时间:2023-03-08 14:54:43
引言:寻求写作上的突破?我们特意为您精选了4篇地质灾害监测范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
所谓地质灾害专业监测,是指专业技术人员在专业调查的基础上借助于专业仪器设备和专业技术,对地质灾害变形动态进行监测、分析和预测预报等一系列专业技术的综合应用。
1、 崩塌、滑坡监测技术方法
1)地表变形监测
① 地表相对位移监测 :主要方法有机械测缝法、伸缩计法、遥测式位移计监测法和地表倾斜监测法。
② 地表绝对位移监测:主要方法有大地形变测量法、近景摄影测量法、激光微小位移测量法、地表位移GPS 测量法、激光扫描法、遥感(RS )测量法和合成孔径雷达干涉测量法。
2)深部位移监测:主要方法有测缝法、钻孔倾斜测量法和钻孔位移计监测法。
3)地下水动态监测 :主要监测法为地下水位监测法、孔隙水压力监测法和水质监测法。
4)相关因素监测 :主要方法有地声监测法、应力监测法、应变监测法、放射性气体测量法和气象监测法(雨量计、融雪计、湿度计和气温计)。
2、 泥石流监测技术方法:泥石流监测方法主要有地声监测法、龙头高度监测法、泥位监测法、倾斜仪棒监测法、流速监测法、孔隙水压力监测法和降雨量监测法。
二、地质灾害简易监测技术方法
所谓地质灾害简易监测,是指借助于简单的测量工具、仪器装置和量测方法,监测灾害体、房屋或构筑物裂缝位移变化的监测方法。该类监测方法具有投入快、操作简便、数据直观等特点,即可以由专业技术人员作为辅助方法使用,也可由非专业技术人员在经培训后使用,是地质灾害群测群防中常用的监测方法。
该类监测一般常用监测方法有:
1)埋桩法:埋桩法适合对崩塌、滑坡体上发生的裂缝进行观测。在斜坡上横跨裂缝两侧埋桩,用钢卷尺测量桩之间的距离,可以了解滑坡变形滑动过程。对于土体裂缝,埋桩不能离裂缝太近。
2)埋钉法 : 在建筑物裂缝两侧各钉一颗钉子,通过测量两侧两颗钉子之间的距离变化来判断滑坡的变形滑动。这种方法对于临灾前兆的判断是非常有效的。
3)上漆法:在建筑物裂缝的两侧用油漆各画上一道标记,与埋钉法原理是相同的,通过测量两侧标记之间的距离来判断裂缝是否存在扩大。
4)贴片法:横跨建筑物裂缝粘贴水泥砂浆片或纸片,如果砂浆片或纸片被
拉断,说明滑坡发生了明显变形,须严加防范。与上面三种方法相比,这种方法不能获得具体数据,但是,可以非常直接地判断滑坡的突然变化情况。 地质灾害群测群防监测方法除了采用埋桩法、贴片法和灾害前兆观查等简单方法外,还可以借助简易、快捷、实用、易于掌握的位移、地声、雨量等群测群防预警装置和简单的声、光、电警报信号发生装置,来提高预警的准确性和临灾的快速反应能力。
对于滑坡、崩塌灾害群测群防监测,可以使用裂缝报警器、滑坡预警伸缩仪(量程大、阀值报警,适用于各种滑坡裂缝监测)、简易裂缝位移计(精度高、阀值报警、多通道,适用于岩质滑坡和建筑物裂缝监测)、简易超声波位移计(量程大、非接触、阀值报警,使用于各种滑坡裂缝监测)和简易雨量计进行监测预警。
对于泥石流灾害群测群防监测,可以使用简易地声监测仪(多通道、阀值报警)、泥石流视频预警仪(震动或视频变化触发工作)和简易雨量计进行监测预警。
三、地质灾害宏观地质观测法
所谓宏观地质观测法,是用常规地质调查方法,对崩塌、滑坡、泥石流灾害体的宏观变形迹象和与其有关的各种异常现象进行定期的观测、记录,以便随时掌握崩塌、滑坡的变形动态及发展趋势,达到科学预报的目的。 该方法具有直观性、动态性、适应性、实用性强的特点,不仅适用于各种类型崩滑体不同变形阶段的监测,而且监测内容比较丰富、面广,获取的前兆信息直观可靠,可信度高。其方法简易经济,便于掌握和普及推广应用。宏观地质观测法可提供崩塌滑坡短临预报的可靠信息,即使是采用先进的仪表观测及自动遥测方法监测崩滑体的变形,该方法仍然是不可缺少的。
一般情况下,突发性灾害很难捕捉到斜坡体上的短暂瞬时宏观变形形迹和其它异变现象;而累进性灾害在一定时段内斜坡体上均有明显的宏观变形形迹及其他异变现象,这些宏观变形形迹及异变现象称之为灾害前兆信息。准确捕捉这些信息并进行动态综合分析这些前兆信息,对灾害的防治和预测预报,减灾防灾有重要的意义。
