时间:2023-03-13 11:06:30
引言:寻求写作上的突破?我们特意为您精选了4篇物理理论论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
我们十多年来的课堂教学经验可以总结成三句话:追根寻源真一点,实验研究多一点,能力要求高一点,简称“三点”教学法,因此我们称自己的教材为“三点”法教材.
我们的“三点”法教学完全是根据国家教委颁布的高中物理教学大纲编写的.因为我们面对的是全班学生,不可能而且也不应该把课堂教学变成物理竞赛辅导,我们确确实实通过课堂教学明显提高了学生的素质和能力,为学生在高考和物理竞赛中取得优异成绩打下了扎实的基础.
一、追根寻源真一点
一个学生学习物理,首先接触到的就是物理定律.因此,怎样搞好物理定律教学,必然是每个物理教师首先要考虑的问题.
在进行某一物理定律教学时,我们有意识补充了大量的与这一定律的建立过程有关的内容,这就是所谓的“溯源”教学.任何一个重要物理定律的建立,都有一个艰辛而漫长的过程.探索定律的工作只所以能成功,这个定律最后只所以能够确立起来,其中一定有很多科学的研究方法和正确的推理思维方式,这些内容毫无疑问是属于物理学科中最重要的东西,是人类一笔宝贵的知识财富,也是我们物理教学的宝贵财富.
在讲授牛顿万有引力定律时,我们从第谷对行星进行几十年的观测积累的大量第一手资料讲起,然后是开普勒在拥有这些数据的基础上,通过大量计算总结出描写天体运动的经验规律(开普勒三定律),最后才是牛顿用定量的动力学原理对这些规律予以解释,终于发现了对天上、地上的物体具有普遍意义的万有引力定律.在学习牛顿万有引力定律的过程中,我们还着重向学生介绍了“归纳法”、“理想化”和“间接验证”三种科学研究的重要方法.
在学习库仑定律的过程中,我们纠正了学生由于大多数教科书叙述笼统而形成的错误观念,使他们明白:1.库仑当年只用扭秤做了两个同种电荷互相排斥的实验,而未做两个异种电荷互相吸引的实验,因为在后一实验中的平衡有可能是不稳定的.库仑是用电摆来完成后一实验的;2.无论是扭秤还是电摆,精确度都是很有限的,根本无法确定两电荷之间的作用力与距离的平方成反比,更不是和距离的1.98次方或2.02次方成反比.当年的库仑(实际上还有更早的卡文迪许),以及后来的麦克斯韦、普林普顿等人都是用另一种实验方法将指数的精度逐渐提高,直至今天的2±3×10-16,终于使库仑定律成为当今物理学中最精确的定律之一.结合库仑定律的建立过程,我们还向学生介绍了“类比”和“演绎验证”的方法.
在学习欧姆定律的过程中,学生一开始都以为研究通过导体的电流和导体两端的电压之间的关系是不困难的,只要用电流表、电压表再加电源和可变电阻器等组成电路即可.可是我告诉他们,在欧姆那个年代,非但没有电流表、电压表等仪器,连电压、电流和电阻的定义和单位都没有,欧姆所面临的困难之大是可想而知的.他到底是怎样得到这个电学中最重要的定律的呢?学生顿时产生了浓厚的兴趣.在学习欧姆定律诞生过程的同时,我们还结合欧姆的实践,介绍了用图线探究新规律的方法.
此外,我们还结合牛顿运动定律介绍了“理想实验”、“推理”、“实验研究”等方法,结合气体定律介绍了“分析法”,结合能量的转化和守恒定律介绍了“综合法”.使学生比较系统地掌握了一些重要的科学研究方法.有的同学深有体会地说:物理定律是宝贵的,但研究物理定律的科学方法更宝贵.谁掌握了这些方法,谁就能不断地去探索大自然层出不穷的奥秘.
在物理定律的教学中,我们在课堂上经常采用设问的方法,不是直接告诉学生某个定律是怎样建立起来的,而是不断地提出问题让学生去思考,摆出困难让学生去克服,提出任务让学生去完成,制定目标让学生去实现.这样可以有效地发展学生的创造性思维和解决问题的能力.
