电路与模拟电子技术范文

时间:2023-03-13 11:07:21

引言:寻求写作上的突破?我们特意为您精选了12篇电路与模拟电子技术范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

电路与模拟电子技术

篇1

路与模拟电子技术作为一门重要的专业基础课,其中的知识技能在其他很多专业课程中都有大量的应用。在高职电子信息技术相关专业的教学中,学校要做好电路与模拟电子技术课程的教学,教授学生模拟电子电路的相关知识,培养学生的实践技能,提高学生的专业素质。

1.树立正确的教学理念

高职院校的教学周期短,为了满足社会行业需求,旨在将学生培养成实践应用型专业人才,而不是学术探究型的专业人才。在高职电路与模拟电子技术课程的教学中,教师要树立正确的教学理念,明确教学的培养目标。为了加强对学生知识技能的培养,教师在教学过程中,应当更加重视培养学生的知识应用能力,加强学生的发散思维,让学生能够在其他专业课程的学习以及实践练习中,熟练的应用电路与模拟电子技术中的知识技能。至于电路与模拟电子技术中所包含的逻辑性和严谨性,教师不必对学生提出太多要求。因此,树立正确的电路与模拟电子技术教学理念,教师要在教学过程中,适当增加实践训练部分,让学生能够在学习一段理论知识后,能够及时的通过实践验证,从而加强学生对知识的掌握,提高学生的实践应用能力。

2.确定合理的教学安排

在高职电路与模拟电子技术课程的教学中,课时安排一般都不够充分,而课程内容却非常多,因此,教师需要确定合理的教学安排,为重要的知识内容设置更多的教学时间,最大程度上提高教学的有效性。高职电路与模拟电子技术课程的教学,主要追求对学生专业技能和实践能力的培养,让学生能够在未来其他的专业课程学习和工作实践中,能够具备足够的专业知识和应用能力。教师在教学过程中,对于理论知识的教学可以适当调整,让学生能够掌握重要和实用的知识内容,其他难度大、更具学术性的知识不必投入太多的时间,可以适当降低教学难度,让学生大致掌握就可以了。此外,教师还要增加实践教学的比例,让学生能够更好的掌握知识,加强对知识的应用。高职电路与模拟电子技术课程教学,总的来说,需要教授学生四个方面的能力,分别是观察电路、分析计算、器件选择以及实践应用,教师在教学中,可以为学生安排更多的例题和实践实验。例如,在教学基本放大电路时,教师可以带领学生分析电路图中各个元器件的作用,让学生明确放大原理,然后通过上机实验进行实践验证。下图是共发射极组态放大电路,教师在教学中要让学生能够正确区分电路的静态()和动态(),学会判断电路的直流通路和交流通路,掌握共发射极组态放大电路的放大原理:

