时间:2023-03-07 15:03:57
引言:寻求写作上的突破?我们特意为您精选了4篇高强混凝土论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
1.前言
随着混凝土技术的进步和发展,高强混凝土(以下简作HSC)的应用已越来越广。《高强混凝土结构技术规程》(CECS104:99,以下简作《规程》)已于1999年颁布实施,必将进一步推动HSC的设计和应用。由于HSC的强度和质量要求的提高以及大量掺合料的使用,与普通混凝土相比,无论是试件强度检验、构件强度检验,尤其是质量检验验收标准等,均提出了许多新的问题和更高的要求。甚至产生了这样一种概念:配制和生产HSC已不存在太多困难,而如何准确测定评价HSC的强度,己成为急需解决的技术难题。我们在相关试验研究和实际工作中也遇到了许多此类问题。如试件强度远低于或远高于实际构件混凝土强度;构件混凝土强度采用何种无损检测方法准确评价等等。本文主要就此提出相关问题和建议,以期在推广应用HSC的同时,更好地把握和确保工程质量。
2.HSC的试件强度检验
2.1试件尺寸和平整度
随着HSC强度的不断提高,试验机量程的限制,以及骨料最大粒径一般为25mm,因此,在科学研究和实际工作中不可避免地采用100×100×100(mm)的立方试件。在普通混凝土中,与标准试件150×150×150(mm)的尺寸换算系数为0.95。而HSC中一般均小于此值。且随着强度提高,折算系数下降。《规程》中提出的100mm立方体试件折算成标准尺寸试件的折算系数如表1:
表1
Fcu,10(MPa)KFcu,10(MPa)K
≤550.9576--850.92
56--650.9486--950.91
66--750.93>960.90
问题的关键在于强度提高何以使折算系数下降。普通混凝土中主要认为是大试件存在内部缺陷概率高,在HSC中同样有这一因素,但还存在更重要的因素,其中最主要的是试件平整度。试件强度越低,塑性越大,可调变形量大,表面平整度对实际强度的影响就越小。试件强度越高,材料脆性越大,可调变形量小,表面不平整度和不平行度对实际强度的影响就越大。通常情况下,小试件的表面平整度和平行度均高于大试件。因而许多试验结果(清华大学、北京城建集团构件厂等)表明,其折算系数比《规程》提供的值更低(平均强度Fcu,10=70.4MPa,K实=090;Fcu,10=60MPa,K实=0.92)。但我们采用相对严格平整的大小试件试验结果表明,C60~C80的混凝土强度折算系数均为0.95。因此,当用小试件结果换算标准尺寸强度时须注意这一问题。虽然我们还很难定量描述试件不平整度对强度影响率,但对HSC强度试件保证足够的表面平整度和平行度是必需的,必要时对试件进行磨平抛光,否则将严重降低强度值,亦即要选用优质的混凝土试模,并做到严格的定期检验和修正。同样对试验机的承压板也应及时检验。
此外,试验操作时的试件偏心受压对HSC的影响率比普通混凝土要大,试件尺寸越小,越易引起偏心,使测试结果偏低。虽然试件表面不平整度、不平行度和偏心受压,均使测试结果偏小,对结构物是安全的,但科学地准确评价HSC的强度,确保测试结果与实际强度的一致性是我们的宗旨。当用小试件折算标准试件强度时更应引起重视。
2.2试验和养护条件对测试结果的影响
