时间:2023-03-10 14:51:25
引言:寻求写作上的突破?我们特意为您精选了4篇停网通知范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
家庭控制子网(Home Control Network,简称HCN)是一个家庭的局域通讯控制网络。HCN网络提供了标准化的通讯能力用作设备间的数据和服务的交换。
在HCN中,有两种可能的传输媒介:有线和无线。分别构建家庭有线控制网络(Wired Home Control Network)和家庭无线控制网络(Wireless Home ControlNetwork)。
本文仅仅讨论无线射频媒介和无线收发器构建的网络,这些接收器安置在家电上。本文称无线媒介家庭控制网络为WHCN(WirelessHomeControlNetwork)。
家庭无线控制网络(WHCN)属于IEEE标准定义的低数据率的无线个人域网络Wireless Personal Access Network(WPAN)。这样一个低数据率WPAN,也是一个简单的、低成本的无线通信网络,这种网络支持低功率和允许要求灵活应用的无线联接。WHCN的主要目标是在家电、传感器和监视器之间,实现易安装、可靠数据传输、短距离工作、低成本和低功耗的无线网络。同时,支持简单和灵活的网络拓扑。
无线网络支持无线通讯的功能,支持家庭控制子网设备之间的数据通信、实时传输数据信息、人机交互式操作和具有图形用户界面控制功能,使用户方便直观地操作和控制各个设备。
WHCN中的主要设备以及它们的关系
无线媒介家庭控制网络由家庭控制子网网关、移动控制终端和多个通讯模块组成,见图1所示。各个部分的作用如下所述:
1.家庭控制子网网关
无线控制子网网关是家庭无线控制网络的中心。主要有如下两种作用:
(1)家庭无线控制网络的信息和控制中心。
(2)外界信息网络(如:以太网、电话系统等等)和家庭无线控制网络之间的接口或信息交换中心,以及家庭信息网络和家庭无线控制网络之间的联合点。
作为家庭无线控制网络的信息和控制中心,通过无线通讯中心节点模块提供如下功能:
给出友好的人机界面。用户可以进入任一个电器的控制选项界面,控制各个家庭控制子网设备,操作简单。
具有管理各种家庭控制子网设备的功能。当新的设备加入到家庭控制子网网络系统时,家庭控制子网网关可以注册新设备。当网络中的设备要求从子网系统中断开时,家庭控制子网网关可以删除该设备
作为星状网络信息的互连器,所有信息都被发送到和转送到子网网关。同时,子网网关再给预期节点发送已获得的信息。与各个通讯模块进行数据交换。家庭控制子网网关与各个通讯模块之间的通讯协议遵从家庭控制子网通讯协议。
子网网关在家庭控制子网中作为设备的一个网关,主要功能是把家庭控制子网设备和家庭主网及主要的信息网络(如:以太网)连接起来,并实现家庭控制子网内部设备的互连。子网网关是一个符合家庭控制子网通讯协议的设备,可以与家庭控制子网设备进行数据交换。
用户可以通过以太网、电话线以及无线本地存储网络连接家庭主网关,家庭主网关可以是服务器、电话调制解调器和无线本地存储网络基站。
当用户通过以太网或ADSL登录到家庭主网关时,就可以进入一个数字家庭网络的控制画面,这个画面出现当前家庭控制子网设备,点击要控制的家电设备的图标,可以进入此家电的控制界面。控制界面上显示了此家电的所有控制选项,用户点击想要进行相应控制的选项,子网网关与主网关通过主网关与子网网关之间的通信协议获得相关的控制信息,并使用家庭控制子网通信协议控制相关的设备。
用户通过电话系统登录到家庭主网关时,用户可得到一个简单声音控制“声音信息/控制命令”。有了这个“命令菜单”后,用户获得状态查询并设置控制命令。 这个子网网关所控制的设备的通讯模块接收到这个数据帧,物理层对此数据帧进行基于MAC命令的处理,得到有效载荷。有效载荷再传输给MAC层,MAC层判断其正确性和有效性,如正确,则得到控制命令和有效数据信息,再将它们传输给网络层和设备的控制接口。如不正确,则不对此数据进行处理。
被控设备的控制接口层对所得到的控制命令和有效数据进行数据转换,传输给此设备应用层,由此应用层得到控制此设备的相应控制命令和有效参数,此设备根据这些数据信息执行相应的动作,在此动作完成后,返回给子网网关相应的反馈信息,反馈信息指示了当前此家电的现行状态,子网网关进而把信息传递给主网关。当主网关接收到反馈信息后,更新此家电的控制界面,显示此家电当前的运行状态。
