机械加工技术论文范文

时间:2023-03-13 11:05:17

引言:寻求写作上的突破?我们特意为您精选了12篇机械加工技术论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

机械加工技术论文

篇1

数控技术是在传统机械加工技术的基础上,采用数字控制技术来进一步提高机械加工的质量,并且结合传统机械制造技术、计算机技术与网络通信技术等进行机械加工运动。较传统机械加工技术来说,其不但具有高准度与高效率,同时还具备柔性自动化等优点,国内现在对数控技术的应用主要是预先编制好程序,再通过控制程序来控制设备,一般采用计算机进行控制。

(2)数控加工技术的主要特点

数控加工技术可以简便的改变相关工艺参数,因此在进行换批加工与研制新产品时非常方便。另外,像普通机床很难完成的加工复杂零件与零件曲面形状等,利用数控加工技术都可以高质量量完成。数控加工技术采用模块化标准工具,在换刀与安装方面都节省了很多时间,同时对工具的标准化程度与管理水平都有较大的提高。

2数控技术在机械加工技术中的应用意义

(1)数控技术在机械加工技术中的应用

提高了机床的控制力近年来数控技术在机械加工技术中的应用,对机床控制力有了很大程度上的提高,进一步提高了机械加工的工作效率。采用数控技术来控制机床设备,充分发挥了机床设备的功能,同时使机床设备的操作更加简单,通过在数控器上预先编制好机械加工的流程与操作方法,并由控制器依据相关数字信息来控制机床运行,不但保证了机械加工的质量,同时也使机床设备更具高效化。

(2)数控技术在机械加工技术中的应用

推动了汽车制造业的发展数控技术对进一步发展汽车制造业有很大的帮助,通过将数控技术应用到机械加工技术中以提高机械加工技术的有效,为进一步发展汽车制造业提供了技术保障,在汽车零件的加工中运用数控技术可有效提高生产率,同时强化了汽车进行机械加工的效果,使原本复杂的操作更加简单,提高汽车零件加工生产的效率同时促使汽车制造业实现最大化收益。

3有效提高数控技术在机械加工技术中的应用效果

(1)重视对数控技术的应用

近些年来,数控技术虽已被广泛应用到机械加工技术中,但是仍然有一部分企业内部对数控技术的应用缺乏足够的重视。因此,要想进一步将数控技术融入到机械加工技术当中,首先就必须要让企业的经营管理者充分认识到数控技术在机械加工技术中的重要意义,给予充分的重视。同时,积极组织数控技术相关知识的培训,提高工作人员数控技术水平,结合数控技术的实际操作与理论知识,以便更好的发挥数控技术的优势,提高机械加工的质量与效率。

(2)在机械加工过程中实现自动编程

一般在机械加工的过程中都是采用人工手动进行对生产制造图样与编写零件加工程序单以及工艺过程进行确定,这样不仅效率低且容易出现人为计算失误。因此,应注重对数控技术有效性的应用,尽快实现自动编程,使用计算机来替代人工操作,不但可保证加工质量,同时提高机械加工制造的效率,实现人力与物力的合理化配置,为加工企业节约制造成本,进一步推动机械制造业的发展。

(3)合理改进并更新机械加工中的原有设备

在全球经济发展的推动下,我国工业大力发展,数控技术被越来越普遍的应用到了机械加工技术中,而时代新形势对机械加工的要求越来越高,因此,应当积极创新数控技术,大力倡导经济型数控机床的发展,以保证数控机床的稳定性与高效性。同时,对机械加工中的原有设备应当进行合理改进,提升机械加工的技术水平,完善数控技术的应用,提高我国机械制造业的生产水平。

篇2

一、机械加工精度

1、机械加工精度的含义及内容

加工精度是指零件经过加工后的尺寸、几何形状以及各表面相互位置等参数的实际值与理想值相符合的程度,而它们之间的偏离程度则称为加工误差。加工精度在数值上通过加工误差的大小来表示。零件的几何参数包括几何形状、尺寸和相互位置三个方面,故加工精度包括:(1)尺寸精度。尺寸精度用来限制加工表面与其基准间尺寸误差不超过一定的范围。(2)几何形状精度。几何形状精度用来限制加工表面宏观几何形状误差,如圆度、圆柱度、平面度、直线度等。(3)相互位置精度。相互位置精度用来限制加工表面与其基准间的相互位置误差,如平行度、垂直度、同轴度、位置度零件各差来表示的要求和允许用专门的符明。

在相同中的各种因对准确和完足产品的工加工方法,的生产条件下所加工出来的一批零件,由于加工素的影响,其尺寸、形状和表面相互位置不会绝全一致,总是存在一定的加工误差。同时,从满作要求的公差范围的前提下,要采取合理的经济以提高机械加工的生产率和经济性。

2、影响加工精度的原始误差

机械加工中,多方面的因素都对工艺系统产生影响,从而造成各种各样的原始误差。这些原始误差,一部分与工艺系统本身的结构状态有关,一部分与切削过程有关。按照这些误差的性质可归纳为以下四个方面:(1)工艺系统的几何误差。工艺系统的几何误差包括加工方法的原理误差,机床的几何误差、调整误差,刀具和夹具的制造误差,工件的装夹误差以及工艺系统磨损所引起的误差。(2)工艺系统受力变形所引起的误差。(3)工艺系统热变形所引起的误差。(4)工件的残余应力引起的误差。

3、机械加工误差的分类

(1)系统误差与随机误差。从误差是否被人们掌握来分,误差可分为系统误差和随机误差(又称偶然误差)。凡是误差的大小和方向均已被掌握的,则为系统误差。系统误差又分为常值系统误差和变值系统误差。常值系统误差的数值是不变的。如机床、夹具、刀具和量具的制造误差都是常值误差。变值系统误差是误差的大小和方向按一定规律变化,可按线性变化,也可按非线性变化。如刀具在正常磨损时,其磨损值与时间成线性正比关系,它是线性变值系统误差;而刀具受热伸长,其伸长量和时间就是非线性变值系统误差。凡是没有被掌握误差规律的,则为随机误差。

(2)静态误差、切削状态误差与动态误差。从误差是否与切削状态有关来分,可分为静态误差与切削状态误差。工艺系统在不切削状态下所出现的误差,通常称为静态误差,如机床的几何精度和传动精度等。工艺系统在切削状态下所出现的误差,通常称为切削状态误差,如机房;在切削时的受力变形和受热变形等。工艺系统在有振动的状态下所出现的误差,称为动态误差。

二、工艺系统的几何误差

1、加工原理误差

加工原理误差是由于采用了近似的成形运动或近似的刀刃轮廓进行加工所产生的误差。通常,为了获得规定的加工表面,刀具和工件之间必须实现准确的成形运动,机械加工中称为加工原理。理论上应采用理想的加工原理和完全准确的成形运动以获得精确的零件表面。但在实践中,完全精确的加工原理常常很难实现,有时加工效率很低;有时会使机床或刀具的结构极为复杂,制造困难;有时由于结构环节多,造成机床传动中的误差增加,或使机床刚度和制造精度很难保证。因此,采用近似的加工原理以获得较高的加工精度是保证加工质量和提高生产率以及经济性的有效工艺措施。