我们要求学生在课外进行大量自学.早在公元前4世纪,古希腊苏格拉底明确强调过:“好的、正确的教学不是传递,而是对学生的自学辅导”.我一贯强调学生要学会自学、讨论、研究.我教的优秀学生,学得的物理知识,最多只有一半是在课堂上听我讲的,其它一概由他们自学.到一定阶段,我开始指定几个学得比较好的学生轮流给其他学生上课.每次课分两部分,前半部分由主讲同学讲,后半部分由全体同学提问、讨论.像王泰然和任宇翔在高二阶段就给其他同学作过二十几次讲座,杨亮、谢小林、陈汇钢等同学也不例外.
我们这种自学讨论式教学还延续到学生毕业以后.获金牌或学有所成的学生进了大学甚至出国留学后,有机会还回来给小同学谈自己的体会.例如1994年暑假任宇翔从美国回国探亲一个月,来学校给95、96届学生讲了10次课.他向小学友介绍物理学中一些新进展、中美物理教学中的差异以及他们当年学习过程中曾激烈争论过的问题,使听课的学生大受裨益.1996年暑假,谢小林和陈汇钢两位金牌获得者又为97、98届同学讲了十多天课.他们既讲物理知识,又讲国家集训队队员奋发学习的感人事迹,使小同学们大开眼界.
这样的训练方法也得到了权威人士的肯定.1992年10月,在上海召开的全国物理特级教师会议上,原中国物理学会副理事长、现全国中学物理竞赛委员会主任、北京大学沈克琦教授在他的题为“国际物理奥林匹克竞赛与中学物理教学”的报告中说:“我听到两名得金牌的上海学生讲他们的老师如何培养他们的情况,我认为这个经验倒很值得推广.他们说他们的老师不是采取灌输的办法,而是启发引导,要求他们给同学讲课,这对他们搞清概念原理和科学地进行表达都非常有帮助.我想这可能是提高优秀学生能力的有效方法之一.”
那么自学为什么会对提高学生的能力起这么大的作用呢?从心理学角度来看,自学与听课可能有以下两点不同:
(1)人类的思维活动表现为分析、综合、比较、抽象、概括等过程.一个学生在自学某一个新的物理内容时,少不了理解、思考、建立正确的物理模型等工作,这里面充满了分析、综合、比较等过程.因此相对听课而言,自学对学生的思维活动提出了更高的要求,从而使他们得到更大的锻炼.
(2)人们的注意可分为无意注意、有意注意和有意后注意三种.事先没有预定的目标,也不需要作意志努力的注意叫做无意注意;有预定的目标,在必要时还需作一定的意志努力的注意叫做有意注意.一个学生在自学的时候,他的目的一定是十分明确的,而且需要一定的意志努力(否则难以坚持),因此学生在自学时,可保证在绝大多时间内都处于有意注意的状态,这一点对提高学习效率和学习能力都是很有好处的.有的学生在自学中往往会十分投入,进入一种旁若无人的境地,而相对来说,这种情况在听课时就比较少.一个学生坚持自学一段时间之后,便能渐渐地从有意注意转化到有意后注意,即不需要意志努力也能够将自己的注意力长期保持在这项工作上.有意后注意是一种高级类型的注意,它既有明确的目的,又不需要用意志努力来维持,是人类从事创造性活动的必需条件.学生一旦进入这种状态,他们的物理学习效率就会大大提高,学习成绩就会有明显进步.
二、实验研究多一点
物理学是一门实验科学,物理学中的每一个概念、规律的发现和确立主要依赖于实验.因此,在高中物理教学中加强学生实验方面的训练,无疑是提高物理教学质量的一条必由之路.
目前中学物理教学大纲中安排了相对数量的学生实验和演示实验,不难发现,这些实验存在着某些不足,主要表现在下面几个方面:
第一,教材中几乎所有实验是为配合所学内容而安排的,目的是帮助学生加深对所学内容的理解,因此学生不易通过这些实验掌握一些重要的实验方法.
第二,课本中每个实验的实验原理及操作步骤都讲得十分清楚,学生只需按部就班地完成实验操作即可.这样的实验只能增加学生的感性认识,锻炼学生的动手操作能力,而对学生创造性思维的训练是不够的,也无法培养学生解决问题的能力.
第三,目前课本中的实验大多是验证性实验,学生只要学懂了书上的定律,一般都能轻而易举地完成实验.这种安排违反了教育应该走在学生智力发展前面的原则,对培养学生的能力是不利的.
针对以上不足,我们对实验教学内容和教学方法进行了改革,使实验教学为发展学生的智力,提高学生的素质服务.在实验内容的改革方面,我们主要采取了以下三条措施:
(1)增加实验数量.