当标准试件的抗压强度大于70MPa时,对部份试验室所拥有的2000kN试验机来说,已达量程的80%以上,对测试结果将有一定影响。这仅仅是问题的一部分。由于不同生产厂家,不同构造型式的试验机刚度不尽一致,同量程试验机对同一批HSC试件测试结果也会有差异,不同量程试验机的测试结果差异就更大。如清华大学的一组试验结果如表2。
表2
试验机标准试件平均强度(MPa)(55组)fcu100mm立方体试件平均强度(55组)f′cufcu/f′cu
长春产5000kN59.768.60.87
长春产2000kN63.869.40.92
无锡产2000kN65.173.10.89
芬兰和日本也用不同试验机对测试结果的影响做过研究。如芬兰采用20台试验机对80MPaHSC试验结果显示,强度最低组与最高组之比为75%;对40MPa的混凝土,其比值升高为85%。日本也同样采用20台不同试验机对100MPa和60MPa的两批HSC进行试验,结果表明强度最低组与最高组之比值分别为69%和76%。所有这些试验资料均说明一个问题:随HSC强度等级的提高,不同试验机对测试结果的影响变得显著,而对低强混凝土的影响相对就较小,这是试验检测中有待研究和引起足够重视的。
养护条件对测试结果的影响。主要指早期养护和温湿度。试件成型后通常经24h后脱模。由于大部分试验室(特别是江南)成型时无恒温、恒湿条件,春夏秋冬四季温差和相对温度差异较大,试模内的24h非旦严重影响HSC的早期强度,也直接影响到28天强度。我们在20℃和10℃,相对湿度80%和75%条件下,配制C60HSC,测得的结果表明,7天强度相差10%,28天强度差7.5%。而对C20~C30混凝土的影响很小。这是因为HSC的W/B小,早期强度发展快,温度敏感性大。因此,在配制HSC时,如无恒温恒湿条件,则成型后必须立即移入养护室护养,如若无此条件,则尽可能缩短在试模内的时间,提前拆模。并且表面覆盖塑料膜或其它保温保湿措施,严防水份挥发影响强度。
另一方面,我国普通混凝土的标准养护条件是20±3℃,相对湿度90%以上或水中养护。亦即表明相对温度90%以上养护与水中养护对强度影响不大。对HSC来说,由于本身非常致密,后期失水或吸入水份的可能性均较小,特别是当W/B小于0.28时,试件内部处于相对缺水状态,加之HSC自收缩较大,故水中养护产生的表层湿胀,易加重试件内外的应力差,导致试件强度降低。如水中养护试件经24h空气干燥后,重量几乎不变,但由于应力差减弱,C60HSC的强度提高78%,而C25混凝土强度几乎不变。因为高W/C低强混凝土早期失去的往往是自由水,对强度影响不大,后期继续干燥产生的强度提高,通常认为是软化系数的概念,这一点是有别于HSC的。W/B小于0.4时水中养护试件,经劈裂试验,仅表层20mm左右湿润,内部均较干燥。因此,作者认为,HSC养护最佳湿度条件是90%以上潮湿空气(与普通混凝土一致化)或简单的塑料膜密封养护。
3HSC试件强度与构件混凝土强度的相关性
前面分析讨论的影响试件强度的因素,总的来说是导致试验结果偏低,这对安全是有益的。但水化热问题,自收缩问题及现场养护条件问题,情况就比较复杂。
3.1水化热对强度的影响