地质灾害的发生通常具有综合前兆,单一由个别前兆来判别灾害可能会造成误判,带来不良的社会影响。因此,发现某一前兆时,必须尽快查看,迅速作出综合的判定。若同时出现多个前兆时,必须迅速疏散人员,并尽快报告当地主管部门。
四、监测次数和时间
旱季每15天监测一次。雨季4—7月每5天监测一次(如规定每月5日、10日、15日、20日、25日、30日),如发现监测地质灾害点有异常变化或在暴雨、连续降雨天气时,特别是12小时降雨量达50mm 以上时,应加密监测次数,如每天1次或多次,甚至昼夜安排专人监测。
地质灾害工程治理
一 崩塌治理工程 : 清除危岩,对于规模小、危险性高的危岩体采取爆破或手工方法清除,消除危岩隐患;对于规模较大的崩塌危岩体,可清除上部危岩体,降低临空高度,减小坡度,减轻上部负荷,提高斜坡稳定性,从而降低崩塌发生的危险程度;在崩塌体及其外围修建地表排水系统,填堵裂隙空洞,以排走地表水,减少崩塌发生的机会;加固斜坡、改善崩塌斜坡的岩土体结构,增加岩土体结构完整性;采取支撑墩、支撑墙等支撑措施防治塌落;采取锚索或锚杆加固危岩体;采取喷浆护壁、嵌补支撑等加强软基的加固方法;对于在预计发生的崩塌落石的地带,在石块滚动的路径上修建落石
矿山地质灾害的防治措施
[中图分类号]P694 [文献码] B [文章编号] 1000-405X(2014)-1-188-2
在社会生产活动中,不可避免会发生不同类型的地质灾害,这些灾害易造成不同程度的经济损失,严重的还会出现人员伤亡。在相关统计中,地质灾害的主要类型有滑坡、泥石流、崩塌,这些在大多集中在汛期。引发地质灾害的原因主要包括人为因素、地质构造因素以及气候环境因素。由于我国地质灾害监测技术起步较晚,使得很多地质灾害难以及时发现,进而引发严重的安全事故。为了提高地质灾害防御能力,发挥气象科技对社会经济发展的保障作用,构建地质灾害监测系统具有十分重要的意义。
1地质灾害监测系统的建立
1.1地质灾害监测系统概述
要建立地质灾害监测系统就需要运用到现代信息技术。针对地质灾害监测系统在哪些方面的需求及其实际效果,根据不同地质灾害实际情况进行设计,确保整个系统能够对地质灾害起到有效的预防作用。地质灾害监测系统是一个将计算机软硬件相结合的自动化网络信息管理系统。以客户机和服务器为主题,地理信息系统技术为支撑,采用三维地理信息系统作为展示分析平台,以水文地理性质为依据,空间属性作为数据基础,将数据采集、管理、分析、地图等各个方面的内容融为一体,利用数据库管理技术和语言编程技术,把灾害预警和管理作为系统构建的主要目的,实现系统监测、图像接收及处理、数据信息收集及处理等一体化。
1.2地质灾害监测系统构成
在进行地质灾害监测系统设计工作时,整个系统的构成要结合实际情况进行设计,整个系统由系统终端设备、上下层软件三个部分组成,利用通信服务器接受系统终端所提供的数据信息和图表信息,并利用通用分组无线服务技术将各类数据、信息、图片传输至中心。
1.3地质灾害监测系统功能
利用三维地理信息系统功能对地质灾害中各类信息进行收集和整理,并综合各项信息数据进行系统分析,为地质灾害监测预警提供有效的信息数据和决策支持功能。
(1)降水量监测系统
雨量监测系统是地质灾害监测系统的重要组成部分,它采用先进的雨量遥测仪器,对采集到的降水量资料通过GSM网络进行无线通讯,在采集数据信息的过程中,时间为一分钟,而向中心站传输数据的时间是十分钟一次,通过这种方式为地质灾害地区的降水量提供准确的监测信息。系统中心站通过自动接受传输数据信息,并利用数据库将监测得到的降水量资料进行存档。要准确监测出监测点的降水量信息数据,根据雨量监测点地理信息和降水资料,建立图像显示系统和信息服务系统。在互联网上以Web的形式为地质灾害监测点提供地理信息、交通信息、安全隐患信息以及地质灾害发生预案信息,通过这种形式来现实监测点实时降水量,并实现雨量信息资源共享。
