数字通信技术范文

时间:2023-03-10 14:51:02

引言:寻求写作上的突破?我们特意为您精选了12篇数字通信技术范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

数字通信技术

篇1

通信产业是国民经济结构的重要组成部分,渗透在各行各业中,没有通信技术的服务,各行业的正常运行和发展都会受到严重制约,可以说,不管是人们的日常生活还是工作生产都已经离不开通信技术,一旦出现特殊的社会环境,迫使人们不得不减少外出而需要在室内完成工作或者学习,这时候就需要强大的通信网络来支撑,所以通信技术的发展显得至关重要,随着社会的进步,对通信技术也不断提出更高的要求,只有满足这些需求,通信产业才能更好的生存和发展。当前,我们早已迈进了数字通信时代,所以对数字通信技术进行分析,展望其未来的发展具有重要的现实意义。

1数字通信技术的原理

数字通信系统模型如图1,数字通信就是利用数字信号进行信息的传递,所谓数字信号,在电子电路中是采用二值逻辑中的1和0来进行信息的表示,用多位二值数码的组合表示不同的信息。而在现实中,大多数信息都是模拟信号的形式,可以通过模数转换将其转换为数字信号,然后就可以在数字信道中进行信息的传递。为了保证信息传输的可靠性和保密性,以及为了提高信道的利用率,在传输之前通过对数字信号采用不同的编码方式,能够大大提高抗干扰能力,降低外界或者系统自身噪声的干扰。再利用调制器对信号进行调制,调制之后的信号频谱得到扩展,更适合在信道中传输,充分利用信道,提高传输性能。同时,在数字信号系统中,同步也是非常重要的环节,如果时钟同步或者帧同步不准确,也会直接导致信息出错。信号通过有线或者无线信道传输到接收端后,再经过解调、译码后可恢复信息。在数字通信系统中极其重要的技术还包括程控交换,在最初的电话交换机的基础上逐步发展为数字程控交换机,利用存储着交换控制程序的计算机来控制信息的接驳,信息的类型从最初单一的语音发展为多种形式的数据信息,程控交换机的使用使得通信系统的维护管理更加便捷可靠,增强了灵活性,功能更全面,在一定程度上,通过对软件的控制来增强硬件的功能扩展,从而更好的提供通信服务。

2数字通信技术的优点和缺点

2.1数字通信技术的优点

(1)数字通信技术具有很好的抗干扰性能。信息在通过信道传输的过程中,不可避免的会受到来自外界或者自身的噪声干扰,但是数字信号不同于模拟信号,数字信号本身是离散的信号,通常采用二值逻辑来表示,实际应用中可以用脉冲的两种不同状态代表1和0,只要能控制噪声信号不严重破坏脉冲的两种状态,就可以在接收端被识别,在这一点上,模拟信号是不能够相比的,噪声对模拟信号的影响是很明显的,很容易使信号失真,所以相对来说数字通信技术的抗干扰能力强于模拟通信技术。(2)数字通信技术有较好的保密性能。用数字信号进行信息的表示、存储和传输,更便于对信息加密,可以将数字信息进行各种运算处理,对其进行伪装,常用的方法就是采用密钥技术,一般密钥很难被外界破解,从而保证了通信信息的保密性。(3)数字通信技术能实现远距离的高质量信号传输。信号在传输过程中,距离越长,损耗越大,那么就必须对信号进行放大,但是同时也会放大噪声,甚至噪声可能会覆盖有用信号。在采用数字通信后,由于数字信号的波形在失真后可以通过整形电路恢复原有的信息,利用再生中继器可以大大增加传输距离,同时又保证了信号的不失真性。(4)数字通信技术支持多种形式信息传输。随着计算机、多媒体技术的发展,人们对信息的需求呈现多样性,但是不论何种形式的信息,都可以转换成数字信号,所以数字通信技术的普及也促进了综合业务数字网的形成。(5)数字通信系统普遍采用大规模集成电路,具有体积小、重量轻、耗电低、后期维护方便等等优势。另外随着光纤技术的发展,现代通信大量使用光纤作为传输媒介,大大节省了成本,提高了传输速度,加强了信息的保密性。

2.2数字通信技术的缺点

篇2

中图分类号:TN914.3 文献标识码:A 文章编号:1007-9416(2014)05-0056-01

1 引言

在广播传输中,为了促进传输质量的提高,为人们接收广播创造良好的条件,离不开相关技术的运用。数字微波通信与卫星数字通信技术在通信领域具有重要意义,对提高传输质量具有重要作用,是广播传输中不可忽视的技术类型。下面将结合广播传输的实际工作,对这两种技术的运用进行探讨分析。

2 数字微波通信技术在广播传输中的运用

2.1 基本的原理

在空气中传播的时候,微波与光波的传播特性相同,呈现出直线前进的方式。传播中如果遇到阻拦就会被反射或者阻断。数字微波通信的方式主要是视距通信,传输中容易受到多种因素的负面影响,例如地球曲面等。如果需要进行远距离通信,应该采用接力传输的方式,对信号进行多次中继转发,从而满足传输工作的需要,到达指定的地点。在数字微波传输线路中,终端站位于线路的两端,而中继站则位于传输线路上,一般隔50km设置一个,整条线路上设有几个甚至几十个。它们的作用是接收数字信号并进行放大,转发至下一个中继站,通过这种方式达到提高数字信号传输质量的目的。数字微波通信常用频段为1.4GHz、4GHz、7GHz、8GHz、13GHz、15GHz,广播系统常用8GHz频段。

2.2 功能与特征

微波频率高,波长较短,可用频带宽,频率在300MHz―300GHz之间,具有其他电波不可比拟的优势。数字微波信息容量大,传播质量高,满足实际工作的需要,包括卫星数字通信系统在内的数字通信系统都工作在微波地段。另外,数字微波网络组网灵活,传播质量高,建设速度快,能够节约投资,受自然环境的影响较小,具有较强的抵抗自然灾害的能力,是网络传输的重要方式,得到十分广泛的运用。

2.3 具体的运用

数字微波通信通过地面视距进行广播节目信息传送,传输过程中运用数字化处理技术,这样不仅能够抵抗传输中遇到的干扰,还能够提高传输质量,更好满足广播传输的需要。广播电台运用多路数字传输终端设备,设备包括发端机和收端机,并拥有数字微波接口和光端接口。发端机可将信号、数据转换成数字序列,送往微波调制机和光调制机传送,然后通过功放和天线发射出去。收端机将收到的码流进行信道解码,纠错解码电路。对广播电台节目信号来说,它能够通过数字微波通信系统完成,传输线路两端设有传输设备,发挥各自的功能,完成信号的传输,满足广播对信号的需要。

3 卫星数字通信技术在广播传输中的运用

3.1 基本的原理

广播卫星有C波段和Ku波段转发系统,发射站将广播电台播控中心送来的信号进行处理,调制、上变频、高功率放大后,向卫星发射C波段和Ku波段信号。同时也接收卫星下行转发的微波信号,监测卫星转播节目质量。星载转发器接收地面上行站送来的微波信号,经放大、变频、放大后,发射到地面服务区。

3.2 功能与特征

卫星数字通信能够实现两个或者多个地面站的长距离大容量通信,是广播传输的主要方式之一,具有自身显著的特征,其覆盖面积十分广泛,信息传输质量高,能够节约投资,方便维护,信号容易处理,可以满足更多用户的需要,在实际工作中得到广泛的运用。

3.3 具体的运用

3.3.1 卫星数字广播

在广播电台数字传输系统中,卫星数字广播传输是不可缺少的。整个节目的采集、制作、播控,所有节目信号通过光缆、微波传输至卫星地球站,实现广播电台节目全面上星。

3.3.2 卫星转播车

在传输过程中有多种不同的传播方式,卫星、地面微波、地面电信线路都能够实现传播,传播内容包括视频、音频、网络节目。在具体运用中,主要为大型转播现场提供综合传输信号,同时可以作为现场视频、音频信号采集、播控平台,能够实现四路标清视频转播信号,多路音频转播信号的采集,控制。

3.3.3 现场直播车

通过运用该方式,能够实现广播节目、网络视频、音频直播,系统包括车载平台、节目操控系统、电信传输系统等。通过现场直播车的支持,能够为节目直播提供平台,为频道提供现场直播机房,有线数据通讯,卫星传输等,还能够为电台网站多路视频直播信号采集系统,控制系统等等,满足现场直播的需要,更好的为观众接收节目提供方便。