不论是在课堂演示实验,还是在学生实验或小实验方面,平均增加了60%的实验.其中有一部分新实验,学校没有现成的仪器,安排学生自己制作,对学生有较高的要求.
(2)重视实验误差讨论.
物理实验离不开测量,测量是实验科学最本质的东西.从某种意义上讲,结果准确的实验就是成功的实验,反之就是不成功的实验.因此在培养优秀学生的过程中,应该让他们掌握一些必要的实验误差的基本知识.在设计实验方案时,要求学生们尽量消除实验的系统误差;在选择实验器材时要考虑它的精确程度;在处理实验数据时,要采用尽量科学的方法.
(3)加强重要实验方法教学.
在实验领域中有一些重要的方法,比如减小实验系统误差的方法、减小实验偶然误差的方法、实验探究规律的方法、迂回测量的方法等,这些方法不是在个别实验中,而是在许多实验中都有应用,因此具有一定的普遍意义,这些方法一定要让学生很好地掌握.在必要时,我们甚至根据实验方法来安排实验内容,集中安排几个某种方法体现比较典型的实验,这样便于学生深刻领会和熟练掌握某一种实验方法.
在实验教学方法改革方面,我们做了以下尝试:
(1)在课堂上创设一些实验问题让学生研究.
在高中阶段,每周至少有4节物理课,充分利用物理课中碰到的各种各样问题,可设计一些供学生讨论的实验题目,并引导他们一步一步地探索、解决.
我在讲功率一节时,设计了这样一个实验题目:要求测定一个人骑自行车的功率.在自行车由静止启动的过程中,人做的功除了增加人和车的动能之外,还要克服空气阻力和地面的摩擦力,其中哪些因素是主要的,哪些因素是次要的?学生根据自己骑自行车的经验,认为空气阻力是很明显的,不能忽略,而地面和车轮之间的滚动摩擦一般比较小,可以忽略.接下来的问题是怎样测量人克服空气阻力做的功?学生都有这样的体会:顶风骑车时,骑得越快风的阻力越大,因此可以设风的阻力和车的速度成正比.车的速度怎样测?风的阻力和车速成正比的比例因数是多少?问题一个接着一个地出现,被大家一个又一个地解决,终于找到了一个大家都比较满意的实验方案.接着全班同学兴高采烈地到操场上去做实验,最后再回到教室里,师生一起处理实验数据,作出图象,得出实验结果.在整个实验过程中,除了实验题目是由老师提出的外,实验方案和解决问题的途径都是由学生讨论研究出来的,因此他们都觉得很有意思,收获很大.
(2)对课本中一些重要实验进行深入研究.
物理课本中有大量现成的实验,有时可以对这些实验进行一些讨论和改进.
在做直流电路的实验时,我们让学生对伏安法测量导体的电阻这个实验进行了深入的研究.用简单的伏安法电路,不论是采用电流表内接还是电流表外接,都有系统误差.结合这个问题,我给学生介绍了补偿的思想,然后由学生自己设计了电流补偿和电压补偿两种线路.补偿法解决了由于实验电路不完善带来的系统误差,但这个矛盾解决了,电流表和电压表不够准确的问题上升为主要矛盾.怎么办?经过进一步研究改进,大家认为可以用准确度高得多的电阻箱来取代电压表和电流表,再辅以灵敏度很高的电流表,便可以明显提高实验结果的准确度,这就是常用的惠斯通电桥.接下来学生分别用简单伏安法、补偿伏安法和惠斯通电桥测量了同一个标准电阻,比较测量结果,可以证实先前的想法.在历史上,从伏安法到惠斯通电桥是有一个很长的过程的,而在我们这堂实验课中,学生经历了这么一个碰到问题、分析问题、解决问题的完整过程.这样的实验课对增强学生的能力是很有帮助的.
(1)和(2)实际上都是不断地给学生提出新的目标,诱导他们提高实验水平,我们有时称之为“目的诱导法”.
(3)给特优学生安排一些特殊实验.
我校有一批进口物理仪器,性能比较好,涉及的实验内容面也比较广.这批仪器的说明书是英文或日文的,我指定一名学生准备某一个实验,要求他先翻译好说明书,准备好器材,然后带领其他同学做实验.这个主讲的学生还要准备好一些讨论题,在实验后供同学们讨论.学生对这样的实验非常感兴趣.此类实验虽然有时和高考、竞赛没有直接的关系,但是这种带有研究性的实验对优秀学生很有好处.