(2)自动降水量监测点
系统要建立雨量监测数据库,为各个监测点地质灾害分析和预防提供科学有效的信息数据。根据不同地区的降水量情况,建立自动降水量监测点,为开展监测点地质灾害预警报告和信息提供强有力的支持。气象局和国土资源局可以根据地质灾害监测点的降水资料来分析监测点可能引发的地质灾害,并确定其灾害等级,结合各方面的信息内容,逐步完善各项工作任务和相关信息的。对于一些乡镇地区,该地区政府部门通过一切信息手段来向社会及民众传达监测信息,切实将监测信息传达到位。
(3)预警预报
在系统预警预报方面,要充分结合气象局对未来一周降水量的预报情况,根据降水量在地质灾害监测点的分布特点,制作地质灾害等级。当地质灾害监测点发生一些破坏性较大的灾害性天气,会引发地质灾害时,可以将雷达系统中所监测到的实时信息下载到信息资源共享系统中,并进行准确的预报分析,为各地质灾害监测点提供准确的预警信息。
1.4系统特点
(1)数据准时发送
该系统在开发阶段,均由数据平台进行分析,分析目标为各数据终端,主要方法如下:对开放式接口进行对接和设计,那么当灾害发生时,其网络问题以及数据资源状况能够被及时设定,流转方向也能得到控制。该系统能够针对多种数据进行准时的、同步的接受和发送。
(2)预警指标科学可靠
该系统在预警方面设置了新的方式,即临界报警,临界报警能够有效对四种预警级别进行监控,对二套指标进行及时预警,属于较为科学、较为可靠的指标。
(3)生成历史性数据
该系统在历史性数据的生成和检测方面有独特的方式,例如通过分析极值引擎,从而提高对灾害的预防和决策。及时建立基站,每一小时监控一次,三小时后监控一次,六小时后再进行监控,最后的监控安排在24小时后,通过上述监控,系统能够自动生成历史性数据以供参考。
(4)共享数据
该系统的架构采用SOA技术,也称面向服务技术,该技术能够有效将数据和应用进行点对点的透明操作,例如社会市场信息、工业情报、水雨情等方面。相关工作人员能够将上述数据加以利用,将空间内部的数据进行共享;数据系统能够将数据库和其中的因子加以利用并联接,在数据库之间进行共享。该系统能够通过自身的数据共享实现防汛指挥的信息共享。
(5)预防为主
如果某地极易发生山体滑坡,那么就应该在该区及时建立相关检测机构,对该区的降水量进行监测。系统能够对相关预设信息进行专业分析,并建立较为稳定的、操作简单直接的预警系统,从根本上确保人民的生命安全,以预防为主,例如防灾、减灾、避灾,最终的目标为:灾害发生之前及时预防,灾害发生时及时救援,灾害后抢险及时,对待灾害的同时要确保主动的地位。
2结束语
引言
我国是一个多山地的国家,特别我们重庆,深受滑坡、崩塌、泥石流等重力地质灾害的危害。群测群防监测手段大多采用人工收集方式,存在数据收集不及时、信息覆盖面不足的缺点。其他传统地质灾害监测手段存在诸多缺陷,不能满足社会与工程建设的基本需求。2012年的《山洪地质灾害防治规划》、《国务院关于加强地质灾害防治工作的决定》,明确了在我国地质灾害易发区建立地质灾害调查评价体系、监测预警体系、防治工程体系和应急体系的任务,其中,建立专业监测和群测群防相结合的地质灾害监测预警体系是一项很重要的内容,基于传感器网络技术发展监测预警体系建设是未来非常有前景的发展方向。
1 传统地质灾害监测手段的不足
传统的地质灾害监测具备以下几个缺点:
(1)野外布设的系统通常无法做到实时智能化的采集数据(通常间隔2-4小时进行一次),导致很多时候不能有效地监测地质不稳定体;
(2)对于所采集的数据经常会受到条件的限制而无法及时传回地质工作人员手中,大多时候需要专业人员到现场进行采集;
(3)对动物、风等非地质移因素的影响原拉绳式位移监测系统无法有效排除干扰,往往造成地质人员的误判[1]。
本文所介绍的系统已经做到了对地质不稳定体进行自动化监控和预警,具有30-50次/60min的数据监测频率,且采用智能延时处理技术,避免非位移数据所带来的干扰。配合远程数据管理系统实现了无区域性限制、失稳智能分析预警。
2 该智能监测系统的组成及优势
2.1 系统组成