4 结语

总之,数字微波通信与卫星数字通信技术具有自身的显著特点和优势,满足广播传输的需要,在具体运用中具有重要作用。今后随着技术的发展和进步,多元化、网络一体化是这些技术的发展趋势。在具体工作中,通过这些技术的运用,不仅会提高系统集成化水平,使系统的功能进一步增大,增强广播传输的安全性,还会提高广播传输的质量,更好的满足人们需要,推动广播传输的进一步发展。

篇3

前言:最近这些年,电子式互感器越来越多的应用于各地的数字化变电站。电子式互感器能够大面积普及,主要要感谢今年嵌入式技术和以太网的通信技术获得了长足的发展。电子式互感器与传统的电磁式互感器相比,具有相当大的优势,今后取代电磁式互感器的地位已属必然。电子式互感器在功能上分为数字信号处理和数字通讯两大部分。由于电气量采集方式的改变,数字同步问题逐渐凸显,成为了一个亟待解决的问题,另一方面数字通信问题也不可忽视。本文将重点研究数字同步和数字通信问题,为当前电子式互感器的发展提供解决方案。

一、电子式互感器的概念和特点

1、电子式互感器的概念。电子式互感器分为两个大类,一种是光学无源式,另一种是非光学有源式。这两类的共同特点是都要通过采集器来采集模拟电信号,然后进行将采集来的电信号下传的功能。光学无源电子式互感器和非光学有源电子式互感器的主要区别在于传感原理和外部接口。非光学有源电子式互感器又有一个别名,叫做罗氏有源电子式互感器,因为在这种电子式互感器的内部结构中,需要使用罗氏线圈来将电信号下传,拥有广阔的应用前景和强劲的发展势头。而光学无源电子式互感器则是利用光学原理来进行传输信号的工作,在信号变换上有自身的优势[1]。

2、电子式互感器的特点。电子式互感器之所以能够快速普及,是因为它解决了过去的电磁式传感器存在的一些固有问题。首先电子式互感器在精度上有了较大的飞跃,而且它的精度比较不容易受到外界因素的影响,相对稳定。其次,由于电子式互感器卓越的绝缘性质,使它在使用时的安全系数大大提高了。第三,电子式互感器的动态范围大,规避了其他互感器开路或者短路的意外风险。第四是电子式互感器没有铁芯,不必担心铁磁谐振。第五是电子式互感器灵活、轻便,适合于移动工作[2]。

二、电子式互感器与数字同步

数字同步技术对于整个电力系统有着特殊的重要意义,由于电力设备类型的不同,不同的电力设备产生的电压信号和电流信号都必须通过数字同步技术来实现统一。在目前的技术水平限制下,PPS码和B码是使用最为广泛的两种同步方式。这两种同步方式的共同点是能够以秒为单位来实现同步,其同步频率较高,能够对数字偏差进行实时地调节[3]。在电力系统中,各种不同种类的设备从产生电压和电流信号到数字同步处理完成的整个过程当中,最严重的问题就是告诫FIR滤波器导致的群延迟,这是导致数据同步出现延时的一个主要问题[4]。解决这个问题,光是靠从前所谓的插值运算是无法解决的。因为传统的插值运算方法在采集到处理的整个过程中无法对电流和电压信号进行有效的操作和控制。要解决这个问题,必须换一个思路,尝试用一种新的方式,即两极同步的方式来进行处理。两极同步的方式的优势主要有:首先两极同步可以用数字移相器将滞后的数字信号前移;其次,可以在使用差值计算的同时对信号进行精确处理。但是这个方式仍然有一些问题,在实际运用中要特别注意。

三、电子式互感器与数字通信

在讨论电子式互感器与数字通信技术的关系时,需要先了解使用IECE标准的MU服务器的基本结构。如果我们熟悉MU服务器的基本结构,我们就应当能够发现,在实际工作过程中,服务器所采集的十几路数字信号最后被分配到了两路数据集当中。在现有的技术水平限制下,测量值和保护值在发送时需要考虑到多种因素,为了在实际上保证数字通信的顺利进行,需要在发送时把握好时间差。这是因为采样值需要和对应的电压和电流信号一起发送。

结论:在现代社会中,电是所有行业的生命线,维护电力系统的高效与稳定是每个电力人的夙愿和追求。由于不同的电子设备标准配置千差万别,电压和电流信号并不相同,就需要在数字化变电所中实现互感。新的电子式互感器解决了以往电磁式互感器的问题,逐步普及,进而取代了电磁式互感器的地位。本文首先婆媳了电子式互感器的概念和特点,介绍了电子式互感器之所以能够快速普及的原因,进而深入讨论了电子式互感器与识字同步技术和识字通信技术的关联和应用以及相关的局限。本文在讨论解决技术相关问题局限上提出了自己基于实际研究工作的观点和看法,为电子式互感器的应用做出了微薄的贡献。

参 考 文 献

[1]罗彦.IEC61850标准在智能变电站过程层中的应用研究[D].大连理工大学,2012.

篇4

关键词:

电子式互感器;数字同步;数字通信

在数字化变电站运行过程中,电子式互感器在电力测量和电力保护方面发挥着非常重要的作用。在实际应用过程中,数字同步技术和数字通信技术是非常重要的部分,直接影响着电子式互感器的性能。通过应用数字同步技术和数字通信技术,可以将已有的信息成果转化成准确性、可靠性更高的生产力投入电力系统中,可以显著降低电力系统运营成本,促进电力行业的持续化发展。

1电子式互感器介绍

1.1电子互感器的基本概念

在进行电子式互感器结构设计时,需要借助采集器来完成高精度采集模拟电信号的工作,这样才能确保电信号进行正常的传递,完成工作。在电子式互感器中,最为重要的内容是外部接口数字化和传感原理新型化。在光源无源电子传感器中,使用光学器件来进行信号的传输和采集,这样才能提高信号的传递功能。除此之外,还存在一种非光学有源电子式互感器,借助高压测电子回路来对高精度的电子信号进行采集,使用罗氏线圈等方式来对数据进行应用,并且传输信号给低压电位[1]。

1.2电子互感器的主要特点

随着社会的不断发展,科学技术也在快速的发展过程中。在电力系统中,数字化和智能化也在快速的普及,电子式互感器能够充分的满足实际的需求,并且其具备较高的精确度,设备在不同的运行状态下都可以进行很好的测量。与此同时,电子式互感器具有良好的绝缘性,操作起来也十分安全,并不会存在短路或者开路的现象。在电子式互感器中,不存在铁芯,所以不会出现铁磁谐振的现象,并且便于携带、轻便。

1.3电子互感器的配置原则

处于110千伏以上的电压环境中,需要对资金的投入量和技术问题进行全面的考虑,可以使用常规互感器和电子式互感器来进行配置;处于66千伏以下的电压环境中,以配置敞开配电装置为基础,再使用常规传感器和电子式传感器。

2电子式互感器的整体框架

如下图1所示为电子式互感器的整体框架图。其中,高压测信号采集器的功能是对电信号进行模拟,并且在高精准度下对信号进行采集和上传[2]。因此,将电子式互感器的采用机制下移至MU,省去了信号采集器向脉冲传递的操作,大大简化的信号传递系统。多个路线在信号采集结束之后,在MU处进行汇合打包,使用通信协议栈向以太网来进行采样测量值数据包的发送,这一操作过程也直接决定了MU的特点即功能:多任务性和时效性。但是,从另一方面进行分析,由于IEC61850标准的具备更强的灵活性和互操作性等特点,使得MU的时效性大大减弱,并且使得通信协议栈更加的复杂化。为了有效的解决上述问题,降低任务实现的难度,制定出最新的标准即,IEC61850-9-2LE。制定的该项新标准在数据采用控制方面进行了调整,选择特地通信服务反映到以太网的链路层,仅仅对协议集的测量值发送服务进行保留,从而大大降低了互操作性,对电子式互感器进行了简化。由于需要对采用测量值进行保护,则在PHY将原有的保护通道扩展为8个,采用点对点的方式来对其进行保护。