运行状态包括事件信息和警告信息,这些信息可以发送给用户,用户产生进一步的指示和命令。 这是子网网关在遵循家庭控制子网通信协议,进行的一次完整的通讯过程。
2.移动控制终端
移动控制终端在WHCN是一个专用和简单的显示器和控制终端,它不是网关。移动通信控制终端loaded加载一个无线模块,它通过无线通讯方式与家庭控制子网设备通信。
移动控制终端具备三个主要功能:
(1) 用户可以通过移动控制终端获得各种服务的平台;
(2)与家庭控制子网网关相互通讯,实现所有家庭控制子网设备的集中控制;
(3) 在紧急情况下,移动控制终端可以和各个节点直接通讯。
移动控制终端支持无线通讯的功能,支持家庭控制子网设备之间的数据通信、实时传输数据信息、人机交互式操作和具有图形用户界面控制功能,使用户方便直观地操作和控制各个设备。 移动控制终端与各个通讯模块之间的通讯协议遵从家庭控制子网通信协议。
3.无线通讯模块
无线通讯模块是家庭控制子网设备的通讯核心,通讯模块是各个家庭控制子网设备和无线网络的无线通讯接口单元。无线通信模块支持家庭控制子网内部各个设备之间的数据通信,通讯模块遵从家庭控制子网通信协议。
在家庭无线控制子网中,无线通讯模块是基本单元。在家庭控制子网网关和移动控制终端中,无线通讯模块是部分功能模块。一般来说,子网网关中的无线通讯模块,叫做无线通讯中心节点模块,发挥协调器的作用。
4.无线通讯转发器
对于一个包含较大工作范围的网络或工作环境复杂(室内环境)的网络,需要一种专用单元:无线通讯网络转发器。
无线通讯网络转发器是一个专用无线通讯模块。它从一个或多个方向接收信号,然后向全部方向或特殊方向发射处理信号。
处理包括:
扩大收到信号的能量;
改变网络中传输信号的路径方向。
转发器和无线通讯模块的不同点:
转发器不是全功能无线通讯模块;
转发器不与设备连接。
5.家庭控制子网网关和移动控制终端之间的关系
从功能方面来看,家庭控制子网网关和移动控制终端都是WHCN的控制终端,它们在无线网络中发挥核心作用。
家庭控制子网网关是WHCN的控制中心,它不仅支持无线收发器的网络管理,也支持设备的管理。同时,它是家庭控制子网和外界信息网络的唯一网关。
在WHCN中,移动控制终端是一个特殊的无线收发器,是有较大存储空间的专用无线通讯模块。当网络联接建立起来后,移动控制终端从网关下载注册信息,移动控制终端保存WHCN的所有信息。否则,移动控制终端对这个网络来说可能是一个PDA或者打包PC机,也可能是一个监视终端。移动控制终端可以接收网络设备的数据和状态并且借助网关给每个设备发送控制命令。
无线家庭控制子网通信协议体系结构
家庭无线控制子网通讯协议使遵循规范的各个家庭控制子网设备之间实现无线通信。网络结构不仅是WHCN数据/管理服务体系,也是WHCN中每个无线收发器的系统结构。
本规范将给出无线收发器的规范以及基于这种网络结构WHCN规范。
子网的基本网络体系结构包括:物理层、媒介访问控制层、网络层和应用层,前三层全部在无线模块内。在应用层的顶部,有一个设备和模块共同拥有的设备亚层。
设备亚层直接与设备(如:家用电器、感应器等)和制造商有关。在应用中其功能和界面是不同的。因此,本文不包含此层的研讨。
子网从上至下划分为以下层次(见图二)
应用层(Application Layer)
负责处理特定的应用程序细节,实现设备与 WHCN连接的接口和信息交换。通过应用层,在WHCN中的其它设备只需了解虚拟的网络对象描述而不必了解该设备的具体实现细节就能实现控制/状态查询。
网络层(Network Layer, 简称NWK)
WHCN使用网络层通讯中间件来实现统一的网络通讯,网络层隐藏了底层通讯媒介的复杂性,为应用层提供设备到设备的通信。它所做的工作包括:
数据管理是把应用程序交给它的数据传送给下面的媒介通讯接口层 (MAC/PHY)。
传输服务管理:提供网络路径服务和网络信息,传输控制信息/状态查询在此层中进行,以及网络信息共同被传送到预期设备。
MAC层(媒介存储控制层,简称MAC)
由于不同的媒介所采用的码元编码方式,数据通讯速率、CSMA/CA实现方式、硬件连接方式等等各有不同。这一个层次就是根据不同的要求和网络来确定不同的媒介通讯接口。在这一层中,实现了数据链路层部分,包括底层设备驱动程序和网络接口硬件。