智能监测预警系统包括智能化监测设备和智能化监测预警信息平台。
(1)智能化监测设备
本系统的智能化监测设备由以下四个部分组成:拉绳位式移计、模拟信号预处理模组、GSM网络传输模组、太阳能电池模组。
(2)智能化监测预警信息平台
本系统配备远程数据管理系统RDMS(Remote Data Management System)可查看实时数据及时进行远程参数控制(报警阀值设置及报警方法、数据共享及备份、日期时间及采集发射时间周期,各种控制参数设置、数据查询及曲线绘制、报表输出等)。同时设备拥有整体的超低电能消耗,专为地质灾害野外实际需求设计,可长时间、高可靠度工作,实现实时无间断的监控。
2.2 系统优势
本监测系统相比其他的地质灾害智能监测设备实现了24小时不间断监测,并配备了远程数据管理系统对所采集的数据进行分析和处理,达到智能预警效果。在设备抗干扰方面,采用了延时处理技术,对动物、风等非地质移因素的影响进行处理。位移数据通过GSM网络传输至云端平台,实现了无区域性限制的实时监控。选用具有低功耗高效率的电子元件,在野外持续工作7000小时以上。
3 案例分析
2016年1月,本团队来到了万盛经开区腰子山不稳定斜坡体进行实地测试。在该不稳定体后援上下两侧安装了拉绳式位移监测装置,其中一侧安装在后缘上部稳定基岩中,另一侧安装在不稳定斜坡体上。
在调试完毕后,我们成功的在手机终端接收到位移数据(见图1),在之后的时间段内通过手机利用覆盖各地的GSM信号稳定的接收到监测数据。
监测数据显示:在1月8日到10日期间,该观测点发生了1.45cm的位移。在1月10日到18日这段时间,位移数据持续增加,最高达2cm。由于该不稳定斜坡变形破坏模式为蠕滑-拉裂型破坏模式。在此类不稳定体的后缘裂隙如果发生位移持续增大的趋势,则说明该斜坡可能进入滑动阶段。根据远程数据管理系统对该变形模式数据的预判处理,自动的发出了滑坡警告。
事实证明,该地于2016年1月21日晚上22:50左右,斜坡后缘局部发生了表层位移(见图2)。导致位于后缘处的一处单层居民房墙体损坏。由于该系统及时预报,居民及时的进行了避灾准备,减少了危害造成的损失。
此外,我们在重庆市江津区油溪镇杀牛洞、云阳渠马镇渠马村、云阳双土新集镇、云阳新津乡老集镇等地的不稳定斜坡体上也安装了地质灾害智能监测预警系统。数据显示以上监测点位移没有发生明显变化,这也与以上地点斜坡稳定现状相吻合,且数据读取稳定。
4 成果及技术总结
(1)本监测系统相比其他的地质灾害智能监测设备实现了整体自动化监控位移,所配备的远程数据管理系统RDMS对所采集的数据进行分析和处理,是目前安全监测领域较为完善的数据管理软件。
(2)通过配备的远程数据管理系统对数据的处理也实现了整体自动化监控地质不稳定体。
(3)在设备的抗干扰方面,RDMS采用了延时处理技术DHS,对动物、风等非地质移因素的影响进行处理,保证了地质不稳定体的位移数据的真实性,数据通过GSM网络传输至云端平台,从而实现了无区域性限制的实时监控。
(4)在本系统的内部元件选择方面,选用的是具有低功耗高效率的电子元件,其中包括自主研发设计出了专为地质灾害野外需求的GSM网络数据透传模块,该模块具有超低功耗的智能数传模块,通过对这类模块的选用以及两块太阳能电池板对蓄电池进行实时充电供能,从而做到了本系统可以安装在野外持续工作7000小时以上的先进科技成果。
(5)本团队研发的地质灾害监测预警系统,现已经成功申请了四项实用新型专利。
参考文献
[1]韩子夜,薛星桥.地质灾害检测方法技术现状与发展趋势[J].中国地质灾害与防治学报.2005,16(3):138-141.
[2]林恢亮.试析我国地质灾害的监测方法与发展趋势[J].科技信息:科学教研,2007(26):13-13.
[3]重庆有效处置严重地灾险情后重建综合防治仍需加大投入(新华社国内动态清样[Z].第4106期.
[4]郭希哲.地质灾害防治[M].水利水电出版社,2007,11-80.
[5]国土资源部.关于印发《全国地质灾害防治“十二五”规划》的通知国土资发〔2012〕73号[Z].