3数字同步技术的应用

对于电力系统来讲,由于不同设备在运作过程中产生的电压信号和电流信号不同,并且需要借助公共时钟脉冲处理之后才能进行同步。现有的技术下,使用最为广泛的公共时钟脉冲为:PPS码和B码。这两种类型的公共时钟脉冲主要运用在电压和电流信号的处理过程中[3]。其主要的优势是能够以秒为单位进行同步,确保电压和电流的频率按照每秒一次的状态进行工作。以此基础所形成的以太网PTP时间计算方式能够有效的从传递时间在时钟节点运行过程中所形成的PPT报文的计算方式来进行偏差数值的获取,这样才能够有效的对数值进行调整实现同步。在数据值输送过程中,MU在对所采集到的信息进行数字化处理的过程汇总,能够有效的借助信号干预能力来对信号进行延迟处理,从而有效的解决信号在A/D转换过程中出现的延迟现象。信号在延迟过程中,借助FIR滤波器群来对延迟之后的信号进行处理,并且与MU数字化处理之后的信号进行同步延迟,借助以太网控制器来对所转换的数据信息进行发送。从这一角度进行分析,在电力系统中各种类型的设备在电压和电流信号的产生、传送、处理过程中,最为关键的部分是高阶FIR滤波器装置。假设所有数据信息采集的周期为50us,一般性64阶结构FIR滤波器装置能够起到的延时时间为1.5ms。从这个方面来进行分析,只借助传统意义上的插值运算方法是无法对设备的电流、电压信号在信号采集、传送、处理过程中所产生的延迟问题技能型补偿。因此,需要采取有针对性的方式来对其进行处理,但是,需要注意以下几方面的问题:首先,借助数字移相器来对延时的信号进行处理并且在获得相位均衡的过程中,需要借助阻容网络和运算放大器来组成的结构对移相电路进行表示,电路示意图如下图1所示。由图1可以看出,模拟移相器连续传递的数值与电路示意图1中所显示的电阻值、电容值有着直接的关系。因此,在信号传递、采集和处理过程中引入拉普拉斯变换复变量参数,能够有效的对系统的连续信号进行获取,并且有效的模拟角频率和拉普拉斯变换复变量参数将其引入到移相器中从而进行函数传递。通过对相拼特性进行分析之后发现,图1所示的整个模拟移相器在进行数据处理过程中所显示的移相数值在0-180°范围内进行变化。对模拟移相器进行校正和调节之后,能够有效的获取出方差函数最小点的参数,最终能过获得数字同步处理所需要的数值。其次,使用插值重采样操作方式能够有效的实现电子互感器中数据信息的同步传递,这也是现阶段中使用最为普遍的一种方式。MU能够有效的兼容并且借助两种不同类型的格式码。此外,在FPGA支持下的数据同步处理模块中,能够有效的将时间间隔控制在1S内,并且对同步脉冲头进行均匀的处理,从而形成多个均匀的时间切片,每一个时间切片位置都有一个独立的采样脉冲信号与其相对应。因此来讲,以数据采集和传送过程中所获得的采用脉冲信号为基础,来对数据信息进行插值处理,能够有效的实现数据信息的同步。

4数字通信技术的应用

当传感器处于高压环境中时,一般会出现一些数值较小的模拟量。在数据信号进行传递的过程中,为了有效的降低对能源的损耗,一般采用离散数据信号来进行传递。但是,在光纤通信过程中,可以将光信号转变为电信号,降低了能耗的损耗,并且完成了信号传递工作。与模拟通信进行比较,数字通信具有较高的传递质量,这也是为什么在通信系统中使用广泛的重要原因之一。在数字通信中,采用数据编码的方式来对电路中的电信号进行调制,使其转变为光信号在光纤中进行传递。借助光电转化器来对光信号进行接收,然后再将光信号转换为数字信号,从而完成信号传输的工作。数字广信通信中最为主要的信号是光源。因此来讲,选择传输码就显得极其的重要。大多数码型都可以使用在光纤通信中。但是,在实际的选择过程中,需要重点选择一些具有独立性的比特序列,这样可以大大减少获取或者接收失误码的现象。为了更好的对信号进行信息的提取,不能出现长串的1或者0,并且还需要对码速率进行有效的控制,降低码光功率的消耗。由于电子式传感器存在一定的传输距离,有可能无法及时的供应能量,因此,无法使用上述的编码方式来实现数据信号的传递。因此,借助数字传输的方式,使用数据编码、异步串行传输的方式来进行数据信号的传递,能够有效的保证数据的真实性和精确度。在光纤数字通信过程中,需要采用编码工具来对数字信号进行编码,然后再将数字信号转变为光信号在光线中进行传输。在电子式互感器中,也可以使用数字编码、信号转变的方式来进行信号的传递。通过对电子式黄安琪的特点进行分析,在数据信号传递的过程中,可以使用门电路触发器和双温触发器等。在数据开始进行编码之前,需要借助双温触发器来对数据的输出状态进行翻转,如果数据显示为0,则双温触发器的状态保持不变;如果数据显示为1,则需要再次对双温触发器进行翻转。采用这种编码方式进行数据信号处理时,为了更好的发挥其功效,需要对状态为0的编码电路进行确定,并且根据系统时钟频率的二分之一来进行数据时钟频率的确定。在低电压测,为了更好的对原始的数据信号进行解码,需要在低电压测对数据和时钟进行恢复,这样才能更好的解码数据信号。在数据通信技术的使用过程中,时钟信号的重要性不容忽视,直接对影响到电子互感器系统中信号的传递质量等。在进行时钟信号恢复过程中,主要是为了获取更加真实有效的数据信号,因此,需要将信号中存在的抖动和噪音去除,以便于更好的进行后续的工作。在这种情况下,系统才能提供更加真实有效的信号,对稳定的数据信号进行恢复,为系统的正常运行提供强有力的支持。

5结论

综上所述,电力式互感器作为电力系统运行状态控制和检测时常用的一种设备,对电力系统网络运行的稳定性优比较大的影响。随着科学技术的不断发展,数字技术在电子互感器中得到了广泛的应用,提高了电子式互感器的质量。

参考文献:

[1]杨新华,殷玉洋,韩永军.电子式互感器数字接口的研究与设计[J].工业仪表与自动化装置,2012,02:40-43+47.

篇5

2 专用无线数字通信技术标准

2.1 APCO-25(P25)

由美国电信工业协会(TIA)制定,经美国国家标准协会(ANSI)认可的标准。P25(Project 25)是ITU提出的全球开放的数字通讯标准之一。用户主要是军队、公共安全、交通运输、应急通信等高端专业用户。

P25标准的演进分为两个阶段,第一阶段采用FDMA (频分多址)技术,每个信道带宽12.5kHz,上行、下行传输速率均为9.6kb/s,兼容模拟技术;第二阶段采用TDMA时分多址双时隙技术,等效信道带宽6.25kHz,上行速率9600b/s,下行速率12000b/s。

P25标准是开放式的,允许各设备厂商的产品互相兼容;且具有向后兼容性,以融合现在的模拟通信技术。还包含了对语音通信加密的要求;并将12.5kHz的频谱带宽分成6.25kHz或等效的频谱,通过缩窄带宽,提高频谱效率,P25采用广域设计,中继基站功率可达100W、移动终端功率不低于5W。单个中继基站覆盖100km2,组建独立通信系统需要的中继基站数量少,适合广域覆盖、调度功能要求高的用户使用。

2.2 TETRA

TETRA(Terrestrial Trunked Radio ?C 陆上集群无线电)数字集群通信系统是ETSI(欧洲通信标准协会)为了满足专业部门对移动通信的需要而设计、制订统一标准的开放性系统,采用数字TDMA技术的专用移动通信系统。

TETRA数字集群通信系统可以在同一平台提供语音通信和数据传输,支持移动终端脱网直通互联,可实现鉴权、具有空中接口加密和终端对终端加密功能。还具有虚拟专有网络功能,可在一个物理网络同时为互不关联的多个个体、群组服务。TETRA具有频谱利用率高、通信质量好、组网方式灵活的优点,目前已实现如图像数据传输、移动互联查询等许多新的应用。所以 TETRA数字集群系统一投入商用就得到了迅速的发展。 TETRA 系统抗干扰能力强,支持用户点对点单呼、点对多点组呼、应答组呼、单向点对多点广播呼叫以及语音加密通话。