物理层(Physical Level, 简称PHY)
处于网络通讯协议的最底层,在无线通信中,物理层负责射频传输/接收端的启动。物理数据服务有助于物理协议数据单元(PDUs)的传输/接收越过物理无线电信道。物理层的主要的流出是无线收发器的活动和释放、能量探测、连接质量说明、频道选择、清晰频道评估和越过物理媒介传输以及接收。
无线家庭控制网拓扑结构
为了本规范和IEEE定义的WPAN标准的兼容性,在PHY、MAC和网络层规范中,不提及无线通讯模块、子网网关,只使用中心节点和节点。
拓扑是网络总体结构。为满足实际应用的要求,WHCN有一种或两种拓扑:星状拓扑或对等拓扑,如图3。在星状拓扑中,通信建立在一个中心控制器和设备之间,中心控制器也叫WHCN中心节点。设备的典型应用是作为网络通讯的起始节点或者终止节点。
WHCN中心节点的具体应用是能够初始、终止或者路由网络中的通信。WHCN中心节点是WHCN的主要控制中心。在两种网络拓扑中,节点必须有独一无二的8比特地址。
星状拓扑基本结构如图3,全功能收发器第一次启动后,就建立自己的网络成为WHCN中心节点。所有的星状网络都独立于正在工作的其它星状网络。在射频通信范围内,通过选择没有被别的网络使用的WHCN标识,就可以建立一个新的网络。一旦WHCN标识被选定,WHCN中心节点允许别的设备加入网络。WHCN中心节点可以是由电力线供电,而节点可能是电池供电或电力线供电。
对等拓扑与星状拓扑不同的是:如果任何其他节点在某节点无线电范围内,这两个节点会开始通信。对等布局可以产生更复杂的网络形式,例如,网孔拓扑等。对等拓扑可以特设、自组织和自恢复,它也支持多跳跃实现信息从一个设备到另一个设备的路由。本文并不讨论这种拓扑结构。
无线家庭控制网特征概述
WHCN所有的特征都基于用户要求和无线个人域网的经验积累(Wireless Personal Access Networks,简称WPAN)。WHCN基本特征如下:
无线模块8比特地址寻址;
CSMA/CA方式访问信道;
全握手协议确保传输的可靠性;
低功耗;
能量探测;
联接质量指示;
有关允许无线频道的多重通讯信道;
本版本支持星状拓扑,将来的版本会支持网状拓扑。
家庭无线控制子网通信功能
与流程的简要说明
1.中心节点的功能与流程
中心节点是星状拓扑网络的中心点。一般情况下,子网网关的无线模块是中心节点。 在无线网络中,中心节点遵循家庭控制子网通信协议,可以与家庭控制子网设备通过无线的方式进行数据交换。中心节点是有足够存储空间的专用节点。 中心节点通过子网网关获得用户的查询/控制命令。中心节点传输关于WHCN的这些查询和控制命令并传送到预期的节点。该节点与被控设备连接。
被控设备的控制接口层对所得到的控制命令和有效数据进行数据转换,传输给此设备应用层,由此应用层得到控制此设备的相应控制命令和有效参数,此设备根据这些数据信息执行相应的动作,在此动作完成后,返回给中心节点相应的反馈信息,反馈信息指示了当前此家电的现行状态。子网网关进而把信息传递给主网关。运行状态包括事件信息和警告信息,这些信息可以发送给用户,用户产生进一步的指示和命令。
中心节点也从被控制设备接收信息,接收到的数据传输到物理层,物理层对此数据帧进行处理,得到有效载荷,有效载荷再传输给MAC层,MAC层对此有效载荷进行拆包,并判断其正确性和有效性,如正确,则得到控制命令和有效数据信息。中心节点可以决定向控制网络报告信息或转寄信息给与被控制设备相连接的其他无线节点。
在星状网络中,中心节点提供必要的网络功能如:
连接和分离
定时
路由路径
2.子节点的功能与流程
无线通讯模块是家庭无线控制子网设备的核心。无线收发器称为子节点安置在每个设备上,子网网关和中心节点通过无线收发器来实现。
基金项目:江苏省大学生创新创业训练计划平台《Super Speed智能餐厅站》(编号:201613571029X)
1.项目概述
从传统的桌面时代到现在移动互联网的终端时代,万能的互联已蓄势待发,发挥着当下重要的角色。Super Speed智能餐厅将不断迎合当下人们对快速、高品质的城市快节奏智慧生活的追求,Super Speed 智能餐厅拥有实时的快餐制作的流程、提前预约、支持线上线下支付、线下二维码取餐、实时评价、建议采集等功能,具有无需排队、菜品保温、耗时短等特点满足当下的快节奏的生活,一方面解决了顾客排队耗时长的问题,另一方面也帮助餐厅提高效率,挽回因此损失的人流量。Super Speed智能餐厅站拥有手机终端APP软件与智能管理终端机两部分组成,打造餐饮行业智能餐饮,从而解决当下人流量大的地方用餐和上班族快节奏、高品质的生活方式。