通常我们把最小截面尺寸大于1m的构件称之为大体积混凝土,必须采取有效措施控制水化热引起的内外温差。其主要目的是防止温差裂缝的产生,而对温度升高引起强度的变化问题未加重视。GB5020492和《规程》中也未提及。对截面尺寸大于0.6m的梁板构件,在普通混凝土中可以说很少对水化热问题引起重视,但对HSC来说,由于水泥用量的增加,水化热引起的温差应力和温度对强度的影响已显得十分重要。有资料表明[1],当水泥用量达400kg/m3时,0.5m厚的试件中心温峰可达45℃(环境温度20℃),虽然温差尚在GB5020492规范允许范围内,但对硅酸盐水泥或普通水泥配制的混凝土而言,足以使28天及后期强度显著下降。如环境温度升高,或水泥用量进一步增加,一方面绝对温升将显著提高;另一方面,温峰出现的时间更早,高效减水剂的使用也将加剧这一现象,对混凝土强度造成的危害更大。当然,混凝土厚度提高,绝对温度也更高,如1.5m厚时中心温峰可达65℃(水泥400kg/m3,环境温度20℃)。因此,必须注意到试件尺寸小受水化热影响小,从而使试件强度尤其是长期强度高于实际构件强度,特别对采用纯硅酸盐水泥或普通水泥配制的HSC或较大构件尺寸的混凝土更应引起重视。
当采用较高掺量掺合料时,特别是掺用粉煤灰(FA)、矿渣(SG)或沸石粉时,情况则完全相反。因水化热对这类混凝土的早期和后期强度均十分有利,试件强度就会小于构件混凝土实际强度值。但掺硅粉混凝土例外。因此,对HSC而言,截面最小尺寸超过05m的构件就应对水化热问题引起足够重视,且不是简单的控制温差,更重要的是控制绝对温升。其中最有效的办法就是掺用适量FA、SG或沸石粉。
3.2自收缩对强度的影响
HSC的自收缩值7天可达100×10-6mm以上,人们普遍关心的是对HSC裂缝影响,尤其是早期裂缝,但对强度的影响研究很少。从某种意义上来说,在钢筋混凝土构件中,自收缩引起的微裂纹(假如存在)在钢筋等约束条件下,对抗压强度影响可能很小,但也正因为钢筋约束使混凝土处于拉应力状态,对抗拉强度产生较大影响。此时,若以试件劈拉强度或轴拉强度来推算构件混凝土抗拉强度时,就会显得不安全。因为试件尺寸小和自由度大,自收缩引起的拉应力几乎可忽略,当以抗压强度折算抗拉强度时也应注意这一问题,但其影响值有多大,有待进一步研究。
3.3自然养护条件对强度的影响
湿度条件对普通混凝土的强度影响非常显著,对尺寸相对较大的构件,常出现表层混凝土强度低于内部强度的现象。主要是水灰比大,孔隙多,失水过早、过多所致。试件的尺寸相对较小,若不经潮湿养护,也有可能导致试件强度低于实际构件强度。对HSC来说,关键是早期潮湿养护非常重要,而后期因混凝土较致密,很难失水,湿度条件对强度的影响相对较小。
温度条件对普通混凝土强度亦有影响,但远不及对HSC来得显著。
(1)硅酸盐水泥或普通硅酸盐水泥配制的HSC(不掺或掺很少量混合材),由于水化热的作用,试件强度往往高于构件混凝土实际强度,表层强度高于内部强度,这在夏季施工时尤为显著。当试件采用标准养护(非现场养护)时,试件强度将更加偏高。即使冬季施工,当构件尺寸较大时,试件强度仍有可能高于实际构件强度。这是非常值得重视的。
(2)掺大量混合材配制的HSC,情况与上述相反。如大量掺入粉煤灰、普通磨细矿渣或沸石粉配制的HSC,水化热只要不引起较大的温差应力,它将大大有利于混凝土强度的提高,此时试件强度低于构件实际强度,内部强度则高于表层强度,冬季施工、现场自然养护时更显著。夏季施工时,若试件采用标准养护,则试件强度更低于构件实际强度,可以这样说,20±3℃的标准养护条件,对普通水泥和硅酸盐水泥混凝土是适宜温度,面对高掺量混合材配制的HSC,这一“标准”温度应高得多。认识这一点是非常必要的,它从另一个侧面要求我们在配制HSC时,尽可能多地掺用粉煤灰、矿渣和沸石粉。