2.3 DMR

欧洲通信标准协会为了满足小范围用户对专用无线电通信的需要,制订了DMR(Digital?Mobile?Radio)数字集群通信标准。该标准主要应用在小区域服务,如中小企业、住宅小区等用户。

DMR标准采用TDMA技术方式,频率信道间隔6.25kHz,上、下行传输速率为9.6kb/s。DMR具有技术简单、中继基站和移动终端设备价格低,可扩展兼容模拟系统,网络建设简单,后期使用方便,维护成本低的优点。

2.4 PDT

PDT标准是中国自主的专用数字通信技术,由中国公安部牵头,国内主要专用通信生产厂家共同制定,可满足高端专用通信行业用户的要求。PDT标准遵循高性价比、大区制、可扩展和兼容DMR标准协议的五大原则,解决了多种应急通信网融合通信的问题。

PDT标准分为常规标准和集群标准两个版本,并兼容DMR标准。PDT标准采用TDMA多址方式,信道间隔6.25kHz、上下行速率为9.6kb/s,抗干扰能力强。在满足基本业务的同时,具有同播、频率资源动态分配等功能。PDT后续演进是提升传输速率和拓展业务功能。

为满足不同层次用户需求及实际网络建设需要,PDT标准支持单中继基站区域通信,也能组合成高效的多中继基站大范围的覆盖,以及全国范围应急通信指挥网的建设要求。在应对自然灾害、群体事件等紧急指挥调度中,能迅速接入现有GIS调度平台,实现组网灵活、指挥调度便捷、语音质量优及数据传输速率高等优点,并具有抗干扰能力强、安全保密的特点。

PDT具有频谱利用高,可广域组网,能从正现使用的模拟MPT1327标准平滑过渡到数字通信。该标准技术参数功能全面,同时系统结构简单,终端成本低,网络建设速度快,后勤运维成本较低。总之,PDT在专业无线通讯领域技术优势明显。其支持的隐私安全加密技术,特别适合公共安全用户保密需求

2.5 MCWiLL

MCWiLL(Multi Carrier Wireless Information Local Loop,多载波无线系统)是基于SCDMA衍生出来的宽带无线技术,建立在本地环路专网,可以满足不同行业层次的专网应用需求。

2.5.1 可以同时支持数据、语音宽带多媒体无线接入。

2.5.2 频谱利用率高:单基站占用5MHz的带宽,下行速率为15Mbit/s,上行速率为3Mbit/s,能支持300信道。

2.5.3 终端种类多样:有CPE、M-IAD、PCMCIA卡、无线话机、无线伴侣、PDA等类型。具有简单易用、方便灵活、即插即用、零安装等特点,开放第三方应用开发的终端通信模块,支持各种移动宽带接入应用,既可以直接与POTS电话、PC等设备直接使用,又可以通过IAD、互联网等设备来扩展可连接的终端数量,便于发展个体、中小企业和各种行业用户。以提供语音业务、无线宽带接入业务、农村信息化应用、城市信息化应用、无线远程数据采集与视频监控等多种业务。

3 专用无线数字通信技术发展前景

目前,由于知识产权的束缚,专用无线数字通信技术存在互联互通能力差。未能体现数字通信技术在频谱资源利用、系统设备、综合服务的共享和集中管理的优势,市场实际应用不尽人意。

专用无线数字通信系统为了促进规模应用,和进一步提高无线电频谱使用率,在应用上开始向系统共建共享的方向发展。将多个专用无线数字通信系统结合在一起统一管理和使用,具有共用频谱资源、通信业务、共享覆盖区域、共担费用等优点,有利于进一步开拓应用市场。

目前国际上正在积极开展宽带多媒体无线数字通信的研究工作。但是由于现有专用无线窄带数字系统自身体制的限制,向宽带化演进存在较多困难,这为我国在该领域提供了很好的发展机遇。可以说,建设具有我国自主知识产权的专用宽带数字无线通信系统势在必行。

篇6

数字微波属于通信过程中的一种传输方式,它主要是以微波的形式来完成数字信息的传输,在传输的过程中和电波空间进行有机结合,这样就能够对一些相互没有关联的数字信息进行传输,然后根据传输情况进行再生中继。一方面,微波通信技术是当今社会传媒中一种重要的、发展迅速的传输方式;另一方面,我国在通信技术领域有很多种技术,比如光纤通信的应用就非常广泛,这样就会使微波通信技术面临很大的竞争,微波通信技术就需要利用自身的优势去拓展发展空间,以满足通信的实际需求,并在发展中提高技术含量[1]。

1数字微波通信技术的特点

数字微波通信技术的特点包括以下几方面。(1)抗干扰能力强,线路噪声低数字通信比模拟通信的抗干扰能力强,同时在通信过程中不会累积太多的线路噪声。数字信号具有再生的能力,可以确保在通信过程中中继通信的线路噪声不会积累。如果通信过程中出现信号干扰导致信号产生误码,那么这些误码在整个传输中一般无法消除,将会在传输过程中不断地积累。(2)保密性强一般情况下,数字信号的加密功能比较容易实现,数字微波通信采用扰码电路,同时能够根据当前情况对加密电路进行设置。另一方面,数字微波通信中有一个天线设备,它具有很强的方向性,如果接收方和数字微波发射信号的方向有较大的偏离,将无法接收到微波信号[2]。(3)容易构建数字通信网对于数字微波通信技术,主要实现的是对数字信息的交互,能够方便地与各种类型的数字通信网进行交互,然后通过计算机来完成对交互的管理和控制。(4)占用空间少数字微波通信技术在传输过程中所占用的空间比较少,这样就可以降低成本,因为传输物质是数字信号,这样在集成性的设备中传输不会产生太多的能量损耗,另一方面,数字信号自身有着较强的抗干扰性,这样就可以降低微波通信设备的发信功率,正常情况不会多于1瓦特,在节能方面具有较明显的效果。

2微波通信技术在广播电视信号传输中的现状

当前,微波通信技术在广播电视信号传输中的应用非常广泛,我们通过以下5部分来进行分析。(1)广播电视的专用卫星一般包括C波段和Ku波段两个波段的转发系统,数字信息在传输时,广播电视台的播控中心首先把信号传输到发射站,发射站将该信号进行相应的调制后,再将信号以C波段和Ku波段信号发送到卫星。在实际传播过程中,卫星将微波信号发送到发射站,发射站再通过相应的设备和技术对卫星转播的节目质量进行监测。下一步是由星载转发器对各个上行站的微波信号进行接收,将接收到的信号进行检验,合格的信号需要再进行调制等相关处理,然后通过发射站将信号传输到各个服务区[3]。(2)由于电视广播传输过程中覆盖面积比较广、传输中信息质量比较高以及成本相对比较低,在维护方面也比较容易,因此在实际的数字信号传输中,卫星数字通信可以在多个距离比较远的地面站间进行通信,这样就能够满足更多用户的收看。(3)卫星数字广播作为一种传输技术,在广播电台数字传输体系中是非常重要的,该技术能够对节目进行采集、制作和播控等操作,把节目信号发送到地球站,其传输介质一般有光缆和微波。(4)数字微波的传输方式多种多样,主要包括微波、卫星以及光缆等,这些方式相互结合,共同完成数字信号的传输,实时地为视频直播、音频直播平台提供综合性的传输信号,同时能够在直播中对四路标清视频转播信号以及多路音频转播信号进行采集。(5)数字微波技术还有一个重要应用,即能够实现现场直播的传输。在每天正常的工作过程中,能够给节目直播提供应有的支持,使现场直播变得轻松便捷,同时能够为有线数据通信、电台网站多路视频直播中信号的采集以及卫星传输进行技术上的支持和帮助[4]。