三、能力要求高一点
物理习题教学是物理教学的重要组成部分.不论是教师还是学生,都在解习题上花费了大量的时间,因此,习题教学的改革是一个很重要的问题.
就本质来说,物理习题是人们编制的一些假想物理场景.毫无疑问,物理学家是不会去做物理习题的,而他们是在研究那些真实的、尚未发现的物理规律.同样,发明家也是不会去做物理习题的,他们是在力图应用已有的物理规律去解决一系列实际问题,那么我们为什么要让学生做那么多人为假想的物理习题?目的无非是要培养学生的理解、分析、推理等能力.所以物理习题教学应该围绕这个目标来进行.
我们常用以下两种方法来进行习题教学:
(1)按照解题方法组织习题教学
大学物理是研究物质的基本结构、相互作用和物质最基本最普遍的运动形式及其相互转化规律的学科。物理学的研究对象是非常广泛的,它的基本理论渗透到自然科学的很多领域,应用于生产技术的各个部门,它是自然科学和工程技术的基础。它包含经典物理、近代物理和物理学在科学技术方面的应用等基本内容,这些内容都是各专业进一步学习的基础和今后从事各种工作所需要的必备知识。因此,它是各个专业学生必修的一门重要基础课[1]。
在农科类各专业开设大学物理课的作用,一方面在于为学生较系统地打好必要的物理基础,另一方面是使学生学会初步的科学的思维和研究问题的方法。这对开阔学生的思路、激发探索和创新精神、增强适应能力、提高人才的素质都将起到非常重要的作用。同时,也为学生今后在工作中进一步学习新的知识、新的理论、新的技术等产生深远的影响。
一、大学物理教学现状分析
21世纪是科学技术飞速发展的时代,对人才的要求将更高、更全面,这对我们的大学物理教学也提出了更高的要求,必须跟上时代的步伐。但是,目前以农科类大学物理教学为例存在以下问题:
(1)大学物理教材的内容中,以经典物理为主,分为力学、热学、光学、电磁学和近代物理,内容各自独立,彼此之间缺乏联系,没有形成统一的物理系统。教学内容大部分标题与中学类似,学生看到目录后学习热情和兴趣锐减。
(2)经典物理和近代物理的比例极不平衡,经典物理部分占物理教学内容的80%以上,而且基本上都是20世纪以前的成果,没有站在近代物理学发展的高度,用现代的观点审视、选择和组织传统的教学内容。同时近代物理的内容非常少,特别是没有反映20世纪后半个世纪以来物理学飞速发展的现代物理思想,使学生对近代物理知识知之甚少,与现代物理严重脱节,因此大学物理教学改革势在必行。
(3)教学手段落后,虽说现在有些老师已经用上了多媒体教学,但是总体对现代化教学手段的充分利用还远远不够,未能充分体现现代化教学手段的优越性,对教学手段的改进也期待着进一步探索。
二、对大学物理教学内容改革的几点想法
(1)从大学物理非物理专业的人才培养的总体要求出发,对农科类各专业采取不同侧重点的教学,现在所用的教材,或是适合我们的短学时,又无配套的教学参考书,或是对农科类相关教学内容不足,我们可以根据不同专业制定不同的教学大纲,注重各部分知识的联系,以近代物理学的发展为主导,完整而系统的讲述物理学的基本内容。同时,教研室可以准备组织力量编写一本少学时且适合农科类各专业学习用的大学物理教学参考书,主要用于帮助学生理解基本概念、基本定理,帮助学生学会分析问题和解决问题,帮助学生提高把物理学的知识应用到实际中的能力。
(2)添加近代物理内容,介绍当今物理学前沿的发展,如量子理论、相对论的时空观等,启发学生兴趣,扩大学生的科学视野,开阔学生的思路。把近代科学技术成就和前沿课题的内容融入教材中,补充一些物理学与相关专业的交叉或补充的前沿的新发展内容,使学生在学习基本理论的同时了解现代科技发展的新信息、新动向。
(3)对经典物理部分进行处理,精选与现代科技、现代物理知识紧密联系的内容,删去陈旧部分,避免和中学物理的内容重复,将经典物理延伸至近代物理,增添新意。
(4)将相关学科的基础知识纳入教材。如今科学技术越来越向交叉学科发展。因此,针对农科类各专业,在教材内容的选择上,增加农业应用方面的内容,紧密联系学生专业进行因材施教。