3.应用有效的教学方法

在高职电路与模拟电子技术课程教学中,教师需要应用有效的教学方法,提高教学效率,更好的培养学生的知识技能。第一,明确课程作用,加强学生的学习动力。教师在教学中,首先要让学生明确电路与模拟电子技术课程的作用,让学生了解学习课程知识与技能在未来工作和学习中的重要意义。例如,课程教学中,放大电路占据了相当大的比例,教师在教学中,要让学生首先了解放大电路在电子系统中的作用,这样学生才能根据其应用,更好的掌握相关的知识与技能。在教学过程中,教师不仅要教授学生理论知识,还要结合知识在实际生产生活中的应用,可以在课堂上为学生展示相关的电子设备,然后引导学生学习探究电子设备中涉及的典型放大电路;还可以在理论课堂上穿插实践环节,带领学生按照电路图连接调试一些简单的电路,加强学生对知识的理解,让学生明确知识的应用价值,进而加强学生的学习动力。第二,应用多媒体教学,加强学生对知识的理解。在高职电路与模拟电子技术课程教学中,教师可以充分发挥多媒体设备的作用,应用多媒体教学,通过视频、图片和文字,将复杂抽象的知识内容全面直观地展示出来,帮助学生更好的理解掌握相关知识。电路与模拟电子技术包含了大量理论、技术以及实践三方面的综合内容,仅通过传统的板书教学,教师很难充分向学生展示理论知识、专业技术以及实践应用之间的联系,而应用多媒体技术,教师可以更方便的带领学生分析电路原理图,通过EDA软件进行模拟测试,并通过屏幕展示给学生,让学生能够更直接地了解相关知识内容的实践应用,从而加深学生对知识的理解。此外,多媒体教学还能丰富教学内容,从而提高教学的拓展性,让学生能够学习到更多的知识,了解知识的应用,这对学生的学习有很大帮助。第三,应用项目教学法,提高学生综合能力。电路与模拟电子技术课程的知识内容理解难度大,高职学生大多基础薄弱,在学习过程中经常遇到各种困难,对此,教师可以应用项目教学法,在教学难度较大的知识内容时,让学生成立项目小组,共同学习探究。电路与模拟电子技术的知识内容具有很强的应用性,因此教师在教学过程中,可以将理论教学与实验教学结合起来,针对当前教学的知识内容,设计专门的项目,让学生以小组或个人的形式,在教师的带领下,按照项目的准备、设计、检验、实施、评价等步骤,通过完成项目,学习相关的知识内容。项目教学法能够将理论知识与实践应用很好的结合起来,学生在进行项目探究时,可以与小组成员分工协作,完成个人难以达到的目标。学生在项目探究过程中,不仅能够学习到专业知识与实践技能,还能培养自身的学习探究能力,团队协作能力等,这能够有效促进学生综合能力的提高。

4.结语

在高职电路与模拟电子技术课程的教学中,教师要确立正确的教学理念,在理念的指导下,合理安排教学内容,应用有效的教学方法,培养学生的专业知识与实践技能,提高学生的综合能力,让学生成为社会需求的专业实践型人才。

参考文献

[1]魏亚坊.高职模拟电子技术课程教学改革探究[J].浙江交通职业技术学院学报,2016,(3):55-56.

篇2

一、课程背景

计算机类专业在开设电子方面课程有其复杂性和特殊性。一方面,学生既要比较熟练地掌握电工电子技术的方法和应用,又不要求作深入研究。另一方面,相比于其他非电类专业只要求了解电工电子技术的概念,它对分析与设计都有一定的要求,以便掌握计算机相关硬件知识和从事计算机接口电路的分析与设计。因此,在实施计算机类专业基础教学的过程中,我们将电路基础和模拟电子技术合并设立一门课程,后续安排数字电路和数字逻辑课程来完成电工电子基础教学。

二、现状分析

依照学院《电路与模拟电子技术》课程教学大纲的安排,设定学分数为3.5,学时数为56,其中电路讲授24学时,模拟电子技术讲授24学时,实验8学时。电路部分包括电路的基本概念和基本定律、电路的基本分析方法、正弦交流电路等,主要介绍电路的基本概念、基本理论和基本分析方法;模拟电子技术部分包括半导体和晶体管、基本放大电路、放大电路的负反馈、信号的运算与处理,主要介绍各种应用电路的分析和设计。前后知识点衔接紧密,电路部分作为模拟电子技术部分的基础,模拟电子技术部分对相关知识进行拓展与延伸。

根据课程特点及教学目标要求,通过本课程的学习,使学生获得必要的电路分析和电子技术的基本理论、基本方法和基本技能,初步掌握电子电路的分析、设计方法,为后续课程的学习及从事计算机相关硬件接口电路的分析与设计打下基础。因此,在教材的选择上,必须涵盖相关知识点,并有所侧重,同时注重学生实际分析问题能力的培养。我们选择殷瑞祥主编,高等教育出版社出版的《电路与模拟电子技术》及《电路与模拟电子技术学习辅导与习题解答》作为配套参考书。教材与习题相结合,有助于学生掌握相关理论知识,融会贯通,进一步开拓思路。