2.智能餐厅优势
2.1顾客层面
Super Speed智能餐厅可以大规模的投入在火车站、地铁站或办公楼等多处地点,用户通过APP提前预订菜品、餐品、零食,填写大致的取餐时间。餐厅收到订单将菜单直接导入后台,在顾客预约取餐前的10分钟到20分钟的时间,后厨的显示屏上会出现,保证在顾客约定取餐时间之前把餐品、零食等放到餐柜里,用户凭借下单时的二维码,在终端机端机上扫描二维码进行取餐,避开用餐高峰带来的餐厅拥挤,而且终端机有保温功能,保证了菜品的温度和质量。线上Super Speed手机终端系统APP支持手机、支付宝、微支付、网络等点餐快捷支付的支付方式,当用户支付成功,即可收到消费二维码,凭二维码打开终端机取餐。线下用户可在餐厅的点餐机器上进行点餐,通过自动收款机来进行支付,支付成功后根据消费单下的二维码进行取餐。用户消费结束后还可在APP和餐厅意见表中,对食品及餐厅的服务情况进行评价。
2.2技术层面
项目采用了RFID电子标签、微型QR码技术、第三方软件合作支付技术以及智能保温柜微电脑控制技术,对餐饮行业来说,解决了客户损失大的问题,提高了餐厅效率;对用户来说免去了漫长的等待时间和饥饿带来的烦恼,使生活变得高效智慧、快捷智能。RFID技术优势:与传统的自动识别技术如磁卡、条形码和IC卡等相比,射l识别技术具有很多突出的特点:可以通过这种技术识别单个的很具体的物体,而不像条形码那样只能识别同一类的物体。应用无线电射频,能透过物体的外部材料把数据读取出来,而条形码只能借助激光来读取信息。可以同时对多个物体进行识别读取,而条形码则不能,它只能一个一个地读。具有一般条形码没有的防磁、防水、耐高温、读取距离和标签数据的可重复读写等特点。安全性很高,适用于高安全性的终端。数据安全方面除了有电子标签的密钥保护外,数据部分可以通过加入算法来实现安全管理。
3.创业机会
3.1花更少时间解决餐饮需求
快节奏的生活,高品质的餐饮诉求是目前上班族需求,如何花费更少的时间解决就餐问题成为上班族面临的普遍性难题。Super Speed智能餐厅系统是餐饮企业结合互联网智慧发展的新尝试,用户可以结合自己身的条件和时间喜好选择菜品与取餐时间,到智能餐厅取出自己选择好的菜品,从而节省了就餐的时间,提升了上班族的需求。
3.2“智慧餐饮”是未来餐饮业发展的风向标
随着互联网技术的发展和使用,餐饮行业也将进行一次全新的革命――互联网技术将应用到餐厅的运营中形成一个餐饮链,从而迈进了“智慧潮”,减少用工实现智能、降低经营成本、提升管理绩效等多种目的实现,才能体现理想意义上真正的智能。
3.3餐饮行业渴望得到顾客服务的诉求
传统餐饮店经营正餐为主,消费者的诉求重点在餐厅环境、菜品质量与人员服务态度,而对于现在引领主流的快餐行业,消费者更注重便捷高效的用餐,从现在的快餐行业来讲黄金时段中晚餐的收入通常占快餐行业全天营业额的75%以上,如何在两个黄金期内服务更多顾客,成了餐饮行业普遍期望得到解决的问题,快餐行业如何运营能吸引更多的顾客成为一个难题。
3.4“最后一公里”成外卖送餐的挑战
在店面发展受限的同时,作为餐饮行业新的发展方向外卖送餐受到餐饮企业的广泛欢迎,然而,“最后一公里”的上门配送,也成为现在面临的挑战。就餐的时段集中在是人流潮,开车路上堵,上楼电梯堵,延误似乎变成不可避免的事情,造成不好的用户体验,阻碍外卖送餐发展从引起新的一个问题“堵”。因此Time bag智能餐厅利用当下互联网的技术与设备,让消费者自主进行点菜、支付、取餐,消费者非常乐意接受,满足用户对快时代智慧生活的体验,帮助餐饮店吸收更多消费者,解决“最后一公里”外送的难题,赢得消费者认可,促动餐饮企业更好的发展。其次,外卖行业存在许多的安全隐患。当下时兴的饿了么APP就出现了315事件,造成顾客的担心,让一些正经营业的餐厅也损失了很多客户。
参考文献:
[1]谢国晖.浅谈环境监测中的不确定度评估[J].科技资讯,2010(22)
[2]中国互联网网络中心(CNNIC).第29次中国互联网网络发展状况统计报告[R].2012.