3数字微波通信技术的发展前景

随着传媒技术的发展,光纤通信正在各个领域普及,给数字微波通信带来了很大的压力,但数字微波通信技术存在很多优势,因而在通信领域仍然有较好的前景。三网融合的发展如火如荼,三网既有竞争又有合作,一方面强调技术升级,服务统一,各网实现互通以及资源共享,共同为用户服务,另一方面又要各自发展,发挥优势,充分竞争。过去微波通信技术在广播电视方面有较多应用,当时我国建立了许多的广播电视无线微波传输网,这些网络覆盖范围广,从我国当前形势来看,这样的网络只能用于广播电视信号传输,造成了很多的资源浪费。在三网融合的大趋势下,微波传输技术需要根据当前形势,在广播电视网络基础上进行改造,将三网传输的方式进行统一,为广大客户提供专线服务,包括ATM和TDM等功能,通过数字微波通信技术对数字广播电视进行组网,完成移动终端的高技术和低成本覆盖,这样才能够大大节省网络终端的成本,更加充分地发挥优势,提升服务能力。宽带无线接入是一种通信技术,在高速数字传输业务激烈竞争的形势下,宽带无线接入将得到大力的支持和发展。

本地多点分配业务(LMDS)是宽带无线接入的一个代表,它主要在26~28GHz的微波段进行工作,通过和光纤以及卫星通信进行比较,我们能够发现LMDS技术在建设过程中所需成本最低,并且建设方便,在较短的时间内就能够实现组网,维护成本也相当低,所以LMDS被叫作无线光纤,LMDS在欧美已经有了较多应用,在我国也有广阔的发展空间[5]。

作者:温鹏翔 单位:黑龙江省新闻出版广电局微波总站

参考文献:

[1]常国锋.微波通信技术的概述[J].电子制作,2015,(01):162.

[2]赵彬宇.微波通信的主要技术与应用价值[J].中外企业家,2013,(35):215,217.

篇7

中图分类号:TD39 文献标识码:A

1 数字数据通信技术的概述

1.1 数字数据通信技术的优势。数字数据通信技术与传统的模拟数据通信技术相比有以下六大优势:(1)数字数据通信传输数据时是以数据帧为单位的,通过检错编码以及重新发送数据帧就能够及时的发现通信过程中的措施,通信的可靠性得到了提升;(2)包括视频和声音在内的各类数据类型都是可以被转换成数字信号的,从而在数字通信系统中进行传输;(3)数字数据通信技术有效的应用了加密技术,通信的安全性得到了充分保证;(4)在长距离的数字通信中,为保证数字信号不累积噪音以及其完整性,可以对继电器进行适当的整形和放大;(5)数字技术的发展速度更快,在有效的利用了集成电路后,很容易就会实现数字设备,而在超大规模集成电路技术快速发展的背景下,数字设备的成本和体积也都得到了明显降低;(6)随着多路光纤技术的普遍应用,数字通信的效率也得到了大大的提升。

1.2 数据通信中的三大指标。(1)数据和速率。其就是指每秒能传送的代码位数,其计算公式为S=1/Tlog2n,在这一公式中,T就是指脉冲的重复周期或是脉冲的宽度,n就是指调制的点平数,可见,脉冲的重复中期或是脉冲的宽度的倒数就是每一秒的单位脉冲数,公式中如果n=1/T,那么单位脉冲的重复频率实际上就是每一秒的位数。因此,信号经过调制后的传输速率也是一个重要的参数,B=1/T,其与T也是呈现出倒数的关系的,在相应的调制器中,每一个调制转换时间都有一个对应的代码,那么调制速率与传输的速率就是相同的,而如果是调相的四相信号,那么每一个调制转换时间所对应的代码位就是两位的,那么传输速率就是调制速率的二倍。(2)误码率。作为衡量数据通信系统在下沉上传输可靠性的主要指标,误码率就是指在数据传输的过程中,二进制码元出错的概率,其计算公式为Pe=Ne/N,其中,Ne代表传输错误的码元数,而N则代表传输过程中二进制码元的总数,举例来说,如果收到的是1000个码元,而只有一个码元出错了,那么误码率就是万分之一。(3)信道容量。信道容量的最重要指标就是数据的速率,其能够体现出信道传输数字信号的实际能力,在计算机系统中,比特是十分常用的一个二进制单位,而信道容量就是以每一秒能够传送的比特作为单位的。

2 数字数据通信技术的数字信号编码

2.1 基带传输。基带传输作为一种最简单的传输方式,其就是指在线路中直接传输数字信号的电脉冲,通常情况下,如果局域网是采用短距离的通信方式时,那么就建议采用基带传输。而如果传输的是数字信号,那么为了更好的表达出二进制数字,建议选择不同电压和电平的表示方法。

2.2 编码方案。基本的数字信号脉冲编码方案分为很多种,如单极性归零码、单极性不归零码、双极性归零码以及双极性不归零码等,其中,归零码与不归零码的本质区别就是码元和脉冲时间的全部时间的关系,如果发出的电流是小于一个码元的全部时间的,那么就是归零码,而不归零码就是指在一个码元的全部时间内,发出或是不发出的电流;对于单极性码和双极性码来说,两者的本质区别就是单极性码会累积直流分量,而双极性码的直流分量是不断减少的。

2.3 同步过程。在计算机网络和通信过程中,通常会采用位同步法和群同步法这两种方法:(1)位同步法。其就是指对于传送过程中的每一位数据,接收端与发送端都是保持同步的,实现位同步的方法又分为两种,即自同步法和外同步法,前者就是一种能从数据信号的波形中提取同步信号的方法;而如果是外同步法,是先有发送端发出同步信号,之后接收端才会接收信号;(2)群同步法。在这一系统中,群就是指一个字符序列,而传输的信息会被分成若干个群,序列中有起始位和终止位,并且在序列中用固定的事中频率来传输每一个比特。

3 数字通信、多路复合用和同步异步传输

3.1 数字通信方式。通常情况下,通信主要有并行方式和串行方式两种基本的方式,前者一般情况下都是用于近距离通信的,而后者则是用于远距离通信的。如果采用的是串行方式,那么在其传输数据的过程中,数据在通信线上传输,并且都是一位一位的,其主要具有三种方向性结构,分别为单工结构、半双工结构以及全双工结构。如果是单工结构,那么其只支持在一个方向上传输的数据,而如果是半双工的结构,其就是支持数据在两个方向上传输,在特殊的时刻才会支持数据在一个方向上传输,如果全双工数据,那么其就只允许数据在两个方向上传输。如果采用的是并行的通信方式,其就可以在两个设备之间传输多个数据位。

3.2 多路复用技术。(1)频分多路复用。这一技术就是指将物理信道的总带宽分割成若干个子信道,并且每一个子信道的带宽与传输单个信号的带宽都是相同的,每一个子带宽负责传输一路的信号;(2)时分多路复用。这一技术就是按照时间的顺序,将一条物理信道分为多个时间片轮,多个信号便可使用这些时间片轮,每一个复用的信号就会占用一个时间片,那么在一条物理信道上就实现了多个数字信号的传输。

3.3 同步传输和异步传输。在传输信息的过程中,接收端和发送端应在时间上保持同步,码元之间必须保持同步,同时数据块和字符在起始时间和终止时间上也要保持同步,通常情况下,我们可以采用同步传输和异步传输来实现数据块和字符在时间上的同步。同步传输就是指在传输一组字符的过程中,会加入一个或两个同步字符,这样接收端就能准确的判断数据块的开始和结束了,在字符信息块高速传输时常采用同步传输的方法;而异步传输则指一次用一位起始位开始和一位终止为结束的字符,这种方法的传输效率较低,但是结构十分简单,因此,在低速的终端设备中建议采用异步传输的方法。

结语

在计算机技术已经得到广泛应用的背景下,数字数据通信技术也必将应用的更加广泛,为了进一步的推进我国的现代化建设工作,我们也应大力的推广和发展这项技术。

篇8

中图分类号TN91 文献标识码A 文章编号 1674-6708(2012)64-0167-01

在某种工作的通信系统中,各部门的工作人员各负其责,即使是彼此没有相隔很远的距离,仍依靠互相通信的方式进行通话联系。与模拟通信的方式相比较,数字通信的主要优势为话音清楚、信息可靠、操控方便以及拥有较强的抗干扰能力[1]。在拥有诸多舱室的有规模的车辆中,因为要及时对每个舱室进行彼此的通话联系,有时,需要人员在车外与车内进行通话联系,甚至需要人员都在车外进行该方式的联系。另一种方式是进行诸多房间内人员的通话联系。对于各不相同的通话方式如一对一通话、通播以及一对多通话等,本系统均能够给予支持。