4构件混凝土强度评定
(1)回弹法只能评定C50以下的构件混凝土强度。若要采用这一简单的方法评定HSC的强度,就必须建立新的测强曲线或研制新型的回弹仪。这是一件很迫切的工作。
(2)超声波法、超声回弹综合法和拔出法的仪器设备,理论上对HSC也是适用的,但由于弹性模量,拉、剪强度与抗压强度的非同步增长,故需尽快建立相应的测强曲线。上海建科院和同济大学已开展了相关研究〔2〕,但全国各地差异较大,一方面宜建立地方性测强曲线,另一方面需要全国通力合作,建立全国通用曲线。
(3)钻芯法是最值接的评定方法,通常也是最可靠的构件混凝土强度检测法。但在HSC中应用,钻机钻取芯样时必须有非常优异的稳定性,一旦钻机颤动,表面出现波纹状,将使芯样强度严重降低,类似于<C10的混凝土,钻切加工引起损伤,使强度偏低。因此钻芯设备必须有很高的精度。芯样承压面的平整光洁度,当能满足普通混凝土要求时,对HSC影响可能仍较大,承压面必须严格平整光洁平行。当采用抹平处理时,必须保证抹平材料强度与混凝土强度接近,偏低或偏高均会导致试件强度偏低。因此,对HSC构件强度检测方法、除钻芯法尚能应用外,其余检测方法急需科研院校和仪器设备生产厂家的联合攻关。
5几点建议
(1)HSC的试模必须严格保证足够的尺寸和平面、直角精度,以确保试件质量,必要时磨平抛光,否则使试件强度偏低。试验操作时须特别仔细。
(2)试验机必须保证足够的刚度,尽可能采用较大量程的试验机,以免使测试结果偏大。
(3)加强早期保湿养护或提早拆模,防止早期失水。尽可能采用潮湿养护。
(4)对不掺混合材的HSC,试件强度可能高于实际强度,特别是构件尺寸≥50cm或夏季施工时更要注意其强度修正。
(5)对高掺量混合材HSC,试件强度往往低于构件强度。冬季施工或采用标准养护时更应引起重视。
1. 高强钢骨混凝土综述
HSRC结构是在钢筋混凝土内部埋置型钢或焊接钢构件,并使钢骨与混凝土组合成为一个整体共同工作,而形成的一种组合结构。其特点如下:
图1 高强混凝土箱梁
图2 PCI研究用T梁(1)与钢筋混凝土结构相比,由于配置了钢骨,使构件的承载力大大提高,从而有效的减小了梁柱截面尺寸,尤其是抗剪承载力提高、延性加大,显著改善了抗震性能。
(2)与钢结构相比,钢骨高强混凝土构件的外包混凝土可以防止钢构件的局部屈曲,提高构件的整体刚度,显著改善钢构件出平面扭转屈曲性能,使钢材的强度得以充分发挥。同时,外包混凝土增加了结构的耐久性和耐火性。
(3)钢骨高强混凝土结构比钢结构具有更大的刚度和阻尼,有利于控制结构的变形和振动。
钢骨高强混凝土充分发挥了钢与混凝土两种材料的优点,在桥梁工程中得到了广泛的应用,但到目前为止,国内外对其研究的成果多集中于构件的强度、刚度等方面,在施工方面经验不多,可供参考的资料很少。而施工现场的施工质量又严重影响着这种组合结构性能的充分发挥。笔者结合试验过程及具体的工程实践提出确保钢骨高强混凝土桥梁抗震延性的施工质量控制措施。
2. 典型高强钢骨混凝土桥工艺参数分析
苏州建园建设工程顾问有限公司以苏州地区典型桥梁做研究。高新区寒山桥是此研究工程项目之一。此桥的特殊之处是东西两侧分别采用强度为70~100N/平方毫米高强钢骨混凝土梁(图1)和强度为35~40N/平方毫米T梁(图2)。对不同混凝土进行造价比较。经比较,对于常规混凝土跨径37m的梁,当采用高强钢骨混凝土时跨径可达44m。