[3]王耀球,万晓.网络营销[M].北京:清华大学出版社,2004.
作者简介:
随着信息技术、计算机网络技术的迅猛发展和广泛普及,越来越多的家庭通过Internet或Intranet来获得信息和资讯。作为现代化的智能化住宅小区,向社区内的广大住户提供宽带多媒体综合信息资讯服务,是智能化住宅的重要体现,也是信息社会发展的客观需要。建设部住宅产业办公室提出了我国住宅智能化的概念,即住宅小区智能化是利用4C(计算机、通信、网络、自控、IC卡)技术真正实现远程家庭的智能控制,通过有效的传输网络,将远程信息服务与管理、物业管理与安防、住宅智能化系统集成,为住宅小区的服务与管理提供高技术的智能化手段,以期实现快捷高效的超值服务管理,提供安全舒适的家居环境。
1 系统简介
家庭智能控制系统的开发基于短信息技术、自动控制技术、计算机技术、数字通信技术及加密技术。系统利用相关的网络、计算机系统和控制器,以无线网络和有线网络为基本控制指令和数据信息传送方式,实现手机无线遥控和数据传送。通过专设的短信控制中心和服务中心,为家庭和小区管理提供全方位的数字化服务。家庭智能控制系统具有手机远程控制、自动报警、呼叫社区服务、物业管理等功能,还可以根据用户群的需要向生活连网服务、智能办公等方向无限扩展。
设备接入Internet/Intranet网,原则上讲,只要实现TCP/IP网络协议就可以。TCP/IP协议及其应用是一项复杂的系统工程。该协议的建立经过了缜密的设计过程,全套协议的实现是比较复杂的。在嵌入式系统中,实现该协议有一定的难度。在实际的应用中,如果要完全实现该协议,比较合理的方案是直接利用集成的TCP/lP协议的芯片,将系统中央控制单元和TCP/IP协议处理单元进行分离。
另一方面,实现其它几个方案中,可以对原有的TCP/IP进行精简,保留实际应用系统所需要的一些协议,使得核心芯片既能实现网络的数据传输,又可以完成监控任务。对原有的TCP/IP协议迸行精简,可以大大减轻系统实现的难度,并提高系统的效率和可靠性。
图1
2 系统工作原理
该系统的原理框图如图1所示。
家庭中的三表度数作为采集信号,通过采样保持电路处理以后,送入单片机进行处理。单片机把数据通过串口送入E5122网络协议处理器中进行打包处理,将数据打包成TCP/IP协议包,该数据包通过RTL8019AS以太网控制器发送到以太网上。采用CPLD芯片EPM7128S作为译码和驱动电路。在本应用场合,家庭用户终端对数据交换的速率要求不高,在1MB/s以下。所以可以采用一般的高速单片机,写入TCP/IP协议,这样既可以满足要求,价格又能让用户接受。
3 芯片介绍
(1)网络接口控制器RTL8019AS
RTL8019AS是Realtek公司高集成度的专用以太网接口芯片,支持EthernetII、IEEE802.3、10Base5、10Base2、10BaseT,支持UTP、AUI&BNC、PnP自动探测模式,并且内嵌16KB SRAM用于收发缓冲,降低了对主处理器的速度要求。支持8位、16位数据总线模式;支持跳线、无跳线模式;有全双工的通信接口,可以通过交换机在双绞线上同时发送和接收数据,使带宽从10M增加到20M,是用来进行以太网通信的理想芯片。
RTL8019AS有3种工作方式:
① 跳线方式,网卡的I/O和中断由跳线决定;
② 即插即用方式,由软件进行自动配置plug and play;
③ 免跳线方式,网卡的I/O和中断由外接的93C46里的内容决定。
网卡使用哪种方式由RTL8019AS的第65脚JP决定。65脚JP 为高电平时(接到VCC或通过一个10kΩ的电阻上拉)使用跳线方式;RTL8019AS引脚悬空时,输入状态为低电平(其它引脚也是这样,悬空的输入脚电平为低电平,里面有一个100kΩ的下拉电阻)。64脚AUI,该引脚决定使用AUI还是BNC接口。我们用的网卡接口一般是BNC的,很少用AUI。BNC接口方式支持8线双绞或同轴电缆。高电平时使用AUI接口,悬空为低电平,使用BNC接口。IOCS16B引脚用电阻下拉为低电平,选择8位数据总线模式,省去BROM模块,只需8根数据线SD0~SD7。基地址选择引脚IOS3、IOS2、IOS1、IOS0空接为低电平。因为芯片内部都接有下拉电阻,此时I/O基地址为300H,所以地址线SA8、SA9接高电平。