三、关于大学物理教学方法和教学手段改革的想法
(1)注重应用,弱化计算。传统的物理教学方法是以物理理论和计算公式为主,要求学生会解题,而对物理概念的理解和应用则一掠而过。其实,学生对用数学方法解决物理问题不适应,导致对解题产生畏惧心理。因此在教学中不应以做题为目的,使学生陷入题海之中,而是要着重应用方面的教学,适当进行习题练习,重点培养学生应用物理知识分析问题的能力,培养学生的创新能力。
(2)灵活运用多媒体教学。多媒体教学已经成为现代教育中的重要组成部分,适当的多媒体教学可以提高学生的学习效率,有利于发挥学生的主观能动性,发展学生的个性,实现“以学生为本”的教育理念。在多媒体电子课件中,加入动画、演示实验、图示说明和物理学的一些基本模型等,以弥补传统教学的不足,增加课堂教学的形象性,对学生动态认识和掌握物理概念有着重要的作用[2]。
(3)在考试方面,可改变现在的考试模式,采用多种考试方法结合。一方面闭卷笔试,采用试题库考试,另一方面,采取书写小论文、新想法等方式,加强学生学习的自觉性,减轻学生的压力,同时也提高了学生的发现问题和探究问题的能力。
2日本高等物理教育的指导方针及模式
自2004年开始实施国立大学法人化以后,日本国立大学虽然由政府出资运营,但是几乎每所国立大学都拥有相应的自治权,因此各个国立大学的教学重点以及方法风格有很大的差别,每个学校都拥有自己的教育体系与理念.以名古屋大学为例,名古屋大学的物理教育方针和核心主要由理学院的物理学教室(即物理系)会议决定.一般来讲研究生和教员都可以申请成为物理学教室的研究员并列席会议(留学生和外国教员亦可参加).会议一般每季度举办一次,每次会议的讨论内容主要包括实验科目内容的增减,科目课时与学分的分配,科目构成的比例,毕业条件的变更,新教员的聘用,新研究室的设立以及经费的预算及使用等.每次会议一般会按需讨论多个议题,每个议题以不记名投票方式表决.物理学教室有议长和下属各个分支的负责人,议长及主要负责人每年轮换,以投票选举产生.由于有大量的硕士及博士研究生参与讨论,不仅对于物理学教育的创新与改良起到了积极而有效的作用而且使物理系全员参与到物理专业的建设和改良议程中,充分体现了大学法人化法案提出的学术自治所需要达到的要求.
3日本物理本科教育近况
由于国立大学的教学重点以及方法风格有很大的差异,很难对各所大学的教育状况作一全面的论述.以下仅以笔者学习、工作的名古屋大学为例来介绍日本本科教育的一些近况.在名古屋大学,物理类本科教育主要由基础科目、专业科目、实验科目、选修科目、毕业设计等组成.其中选修科目和毕业设计一般相互关联,有高能物理、宇宙物理、凝聚态物理、生物物理4个大的方向.由于大一新生为理学院的数学、物理、化学、生物4个系共同招收,在大一阶段理学院新生需参加公共基础课的学习,教育形态以大班教学为主.大学一年级的教育目标是在培养学生兴趣的同时巩固基础知识,主要进行的是通识教育.教学时一般会配合演示实验以增加课堂活跃度并增进学生对物理现象的观察和理解.学校配有相应的金属器具加工车间,大四以上学生参加安全使用培训后皆可申请使用.课堂演示实验所需教具一般以教员自己制作为主.二年级开始进入物理专业课学习.教学科目主要由数学物理方法、分析力学、电磁学、热学、统计物理学、量子力学等组成.与专业课程相对应的设置有配套的习题课.习题课由教授等教员负责,有相应的学分,属于必修科目.配套习题课的教学以讨论式教学为主,每个班级大约由15~20人组成,分成3~4个讨论小组.除第一节习题课以外,在每节习题课后一般由教员布置一些问题作业.习题课作业一般由研究生组成的学生助理批改、评分,标准答案和评分标准会由负责教员分发到研究生助理手中,并由研究生助理作汇总统计后呈报给习题课的负责教员.每次上习题课时,负责教员把作业发还学生,每个小组先进行内部讨论,再由各个小组派学生轮流讲解,遇到讲解不恰当不全面的时候教员会参与讨论,教员起监督指导辅助作用.