例如,齿轮滚齿加工用的滚刀有两种原理误差,一是近似造型原理误差,即由于制造上的困难,采用阿基米德基本蜗杆或法向直廓基本蜗杆代替渐开线基本蜗杆;二是由于滚刀刀刃数有限,所切出的齿形实际上是一条折线而不是光滑的渐开线,但由此造成的齿形误差远比由滚刀制造和刃磨误差引起的齿形误差小得多,故忽略不计。又如模数铣刀成形铣削齿轮,模数相同而齿数不同的齿轮,齿形参数是不同的。理论上,同一模数,不同齿数的齿轮就要用相应的一把齿形刀具加工。实际上,为精简刀具数量,常用一把模数铣刀加工某一齿数范围的齿轮,也采用了近似刀刃轮廓。

2、机床的几何误差

(1)主轴回转运动误差的概念。机床主轴的回转精度,对工件的加工精度有直接影响。所谓主轴的回转精度是指主轴的实际回转轴线相对其平均回转轴线的漂移。

瞬时速度为零。实际上,由于主轴部件在加工、装配过程中的各种误差和回转时的受力、受热等因素,使主轴在每一瞬时回转轴心线的空间位置处于变动状态,造成轴线漂移,也就是存在着回转误差。超级秘书网

主轴的回转误差可分为三种基本情况:轴向窜动——瞬时回转轴线沿平均回转轴线方向的轴向运动,如图l(a)所示。径向跳动——瞬时回转轴线始终平行于平均回转轴线方向的径向运动,如图l(b)所示。角度摆动——瞬时回转轴线与平均回转轴线成一倾斜角度,交点位置固定不变的。

(a)轴向窜动;(b)径向跳动;(c)角度摆动动,如图1(c)所示。角度摆动主要影响工件的形状精度,车外圆时,会产生锥形;镗孔时,将使孔呈椭圆形。实际上,主轴工作时,其回转运动误差常常是以上三种基本形式的合成运动造成的。

(2)主轴回转运动误差的影响因素。影响主轴回转精度的主要因素是主轴轴颈的误差、轴承的误差、轴承的间隙、与轴承配合零件的误差及主轴系统的径向不等刚度和热变形等。主轴采用滑动轴承时,主轴轴颈和轴承孔的圆度误差和波度对主轴回转精度有直接影响,但对不同类型的机床其影响的因素也各不相同。

参考文献:

篇3

1.1数控机床应用水平低

自我国制造业正式引进数控加工技术以来,制造业的生产水平获得明显提升。虽然在日常使用过程中,有基本的数控机床操作规范与维护措施,不过机床本身的精度损失是无法避免的。为进一步提高工作效率,改善生产质量,落实好机床维护保养工作十分重要。此外,由于许多工程并未明确每台设备的加工精度与加工任务,没有合理区分粗加工设备与细加工设备,设备资源没有得到合理安排,不但影响到数控机床的使用寿命,还会大大降低数控机床的生产效率。

1.2操刀频率与设置不合理

在开展大规模生产活动时,合理选择换到方式能有效缩短换刀的辅助时间,避免机床严重磨损,从而减少机床维护成本,提高机床生产的经济效益。从目前情况来看,大部分工厂的换到频率均存在不合理现象,同时,夹具选择、走刀线路、刀具排列位置以及刀具树勇顺序都没有具体细化,设计方案明显存在漏洞,如此一来,机床运行的工作效率自然也会受到影响。

1.3编程程序不符规范

数控机床的运行模式主要取决于计算机的编程程序,计算机编程主要负责控制机床工作步骤。随着信息技术的不断发展,计算机编程程序在数控机床加工中获得广泛应用,不过不得不承认的是,计算机编程目前仍未达到最理想化的运用程度。现有计算机编程十分复杂,给系统的调试与操作带来了诸多不便。也正因如此,数控机床机械技术加工效率始终无法得到提升。

2提高数控机床机械技术加工效率的根本途径

2.1人员管理方面

2.1.1提高操作人员业务水平

在数控机床加工环节中,操作人员的业务水平直接决定数控机床的工作效率。作为数控机床软件的操控着,其专业能力与职业素养均将对数控机床的加工效率产生深远影响。所以,提高数控机床一线操作人员业务水平很有必要。

2.1.2规范数控机床操作流程

相较于普通机床,数控机床的操作流程更为复杂,操作工艺也更加丰富多样化。为确保加工活动得以顺利开展,提前制定好科学、规范的数控机床操作流程很有必要。因此,加工企业有必要在实际工作中,制定规范数控机床的操作流程,要求全体操作人员在工作期间,严格按照相关规范执行各项操作。

2.1.3对现有管理模式进行改良

数控机床的稳定运行离不开科学管理,只有提高管理水平,才能充分发挥出数控机床的功能与优势,为生产加工活动做贡献。所以,在工作期间,有必要定期对数控机床管理模式进行调整与改良,根据生产加工活动的具体需求以及数控机床的规格、类型、加工工艺等方面,制定不同类型的管理模式,以确保在不同生产加工活动中,不同类型的数控机床能够得到有效利用。只有实现管理模式的与时俱进,才能更好地提高数控机床设备资源的有效利用率,进一步促进机械技术加工效率的不断提高。

2.2技术设备方面

实际上,加强对数控机床机械技术设备方面的研究,从技术层面着手是提高数控机床机械技术加工效率的根本途径。在对数控机床技术设备方面进行研究时,务必要结合数控机床的工作特点,针对具体情况采取具体的应对措施,在考虑到可操作性的同时,加强成本管理,以确企业的整体效益。

2.2.1恒定电网供电水平

数控机床集互联网技术与机床技术于一体,因此对电网供电系统有着极高的要求。以目前应用范围最广的数据机床为例,在电网供电极度不稳定的情况下,该装置内部的欠压保护装置报警系统根本无法发挥出正常作用。从技术可行性与经济性的层面来看,结合运行中数控机床的在自身特性,于电网系统中设置交流稳压器是解决该问题的唯一途径。交流稳压器的设置,能够有效避免在高峰或低谷时段供电不稳定现象,从而为数控机床的高效生产创造有利条件。

2.2.2正确选择合适设备

在数控机床运行期间,操作人员应重视数据机床设备的选型,特别是有关数控系统方面的选型,设备选型是否合理将直接决定数控机床的相关工作能否顺利开展。因此,相关工作人员在选择相关设备的型号时,务必要对工作环境、工作条件、生产需求等多方面因素进行充分考量。此外,为提高数控机床与各相关设备工作的协调性,企业在选购数控机床以及相关设备时,应尽量选择同一厂家的产品。同一厂家出产的产品有利于工艺之间的链接,且为后期维修保养工作减少了许多不必要的麻烦,从根本上解决了数控机床机械技术加工效率低的问题。

2.2.3落实机床维护管理工作

数控机床的管理与维护是确保数控机床得以正常工作的重要前提,也是延长数控机床使用寿命的关键。因此,相关工作人员可定期对机床进行维护与管理,通过机床等方式,对数控机床进行维护与保养。另外,部分数控机床运行环境较为特殊,为确保数控机床的应用价值得以充分发挥,务必对机床采取合适的方式进行保养。同时,不同型号的数控机床保养维护方式也不一样,油的类型与使用方式切不可混淆。只有认真落实好机床维护保养工作,才能有效提高数控机床机械技术加工效率。