三、改革措施

1.备课改革

课堂教学效果的关键在于备课的精心准备。我们在实际教学过程中,根据课程特点,切合实际,提出自己的思想,融入新的理念,综合现代化多媒体教学手段和传统的板书,两种方式有机结合,互为补充,既丰富了信息量,又有利于学生对于知识的掌握。

“授人以鱼,不如授人以渔”,在备课中要有意识地培养学生的自学能力。教师是教学活动的主导,学生是主体,教学要以学生的接受情况为主要考量因素[1]。教师在掌握课程体系的同时,应该循序渐进,不断找寻疑问,对于教师来说,备课其实也是自我学习、自我提高、自我完善的过程。在每节课开始之前,我们在研究教学内容和分析教学对象的前提下,根据教学大纲的要求,切实把握知识点,灵活运用,充分备课,根据教学执行效果和学生对课程的实际反应及时调整;每节课结束后进行认真总结,用不同颜色的笔对课堂内容进行标记,不断充实讲稿,及时发现问题、解决问题。

2.课堂练习

随着我国高等教育的招生规模不断扩大,教育资源紧张与学生扩招之间的矛盾显得尤为突出,很多高校讲授课程只能由小班改为大班或合班上课。为准确了解每位学生听课状况,动态跟踪学生对于知识点的掌握程度,确保上课质量,教师需要根据实际情况适时调整教学方法与内容,以达到最佳的教学效果。

课堂练习是学生在形成新知识基础上的巩固过程,是对学生掌握知识情况的一个重要反馈,同时也是电子学科教学过程中必不可少的环节。在实际教学过程中,我们在每节课留出一定的时间给学生做随堂练习,即讲即练,留给学生充足的时间来消化吸收知识。课堂练习的形式可多样化,引进激励措施,鼓励学生到黑板上做题,充分调动学生的积极性,然后针对学生在练习过程中出现的问题进行细致分析,帮助学生理解,通过习题的讲解对教学内容进行阶段性的巩固、复习和总结。从执行结果来看,有利于学生对于知识点的掌握,收效良好。

3.生动教学

如何调动学生学习的主动性和积极性,找到适合学生现有能力,并能联系新旧知识的方法,是我们进行生动教学的主要着眼点和出发点[2]。在教学过程中,使教学内容更能触及学生的心灵深处,诱导学生把学习新知识的压力变成探求新知识的动力,变被动学习为主动学习,是提高课堂教学质量的重要手段。

《电路与模拟电子技术》作为一门实践应用性很强的课程,与生产实际联系紧密。在上课过程中,我们时刻关注学生的学习需求,灵活运用启发式教学方法,培养学生解决问题的能力,激发他们探索新知识的渴求。同时,注重引导学生自主学习、刻苦钻研的精神,实现多样化教学方式的相互补充[3]。上课过程中避免枯燥地照本宣科,采用“观察―实验―问题―讨论”的模式,从鲜活的生活实例入手,激发学生学习兴趣。比如,在模拟电子技术放大电路章节学习中,学生在课前可搭建简单面包板电路,连接小型功放器件,将实例引入课堂,并用万用表hFE档测量不同三极管β值,调节声音的大小,通过观察不同的实验现象,加深学生对于三极管工作原理的理解。

4.实验创新

实践教学是把理论知识转化为实际能力的重要环节,也是培养创造性思维习惯和创新人才的重要途径。在过去传统的实验模式中,实践的对象、方法、步骤等关键要素都由教师来制定,学生必须沿着教师规定的框架,按照教师制定的路线去完成实践任务,学生被约束在实践的框架中,他们的创新思想无法自由驰骋;在基本规定的路径中,他们不可能发挥自己的想象力[4],很多时候只是简单地依葫芦画瓢,连接导线,观察波形,测试数据,原本充满生气的实验课变得索然无味。为了改变这一现状,就必须在实验中力求创新,让学生尽可能作为主体参与实践活动的各个环节,体验实验的乐趣,主动参与进来,真正使知识成为活的知识。