习题课成绩评价主要由学生讨论活跃度、出勤率、课题作业完成情况决定.每学期期末考试后会举办教育反思会,参会人包括本科学生代表、研究生助教和专业课教员,对教学中的难点和不足之处进行反馈和探讨.大三阶段增加高级热力学、高级统计物理、高级量子力学、近代物理实验等,并出现多个专业课分支选择,比如高能物理学、宇宙学、固体物理、生物物理等.物理实验以近代物理实验为主,共有14个左右的实验可以选择,每两人一组,一个实验每周一次大约持续一个月,每个学生平均需做3~4个实验才可以获得学分.为了使学生扩大知识面并且使他们对各个研究室的研究情况有初步了解以便他们进入大四时选择教研室进行毕业研究,从2012年起,大三新增了前沿科学讲座这一环节.讲座由20个左右的研究室进行分担,每周进行一次,每次由一个研究室的主要负责人进行讲解介绍,每次讲座结束后会要求学生提交一个简单的小报告.各个研究室的主要负责人亲自负责本科的课堂教学工作,这对于学生的培养十分有利.大学的教学目标不仅是知识本身的教与学,更重要的是研究方法与经验的传承.将最新的科技前沿信息传递到教室,才能不断保持科技创新的活力.在三年级结束进入大四以前学生会自主选报教研室进行毕业设计研究、设计.随着本科生进入各个教研室,大四的教育方式主要以各个教研室的研讨会形式为主.学生在黑板上讲解课本或者文献或者汇报实验进展,教员和其他同学在下面听讲并共同探讨相关的问题要点.每次研讨会大概持续2~3小时,每周1~2次,每次由1~2个学生进行报告.这种研讨会形式的教学很好地激发了学生学习的主动性,培养学生的自学能力以及发现问题和解决问题的能力.
4日本高能物理研究生教育近况
长时间以来,日本物理教育体系发展了一套自己的研究人才培养及传承方法.其研究生的培养主要采用2年硕士+3年博士的方案,类似于我国的硕-博连读.由于一些研究小组对某些课题,研究方法和手段会几十年持之以恒地进行研究,他们在很多问题的研究上积累了丰富的研究经验.这样的物理教育体系为其研究思想的传承提供了很好的保障.例如,名古屋大学的高能物理理论研究长期以来一直受其创立者坂田昌一的影响,其主要研究风格与研究思想与坂田昌一一脉相承.在日本的研究生培养中,教学任务主要集中在硕士一年级,主要有大课教学和讨论课教学两种模式.大课模式主要以出勤率和报告决定成绩.专业课的教学基本上以讨论式教学为主.由指导教员指定教科书以后,由学生每次在黑板上讲解.另外,学生也会针对自己感兴趣的参考书或者研究论文,自己组成讨论小组,视情况会有高年级学生或教员参与讨论,每个小组由3~8人组成.讨论小组每周讨论一至两次,具体时间与长度由学生自己决定,是一种自组织形式的自学自助团体.硕士二年级以及博士生的教育基本上以讨论式教学为主,讨论内容可以是教科书、论文等,在互相探讨中学习研究.对于研究材料的理解每个人会有不同之处,这一思考、讨论的过程就是取长补短,去粗取精的过程.讨论式教学对于深化对物理现象、概念的理解有很大提高和帮助作用.在研究生的论文选题中,除了第一个选题由导师进行稍微具体的指点外,其他的基本是以学生为主.从论文的选题,中间的计算,到结果的分析,论文的书写主要都是由学生完成的.在这一过程中,导师主要是作一些点拨性的指导,以及论文的润色.另外,日本研究生的教育过程中十分注重对团队合作能力的培养.在合作中相互学习,取长补短,从而使工作效率大为提高.除了以上提到的学校内部的学生培养活动外,日本国内还有一些有特色的校际间的研究生教育交流活动,下面列举两个活动项目.(1)集中讲义:由于日本的各个大学研究室的研究内容和方向比较独立,为了深化各个大学之间的交流,使学生对不同大学的研究室的研究内容有所了解,每年各大学会举办2~4次以硕士生或博士生为听讲对象的集中讲义.集中讲义一般持续2~4天,一般在讲义中间会穿插1个面向低年级研究生水平的2小时左右的报告.集中讲义的选题一般都与近期的研究重点、热点相关.研究生通过参加集中讲义既可以了解相关专题的研究进展并较为系统地学习相关专题的研究方法,又可以获得相应的选修学分.