篇4

1.2在工业中应用在工业中,主要是将数控技术应用在机械设备生产线上。采用编程方法,把需要的指令输入到了计算机中,然后通过控制计算机实现机械设备远程自动化控制技术,不再使用人工控制。数控技术具有很高的精确度,在保证了加工质量的同时,还能够提高生产效率,人工工作的环境也得到了改善。在工业中应用数控机床能够完成复杂的加工任务,在精度方面也有很好的精确度,在工作效率方面更是比人工操作快速。一旦出现了故障,数控机床的相关传感和检测系统,就能够把故障的相关信息传输到计算中,计算机就会停止机床的工作,能够很好的保护数控机床设备。这样能够很大的节省人力资源,让企业的成本降低。

1.3在机械加工中应用我国科学技术发展非常迅速,不进行数控车床技术的更新就不能跟上时展的步伐。很多的机械制造商已经意识到了先进技术的潜力,不断地引进先进的焊件。数控气割技术轻松的解决了单件下料难的问题,在工作的时候,只要保证压缩接触面积均匀,就能够实现很好的密封功能,对于产品的内外环凹凸面加工提供了保证,实现毛坯到成品持续加工。数控技术在机械浮动油封中也得到了很大的应用,能够将数控镗铣床编程和现代机械设备进行结合,通过提前编制好齿形子程序,调整结合角度就可以满足质量的要求。在机械加工中,使用数控车床技术,还能够提高零件焊接的精度,进行密封,能够从毛坯到成品持续加工,很大程度上提高了加工效率。

2数控机床增效措施

数控机床加工工艺和加工设备中有一些问题,缺乏数控机床加工工艺的知识库和数据库,缺乏加工切削参数,缺乏数字化管理系统和制造系统。数控机床在加工的时候,需要很长的准备时间和等待时间,发生故障之后调试的时间也很长,这些都降低了数控机床的效率。对我国数控机床加工工艺现状进行认真分析之后,研究出了一些增加数控机床效率的方法。

2.1提高自动化程度数控技术在发展过程中,会逐渐的提高自动化程度,这是数控技术发展的趋势,也是制造领域的要求。自动化程度加快之后,能够减少加工的时间,提高加工的效率。经过柔性生产线和柔性制造单元以及复合加工技术,能够提高数控技术的自动化和连续性,这样可以有效的降低加工所需要的辅助时间,提高了生产效率。

2.2优化加工过程数控车床加工过程还存在一定的缺陷,通过优化生产加工过程,能够减少加工准备时间。在加工中,使用先进配套的管理方式、生产技术、机械零件制造执行系统、刀具自动配送、机械设备管理等,能够增强设备的开动率和完整性,对于数控机床的持续运行和高效管理具有很好的作用。

2.3优化加工设计和工艺数控机床加工工艺需要优化,在保证零件质量的前提下,通过减少加工的时间,提高加工的效率。数控机床使用先进的刀具或者是高性能的数控机械机床等,能够仿真模拟数控机床的加工,从而优化控制数控机床程序。优化加工工艺和加工设计,能够提高加工的性能,提高切削效率和主轴的加工效率。

篇5

2数控技术在机械加工机床设备中的作用

2.1数控技术在机械加工中的作用

伴随着现代工业及信息技术的发展,机械加工技术和工艺不断进步,从而推动了机械加工设备的更新换代和机械加工控制系统的更新升级。由于数控技术在机械加工中的应用,出现了数控技术机械设备机壳的毛坯制造。数控气割技术的使用轻易地解决了单间下料等诸多问题,数控气割技术通过保持压缩接触面积的均匀,很好地满足了密封功能的要求。这些使得产品内外环凸凹曲面的加工精度得到提高,实现了毛坯料到成品过程的持续加工。因数控镗铣床编程加工已与机械设备有机结合起来,首先通过预先编程的齿形子程序,然后进行机械加工和结合角度偏置,这能使产品满足生产要求并进行无差异化生产,更好地满足各种精度要求,极大地提高了机械设备加工效率,还能实现生产计算机控制一体化。

2.2数控技术在机床设备中的作用

机床设备是机械加工中的重中之重,因此,在机械加工过程中机床设备的控制技术是非常重要的。为满足现代机械加工业的发展需求,拥有控制系统的机床设备是现代机电一体化的关键。数控技术是现代机床设备的灵魂和核心。通过在机床上使用计算机控制系统,能够对机床的加工过程进行控制,不仅保证了产品的高质量要求,还极大地提高了机床的使用效率与生产效率。它用数字化的代码来表示加工零件的工艺和几何信息,也就是运用计算机编程将刀具与工件间的相对位移以及进给速度编排在计算机控制系统上,由计算机发出控制指令使机床按控制要求运行。无需对机床进行人工参与与调整,只需向计算机控制系统编入新的加工程序,就能改变加工零件,这是数控机床的最大特点。

3数控技术在机械加工机床中的发展趋势

3.1数控技术的性能发展趋势

现如今,我国的数控技术在机械加工领域中得到了广泛的应用,数控技术的作用已不容置疑,它不仅推动了机械加工行业的持可续发展,还提升了我国的综合国力。数控机床的性能正朝着高速高精高效化、柔性化、实时智能化发展。高速高精高效化:随着高速RISC芯片、多CPU控制系统的运用以及机床性能的改善,明显提高了机床的高速高精高效化。柔性化:主要表现在数控技术具有较强的可塑性和较好的可操作性。模块化的设计,能满足生产流程的不同需求。实时智能化:利用实时系统和人工智能相结合实现人类智能行为的模拟,使高科技手段有效运用。

3.2数控技术的功能发展趋势

为解决数控技术发展中面临的多种技术与非技术问题,数控技术在功能上得到了很大的发展,主要表现在用户界面图形化、科学计算可视化、插补和补偿方式多样化以及内装高性能PLC。用户界面图形化:用户界面是使用者和数控系统的对话连接。能够根据客户的知识接受能力和要求,加大对客户界面的开发。用户界面图形化能够实现蓝图编程和快速编程、图形动态跟踪和仿真、不同方向的视图和局部显示比例缩放等功能。科学计算可视化:能够高效处理和解释数据,直接使用可视信息如动画、图像等。用于CAD/CAM,如参数自动设定、自动编程、刀具管理数据的动态处理等。插补和补偿方式多样化:有2D+2螺旋插补、NURBS插补(非均匀有理B样条插补)、极坐标插补等多种插补方式。补偿方式有极坐标插补、螺距和测量系统误差补偿、象限误差补偿、以及相反点计算的刀具半径补偿等。内装高性能PLC:可用高级语言编程或梯形图,提供在线调试和在线帮助功能。用户在车床铣床的标准PLC用户程序基础上修改自己需要的程序,能够建立自己的应用程序。

4数控机床的主要增效途径

目前,我国数控机床的自动化生产设备及生产工艺还存在一定的问题,主要表现在:数控机床生产设备加工切削参数不太合理、与数控机床相关的知识库和工艺数据库缺乏、在自动化的制造中缺乏先进的管理系统。这些问题增加了数控机床加工过程中的准备时间、等待时间和故障调试时间,从而降低了数控机床的生产效率。通过对国内数控机床的现状了解,提出了提高数控机床效率的有效途径。

4.1提高数控机床的自动化程度在数控机床加工过程中,通过柔性生产线,以及柔性制造单元等数控加工技术,逐步提高数控技术的自动化程度。这样可以减少数控机床加工中的准备时间、等待时间和故障调试时间,从而缩减了加工所需要的总时间。由此,在机械加工过程中加工零件的连续性以及自动化程度得到提高,进而提高了数控机床的生产总效率。