图3 最优造价曲线 高强钢骨混凝土具有较高的强度,因此可加大跨径或当跨径不变时可采用较小的梁高。同时,高强钢骨混凝土抗渗能力较强,因而氯化物的渗入可减少一半,从而提高结构的耐久性。在桥梁结构中采用高强钢骨混凝土,效果十分明显。苏州建园建设工程顾问有限公司对常用的预应力混凝土梁进行优化设计。进行经费用户效益分析如(图3), 对于图3所示的曲线分三部分讨论:
2.1 针对跨径小于27.4m的梁。此类梁的控制条件为预加应力阶段的初始预应力。由于预加应力阶段的恒载长久起作用,对于所述跨径采用高胆混凝土无实际意义。
2.2 针对跨径27.4~30.5m,混凝土强度41~55MPa和跨径27.4~33.5m,混凝土强度≥55MPa的情况。由于采用高强钢骨混凝土,梁距可以加大。在此范围存在着梁距加大带来的节约及由此引起单位桥面费用增加的平衡点。
2.3 针对跨径大于30.5m,混凝土强度在41~55MPa和跨径大于33.5m,混凝土强度大于55MPa的情况。这个范围代表了所分析断面高强钢骨混凝土的最优效益。图3还反映出:
(1)随着梁混凝土强度的递增,最优造价曲线右移。这意味着在单位造价不增加的情况下,梁的跨径增大了。
(2)梁混凝土强度超过 69MPa效益减小心高强钢骨混凝土用于较小跨径时无明显效益。
近些年来,苏州市交通局和苏州建园建设工程顾问有限公司对采用高效预应力高强钢骨混凝土在桥梁工程中的应用进行了较为深入的研究。以图4断面为例,由表1可以看出,苏州地区采用高性能混凝土空心板较普通PC空心板可节省混凝土 35%以上,可节省钢铰线15%以上,在16~30m跨径范围内,材料费用节省20%。因此对于公路桥梁工程中大量使用的空心板采用高性能混凝土井进行优化设计,其经济效益十分可观。
图4 L=16m中板优化断面
图5 焊接顺序 3. 提高钢骨高强钢骨混凝土质量的施工措施
施工现场的施工质量严重影响着这种组合结构性能的充分发挥,笔者结合工程的调查分析对组合结构中钢骨柱施工质量的缺陷及原因进行分析, 结果显示钢骨高强钢骨混凝土柱施工质量缺陷主要表现在焊接质量差、H 型钢柱不垂直、纵向产生弯曲、钢牛腿标高出现偏差四个方面。其中焊接质量差、H 型钢柱不垂直,是影响钢骨高强钢骨混凝土柱延性的主要原因。为此我们提出如下改进工艺:
3.1 提高焊接质量的施工工艺措施。
(1)焊接前应先进行工艺试验,以取得最佳工艺系数,达到工艺合格、质量可靠和降低成本的目的。
(2)在焊接时改手工焊为采用ZXGI000R自动埋弧焊机,焊接时在其焊缝的两端配置引入板、引出板,做到引入板、引出板与被焊件的坡口形式相同,其长度大于60 mm ,宽度大于50 mm ,焊缝引入、引出的长度大于25 mm ,焊缝焊接完毕后用气割割除,并修磨平整。
(3)焊接时在专用的焊接胎膜上作全自动埋弧焊,按焊接工艺要求的焊接顺序进行施工,减少焊接变形。焊接顺序见图5 。
(4)施焊时,每条焊缝原则上要连续操作完成,不得不在T 字口和构件边缘停弧或换焊条时,施焊后的焊缝应立即覆盖岩棉材料给予保温,延长焊件降温时间。
(5)配置超声波探伤人员跟班检查焊接质量,不合格者应及时返修。
3.2 减少焊接变形的方法。
(1) 采用拼装模架将H 型、十字型钢板拼装成型,拼装模架如图6所示。
图6 拼装模架(2)拼装后的几何尺寸经检验合格后进行定位点焊,定位点焊的焊缝长度为60 mm ,焊缝的间隔为200 mm ,焊缝高度为6 mm。
(3)对埋弧焊电流、电压、焊接速度参数进行监控,电流:600 A~650 A ,电弧电压:35 V~38 V ,焊接速度: 0. 42 m/ min。