在改进实践方法和手段的过程中,我们注意持续激发学生学习兴趣、贯彻“快乐学习、享受成功”的教学理念,强调学生自发地构建知识体系,彻底改变目前课堂教学“填鸭子”、实践教学“放鸭子”的现象。在实验环节上,改变过去一成不变的全班学生做同一个实验,一个实验项目做好几年的状况。在此基础上,我们积极鼓励学生根据自己的兴趣爱好,在课程框架体系内,大胆提出切实可行的实验题目和实验设计方案,引导和支持他们开展有意义的实验研究。《电路与模拟电子技术》共开设了四个实验项目,分别是电路元件伏安特性的测绘、戴维南定理和诺顿定理的验证、基本放大电路测试和运算放大电路测试,都具备一定的自主创新空间。

四、总结

通过以上几点措施,学生的学习主动性增强了,学习效率提高了,实际动手能力也得到了很大锻炼。在学院及省市举办的各类电子科技大赛中,学生均取得了较好成绩,在仪表维修电工测试中,学生一次性通过率达到100%,毕业生深受用人单位的好评。

参考文献:

[1]何克抗.建构主义的教学模式、教学方法与教学设计[J].北京师范大学学报(社会科学版),1997,(5).

篇3

EDA技术即为通过计算机来设计电子电路和系统的计算机软件。将其应用在电路设计中能够显著提高电路设计的工作效率,减少误差,增强可靠性。

1 EDA技术概述

1.1 EDA技术特点

EDA技术就是以计算机为基本工作平台,结合了多种现代计算机技术而形成的开展电子产品设计技术。典型的EDA工具都包括综合器与适配器,通过EDA技术能够在设计电子系统时减少大量的工作量而交由计算机完成。并且通过EDA技术能够将电子产品从电路设计直至设计版图的整个流程都在计算机上实现自动智能化处理。当前EDA技术的应用范围十分宽广,例如机械、航空、生物、军事、教学等各个领域都已经广泛开展使用EDA技术。

1.2 EDA技术类别

EDA软件大致能够分为芯片设计辅助软件、可编程芯片辅助设计软件以及系统设计辅助软件三大主要类别。通过EDA软件的功能和应用领域可以将其分为电路设计、仿真工具、IC设计软件与其他EDA软件等。常用的模拟电子电路包括晶体管放大电路、集成运算放大器以及电源电路等。

2 Multisim 10.0软件的应用

2.1 Multisim 10.0特点

2.1.1 元件库丰富

Multisim 10.0配备了海量的元件模型数据库,其中有数以千计的电路元件,其中包括基本元件、基础电路、继电器等元器件。同时,用户还能够根据自己需求来新建元器件库,给客户提供了极大的便捷。该软件中各元器件的参数可以根据需求调节。

2.1.2 强大的虚拟仪表与分析功能

Multisim 10.0中配备了双踪示波器,逻辑分析仪、频谱分析仪等十余种虚拟仪器仪表,并且操作界面十分友好,不论是专业人士还是学生都能够快捷方便的进行操作。

2.1.3 仿真范围大

Multisim 10.0不仅可以对数字或模拟电路实现仿真,还能够仿真射频电路。

2.1.4 兼容性良好

Multisim 10.0网络表文件可以与Spice网络表文件进行相互转换,并且形成电路原理图。Multisim 10.0中电路原理图还能够与PCB软件进行传输,进行印刷电路板设计。可以看出,Multisim 10.0能够全程完成电路设计与印刷电路板所有设计工作,电子产品开发速度得到了提升。