1 数字交换设计

作为通信仪器的重要技术,数字交换中仪器能稳定工作的保障依赖于交换电路的可靠性。通常在进行操作的时候应用Zarlink公司的MT系列芯片进行实际的应用,主要的优势就是操作简单;主要的不足就是设备有可能在生产的同时出现停产,进而需要对电路进行再次的规划[2]。当然伴随着FPGA容量的增加,在FPGA中应用自设电路进行数字交换的优势也越来越突出。自行设计的优点很多,不但可以节约仪器的成本,还可以增加仪器的稳定性,当然也就不必考虑停产的问题[3]。全双工数字交换的规划机理不复杂,较多的应用FPGA内部设计的方式进行数字交换。交换后的信息是经过交换矩阵得到的,信息将要置入的时隙是地址产生器2得出的位置,此位置同时受到外部数据的控制,可以通过将交换矩阵同一时隙的信息加到多个接收时隙中,就能够做到一对多的功能。

2 同步技术

数据信息作为想连续的码元序列存在于数字通信系统中,想要获得所发出信息的可信的判决结果,就要运用符号速率通过匹配滤波器的输出端对相应的信号进行采样。接收机同时要明确采样的频率以及合适的采样时机,也就是数字通信系统中所说的相当重要的同步技术[4]。该技术的性能严重影响着通信系统的功能。“同步”是同步通信系统正常工作的基础,而位同步又是网同步等的基础,所以,想要确保数据的稳定传送,同步系统就要拥有优质的可信性。位同步信号的性能要求:1)相位误差:主要指最佳采样点以及平均相位产生的偏差,相差的大小决定了误码率的高低;2)同步建立时间:需要重建时所需的最长的时间,要求此时间要尽量短;3)同步保持时间:计算收到的数据信息至输出数据停止的时间,要求其要较长;4)位同步门限信噪比:即确保质量的前提下输入端可接受的最小信噪比。它体现了位同步恢复针对深衰落情况的强适应性。

数字位同步系统结构的具体事项方法有两种:借助反馈环操控采样时钟的相位以实现同步;通过采样时钟单独工作的形式,利用数字信号处理方法通过位同步的采样信号得到确切的信号值)。第一种方法主要运用于传统接收机中,而第二种方法主要应用了数字集成电路技术而受到更广泛的重视。

3 全双工会议设计

通过FPGA内部的自行规划可以较为灵活的对会议成员数以及可以同时召开的会议的数量进行灵活的安排,同时能够根据不同的情况选取相应的FPGA给予相应的规划。该电路的规划机理是把参与会议的全员进行PCM编码的转换,形成线性编码,再将这些编码进行合并,并对结果给予相应的处理,进而处理掉自己的话音,再将其转为PCM编码,通过交换矩阵将信息进行传输。图1描述了全双工会议的信号流程。

4 抗噪设计

本系统可以在野外的环境应用,如四周的噪音较大等条件下,如果不能有很强的抗干扰的功能,就会是通话的效果不理想。本系统的抗噪音的功能可以令系统在既往繁杂的条件下也可以进行优质的通话。

主要应用的抗噪音的方法包括滤除环境噪声以及终端采用抗噪的MIC。在对FPGA内的语音进行限制的时候,仅当声音高达门限电平的情况下,方可以将语音信息传出,也就是说语音的数据电平比门限低时,自动延时3秒后会自行关闸,以确保话音的流畅性。

5 结论

本研究不但能够完成较小区域内部人员的信息联络,同时在区域的外面可以借助有线以及无线的方式与内部进行通信。通过自行设计的方式能够对终端数量进行灵活的配备,及时在野外仅用无线终端的方式进行联络也是相当简便的。该系统的诸多的重要技术都是于FPGA内部进行的,提高了仪器的可信性,同时降低了花销,促进设备的进一步生产。

参考文献

[1]谢金明.高速数字电路设计与噪声控制技术[J].北京:电子工业出版社,2003.

篇9

现今人们能够跨空间、时间无障碍沟通交流,得益于通信网络与数字电子技术的结合[1]。现阶段人们生活如购物、出行、工作等各方面的效率明显升高。在沟通交流无障碍下,人们与外界的联系更加紧密。加上信息全球化的趋势,人们更容易获取世界中的很多信息。总而言之,人们的生活方式、效率等均发生了翻天覆地的变化。而这些变化原因主要是数字电子技术与通信技术的结合运用和发展。笔者针对通信网络中的数字电子技术运用进行分析和研究。

 

1数字电子技术的重要性

 

数字电子技术的运用可以发挥其数字化的优势,使通信完全数字化。数字化的通信可以达到高效传播信息的效果[2]。极大提高通信的速率,以满足大量信息快速传输的需要。数字信号本身具有多种不可比拟的优点。在传输的过程中,数字化信息具有很强的抗干扰能力,避免信号偏差或丢失[3]。因此,能够实现长距离、高速等传输信号。在信息的存储方面,数字化的信号转化的操作相对简单,存储十分方便。由于信号传输途径中,会存在一些信息泄露的危险。这对于需要保密的信息传输十分不利。数字化信号是一种能够进行加密安全的信号,安全性较高。在信号解密方面的操作也较为简单。因此数字信号的运用在开放的网络平台中,对需要加密、保密的信号十分适用。而保密的工作在数字化信号的运用后,主要采用数字逻辑运算的方法进行保密,工作难度明显降低。数字电子技术所使用的设备是集成化的设备,集中性高,便于管理。另外,数字化电子技术还可以进行综合数字化。总而言之,其具有多种优势,为通信网络的发展提供极大的助力。一般而言,计算机采用的信号类型与数字通信信号基本相同,都是二进制代码类型。因此,数字信号可以应用在计算机中,而计算机可以接收数字信号,从而两者相互联网。通过运用计算机的平台,对获取的数字信号进行转化、处理,从而可以实现信号通信。另外,计算机运用数字信号后,能够实现网络管理自动化、智能化。可见,现阶段数字电子技术的优势众多,在通信网络中应用广泛,两者密不可分。

 

2网络通信特点

 

网络的准入几乎没有门槛,是一个高度开放的平台。在网络中,可以实现信息的共享、传递。网络信息对时效性有很高的要求,即要求信息更新的及时和快速。网络信息的更新与信息传输速度有关。一般而言,人们在用网时,希望信息能够实时更新。例如在访问网页时,如果网页有新动态,即可进行刷新获取新的信息。因此,网络的信息传递要快速,才能满足人们的需要。高度开放的平台也意味着包含有庞大的信息量。大量的信息传输需要一个大容量的传输途径和传输方法。在大量的网络信息中,信息形式多种多样。常见的有图片、视频、文字等等。总的来说,网络通信需要进行大量信息的高效传输、存储。从而使人们能够及时传递信息,实现信息共享。除此以外,网络通信可以提供一个交流无障碍、无延迟的条件。从而使人们能够简便、快速地获取信息。这些网络的优势需要先进的技术支撑。数字电子技术的产生和运用很大程度上加快了网络信息的传输。

 

3通信网络中数字电子技术的运用分析

 

3.1信号的转化

 

信号的转化主要有两个环节,将模拟信号最终转化为数字信号。在信号的转化方面,数字电子技术的优势是公认的。其转化信号过程快速、准确,功能十分强大。由于模拟信号本身传输的途径少,一般是与数字信号混合传输。加上计算机、网络绝大部分使用二进制的数字信号。因此,模拟信号要进行转化处理,方能变成可以传输和广泛使用的数字信号。模拟信号转变成为数字信号时,使用的是PCM脉码调制[4]。数字信号在数字电路中,又可以转化成为模拟信号。这一信号转变的环节主要使用对载波进行移相方法[5]。可见,在信号的转化中,模拟信号与数字信号可以通过某种方法相互转换。在信号的转化方面,数字电子技术发挥出了巨大的作用。

 

3.2网络中的信号处理

 

一般而言,数字信号中的幅度值是有限定的范围。数字信号中的幅度设置一般是离散的。二进制码与数字信号的特点是相同的,因此两者有共同的性质。因此,数字信号与二进制码一样,几乎不受噪声影响,传输的稳定性高。且信号容易转化,信号处理相对简便。另外,数字信号有容易加密,传输中较为安全。加上存储、交换等方面的优势,在通信网络中得到普遍应用。除此以外,数字信号的各种配备的设备是微型、集成化的。占用空间小,功能强大,十分容易组合形成具有综合性质的业务数字网络。数字信号所占用的信道频带相对宽,可以提高信道使用率。从而提高单个信道中的传输容量。

