供学习和参考。本站不是任何杂志的官方网站,直投稿件和出版请联系出版社。
友情链接
发表咨询 加急咨询 范文咨询 杂志订阅 返回首页