(4)为防止受热不均匀造成过大变形,施焊前应进行预热,预热区域应在焊缝的两侧各100 mm ,使其产生相应的反变形。
(5)划线下料应考虑焊接收缩量,以满足组焊成型后设计尺寸,使吊装就位后保证柱顶、孔眼标高一致。
4. 结论与建议
(1)钢骨高强钢骨混凝土组合结构是钢与混凝土的优点结合,是建造高层与大跨度结构较好的途径,在我国具有广阔的前景, 施工现场的施工质量严重影响着这种组合结构性能的充分发挥,探讨它的施工方法和施工工艺具有深远的意义。
(2)采用高强钢骨混凝土梁板断面高度可以降低,从而较少工程投资,这对于新建和重建桥梁均具有重要意义。
参考文献
1.高强高性能混凝土的有关概念以及发展状况
1.1概念
将具有良好的施工和易性和优异耐久性,且均匀密实的混凝土称为高性能混凝土;同时具有上述各性能的混凝土称为高强高性能混凝土;而《普通混凝土配合比设计规范》(JGJ55-2000)中则将强度等级大于等于C60的混凝土称为高强混凝土;《混凝土结构设计规范》(GB50010-2002)则未明确区分普通混凝土或高强混凝土,只规定了钢筋混凝土结构的混凝土强度等级不应低于C15,混凝土强度范围从C15~C80。综合国内外对高强混凝土的研究和应用实践,以及现代混凝土技术的发展,将大于等于C60的混凝土称为高强度混凝土是比较合理的。
获得高强高性能混凝土的最有效途径主要有掺高性能混凝土外加剂和活性掺合料,并同时采用高强度等级的水泥根据《高强混凝土结构技术规程》(CECS104:99),将强度等级大于等于C50的混凝土称为高强混凝土;和优质骨料。对于具有特殊要求的混凝土,还可掺用纤维材料提高抗拉、抗弯性能和冲击韧性;也可掺用聚合物等提高密实度和耐磨性。常用的外加剂有高效减水剂、高效泵送剂、高性能引气剂、防水剂和其它特种外加剂。常用的活性混合材料有Ⅰ级粉煤灰或超细磨粉煤灰、磨细矿粉、沸石粉、偏高岭土、硅粉等,有时也可掺适量超细磨石灰石粉或石英粉。常用的纤维材料有钢纤维、聚酯纤维和玻璃纤维等。
1.2高强高性能混凝土的发展状况
1.2.1高强混凝土的发展状况
我国在六十年代初开始研制高强混凝土,并已试点应用在一些预制构件中。那时的高强混凝土为干硬混凝土,密实成型时需强力振捣,故推广比较困难。80年代后期,高强混凝土在现浇工程中采用,主要在北京、上海、辽宁、广东等一些高层和大跨(桥梁)工程中应用,强度等级相当于C60或600号。其中,辽宁省已有十余幢高层或多层建筑采用高强混凝土,深圳市92、93两年已有贤成大厦等25个工程采用C60级高强泵送混凝土,总量已达两万立方米。
高强混凝土的优越性:
(1)在一般情况下,混凝土强度等级从C30提高到C60,对受压构件可节省混凝土30-40%;受弯构件可节省混凝土10-20%。
(2)凝土比普通混凝土成本上要高一些,但由于减少了截面,结构自重减轻,这对自重占荷载主要部分的建筑物具有特别重要意义。再者,由于梁柱截面缩小,不但在建筑上改变了肥梁胖柱的不美观的问题,而且可增加使用面积。以深圳贤成大厦为例,该建筑原设计用C40级混凝土,改用C60级混凝土后,其底层面积可增大1060平方米,经济效益十分显著。
(3)由于高强混凝土的密实性能好,抗渗、抗冻性能均优于普通混凝土。因此,国外高强混凝土除高层和大跨度工程外,还大量用于海洋和港口工程,它们耐海水侵蚀和海浪冲刷的能力大大优于普通混凝土,可以提高工程使用寿命。