4.2逐步优化加工过程通过机械加工生产过程的持续优化实现数控机床的加工,努力改进现有的生产和管理方式、刀具的自动配送、机械设备的管理以及机械零件的制造执行系统等,积极学习国外先进的数控技术水平,逐步优化加工过程。这能有效提高数控机床设备的完整性和开动率,使数控机床得到高效管理和有序运用。

4.3优化加工工艺以及加工设计保证加工零部件的质量以及缩减机械加工的时间,是提高数控机床的加工效率,实现优化数控机床加工工艺的基础。通过使用较为先进的刀具或者性能高的数控机床设备能够完成数控加工机床的模拟仿真秀。运用先进的技术努力优化数控机床加工工艺和加工设计,实现优化控制系统装置。通过提高数控机床的切削效率和主轴的加工效率,能够保证数控机床的加工性能。

篇6

在加工制造机械的过程中,应用超高速磨削技术则其砂轮线的速度由传统的45m/s提升至150m/s,由此可见其速度得到了极大程度的提升。相应地,在单位时间内其磨削量也会大幅提升。而与传统高速磨削技术相比,若总体磨削量一致,则应用超高速磨削技术能够有效节省工作时间,促使工作效率获得大幅度提升。

1.2降低磨削力,提升零件精度与光洁度。

第一,若磨粒进给量固定不变,应用超高速磨削技术则可以减少磨削厚度,从而有效提升机械加工制造零件的精度。第二,若固定磨削速度,使其处于180~220m/s之间,则会改变磨削状态,使其变成液态,从而大幅度地降低磨削速度。第三,该技术具备极快的磨削速度,能够有效降低零件表面的粗糙度,大幅度提升其表面光洁度。

1.3使砂轮的使用寿命更长。

在整个磨削过程中磨粒承受着极小的负荷,致使磨粒磨削耗时变长。如果是进行金属切除工作,若概率一致,则应用超高速磨削技术时其砂轮速度会提升至一般状态下的8.5倍,即若常规速度为80m/s,则应用超高速磨削技术的速度便为200m/s。由于缩短了磨削时间,因此砂轮寿命得以延长。

1.4提升零件使用效能。

对于硬脆材料而言,普通磨削技术无法正常磨削,而超高速磨削技术则可以,且在使用过程中其厚度较小,促使磨削材料变为流动状态,与此同时零件也获得了更高的抗疲劳性。

2机械加工制造中超高速磨削技术的应用

2.1深磨技术的应用

在机械加工制造过程中为了实现提升磨削工作效率的目标就需要使用深磨技术。对于该项技术而言,其具备超快的砂轮线转动速度,同时也能够有效提升零件表面的细腻程度,使其更加光滑,这与一般磨削技术存在差异。深磨技术的重点在于对磨削整体工作流程予以完善,与此同时其速度一般控制在60~250m/s之间,若砂轮为陶瓷材质的则速度保持在120m/h左右即可,其磨除率与普通磨削技术相比在其百倍甚至千倍以上。

2.2超高速精密型磨削技术的应用

该技术主要在国外被广泛应用。在磨削时要注意提升零件的表面塑性,与上述磨削一样,重点在于加快砂轮线的转动速度以对整个磨削流程予以完善,同时也能够减少零件表面粗糙度。应用超高速精密型磨削技术能够增加磨具的精细化,使其精度、尺寸等都朝着更准确的方向发展。该技术的主要工作方式在于加工较为细小的磨料,并且与砂轮的特性紧密结合来对磨粒进行磨削。高速精密型磨削技术的砂轮材质主要为金刚石,其磨削以及剔除粗糙以保持光滑度的工作完成于同一装置中。应用该技术能够约束硅片的平面度,将其控制在0.2~0.3nm之间。但是其表面的粗糙度却只能保持在1nm以下,无法再达到更小程度。应用该技术能够确保加工制造后所生产出来零件的质量。

2.3超高速磨削技术在难磨材料中的应用

对于难磨材料而言其具备一些磨削特性,主要为切屑粘附性和韧性大、硬度与在高温状态下的强度高以及导热系数低等。这些特性对于磨削工作存在较大影响,主要表现在以下几点:(1)磨削比降低;(2)易产生堵塞现象,且一般较为急剧;(3)砂轮易出现钝化现象,且进展速度快;(4)在对磨粒进行切削时,其刃会出现较为严重的粘附现象;(5)其表面容易产生变形、裂纹、振痕以及烧伤现象,致使加工难度加大。由于上述表现会阻碍机械加工制造的进程,国外便对此开展了大量实验研究,以对其难以加工的性能予以优化改善,且取得了较好成果。研究证明,一般而言工件材料自身都拥有较强的化学亲和力,因此容易使得砂轮出现急剧堵塞现象,而这正是形成材料难磨性能的关键原因。磨削温度与工件化学亲和力的强弱程度之间存在正比关系,即温度越高则亲和力越强,反之亦然。该技术还能够用于对硬脆性材料的延性域磨削。由此可见,超高速磨削技术能够用于对难磨材料的磨削,例如高强与高温合金、钛合金、淬硬钢等,均能获得较好的加工效果。

篇7

1机械加工中的资源能源消耗

具体到机械加工过程中,资源能源消耗主要包括:物料消耗和能源消耗。在机械加工中由于原材料在生产资源中占据很大的比例,因此加强物料的消耗研究是提高资源利用率的关键,在生产过程中经过一定的加工后,原材料的重量会降低很多,而流失的重量就属于原料消耗,比如在进行机械产品的切割、镗孔时所产生的料头、刨花等都是不可避免的,但是通过工艺改良可以降低这些物料的消耗。

2机械加工中的环境影响分析

机械加工中对环境的影响主要体现在以下两个方面:一是废弃物对环境的影响。废弃物对环境的影响主要有:固体废弃物对当地环境的影响,机械加工过程中会产生大量的边角余料,而这些边角余料的摆放等有可能会破坏当地土壤的成分,造成土壤重金属超标;废液对生态环境的影响。在机械加工中所产生的废液如果处理不善不仅会给环境造成影响,还会对人体的健康形成威胁。二是噪音对环境的影响。机械加工过程中会产生大量的噪音,如果不能很好地控制噪音就会对人体产生严重的危害:干扰人们的正常生活、损害人的听觉系统等。在机械加工过程中噪音主要来源于机床设备的噪音。机床在加工工艺时因为传动齿轮、传动皮带以及轴承的不断工作而产生各种噪音,噪音的产生是机械加工过程中显著的特性;机械加工过程中也会产生噪音。机械加工过程中也会因为对原材料的切割、钻孔等工序而产生噪音,这种噪音大小与机械加工材料有直接的关系。

二绿色制造技术的优化

基于机械加工过程中对能源消耗和环境的影响,应该大力发展绿色制造技术,通过绿色制造技术改善机械加工过程中所出现的各种问题:

1优化绿色制造技术工艺参数

工艺参数优化是绿色制造工艺过程规划的关键技术,通过对零件加工工艺参数的优化,可以实现物料消耗最低化的目的,基于在机械加工中工艺参数对机械加工产品的质量、消耗以及噪音等方面的影响,绿色制造技术选择的工艺参数要综合考虑这些因素,并且要通过对多种参数方案进行对比、评价,选出最优化的加工工艺参数,实现机械加工的低物料消耗。