2.2 Multisim 10.0应用实例

2.2.1 差动放大电路与差模信号

差动放大电路在电子技术与IC制造业中应用十分普及,其能够放大差模信号,对共模信号起到抑制作用,因此可以有效的避免零点漂移,妥善解决了直流放大电路中增益与零点漂移的问题。图1为恒流源的差动放大电路图。如不加输入信号时,首先调节R2,输出电压接近0.图2为输入差模信号电路图,输入端加上50mV,1KHz的差模信号,对节点8与节点3进行瞬态分析,获得两个大小相同,方向相反的差模输出信号。

用后处理器获得双端输出电压波形曲线图。最大输出电压为Vod=4.1034V。

2.2.2共模信号

使用相同的方法对节点8与节点3进行分析,可以得到两个大小相同,方向也相同的共模输出信号。单端输出最大电压值为38.04Pv.从该数据可以得知,共模信号单端输出的抑制程度也较高。

2.2.3 结论

Multisim 10.0是一个系统的,功能齐全的电路仿真软件,其强大的元件数据库与大量的虚拟仪表具有多种分析方式。Multisim 10.0软件存在以下几大优势:

(1)进行模拟电路能够调整电路参数,观察不同参数与电路性能之间的关系,同时可以重复多次的选择最合适的元件参数来设计方案。

(2)Multisim 10.0能够在电路测试中分析数据、曲线图形都集中在单一的设计窗口中,使用人员可以直观形象的观察到数据和图形的改编。其所显示的曲线图也较为平滑,这是其他硬件测试中无法比拟的优势。

(3)Multisim 10.0的虚拟仪器仪表调试十分便捷,信号干扰因素小,双踪显示时不会出现断断续续和闪烁的现象。相对于传统的模拟电路方式来说,其十分容易受到外界电源信号的影响,并且实验设备不先进,十分容易导致测量结果精确度欠佳。然而该测量结果将通过数字表现,其精确度较高。

3 结束语

随着自动化水平的提高和电子领域的迅猛发展,EDA技术在电路设计中的作用越来越明显。利用EDA技术电路设计师能够高效、准确的设计电路。Multisim 10.0能够提供强大的元件数据库与虚拟仪表,分析方法十分多元,是电路设计教学、电路设计模拟中不可或缺的软件。EDA正在面临发展的关键时刻,EDA技术将电子设计技术推向了新的阶段,未来EDA技术将会向新器件、新工具软件等趋势发展。

作者简介

篇4

1)模拟电路,在现今这个时代,虽然数字电路发展的非常快,但作为电子电路的一个分支,模拟电路仍然有它的实用性,那么,什么叫模拟电路,非专业人士不懂,模拟电路就是对模拟信号进行传输或处理的电路。所谓模拟信号,是指幅值随时间连续变化的信号,比如,我们日常生活中用的调幅/调频的接收机,晶体管小信号放大器,低频功率放大器,负反馈放大器,MOS集成运放,谐振放大器,直流稳压电源等。都是用模拟电路制作的,收音机、通过接收处理无线电广播信号,包括混频、放大、解调等环节,完成音乐和新闻报道。

2)那么什么是数字电路呢?数字电路是对数字信号进行传输或处理的电路、所谓数字信号,是指在时间上和取值上都是离散的不连续的信号,数字电路能够对输入的数字信号进行各种算术运算和逻辑运算。所谓逻辑运算,就是按照人们设计好的规则,进行逻辑推理和逻辑判断。所以,数字电路不仅具有算术运算的能力,而且还具备一定的“逻辑思维”能力。因此,人们才能够制造出各种智能仪表,数控装置和电子数字计算机等。利用数字电路罗辑功能,可以设计出各式各样的数字控制装置,用来实现对生产过程的自动控制。

3)在实际工作中,一块集成电路板,往往即有模拟电路,又有数字电路,只有把两种电路结合在一起,才能完成一个具体的工作任务,例如,TC1153集成电路板就是由模拟和数字两部分电路组成的CMOS专用集成电路,用于过载电路保护器上。