(2)暑期-冬季学校:每年长假期间,依据由日本文部省的预算所开展项目的情况而定,会举办一些暑期-冬季学校进行一些专题讲座.其中传统最悠久的当属从1955年夏天开始,到2013年为止共成功举办59次的YONUPA[6]暑期学校.YONUPA是YOungNUclearandPArticlephys-icistgroupofJapan的缩写,每年暑假期间由与高能物理、原子核物理、高能物理实验相关的各个大学研究生院的学生轮流自发组织、策划、主办并参与.为了降低每个筹备学校的劳动量,筹备学校由管理财务报销的学校、管理事务联络的学校、管理各个所属成员邮件的学校、选取会场并维持秩序的学校4部分组成.另外,与这4个筹备学校相独立的,高能物理、原子核物理以及高能物理实验3个方面由另外的3个学校进行管理,负责邀请讲师、组织学生报告等活动.YONUPA的财政预算主要由日本几个大的研究所出资赞助,另外每个大学的研究室也会按一定比例支付学生交通费用等.YONUPA每次持续4~6天,每年大概有200~300人参加.暑期学校期间,高能物理、原子核物理以及高能物理实验3个研究方向会设置一个共同的集中讲义以及针对每个研究方向的2~3个平行的集中讲义,剩下大约一半的时间是学生相互之间的研究报告.每年从硕士1年级到博士3年级的学生都有一定比例学生参加暑期学校,YONUPA为日本从事高能物理研究的青年学生提供了互相学习与交流的良好平台.除了YONUPA,日本文部省的许多大的研究项目也有专门的学生培养方面的预算.例如在2009—2014年的重大项目“ElucidationofNewHadronswithaVarietyofFlavors”中,每年都会组织与该项目相关的研究生暑期学校.暑期学校采用教员授课与学生习题课并重的形式.通过教员授课与习题课的方式,学生可以系统地学习到某一领域的基本知识并掌握该领域研究的相关方法.
我校是机电类中职学校,开设有数控、机制、电子、模具、机械等专业,在各专业中开设中职物理这门基础课,目的是在初中物理的基础上,进一步学习和掌握运动学、力学、几何光学、热学、电磁学及原子能等相关知识,为专业学习打下基础。如何实现这一目标使之有效地服务于机电各专业成为课程改革的的关键,本文认为应从以下几个方面着手。
一、立足岗位,面向专业,优化课程结构
物理是机电类专业的基础课程,必须立足于机电类岗位,服务于机电类专业课程。机电类中职培养机电技术及应用方面的操作维护使用及管理技能型人才,面向制造业各岗位。制造业为国民经济各部门,包括国防和科学技术的进步提供先进的手段和装配,其技术装备是数控机床(CNC)、柔性制造单元(FMC)和柔性生产线,这些装备的操作使用、维护管理要求高,需求复合型人才,并且随着科技和生产的发展,机电产品生产工艺及装备技术水平在不断提高,对机电设备操作使用维护要求也提高,制造类各岗位如机械制造、数控加工编程、汽车维修、模具加工与修理、电子产品装配、机电维修、机电产品质量检验、机电设备营销等等都需要多门课程知识的综合,需要扎实的专业基础知识,强调基础及对岗位的适应能力和以后的扩展能力。中职生在短短三年间掌握机电类某一岗位群所需的全部知识和技能是不可能的,只能是掌握该岗位群所需的基本知识与基本技能,只有夯实基础,拓宽基础,才能提高社会的适应能力。专业基础课是为专业岗位服务的,而物理课在提高学生的科学素养、为机电类专业基础课程打基础方面起着无可替代的作用,所以物理是机电类专业基础的基础,其内容与结构必须满足专业与岗位的需求。
考虑到机电类各专业后继课的特点,将物理分为I、II两类:I类包括知识模块有:直线运动,牛顿运动定律,冲量与动量,功与能,曲线运动、万有引力定律,机械振动与机械波,分子运动论、理想气体,热量与功,静电场,恒定电流,磁场,电磁感应,电磁振荡和电磁波,几何光学,光的本性,原子和原子核。II类是将I类中的静电场,恒定电流,磁场,电磁感应,电磁振荡和电磁波内容合并到电工基础中。II类是面向电子、计算机等专业,对物理、电工、电子等课程的要求相对较高。在第一学期开设《物理》,而第二学期起就依次开设《电工基础》、《模拟电子》和《数字电子》三门课程。I类是面向机械、机械制造、模具等专业。另外,增加选修模块,如自制物理实验、创新制作内容。各个不同专业学时数亦不相同。