2绿色制造工艺路线的优化

工艺路线是机械加工环节中的重要步骤,合理的工艺路线不仅能够大大提高机械产品的生产效率,提高产品质量,还可以实现绿色生产的要求,通过优化工艺路线可以降低一些不必要的机械加工,有效地降低了能源的消耗和对环境的污染。比如在机械加工中采取少无切削生产工艺的精锻、精冲等近似成型的工艺不仅能够提高原材料的使用效益,还能降低污染物的排放,并且通过简化生产流程,降低了设备与能源的消耗。

3采取多工件多机床节能型调度优化技术

机械加工实现绿色制造,从根本角度讲需要改善零件加工过程的机床设备:一是要改进机床加工技术,提高机床加工设备与环境的相适应程度,满足机床加工与环境和谐发展的要求;二是要优化配置机床设备,通过采取合理的组合方式降低无功率生产,实现加工过程的绿色性目的。比如在生产过程中,有的机床加工过程会产生大量的无功率作业,造成机械设备的消耗。因此通过采取多工件多机床节能型调度优化技术,通过对工件和机床的合理调度实现总体能量消耗的降低。

4加强机械加工绿色制造的评价。机械加工绿色制造的关键就是实现经济效益与生态效益的最大化,而评价绿色制造技术效果的标准就是根据机械加工绿色制造评价指标体系,重点对加工时间、加工质量、加工成本、资源利用率以及环境影响进行分析与评价。

篇8

 

一、引言

ADXL210E是美国模拟器件公司生产的含有用多晶硅表面微机械加工技术制作的传感器的两坐标轴加速度计单片集成电路。论文写作,ADXL210E。ADXL210E是一种低成本,低功耗,完整2轴加速度传感器,该电路可以测量诸如振动这样的动态加速度和重力之类的静态加速度,测量范围为±10g。ADXL210E的占空因数输出在没有A/D转换器或胶着逻辑(Gluelogic)的情况下,可通过微处理器直接测量。论文写作,ADXL210E。事实上,器件的占空因数(即脉冲宽度与周期之比值)正比于加速度。论文写作,ADXL210E。ADXL210E常用于两轴倾斜传感器、信息家电、报警和移动探测器及汽车安全等领域。

其性能特点如下:

(1)利用3V~5.25V的单电源工作,电源电流低于0.6mA;

(2)集成了两坐标轴采用多晶硅精细机械加工技术制作的传感器;

(3)经占空因数输出端可直接与低成本的微控制器接口;

(4)加速度计的带宽可由引脚XFILT和引脚YFILT上的电容器(CX、CY)设定;(5)满度测量范围为±10g,在60Hz下的分辨力是2mg;

(6)占空因数周期T2由引脚2上的电阻器RSET设定(T2=RXET(Ω)/125MΩ)。(7)有专门设计的数字输出,通过占空因数滤波或者利用引脚XFILT与引脚YFILT输出,也可提供模拟输出。

二、基本结构与原理

ADXL210E采用尺寸为5mm×5mm×2mm的8引脚LCC型封装,引脚排列如图1所示。各个引脚的功能见表1。

图1 ADXL210E引脚排列图

篇9

一、数控铣/加工中心预备技师课题内容

1.课题来源

预备技师课题的来源一般有:具有一定技术含量的企业产品、历年全国数控技能竞赛试题、国家题库、企业攻关课题、企业的技术改造课题、根据培养知识点设计的课题等。

本课题源自一灯具生产企业,产品为外贸定单,销往日本。该产品是企业与我校合作开发的新产品。在实施本课题前,已完成了该模具图纸的设计,本课题主要完成模具型芯和型腔的选材与加工。

2.能力目标

通过本套课题的学习,掌握利用数控设备加工具有实际价值产品的能力,以及培养学员应具有良好的团队意识和工作习惯。

3.课题开发

根据能力目标,将金属材料及热处理、CAD、数控造型软件的使用、自动编程知识、机械加工知识等涉及的技术融合在一起,形成完整的知识结构,强化各知识点的有机结合,形成较强的职业能力。

4.教学实践

(1)教学形式――导师制。

(2)学习形式――2人/组,任务驱动式团队自主学习。

(3)教学设备――数控铣/加工中心。

(4)学习内容――灯罩模具产品产出的全过程。

该灯罩模具的加工涵盖了数控专业学习中所涉及到的知识。灯罩模具的加工过程即是以行动导向组织的教学过程,以师生共同确定的加工方案及完成的加工步骤来引导教学组织过程,学生通过主动和全面的学习,达到脑力劳动和体力劳动的统一。

该灯罩模具的加工任务(行动)绝非单指某一技术或技艺,而是灯罩模具产品产出的全过程,包括接受定单、确定任务、资料检索、制订计划、服务加工、质量控制、售后服务等,是学生即将从事的数控加工职业可能发生的一个完整的工作过程。给学生提供了一个典型的综合科技环境,使学生将学过的诸多单科专业知识在这里得到全面认识、综合训练和相互提升。

5.课题实施

(1)选择型芯及型腔材料。

提出问题:如何选择模具材料?选择模具材料时要考虑哪些因素?所选择模具材料的性能?

涉及知识:金属材料及热处理

教师行为:提供需查阅的相关资料,解答相关问题。

(2)画模具型芯图。

涉及知识:机械制图及相关绘图标准,手工画图、CAD绘图。

教师行为:检查所画视图的规范性与正确性,提出解决方案,CAD辅导。

(3)选择毛坯并进行数控车加工。

涉及知识:数控车床的编程与操作、选择刀具、夹具、切削用量、工件装夹与校正。

教师行为:检查数控车程序,数控车床的操作,数控车宏程序辅导。

(4)产品造型。

涉及知识:数控造型软件的使用。

教师行为:实体造型辅导。

(5)生成数控加工程序。

涉及知识:自动编程知识,机械加工知识。

教师行为:加工方式选择,加工刀具选择,切削用量选择辅导

(6)数控铣/加工中心加工。

涉及知识:程序的传输,数控铣/加工中心的操作,程序的修改,夹具的选择,工件装夹与校正。

教师行为:程序传输辅导。

(7)精度检验。

涉及知识:精度检验的方法。

教师行为:精度分析,提出解决措施。

(8)模具装配。

涉及知识:模具装配与调试。

教师行为:精度分析,提出解决措施。

(9)加工产品。

加工出的产品如图2所示。

(10)完成技师论文。

涉及知识:完成课题全过程中的心得与体会。

教师行为:提供技师论文的格式,书写论文的注意事项,论文辅导。

根据学员的学习情况及教学设备在实际使用过程中的效能,指导教师提出改进建议,完成成果评价。

二、成绩考核及教学效果评定

为了严把预备技师的出口关,数控铣/加工中心预备技师考评主要有以下内容组成:

1.预备技师理论考试

本着够用和实用的原则,检验学生对基本理论知识的掌握程度,其内容包括机械制图、机制工艺知识、机械加工、数控加工工艺、数控编程、数控原理等知识。

2.编制加工工艺

检验学生分析问题、解决问题的能力。考试内容为编写复杂零件的数控加工工艺规程(包括工序卡、刀具卡、切削用量参数表等内容)。

3.手工编程

检验学生对数控编程的基础知识的掌握程度。考试内容为编写考试工件的加工程序。

4.CAD绘图

绘制复杂零件或装配图,考核学生的计算机绘图能力及对机械制图的掌握程度。

5.自动编程

考核学生造型能力和自动编程能力。

6.数控技能应会考核

完成数控机床加工技师操作课题,考核学生的实际动手能力。

7.预备技师论文答辩

通过预备技师论文的答辩,考核学生对预备技师所需掌握的各项知识的综合运用能力,提高学生分析问题、解决问题的能力。

以上内容的1~3项归纳为应知考试,所占比例依次为60%、20%、20%。4~6项归纳为应会考试,所占比例依次为20%、30%、50%。当应知、应会和论文答辩全部合格后,方可认为预备技师合格。