在电力供电系统,过流或短路时对任何电气设备(线路)来说都是危险的,轻则损坏开关,重则波及变压器及电网、系统,使控制单元完全毁坏。尽管传统保险管或继电器保护、电路可以避免或减轻损失,但其毫秒级的动作速度,对一些敏感的电子器件而言,还是太慢,电路往往损坏于跳闸的瞬间,于是快速保险丝,各种电子快速保护器应运而生。

以前,各种断路保护器多为常规电路组合,往往体积庞大,线路复杂,功率较少,可靠性差。而TC1153它的静态电流仅为8.μA,工作电压范围宽(4.5―18)用它构成的保护器具有以下特点:①可预设延迟跳闸时间(15μS到100ms以上)预设跳闸电流(1mA到20A以上)和预置跳闸后自动恢复时间(1ms到10s以上);②电路十分简洁,占用空间很小;③故障状态的指示输出和外控输入,适于电脑电源管理;④具有带PTC限温器的过热保护功能;⑤微功耗。

TC1153可以广泛用于电源总线电路断路器,过热保护器,电源(电池)短路保护器,直流马达“失速”保护器以及各种敏感电路系统的电源中断装置等场合。

因TC1153由模拟和数字电路两部分组成,具有MOS管栅极电荷泵及控制单元,过流检测及自动复位电路,故障状态指示和输入控制单元,以及分别为模拟和数字电路部分提供隔离的稳压电源的稳压器等功能电路,当串联在负载上的检测电阻Rsen两端电压高于100mv(即内部基准电压源的数字值)时,比较器输出信号,最终通过引脚G端到外接N沟道MOSFET功率管,切断负载与电源的通路,达到保护负载的目的。检测电阻(Rsen)的数值,根据断路器动作电流(限流值用Ic表示)确定,即满足RsenIc=100mv的条件。

以上所述是TC1153的过流检测的简单工作原理,这是目前过流保护装置最常用的基本思路。具体而言,TC1153可以实现的功能还有:利用外控输入信号控制负载的通/断、高电平有效,状态端子是一个漏极开路输出,使用时应接一上拉接电阻,不用时该脚浮空即可。自动复位定时电路作用是当外部负载过流故障排除后自动延时上电,恢复正常。延迟时间由外接的定时电容确定,值为0.033―3.3μF时,自动复位的延迟时间为20ms―2S。当然,如果过流故障不排除,电路是不会复位的,如不需此功能,则应将该引脚接地。延迟跳闸功能是为一些有冲击电流的负载而设的,例如大的滤波电路、灯泡、电机等会有瞬间的浪涌电流,如果没有延迟功能,系统在工作时就会频频出现跳闸现象。因此,选择该延时数值很重要,既要考虑不同负载的正常工作,也要顾及准确及时判断过流而保护负载。需要指出的是:TC1153的各信号端子(包括定时电容端)均有防静电保护二极管,以确保在各种应用环境下的正常稳定使用。

用于不同负载时,TC1153典型应用电路也不相同,如用于感性负载电路,接有继电器、电磁铁、步进马达等,对延迟跳闸时间没有严格要求,IC内部已经10μS的延迟而不必外接阻容元件于Ds端。但电路要对MOS管进行反压保护,如在GSD端并接稳压管,在负载两端并接续流二极管。

篇5

中图分类号:TN710;TN79 文献标识码:A 文章编号:1007-9416(2016)11-0251-01

1 电路信号形式比较

模拟电路有着造价成本低、技术成熟等优势,但需要注意的是,其技术原理相对简单,在应用的过程中,其信号的传递很容易受到噪声影响,这是制约模拟电子技术进一步发展和应用的缺陷,使得模拟电子技术的应用范围局限于低端应用。

大多电路对信号传播精度要求较高,为了满足这种传输精度要求,充分发挥数字电子技术应用功能,其一般选择的高端电子电路,但也正因为如此,相较于模拟电路来说,数字电路的造价成本更高,在高端设备中应用广泛。