二、做学合一,培养创新能力
物理课教学中的学主要是指理论知识学习;做是做实验、做习题和课外活动,主要是实践过程,无论是学还是做,都是为了理解基本概念与定律,分析物理现象与自然规律,掌握物理科学方法与知识。由于各种原因,中职生入学的实际情况是基础差、底子薄,文化素质相对较低,但其思维能力和智力水平并不低。按照职业教育观点[1],他们只是智力类型的不同,而非智力水平的高低。中职生的培养目标是技能型人才,注重实际应用与操作。鉴于上述情况,中职物理教学首先要调动学生主动参与学习过程,发挥其主体能动作用,发掘其能力与潜力;其次加强技能培养。为此采取如下措施:(1)在学的方面,降低理论知识的难度,强调实用性和实践性,注重培养学生的学习能力和分析问题、解决问题的能力,淡化理论推导,突出物理概念的理解,注重计算能力的培养,并将部分概念与定律内容实验化,转化为可以做的内容,加大课堂演示内容及份量;同时采用多样化教学手段,充分运用投影、幻灯、录象、计算机辅助教学软件(CAI)等现代化手段进行教学,注重形的视觉作用,加深对物理概念与定律的理解。对于每个章节,明确目标任务,以任务为驱动,教师指导学生主动思考,学生带着思考的头脑进入课堂。理论联系实际,联系生产生活实际,联系专业实际,联系学生实际,循序渐进,由浅入深。(2)做的方面,充分利用习题、实验与课外活动。这样在学中做、在做中学,做学合一,发挥学生的学习积极性、主动性,增强学生的主体意识,提高学生的动手能力,掌握科学方法,提高科学素养。
创新能力的培养是深化教育体制和结构改革、全面推进素质教育的重点,创新教育要求学生学习的是解决问题的方式方法,而不仅仅是知识的本身。在中职物理教学过程中,培养学生的创新能力应从以下三个方面进行:(1)在理论课教学中训练学生的创新能力,设计提问,激发学生问题意识,引入课题;指导学生发现,启发学生思考、交流、探究;引导学生独立学习,启发学生大胆质疑;注重挖掘物理教材中的研究问题的方法,培养学生的创新能力。(2)在习题教学中培养中学生创新能力,一题多解,训练学生的发散思维;一题多变,训练学生思维的灵活性。(3)在物理实验教学过程中培养创新能力,在规定学生完成一定的实验计划和要求的前提下,可以鼓励、引导学生不拘泥于教材中的做法,进行一些创新改进,或自己另外设计不同的方案或者自己提出实验研究课题,设计开放性实验,设计实验方案,独立或与同学合作进行实验。(4)在课外活动中培养学生创新能力,举办“异想天开”发明创造“金点子”方案竞赛;举办发明创造讲座、科普知识讲座、发明创造作品展览;开展“小发明、小创造、小制作、科学小论文”等竞赛,以激发学生的创新意识,增强创造能力。
三、对教师的要求
物理理论与实验教学设计与实施,需要高素质的教师队伍。教学过程设计、教学情景设计、学生情况分析、创新能力培养都对教师提出了很高的要求,不仅要求教师具有丰富的相关专业知识与娴熟的实践技能,而且要具有灵活的教(下转第149页)(上接第145页)学方法、较强教学情景设计能力和现场调控能力和创新教学能力。为此,教师必须经常收集资料、补充自己的专业知识、了解最新科技动态,及时掌握科技方面的新技术、新工艺、新设备及岗位所需技能;钻研教学艺术,深入学生调查研究分析,做到因材施教。如教学过程设计中每个章节找出恰当的切入点,“万有引力定律”以“人造卫星、黑洞例子”切入;“机械波”以“地震、超声波和次声波”切入;“能量守恒”以“长江三峡”切入;“电场中的导体”以“静电的防止和利用”切入;“电阻定律”以“超导”切入;“磁场”以“磁悬浮列车”切入;“原子核”以“核武器”切入等。引入这些例子,不仅可以引出问题,激发学生学习兴趣,还可增强学生对科学的崇尚。