篇10

1.微开关的发展

自Frobenius在1973[1]年首先制作出一种金属悬臂梁型加速度开关以来,已经出现了各种不同的MEMS加速度开关。在工作原理上可以分为两类:一类是准静态开关,该开关结构是通过弹性结构连接一个质量块,并将质量块作为一个敏感质量和可动电极,根据牛顿第一定律,当所受的加速度达到一个预定阀值时,质量块受力作用,克服弹性恢复力,发生位移达到一个预设位置,并与一个定电极接触,从而触发电信号,导通电路使开关工作,开关阈值由惯性力和弹性恢复力之间的线性关系确定。这种开关对于工艺容差要求严格,精度较低,阈值范围局限在低频低量程加速度范围内,测量能力和环境适应能力较弱,容易造成开关失灵或误操作,并且此类开关测量阈值单一,难以实现智能化集成。另一类开关是动态开关,这类开关受惯性力,弹性恢复力,应力和静电吸引力等多个力共同作用。加速度阈值通过动态方程计算分析确定,因而这种开关具有动态信号的测量能力。

图1.1 微加速度开关结构示意图

加速度开关是感受加速度的重要惯性器件,为了满足控制系统的保险功能要求,加速度开关应具备体积小、机械接触可靠、允许通过电流大、精度较高等特点。传统的加速度开关采用精密机械加工,存在体积较大、抗震能力较弱等不足。因此,迫切要求研制新型的微加速度开关。其中如准LIGA[2]技术因简单易行,只需通过厚胶光刻和微电铸工艺即可实现惯性器件的制作而被采用。该技术采用紫外光曝光,由于不必使用同步辐射光源,所以研制成本较低,同时以金属镍为材料,使得器件本身可作为电极导电并通大电流。

微流体加速度开关是一种受加速度控制的开关量传感器。它可以作为控制开关使用,也可以用来提供开关量信号。随着微机械加工技术在传感器领域中的应用和推广,已经出现了不同类型的微加速度开关,这些开关根据用途的不同而具有不同的结构形式。本文中以水银为介质的微加速度开关,利用在常温下水银是液态金属、表面张力大的特点,构成对加速度敏感的液体电极,水银电极与固定电极组成加速度开关,它的抗载能力不受元件(水银)强度的限制,因此过载量程比可以极大提高。

2.水银加速度开关原理

2.1 结构组成

2.1.1 基板结构

基板为左右对称结构,如图2.1所示。正向加速度阀门开启使水银流动,反向加速度阀门关闭使水银不流动。在硅基板上刻蚀出水银储放腔体、水银微通道和气体微通道,保留通道壁突台和腔体外框突台。水银张力膜将流体区域分隔为水银腔和气体腔,两通道壁所夹下部区域构成水银微通道,腔体外框、通道壁和阀门间的缝隙构成气体微通道。

2.1.2 盖板结构

盖板与基板键合封装,形成矩形储液腔和矩形微通道。在基板/盖板/基板与盖板的水银通道位置制备电极,水银张力膜随加速度的变换发生位移,通过水银的流动使电极导通或断开。

图2.1 加速度开关结构示意图

2.2 工作原理

为保证开关系统具有镇定性,必须设置微流体阀门。当载体的加速度为-am

当载体发生正向加速度g≤a≤10g时,阀门开启。水银所受惯性力和水银腔表面张力的驱动,克服水银与通道壁间的粘性剪应力和微通道表面张力的阻力,使水银触点发生运动。系统处于载体惯性力、流体惯性力、表面张力和流动粘性力的动态多力平衡状态。当载体加速度达到10g时,水银触点恰好到达接通电极的位置,使开关闭合。由于该多力平衡系统具有极强的镇定性,即使当载体加速度时,触点与阀门的位置差趋于零,无须正向限位。

在载体加速度由10g降低至1g的过程中,开关处于断开过程。首先加速度降至9.9g时,精准的触点结构设计可保证开关在准确的位置断开。然后,在加速度由9.9g降至或低于1g的过程中,出于触点断开、阀门开启状态。当加速度继续降低时,阀门关闭,开关恢复到初始限位状态。

2.3 微尺度效应对微流体的影响

当流道和型腔特征尺寸小于1mm时[3],支配流体流动的物理环境及其自身特性发生变化,探明微尺度条件下流体的流动特性对微纳零件的制造与微机械装置控制系统的设计十分重要。在有关微流体流动行为的研究中,J.Pfahler[4]等。考察了流体在硅材料矩形微流道中的运动特性。以丙醇(N-Propanol)为实验流体,矩形截面尺寸宽×高分别为135×53,100×1.7,100×0.8的微流道所作的实验结果表明:在截面尺寸相对较大的微流道中流体的运动规律与Navier-Stokes方程式相吻合;而当矩形截面流道深度H降至0.8时,试验结果偏离Navier-Stokes方程的计算结果。李勇[5]等以微圆管为对象,研究了用Navier-Stokes方程描述微流体运动特性的适用性。结果表明,对于运动粘度为2.6×10-6m2/s的硅油,当圆管直径降至4.5时,Navier-Stokes方程不再适用;对于管径为11.2的流道,当流体的运动粘度为4.3×10-4m2/s时,流量与压力损失仍呈比例关系。江小宁[6]等研制了一套测量微尺度流动流量的系统,并测量了管径为8,14和24圆管流道内流体流量与压力损失的关系。结果表明,在这样的条件下,流体依然不可压缩连续流动,且实验结果与Navier-Stokes方程式的描述十分接近。

在微流体流动过程中,由于微尺度效应作用,表面力作用增强,粘性力远远超过惯性力,流道直径减小导致微流体雷诺数减小,沿程阻力系数增大,且微流道的长径比增大。

3.拟采用制作工艺

3.1 硅基微机械加工技术

硅基微机械加工技术[7]包括体微机械加工技术、表面微机械加工技术、以及复合微机械加工技术等。体微机械加工技术是将整块材料如单晶硅基片加工成微机械结构的生产工艺。通常,机械结构的形成要经历选择掺杂和结晶湿化学腐蚀两道工序。和微电子生产中的亚微米光刻工艺比较,这些工艺尺度相对大而粗糙,线度变化在几微米到几百微米之间。通过机械结构的干化学腐蚀将单晶硅做成零部件也可使体微机械加工具备更好的尺度控制。体微机械加工的一个主要优点是它可以相对容易地制造出大质量的零部件,缺点是它很难制造精细灵敏的悬挂系统。另外,由于体微机械加工工艺无法做到零部件的平面化布局,因此它不能够和微电子线路直接兼容;表面微机械加工就是利用集成电路中的平面化制造技术来制造微机械装置。标准的工艺流程包括首先在单晶硅基片上交替沉积一层低应力的多晶硅层和一层用于腐蚀的氧化硅层,形成一个复杂的加工层,然后再对这个加工层进行光刻摹制,最后用氢氟酸对氧化硅进行蚀刻显影。多次重复这一标准工艺流程就可完成表面微机械加工。利用这种加工技术生产的微机械装置一般包括一层用作电连结的多晶硅层,一层或更多的机加工多晶硅层,它们形成各种机械部件,如悬臂梁、弹簧和联动杆等等。由于整个工艺都基于集成电路制造技术,因此可以在单个直径为几英寸的单晶硅基片上批量生成数百个微型装置。表面微机械加工技术的主要优点是,它充分利用了现有的生产工艺,对机械零部件尺度的控制与一样好,因此这种技术和完全兼容。虽然表面微机械加工零部件的布局平面化使之和微电子电路容易集成,但是它同时也限制了表面加工,它制造的机械结构基本上都是二维的,因为机械结构的厚度完全受限于沉积薄膜的厚度。