(4)高强混凝土变形小,从而使构件的刚度得以提高,大大改善了建筑物的变形性能。
1.2.2高性能混凝土的发展状况
高性能混凝土是一种新型高技术混凝土,是在大幅度提高普通混凝土性能的基础上采用现代混凝土技术制作的混凝土。它以耐久性作为设计的主要指标,针对不同用途要求,对下列性能重点予以保证:耐久性、工作性、适用性、强度、体积稳定性和经济性。为此,高性能混凝土在配置上的特点是采用低水胶比,选用优质原材料,且必须掺加足够数量的矿物细掺料和高效外加剂。
与普通混凝土相比,高性能混凝土具有如下独特的性能:
(1)高性能混凝土具有一定的强度和高抗渗能力,但不一 定具有高强度,中、低强度亦可。
(2)高性能混凝土具有良好的工作性,混凝土拌和物应具有较高的流动性,混凝土在成型过程中不分层、不离析,易充满模型;泵送混凝土、自密实混凝土还具有良好的可泵性、自密实性能。
(3)高性能混凝土的使用寿命长,对于一些特护工程的特殊部位,控制结构设计的不是混凝土的强度,而是耐久性。能够使混凝土结构安全可靠地工作50~100年以上,是高性能混凝土应用的主要目的。
(4)高性能混凝土具有较高的体积稳定性,即混凝土在硬化早期应具有较低的水化热,硬化后期具有较小的收缩变形。
概括起来说,高性能混凝土就是能更好地满足结构功能要求和施工工艺要求的混凝土,能最大限度地延长混凝土结构的使用年限,降低工程造价。
2.高强高性能混凝土存在的问题分析
2.1收缩和徐变
在桥梁结构中一般都采用预应力,高强轻骨料混凝土的收缩徐变是工程师最关心的一个问题。收缩和徐变会造成预应力损失,如果对收缩和徐变值计算不准,将会对桥梁结构产生比较大的影响。高强轻骨料混凝土的收缩徐变值通常比普通混凝土高。首先由于其弹性模量比同等级普通混凝土的低。根据Smeplass的研究,水灰比在0.32~0.43的CL60~CL90的高强轻骨料混凝土的弹性模量比同强度普通混凝土的低20~30%。
高强轻骨料混凝土的收缩徐变值通常比普通混凝土高。在早期轻骨料混凝土的收缩比普通混凝土的小。徐变值通常但不总是比等强度普通混凝土的大。徐变随混凝土强度增加而降低。由于低弹性模量产生较大的弹性应变,轻骨料混凝土在荷载下的总变形比普通混凝土的大。
2.2耐久性
工程师担心的另一个问题就是高强轻骨料混凝土的耐久性。高强轻骨料混凝土的耐久性与下面几个因素有关:渗透性、钢筋锈蚀、冻融性、耐磨性以及碱骨料反应等。
2.2.1渗透性
高强轻骨料混凝土在高强轻骨料表面覆盖非常密实的水泥浆,这层水泥浆提高抗渗透的能力。由于高强轻骨料混凝土中骨料的弹性模量和周围水泥浆基本相同,不会造成应力集中,应力分布均匀,减少了内部裂缝,提高了抗渗透的能力。
2.2.2冻融性
和普通混凝土一样,轻骨料混凝土的抗冻融破坏性是由于引入的气体及低水灰比所决定的。由于轻骨料混凝土骨料内部孔隙较大且多数不相互连接,因此轻混凝土具有较好的冻融耐久性。
2.2.3耐磨性
1 概述
大庆油改煤工程主体由东北电力设计院设计,锅炉本体部分由哈尔滨锅炉厂设计制造供货,为HG-410/9.8-HM16型锅炉,锅炉为单锅筒、自然循环锅炉、集中下降管倒U型布置和固态排渣煤粉炉,锅炉前部为炉膛,四周布满膜式水冷壁,炉膛出口处布置屏式过热器,水平烟道装设两级对流过热器,炉顶水平烟道转向室和尾部包墙采用膜式管包敷,尾部竖井烟道中交错布置两级省煤器和两级空气预热器。论文参考,吊装。