又因为寄存器的地址偏移量为00H~1FH共32个,所以只用了地址线SA0~SA4,其余地址线接地即可。芯片的中断线由IRQS2、IRQS1、IRQS0决定,全部空接时中断线为INT0,8根中断线7根空接。SMEMRB和SMEMWB引脚决定网络接口类型时,10BaseT、10Base2或10Base5采用悬空方式时为低电平。即为自动选择方式。AUI引脚决定使用AUI还是BNC接口,悬空时为低电平。使用BNC接口,支持双绞线或同轴电缆,所使用的引脚有:TPIN+、TPIN-、TPOUT+、TPOUT-,接入网卡耦合隔离变压器中,利用RJ45插头实现与网络的连接。
(2)TCP/IP协议解析芯片E5122
E5122是上海精致科技公司研制的飞虹系列网络协议处理器。外部晶振22.1184MHz,工作电压5V。以硬件实现TCP/IP协议,提供API接口,极大地方便了使用,由外部集成 RAM。对用户端以I2C协议或RS-232接口方式进行通信,通信接口支持带I2C接口MPU,为不带I2C接口MPU提供I2C驱动程序。E5122与网络的接口为以太网接口,通过以太网控制芯片RTL8019连接到以太网。串行速率最大达115.2Kbps,达到真正实时传送。
E5122 是完成TCP/IP 协议的专用芯片,用以实现以太网和串口之间的协议转换。可以为串口设备提供完善的网络通信解决方案,只需外接MPU。本系统采用的MPU型号是:89C52单片机。单片机程序中,只需要简单调用API函数即可实现。E5122结构如图2所示。设备做为服务器端,即首次连接网络时,客户机端主动请求连接服务器端作为被动端监听,并接收连接的局域网内连网接收远端客户的主动查询访问,并将设备信息返回给客户;同样,还可以作为客户机主动和局域网内,或Internet上的主机进行通信。 E5122 芯片外部使用32KB RAM,用来作为以太网数据缓冲,使用256字节(最少为256字节)的串行EEPROM(I2C总线接口)存储系统参数。用户通过串口与E5122 连接实现通信。E5122 完成TCP/IP 协议和串口通信协议。支持普通串口和用户设备进行交互,通过外接RTL8019AS 以太网控制芯片来实现网络连接。
当系统初次运行时,E5122会对RTL8019AS进行初始化工作,并设置其工作模式以及中断源等。
当RTL8019AS 接收到数据时,会触发E5122 中断。此时E5122 通过A8~A13 和A15 来选择RTL8019AS的寄存器地址和存储器地址,控制和实现数据的读取。当有数据通过E5122 发送给RTL8019AS 时,通过地址线设置RTL8019AS 相应寄存器进行数据发送。
4 硬件电路设计
在具体使用中,由于单片机本身的限制,进行了一系列的简化设计。采用跳线工作方式,JP引脚接高电平; E5122与RTL8019AS接口用于传输网络数据。
当系统初次运行时,E5122 会对RTL8019AS 进行初始化工作,设置RTL8019AS 的工作模式以及设置中断源等。当RTL8019AS 接收到数据时,会触发E5122 中断,此时E5122 通过A8~A13 和A15 来选择RTL8019AS的寄存器地址和存储器地址,控制和实现数据的读取。
当有数据通过E5122 发送给RTL8019AS 时,通过地址线设置RTL8019AS 相应的寄存器进行数据发送。
接口电路图如图3所示。
5 应用中的几个技术问题
在系统的实际应用过程中,要注意以下几个问题。
(1)传输速度
在系统中,上位PC机与下位测控设备之间数据交换的速度,取决于以太网接口模块的传输速度。而以太网模块的传输速度取决于以太网接口芯片的速度、单片机的处理速度,以及和设备交换数据的方式。
在一般的测控系统中,要传送的仅仅是控制命令和测量数据,数据量不大。模块与测控设备之间采用RS-232、RS-485、CAN等串口方式连接,其通信速率仅几十kb/s或上百kb/s。这时以太网接口芯片的速度(10Mb/s)和微处理器的速度就远大于串口通信速度。因此传输速率主要就取决于串口的通信速率。
当要传送的数据速率要求很高时(如图像),它与测控设备之间就不能再采用串口连接,而必须采用并口连接,这时传输速率就取决于微处理器的处理速度。此时,要选用一些高速的单片机,如P89C52RX系列或SX系列等单片机。
(2)IP地址