复合微机械加工技术是体微机械加工技面微机械加工技术的综合。它是在体微机械术和表面微机械加工技术的基础上发展起来技术,具有体微机械加工技术和表面微机械术的优点,同时也避免了它们的缺点。

微加速度表的制作工艺流程如图3.1所示:制作SOI片(图3.1(a));运用深反应离子刻蚀技术(DRIE)制作2μm宽的沟槽,在刻蚀的沟槽内淀积氮化硅(图3.1(b));刻蚀掉表面的氮化硅,运用标准的CMOS工艺制作界面和信号处理电路(图3.1(c));电介质清除,运用深反应离子刻蚀技术形成微结构,运用氢氟酸刻蚀氧化层(图3.1(d))。

图3.1 微加速度计制作工艺流程

3.2 本文拟采用的工艺和材料

经过前面工艺方法和材料的对比,本文拟采用SiC材料[8],因其具有宽带隙、耐磨损、耐腐蚀、高热导率、极好的物理化学稳定性等特点,利用SiC材料制成的微通道在高温、高频、强腐蚀性应用环境如微喷或者微发动机等应用场合有着得天独厚的优势。SiC材料可以在Si衬底上淀积生长,大面积SiC可以相对容易地获得,且价格低廉。

目前,微流体主要是基于半导体Si、玻璃、金属或高聚物等材料制备的,传统的制作方法是对玻璃和Si芯片进行刻蚀,并在此基础上通过键合制成成品。这类方法需要对玻璃或Si芯片进行键合密封等复杂操作,另外,这类微液体系统难于在强腐蚀性、高温等恶劣环境下使用。

本文选用的Si基微通道制备原理如下:首先在Si衬底片上刻蚀出微流体凹槽,凹槽之间留出台面,凹槽尺寸及其在衬底片上的排布根据设计需要而定;采用化学气相沉积法在该衬底片上淀积SiC薄膜材料,此层薄膜材料覆盖微流体凹槽壁面,并在凹槽顶部闭合,形成封闭的微通道。利用半导体工艺在Si衬底片上刻蚀出微流体凹槽,凹槽用作后继淀积工艺的模板。淀积SiC薄膜材料时,反应气体同时在台面和凹槽壁面反应成核,但反应物不易迁移到凹槽壁面,凹槽壁面的淀积速率比台面的慢很多。SiC材料沿垂直台面方向纵向生长,在纵向生长的同时,也进行横向生长,随着生长进度,相邻台面的横向生长区域相互合并,将凹槽封闭起来,凹槽壁面由于缺乏反应物而不再淀积SiC薄膜,这样就形成了一个封闭的微通道。

图3.2 Si基Si通道制备工艺示意图

4.总结

本论文介绍了利用水银作为介质的微加速度开关原理,探索了制造工艺。下一步研究要依据流体力学基本原理建立了基本数学模型,并进行模拟。最终目标是实现抗高过载的低量程,接触性好的加速度开关。

参考文献

[1]陈光焱,何晓平,施志贵等.开关点电可调节的MEMS冲击加速度锁定开关[J].半导体学报,2007,28(8):1295.

[2]陈光焱,何晓平,施志贵等.准LIGA微加速度开关的研制[J].微纳电子技术,2003(8):0312.

[3]蒋炳炎,谢磊,谭险峰等.流道截面形状对微流体流动性能的影响[J].中南大学学报(自然科学版),2006, 37(5):0964-06.

[4]PFAHLER J,HARLEY J,BAU H.Liquid transport in micron and submicron channels[J].Sensors and Actuators,1990,22(1/3):431-434.

[5]李勇,江小宁,周兆英等.微管道流体的流动特性[J].中国机械工程,1994,5(3):24-25.

[6]江小宁,周兆英,李勇等.微流体流动的试验研究[J].光学精密工程,1995,3(3):51-55.

篇11

在21世纪人们最关心的话题莫过于保护地球,保护环境,确保社会经济的可持续发展。具有节能环保特色的再制造工程可使废弃资源中还仅存的价值得到最大限度的利用,从而有效的缓解了资源浪费问题,降低废弃产品对环境的破坏,是处理废弃机电产品的有效方法。将那些退役的机械设备进行拆解后,有许多零件因各种因素的影响失去了原有的尺寸及性能,导致其不能再次正常使用。而采用先进的再制造加工技术对那些失去性能的零部件进行有效的再制造,能很好的降低原材料及新备件的损耗,减低了成本的投入,关键时刻还能解决缺乏从国外进口一些必要备件的问题。

1 简述再制造加工

所谓的再制造加工指的就是在几何尺寸以及性能方面对废弃失效的零部件进行恢复和升级的过程。一般情况下,其分为两种方法,机械加工方法和表面工程技术方法。实际上很多失去功效的金属零件都可以采取再制造加工工艺恢复其原有的性能。此外,通过表面工程技术的处理,还可以使这些被处理过的零件性能达到甚至超过新零件的性能。比如:对曲轴进行修复可采取离子热喷技术,由于轴颈耐磨性能得到了提高,因此使得其使用寿命可以超过新轴的寿命;对发动机阀门采取等离子堆修复技术,修复后的使用寿命可达到新品的2倍以上。

2 我国再制造技术的发展现状

自1999年6月,在西安首度发表了“表面工程与再制造技术”的学术论文,国内就提出了“再制造”的概念,距今已有13年了。目前情况下,我国高度重视再制造产业,相关的鼓励政策不断出台,稳步进行再制造示范工作,使得我国的再制造产业在理论与技术等方面取得显著成果。高等院校以及企业对再制造技术的理论及实际技术进行了不断的深入探讨,这就更加促进了再制造技术的发展。

3 满足再制造加工所必须的条件

不是所有的失效废弃零件拆除后都可以进行再制造技工恢复的,其实需要满足一定条件才能进行再制造的。主要表现在以下几个方面:

(1)时代在发展,对环境保护的重视程度越来越重,因此那些失去效力的零件本身就必须符合环保要求,对于那些在环保中就禁止使用的有害物质是绝对不允许再次使用的。因此对于那些在原加工过程中允许使用而在再制造中就可能出现的不允许使用的物质的零件就不允许使用再制造技术。对失效零件进行再制造则需要涉及到多种学科的基础理论,例如:金属材料学、电化学、摩擦学以及焊接学等等,其加工制造技术的专业性非常强,不可能存在一种万能的技术。

(2)再制造所需的成本必须明显低于制造新部件的成本才能使用该技术。进行再制造加工的主要是那些价值较高的核心部件,而对于低值易耗部件一般采取直接更换的方法,而如果出现即使再加工也无法得到该零件的情况时,这时也需要使用再加工来完成对整体的再造。