锅炉构架采用全钢结构,均为焊接形式,炉膛过热器和上级省煤器以及省煤器出口灰斗均悬吊在顶板上,尾部空气预热器和下级省煤器支撑在后部柱和梁上。
本项目主要针对国内焊接结构的410T及以上的电站锅炉的结构特点,打破以往吊装方法,变侧前开口为侧后开口,并改顶板组件部分次梁缓装,受热面大件吊装穿插于钢结构吊装过程中。本项目的实施,减少了大件的倒钩次数,增大了吊装过程的安全性,可靠性,使方案更加合理,较同类型机组锅炉吊装工期提前15天。本项目主要是结合了焊接结构与高强螺栓结构的钢结构特点,并将二者吊装方法即侧开口和顶开口有机的融合在一起,同时将受热面大件吊装穿插与钢结构吊装过程中。本项目应用于宏伟电厂二期工程4、5号炉大件吊装过程中,两台炉的工期较同类型锅炉吊装工期提前30天,为4号炉封闭和5号炉吊装到顶赢得了时间。
2 吊装方法的分析和改进
2.1原有的成型吊装方法及特点
查阅以往新华、富拉尔基及宏伟热电厂一期工程等施工组织设计,其结构基本与此炉一致。其开口的选定均为Z1-Z2间即侧前开口,新华工程顶板组件整体吊装,富拉尔基工程顶板组件分4件吊装,吊装结束后再吊水冷壁,宏伟电厂一期1、2、3号炉均是顶板组件整体吊装,吊装结束后再吊水冷壁,宏伟电厂一期1、2、3号炉均是顶板组件整体吊装,然后吊装火室部分。
综合上述安装方法有如下特点:
2.1.1混凝土框架为预制,与锅炉同步安装,硬支撑可以借助混凝土框架。
2.1.2顶板结构整体吊装找正后,再吊火室部分,结构稳定,但较保守。论文参考,吊装。
2.1.3借助煤仓间混凝土框架,用配制的钢梁加固炉前Z1柱以防Z1柱变形。
2.1.4炉前Z1柱与混凝土框架需连接8道硬支撑。
2.1.5火室部分组件倒钩次数多,安全性差。
2.2 改进后的吊装方法及特点分析
宏伟热电厂二期工程混凝土为现场浇制结构,混凝土结构不能与锅炉吊装同步,所以锅炉吊装固定不能借助煤仓间框架,从而给锅炉吊装提出了心的课题,必须改进原方案。经过研究商讨,从安全角度出发,首先选择吊装尾部Z5柱组件,利用拖拉绳固定方式,即从后向前吊装,在吊装过程中,如采用Z1-Z2开口,炉前Z1柱因煤仓间框架无法达到支点高度,所以只有改变原方案,采取Z2-Z3间开口,Z2-Z3开口有如下特点:
2.2.1减少了加固用的钢材,如按Z1-Z2开口需要如下材料加固型钢I402.7T,20厚钢板0.9T,焊条200KG。论文参考,吊装。
2.2.2省煤器出口灰斗可以从底侧用两台吊车直接就位,如按Z1-Z2开口省煤器灰斗(重22T)须临时吊挂于钢梁上,安全性不可靠。论文参考,吊装。
2.2.3吊装火室部分比较困难,危险性大。
针对2.2.3进行分析,研究顶板图纸,根据高强螺栓结构的吊装经验,采取顶板组件部分顶开口,次梁DL-26、DL-27、DL-28、DL-22、23、24可缓吊,不影响整体结构,这样解决了吊装火室的危险性,每个组件供需倒用一钩,即先吊前部顶板组件,然后吊火室部分。再吊顶板组件,使Z2-Z3间为大开口,吊装水冷壁水冷壁组件将组件临时挂至DL-2顶板上,然后用吊车倒钩即可直接就位,解决了吊装火室问题。采用上述吊装方案,除上述优点外,水冷壁组件吊装工期较原方案提前6天,吊装省煤器灰斗提前3天。因为省煤器出口灰斗临时存放后,还须吊装就位,前部Z1柱硬支撑安装与Z1柱加固提前3天,尾部烟道吊装提前2天,前包墙吊装提前1天,总体吊装工期提前15天,安全性大大保证,但有一定风险性,结构稳定性差,但通过实践证明是可行的 。
3结论