 

3.3信号的数字化

 

数字电子技术可以对信号进行数字化处理。一般而言,处理的流程主要是抽样、量化、编码[6]。在需要处理的信号序列中,以等量时间间隔进行取值。将获取的信号样值序列段取代原位置的信号,从而使信号离散。在某个时间段上的信号进行抽样处理后,形成离散的模拟信号。量化过程主要是将连续的幅度值改成为多个等间隔的离散值。一般而言,模拟信号是连续的幅度。在量化处理时,就是使用近似的幅度值来代替。编码的过程一般是有规律可循的。在量化信号以后,将信号使用二进制来表示。对这些量化信号使用编码方法,从而转变成为数字信号流。经过数字化的信号可以在电缆、卫星等途径进行传输。

 

3.4高效处理和传输网络信息

 

数字电子技术处理信号使其成为数字信号后,可以使信息得到高效传输。数字信号作为一种网络信息传递的载体,其传输方式实际上属于数字通信。数字信号的传输是大容量、高速度的。因而由数字信号传输的信息流成为信息高速公路。而所谓的信息高速公路实际上是由各种电子产品、计算机等构成的信息网。在处理网络信息方面,主要由多种先进的设备实现。通常会使用高性能的计算机以及服务器进行处理。网络信息的处理环节包括模拟信息与数字信息的相互转化、输出、输入以及存储过程。而这一过程主要由数字化电子技术来控制和实现。

 

总结

 

篇10

一、电子通信技术创新的重要性

当前,世界各国间的竞争主要在于科技综合力的竞争,科技在很大程度上推动人们的生产与生活。现阶段我国电子通信技术得到了极为快速的发展,并成为信息产业的一项重要内容。实现电子通信技术创新是满足消费者需要与提升现代通信服务水平的重要技术支撑,其在很大程度上影响着社会的生产以及人们的生活。对于国家而言,电子通信技术是综合国力的重要组成部分,其发展水平在一定程度上象征着国家的科技发展水平,对国家军队建设有着极为积极的现实意义;对于企业而言,电子通信技术的应用能够大大降低其生产运营成本,并促进企业的发展。不仅如此还有利于企业实施把握国际的相关信息,进而能够及时应对市场的变化,并采取有效的应对策略,让企业发展更为稳健;对于资源利用而言,电子通信技术的应用能够大幅减少资源损耗,提升企业生产效率;对于人们生活而言,电子通信技术的应用能够实现远程沟通与交流,为生活带来了极大的便利。不仅如此,对于新闻事业以及社会教育而言,电子通信技术也发挥了极为积极的作用。是进行电子通信技术的创新也必将会让国际间的信息交流更为便捷,为实现各国之间的信息共享与各主体的发展提供了有利条件。

二、电子通信技术创新策略

1.加强创新核心技术和基础技术

推动企业发展的一个有效方法就是创新企业产业核心技术与基础技术。只有注重创新产业核心技术与基础技术,方可以有利于企业竞争力的提升,并在激烈的市场竞争中稳保核心优势。具体可从如下几方面着手进行:第一,加大核心与基础技术研究与开发的资金投入大力引进与培养创新型人才,将工作重心放在开发、研究以及突破关键技术上,从而为企业更好的创新提供有力支持。第二,应当要创新电子通信设备的组建。第三,应当要创新电子通信的软件系统。如此一来方能够切实提升企业核心竞争力,有利于企业更好更快的发展。例如,研究与使用面向异构/融合分组业务的动态控制技术、对等网络体系结构(具有异构网络融合特征的新型结构)以及新一代异构网络融合协同管理技术等,只有不断创新技术与研发新技术才能够让电子通信行业更为健康的发展。

2.切实推进电子通信产品的业务创新

电子通信技术创新的一个有效措施就是有效推广电子通信产品,而创新电子通信技术则能够给推广电子通信产品创造了更多机会,而推广电子通信产品业务则能够给创新电子通信产品技术提供了良好的平台以及物质支持,所以说二者相辅相成。所以,不断推广电子通信产品,不但能够促进电子通信技术创新,推动电子通信技术的发展,并且还能够有助于电子通信产品产业链的拓宽,实现电子通信开发商与业务商的经济利益最大化。

3.加强对电子通信技术知识产权的保护

电子通信技术在通信市场中并非是一个独立的个体,其不仅具有兼容性,而且还有合作性,想要促进电子通信技术的健康发展,则应当要正确认识自我的发展,避免在对电子通信技术进行应用过程中产生独断专行,应当要将电子通信技术的创新作为强制的发展计划。在创新电子通信技术过程中,一项重要的方法就是保护产权,并将电子通信技术的空间和应用方法进行拓宽,以形成产业化技术。加强对电子通信技术知识产权的保护,可以给电子通信技术创新提供良好的环境,促进相关研究人员研究电子通信技术创新的积极性,能够有利于促进电子通信技术的创新,不但可以将电子通信技术运用于更多领域,并且还可以确保在应用电子通信技术过程中可以获得更好的进步和提升。

4.重视培养电子通信技术专业人才

要想实现电子通信技术的创新,专业人才是关键。当前,我国电子通信领域中,相对专业技术知识人才仍是较为匮乏。也正是因为相关专业人才的缺乏,所以在一定程度上制约了电子通信技术创新的进程。所以企业应当要对电子通信技术专业人才的培养予以充分重视,积极引进专业人才,并对该类人才开展深入的培训工作,加强企业专业人才储备。除此之外,还应当提升专业人才在企业中的待遇与地位,确保其具有良好的学习与科研环境,提升其创新的积极性,以保证企业的核心竞争力,进一步提高我国电子通信产业的技术水平。

5.注重产业内部的沟通和合作

加强电子通信产业内部的沟通和合作,促进各方构建起良好的合作关系能够有效促进电子通信技术的创新发展。加强内部各单位在计算方面的组合,不但可以大幅减小开发成本,而且还可以实现大家的优势互补,可以对技术上的问题进行沟通探讨,从而能够在很大程度上提高该领域的技术水准,并为电子通信技术的创新提供了可能。

三、结语

总而言之,电子通信技术的创新对该领域在国际市场上的占有率以及我国相关产业结构的调整有着极为重要的影响,如若不加强电子通信技术的创新,则必然会导致我国电子通信技术在国际竞争中失去优势。所以,应当要对电子通信技术创新予以充分重视,通过加强创新核心技术和基础技术、切实推进电子通信产品的业务创新、加强对电子通信技术知识产权的保护、重视培养电子通信技术专业人才、注重产业内部的沟通和合作来更好的推动电子通信产业更好更快的发展。

作者:李京宙 单位:太原理工大学

篇11

二、高频电子邮件技术

海上高频电子邮件技术基于短波传输协议(PACTOR-Ⅲ协议),采用正交频分多路复用传输(OFDM)技术,使用现有的海上中/高频无线电设备,经全球链路网与陆上用户进行通信。1.PACTOR-Ⅲ协议PACTOR-Ⅲ协议是新一代高速可靠的同步半双工自动请求重复(ARQ)无差错数传模式,是一种优化后的短波协议。基于它的网络可以传输任意文件,可以代替窄带直接印字电报(NBDP)来进行常规通信。其初始链路的建立采用移频键控(FSK),与当前高频通信使用的PACTOR-Ⅰ协议相兼容。当2个电台都支持PACTOR-Ⅲ协议时,系统将自动切换到高一层的协议进行通信。PACTOR-Ⅲ协议数据传输带宽为6kHz,相当于两个单边带信道(单边带信道带宽为3kHz)。因此,可以充分利用现有的单边带电话信道,2个单边带信道作为一个数字通信信道,在传输系统允许时最高可容纳18路话音,每路间隔120Hz。全速率工作最大带宽为2.2kHz,音频带宽400-2,600Hz,中心频率是500Hz,最低音频为480Hz,最高音频为2,520Hz。在线压缩数据的最大传送速率约5,200bit/s。该协议完全支持二进制文件传输、FTP文件远端传输和完全透明的TCP/IP嵌入,可以实现在短波波段与Internet间的数据访问服务。PACTOR-Ⅲ协议使用20位控制信号(CS)。其中,控制信号1(CS1)和控制信号2(CS2)用于确认/请求重发数据;控制信号3(CS3)执行强行拆线;控制信号4(CS4)和控制信号5(CS5)用于处理传输速率改变:CS4代表速率增加一级,CS5起到NAK(没有收妥)作用请求重复先前的数据包,同时降低一级速率;控制信号6(CS6)用于数据包长度和模式切换。所有的控制信号都在DBPSK方式下发送,以获得最强的信号。同时,PACTOR-Ⅲ协议的低振幅因数(CF)特性使其比传统的多载波模式能够提供更大的发射机功率。2.正交频分多路复用(OFDM)正交频分多路复用(OFDM)技术采用多载波模式,优点是单一分载波带宽很小,能够容忍中等衰减,因此评估到衰退信道不需要补偿器,简单易行。缺点是对频偏和振荡器相位噪声更敏感。在使用同样的功率放大器时,正交频分多路复用(OFDM)模式将会增加接收机的信噪比。