以太网测控系统中,测控设备通过该模块进入以太网,就必须确定自己的IP地址。IP地址的获得有两种方式:有动态获得IP地址和固定分配IP地址。由于E5122不支持RARP反向地址解析协议,因此无法获得动态IP地址,只能使用固定IP地址。
(3)安全控制
在小型封闭的局域网中进行测控,安全问题不大,但在广域网甚至因特网上进行测控,安全控制就至关紧要。为此,采用48~128位的用户密码来保护测控设备的安全。合法用户可以修改、设定自己的密码。网络非法用户即使窃取了IP地址,没有用户密码,也无法操作设备。
(4)实时性问题
测控系统在很多场合都要强调它的实时性,但以太网不是一个实时系统。由于它的载波侦听碰撞检测(CSMA/CD)通信方式,决定了以太网中IP包的传输会有延迟,甚至丢包,这是利用以太网组成分布式测控系统最大的缺点。但是,现在以太网的速度越来越快,百兆网甚至千兆网,或在一些小型封闭的局域网中,网络的繁忙程度大为减轻,IP包几乎没有碰撞,传输延迟、丢包现象就大大减小,不会影响测控系统的正常工作。同时,在系统的网络层之上,可增加应答协议,丢包的问题就可基本克服。
(5)连接方式
家庭智能控制系统的开发主要基于短信息技术、自动控制技术、计算机技术、数字通信技术及加密技术。该系统利用相关的网络、计算机系统和控制器,以无线网络和有线网络为基本控制指令和数据信息传送方式来实现手机无线遥控和数据传送,并通过专设的短信控制中心和服务中心,来为家庭和小区管理提供全方位的数字化服务。家庭智能控制系统具有手机远程控制、自动报警、呼叫社区服务、物业管理等功能。还可以根据用户群的需要向生活联网服务、智能办公等方向无限扩展。
一般情况下,只要将设备接入Internet/Intranet网,原则上只要实现TCP/IP网络协议就可以了。TCP/IP协议及其应用是一项复杂的系统工程。该协议的建立要经过缜密的设计过程,全套协议实现起来比较复杂。在嵌入式系统中实现该协议有一定的难度。在实际应用中,如果要完全实现该协议,比较合理的方案是直接利用集成的TCP/lP协议芯片将系统中央控制单元和TCP/IP协议处理单元进行分离。
另一方面,也可以对原有的TCP/IP进行精简,而只保留实际应用系统所需要的一些协议,从而使核心芯片既能实现网络的数据传输任务,又可完成对任务的监控。因为,对原有的TCP/IP协议进行精简可大大减轻系统实现的难度,同时也可以提高系统的效率和可靠性。
图1
2 系统工作原理
图1所示是一个基于E5122网络协议处理器的家庭网络控制系统的原理框图。图中,以家庭中的三表数据作为采集信号,并将其通过采样保持电路处理以后送入单片机,然后由单片机把数据通过串口送入E5122网络协议处理器中进行打包处理,以将数据打包成TCP/IP协议包,最后再把该数据包通过RTL8019AS以太网控制器发送到以太网上。本系统采用CPLD芯片EPM7128S作为译码和驱动电路。由于家庭用户终端一般对数据交换的速率要求不高(在1MB/s以下),所以可采用一般高速单片机来写入TCP/IP协议,这样既可满足功能要求,又能降低成本,用户也容易接受这样的价格。
3 TCP/IP协议解析芯片E5122
E5122是上海精致科技公司研制的飞虹系列网络协议处理器。其外部晶振频率为22.1184MHz,工作电压为5V。可为硬件实现TCP/IP协议提供API接口,并可以I2C协议或RS-232接口方式与用户端进行通信,其通信接口支持带I2C接口的MPU,同时还为不带I2C接口的MPU提供I2C驱动程序。 E5122与网络的接口为以太网接口,可通过以太网控制芯片RTL8019连接到以太网。其串行速率最大可达115.2kbps,并可实现真正实时传送。
E5122 是完成TCP/IP 协议的专用芯片,可用以实现以太网和串口之间的协议转换,该器件只需外接MCU就可为串口设备提供完善的网络通信解决方案。本系统采用的MPU为89C52单片机,而且只需在单片机程序中简单调用API函数即可。图2所示是E5122的结构框图。该设备可做为服务器端,即首次连接网络时,客户机端主动请求连接服务器端作为被动端进行监听,同时接受局域网内联网远端客户的主动查询访问,并将设备信息返回给客户?该设备同样也可以作为客户机主动和局域网内或In-ternet 上的主机进行通信。E5122 芯片外部使用32kB RAM来为以太网进行数据缓冲。它使用256字节(最少为256字节)的串行EEPROM(I2C 总线接口)来存储系统参数。用户可通过串口与E5122进行通信,E5122的作用是:完成TCP/IP 协议和串口通信协议,同时支持普通串口和用户设备的交互,并可通过外接RTL8019AS 控制芯片来实现网络连接。