(3)必须确保对零件进行再制造后的使用寿命能再维持最少一个生命周期,方可进行再制造加工工艺,这样再制造出的产品性能才能保障不低于新品的要求。

(4)必须对将要进行再制造的零件与原件在配合精度、表面粗糙度、硬度及强度刚度等方面进行技术探讨。

4 再制造加工方法的分类与选择

常用的加工方法如图所示:

在选择工艺时要考虑一下几点:(1)工艺对材质的适应性;(2)恢复覆层可修补的厚度;(3)结合的强度;(4)恢复层的耐磨性;(5)对疲劳强度的影响;(6)环保性。

5 机械加工恢复法

5.1 再制造修理尺寸法

对失效件进行再制造后其尺寸达到原设计尺寸的要求,这种方法称之为标准尺寸再制造恢复法。通常利用表面工程处理技术就可以实现。对于原来的设计尺寸不要可以考虑,直接采取切削加工或者别的方法从形状、位置、表面粗糙度和其他技术方面进行恢复使其获得一个新的尺寸,这种方法称之为再制造的修理尺寸。在使用此方法时主要内容就是去除表面层的厚度,首要注意的是在进行再制造后的各种性能能够满足需要。例如一般情况下其减小量低于原尺寸的10%。此法作为国内外最常用的再制造生产方法,其工作量最小,而且操作简单,经济效益好,还可以将零件的使用寿命恢复到原值,特别是针对那些贵重的零件其意义非凡。

5.2 钳工再制造恢复法

这种方法既是一种独立的恢复手段,也可作为其他再造法,同时此法也是恢复零件中最基本、最广泛应用、最主要的工艺方法。

5.3 镶加零件法

针对于那些相互配合的零件出现磨损后,通常可以在结构和强度都允许的条件下通过镶加一个新的零件来对磨损和修复去掉的部分进行补偿,从而将愿配合精度进行修复,此法就是镶加零件法。

5.4 换位法

对于在使用过程中出现一边磨损较严重,而对称的一边相对磨损较小的,可以在结构允许且不具备彻底对零件进行修复的条件下,可以考虑将未磨损的一边换个方向安装继续使用,此法就是换位法。

6 结束语

除了以上叙述的方法之外,还有局部更换法,塑性变形法等都是比较良好的再制造方法,无论是哪一种机械加工恢复法,其最主要的原则是相同都是确保恢复后的零件能够满足零件性能及产品质量要求,确保再制造出来的产品能够保障使用寿命在一个周期以上。

参考文献:

篇12

从技术角度讲:在端面凸轮加工过程中,端面凸轮空间曲面倾角2.5±30′,要求表面粗糙度Ra0.2μm,材料3Cr13,硬度HRC52~56。采用机械加工需要数控铣、数控磨、抛光三道工序,磨具需要专门制造或外购,工时30多分钟,抛光效果往往难以达到设计要求。

电解过程中的阳极溶解原理并借助于成型的阴极,将工件按一定形状和尺寸加工成型的一种工艺方法成为电解加工。电解加工的工艺装备由工具阴极和夹具组成,是电解加工工作区的中心环节。免费论文参考网。它确定工件和阴极之间的相对位置,形成正确的极间流场并将加工的电流导入极间加工间隙区。

由于工艺装备是电解加工各系统输出的终端汇合点,又是进行电解加工的工作区域,因而其设计和制造的质量直接影响电解加工的效果,是电解加工装备中至关重要的一个部件。

采用电解加工可以一次成型,为了保证表面质量,采取反向供液方案,凸轮面以O为中心线对称分布,方程为

y=6.24-0.025θ,y=7.8-0.025θ

Y偏差±0.1毫米,图示端面凸轮零件的C-C剖面所示,此空间曲面向内倾斜2.5±30′,要求表面粗糙度Ra0.2μm,又因工件材料3Cr13本身硬度达到HRC52~56属难加工范畴,若采用机械加工需要数控铣、数控磨、抛光,磨具需要专门制造或外购,抛光效果也往往难达到设计要求。且零件尺寸小无形中有增加了机械加工的工时,算下来用机械加工完成工件需要工时大约30分钟。若采用电解加工仅需15分钟,而且是一次成型的加工。工序简单节省了人力和物力。大大提高了工作效率。可获得更高的经济收益。

因此,决定采用电解加工完成工件。采用电解加工存在的主要困难:凸轮端面沿边的内外导角均为Ra0.1mm;在凸轮端面被加工时,要设法保护内外圆柱面免受杂散腐蚀,由于零件的内外柱面尺寸公差比较大,内柱面Ф16±0.09mm,外柱面为Ф18±0.2mm,如何使保护套贴紧被保护面应特别关注。在这里我们采用的设计方案是将内外护套设计成开口式,内护套的孔做成内圆锥面,外径按零件内柱面设计,装夹零件时开口对准零件后续工序要切开的部分,夹紧时由锥面螺钉将内护套涨开,与零件内柱面贴紧,设内外护套厚2mm。按零件的内外柱面及端面方程则可推算得内护套的端面方程为

y=6.24-0.025θ

外护套的孔与零件外柱面配合,有弹性夹头通过旋动琐紧螺母夹紧,其端面方程为

y=8.36-0.025θ

从主轴孔引进的电解液通过分液套进入加工区,由中心孔流出。因为零件的被加工面是一向内倾斜的环形曲面,采用反向供液或正向供液均比侧流的流场均匀。又因为工件要求表面粗糙度Ra0.2μm,而反向供液加工的流道横截面面积沿流动方向呈收敛状,具有收敛流动特点,通常收敛流动更利于提高电解加工的稳定性和加工精度。故采用反流式加工。

具体方案如下:

据以上内容及参考有关资料现确定本套电解加工工装设备的整体结构方案为:因本套工装设备为立式电解加工机床上使用,因此最上端为安装板,安装板与弹性夹头通过螺钉连接。连接管的外柱面被弹性夹头通过旋紧螺母夹紧。连接管下方为分液套,连接管与分液套之间采用螺纹配合连接,分液套的外圆柱面与引导套的内圆柱面通过动配合连接。并采用O型密封圈进行密封。分液套通过内圆柱面与阴极头的外圆柱面通过螺纹配合连接。在此初步设计分液套开六个进水孔。引导套的外圆柱面与密封套的内圆柱面的配合考虑到工件的夹紧问题。这里引导套与密封套之间采用间隙配合。密封套与底座之间通过螺钉连接。内外护套与工件和弹性夹头之间的关系以有所介绍这里不在重复。工件本身本身的垂直度要求由工件下表面与垫圈上表面配合保证。垫圈通过螺柱与底座连接。为调整外护套的高度设一调节螺母与螺柱配合,弹性夹头与底座通过螺钉连接。免费论文参考网。至此,本套工装设备结构方案确定。

这项设计完整的阐述了端面凸轮电解加工工装的结构设计。同时也反应了电解加工的工装设计的通用方法。免费论文参考网。主要进行了以下几方面工作:

1、 对加工过程中非加工面采取了内外护套保护。

2、 为保证加工质量通过对比采用反水加工。

3、 通过过水面积的计算确定进水孔、出水孔直径,进而确定工具阴极。

4、 设计工件夹具等工作。

本套工装经过校核计算可以达到实际工作需要。

参考文献

友情链接