三、CemailFax通信系统

CemailFax通信系统是北京埃瑞尔科贸有限公司研制开发的基于InmarsatMini-M海事通信卫星的船岸电子邮件通信系统。与船舶常用的AMOS、Rydex、Skyfile等通信软件相比,该系统在保证信息传输速率和数据压缩率的同时,用户能够自主选择海事卫星地面站,具有中文处理能力,友好简单的操作界面大大方便了船员的学习使用。1.系统组成CemailFax通信系统采用C/S模式,即客户端/服务器模式,由卫星通信服务器提供拨叫账号和密码。系统组成如图4所示。2.通信过程(1)船站PC机通过CemailFax构造子用户(该子用户需要绑定一个电子邮件地址),并将该子用户向卫星通信服务器注册,得到拨号帐户和密码;(2)通过CemailFax构造电子邮件、传真和短信;(3)调用CemailFax拨叫功能将船站所有子用户文件(包括电子邮件、传真、短信)发送到卫星通信服务器,同时接收卫星通信服务器上本船站的文件;(4)卫星通信服务器将收到的文件按类型分别打包为相应的格式送到Internet网络、固定电话网络和短信网络。3.主要技术特点CemailFax通信系统利用InmarsatMini-M终端自带的Modem池直接拨号进入因特网。通信协议是在SMTPPOP3协议基础上自行开发的支持断点续传的无线通信协议。压缩算法采用LZSS算法,压缩率高,编译码算法简单。纠错方式采用CRC循环冗余校验码纠错,检错率达99.9984%。通过控制数据包长度及合理安排文件处理在整个通信过程中的逻辑位置等方法提高传输速率。实验表明,数据包每包在2k字节,且将文件的存储放在通信过程结束以后进行,能够大大提高传输速率。同时,CemailFax的单微机多用户方案使得软件可以对多个用户开放。

篇12

电站的自动化发展目标已经实现,数字化变电站网络通信技术的广泛应用下,大大提高了网络通信的效率和质量,对变电站的智能化目标实现打下了基础。

1数字化变电站网络通信的特征以及应用优势

1.1数字化变电站网络通信的特征体现

数字化变电站网络通信有着鲜明的特征,主要体现在一次设备数字和智能化上,变电站的传统电磁式互感器已经通过电子式互感器进行替代,这样就能向外提供数字式光线以太网接口。而在站内则是通过对数字通信智能变压器以及断路器的应用,对实际一次设备应用的要求能达到。数字化变电站网络通信的特征还体现在二次设备的数字和网络化层面,通过二次信号传输在光线以太网技术的应用下得以实现。变电站通信网以及系统能实现标准化的目标,这样就能有效保证变电站设备互操作性性能的提高,同时在运行管理系统自动化的特征上也比较突出,实现了自动化管理的目标。

1.2数字化变电站网络通信技术应用优势

数字化变电站网络通信技术的应用广泛,正是因为其技术优势比较突出,体现在对信号传送的抗干扰能力比较强,信号传输需要多个环节,这就受到电缆损耗以及电磁兼容等工艺因素的影响。数字化变电站网络通信技术的应用,就使得信号在光缆的使用下进行以数字形式传输,这样就大大提高了信号传输的抗干扰能力。数字化的网络通信技术的应用对信号量测进度和互感器动态性能能有效提高,这样就避免了传统电磁式互感器采用铁芯造成的饱和,以及铁磁谐振因素带来的影响,能有效保护自动装置,为电气暂态的特性准确性起到了保证作用。另外,数字化变电站网络通信技术的应用优势,还体现在网络化信号传输共享效率的提高方面。数字化变电站通过光纤以及以太网的应用能实现设备连接,这就对信号传输的整体效率得到了有效提高,对站内保护以及运动就能共享网络信息平台,对设备重复设置能进行有效避免。优势还体现在二次回路的简化以及二次系统的安全方面,数字化变电站每组电器信号送到合并单元数据打包后,能实现批次的信息传送,对二次回路的安装调试工作就大大简化了。同时对二次系统的安全也能得到有效保障,能有效实现和高压一次侧有效电气隔离,保障了系统的安全。

2数字化变电站网络通信结构和要求

2.1数字化变电站网络通信结构

数字化变电站网络通信结构主要是组网和网络拓扑的形式存在的,从网络拓扑的形式来说,主要由几种重要类型,有环形,星型和总线型。其中的环形网络结构有着冗余能力,这样早一台交换机出现了故障也会对其他的交换机通信造成影响。总线结构形式则会其中一台交换机出现问题会影响通信的正常进行。而对于星型结构就是任意两点间通信的路径最短,但是在布线上是比较多的,交换机出现故障影响全网的工作。根据对网络拓扑类型进行比较就能够看到,总线型的可靠性是最低的,网络的延时比较大,造价上最低。对于环型的可靠性是最高的,网络的延时较大,造价也最高。星型的结构可靠性较低,网络的延时最小,造价处在中间位置。而在组网的方式结构方面就有着独立组网和统一组网之分。从独立组网方面来看,站级网络和过程网络是分别独立的组网,物理隔离。站级网络是通过双网冗余配置,数据的流量比较大,为能提高报文可靠安全两者单独组网比较适合。对于独立组网来说就有着其应用优势,主要体现在网络的性能能有效保障。对于统一组网的方式主要在数字变电站信息技术的水平提高下,能有效实现过程网络以及站级网络的统一组网目标,这样就能将信息得以共享,通信的规模也比较大,接点的书目比较多,结构相对比较复杂,网络的负荷变大,但是当前对统一组网的目标实现有着很大的难度,这是需要进一步努力的。

2.2数字化变电站网络通信要求

数字化变电站网络通信有着其要求,主要在功能要求以及性能要求上。通信网络的主要目标是结合综合自动化系统内部和其他系统间实时信息交换的,网络就成为重要的功能载体,而构建高效的网络体系就是重中之重。通信网络作为连接站内各种智能电子设备重要的纽带,就要对各种的通信接口以及网络标准化的要求能得以满足,并能有足够空间速度进行存储以及传送电量等数据。同时在功能要求方面,也要能满足自动调节和自动诊断故障灯要求,只有这样才能保障数字化变电站网络通信的作用充分发挥。另一方面,对网络通信性能的要求也要能得以满足,这就在可靠性方面能加以保障。电力生产的连续性特点下,变电站内的通信网络可靠性的保障就比较关键,这就要避免个别装置的损坏造成通信中断。性能要求也要满足开放性以及实时性的要求,保障和电力调度自动化总体设计的要求相契合,并在实时性的要求方面对信息的迅速传达要求得以满足。具体的落实就要实现变电站站内的光纤网络化,全站统一标准化平台,数字化智能化一次设备的应用目标都要能得以实现。

3结语

综上,数字化变电站网络通信技术的应用,要结合实际的技术应用要求,不断的进行技术的优化,保障变电站网络通信的自动化和智能化目标的实现,在通过此次的理论研究下,希望能为实际的技术科学应用提供相应参考。

参考文献

[1]梅冬.浅析智能数字化变电站设计研究及其应用[J].科技视界,2017(05).

[2]张瑜.数字化变电站技术应用与研究[J].内蒙古科技与经济,2016(04).

友情链接