4 硬件电路设计
4.1 接口电路
在具体使用中,由于单片机本身的限制,设计时可采用跳线方式将JP引脚接高电平; 而用E5122与RTL8019AS的接口来传输网络数据。
当系统初次运行时,E5122会对RTL8019AS进行初始化,同时设置其工作模式以及中断源等。RTL8019AS接收到数据时会触发E5122中断,此时E5122将通过A8~A13和A15来选择RTL8019AS的寄存器地址和存储器地址并控制和实现数据的读取,当有数据通过E5122发送给RTL8019AS时,系统将通过地址线设置RTL8019AS的相应寄存器以进行数据发送。其具体的接口电路如图3所示。
4.2 I2C总线数据存储器
I2C总线是INTER INTEGRATED CIRCUIT BUS的缩写,即“内部集成电路总线”。I2C总线是由Philips公司首先提出的串行通讯接口规范,该总线使用串行数据线?SDA?和串行时钟线?SCL?来进行主从器件之间的数据传输,接口十分简单。
I2C总线上的数据传输率可达100kbit/s,快速模式下可达400kbit/s。在I2C总线传输中,当SCL为高时,SDA由高变低为开始条件;而当SCL为高时,SDA由低变为高则为停止条件。SDA和SCL都是双向传输线,SDA线上的数据在时钟为高期间必须是稳定的,只有当SCL线上的时钟信号为低时,数据线上的状态才可以改变。输出到SDA线上的每一个字节必须是8位,每次传输的字节不受限制,但每个字节必须有一个应答位。
4.3 隔离耦合变压器
设计时应采用1?1隔离变压器,同时应避免雷电引起的感应电压损坏后级电路。此外,还需完成平衡-不平衡的转换隔离、传输和匹配。
4.4 复位与看门狗电路
通过看门狗电路可在程序跑飞或死机时,对系统进行重新置位或复位,以使系统恢复正常运行。其电路如图4所示。该电路采用MAX813L来完成电源复位和看门狗功能。
5 应用中应注意的几个技术问题
在实际应用过程中,应注意以下几个问题:
(1)传输速度
在系统中,上位PC机与下位测控设备之间的数据交换速度取决于以太网接口模块的传输速度;而它的传输速度则取决于以太网接口芯片的速度、单片机的处理速度以及和设备交换数据的方式。
测控系统要传送的一般是控制命令和测量数据,且数据量不大?模块与测控设备之间可采用RS-232、RS-485、CAN等串口方式进行连接,其通信速率仅几十kb/s或上百kb/s。而以太网接口芯片的速度(10Mb/s)和微处理器的速度远大于串口通信速度。因此,传输速率主要取决于串口的通信速率。
当对传送速率要求很高时(如传送图像),以太网接口模块与测控设备之间就不能再采用串口进行连接,而必须采用并口连接。这时传输速率取决于微处理器的处理速度。建议选用一些高速单片机,如P89C52RX系列或SX系列等。
(2)IP地址
以太网测控系统中的测控设备要通过模块进入以太网,就必须确定自己的IP地址。IP地址的获得有两种方式:一是动态获得IP地址,二是固定分配IP地址。由于E5122不支持RARP反向地址解析协议,故无法获得动态IP地址,只能用固定IP地址。
(3)安全控制
在小型封闭式局域网中进行测控时,安全问题一般不大。但在广域网甚至因特网上进行测控时,安全控制就至关重要。为此,应采用48~128位的用户密码来保护测控设备的安全,以使合法用户可修改、设定自己的密码。这样网络非法用户即使窃取了IP地址,由于没有用户密码,也无法操作设备。
(4)实时性问题
测控系统在很多场合都要强调它的实时性,但以太网不是一个实时系统。它的载波侦听冲突检测(CSMA/CD)通信方式决定了以太网中IP包的传输会有延迟,甚至丢包,这是利用以太网组成分布式测控系统的最大缺点。但是,现在以太网的速度越来越快,在百兆甚至千兆网或一些小型封闭式局域网中,当网络的繁忙程度大为减轻时,IP包几乎没有冲突,因而传输延迟、丢包现象将大大减小,而不会影响测控系统的正常工作。同时在系统的网络层之上,如能增加应答协议,则丢包问题就可基本解决。
(5)连接方式