2 模拟电路与数字电路的精确度比较

相较于模拟电路来说,数字电路的精确度大大提升,这是模拟电子技术与数字电子技术最本质的区别之一。举例来说,假设用模拟电路来实现简单的数学计算器,设计电路如图1所示。

在图1所示的电路中,电阻R1和R2相等,给A点计入3V电压,给B点计入5V电压,则图1中C点电压为(5+3)/2=4V,完成电路的求平均值操作,如果用1V来表示1,计算出平均值为1,如果用1mV表示1,则计算出的平均值为4000。利用电阻电容及晶体管等元器件特性能够设计出许多类似模拟电路,从而可以完成四则运算、开方、平方等众多复杂运算。但需要注意的是,在实际应用模拟电路的过程中,电路工作并非处于理想环境下,很多误差不能避免,例如在图1所示的电路中不能保证R1与R2的完全一致,导线也存在电阻,因此通过模拟电路计算出的结果很可能与实际值出现偏离,导致误差出现,如果模拟电路十分复杂,则这种误差会逐渐积累,越来越大。

从本质上来讲,数字电路是相对于模拟电路来说的,其本身就是一种特殊的模拟电路,数字电路采用二进制数来运算,能够代表电子器件两种确定的状态,例如开关状态、亮灭状态等。以数字电路中常见的二进制数字表示方式TTL电平为例,规定+5V电压为高电平,代表数字“1”,规定0V电压为低电平,代表数字“0”,而在实际应用中,这种表示并非绝对精确,>2.4V的电压都视为高电平,用数字“1”表示,

3 模拟电路与数字电路的区分

模拟电路与数字电路区分示例如图2所示。对于模拟电路来说,其放大器图形为三角形,采用正、负双电源供电的方式,电源电压在5V以上,通过反馈电阻来连接输入与输出;对于数字电路来说,其采用单电源供电方式,电源电压一般为3.3V或5V,逻辑图形为长方形,不同的逻辑门有着相对应的标准图标,识别容易。此外,对于分立元件来说,可以通过偏置电路来进行识别,数字电路没有设置偏置电路。模拟电路中偏置电路公式为:

临界基极偏置电阻Rb(cr)=β(Rc+R’L)

临界集电极-发射极偏置电压Uce(cr)=Ucc/(2+Rc/RL)

输出电压摆幅Uommax=Ucc/(2+Rc/RL)

4 结语

综上所述,两相比较而言,模拟电子技术和数字电子技术各有优势,前者电路简单,使用方便,造价较低,在低端设备中应用效果良好;后者电路高端,造价较高,性能优良,在高端设备中应用效果良好。因此,在实际应用的过程中,需要结合二者优势分析,考虑自身实际情况和具体要求,合理的进行选择。在未来的发展中,作为信息电子技术领域两个重要的发展方向,模拟电子技术和数字电子技术都有着广阔的发展前景,二者都需要进行积极创新,弥补自身劣势,拓展应用领域,提升应用效果。

参考文献

篇6

关键词:

“五环模式”;项目;教学改革

电路与电子技术基础课程是电类专业的专业基础课程,高职院校的电类专业大都开设了此课程。本课程内容多,包括电路基础、模拟电子技术和数字电子技术三门课程的内容,其目的是使学生获得电路的分析方法、电子技术方面的基本理论、基本知识和基本技能,培养分析问题和解决问题的能力。由于学时少、内容多,该课程一直被认为是比较难学的课程,如何让学生有兴趣地学习,提高学生的学习效率,就成为教学能否成功的关键。根据人才培养方案,高职院校物联网专业学生毕业后能够胜任物联网设备、产品测试与维修、物联网感知层与传输层节点产品的辅助设计、制造、物联网工程系统安装与调试、物联网嵌入式系统应用、能够承担各类物联网业务技术支持、维护与应用工作。因此物联网专业中电路与电子技术教学主要要求学生能够掌握电路与电子技术基础知识和基本技能,为后续课程奠定基础,提高学生的学习兴趣。

一、目前高职教学中存在的主要问题

1.教学中知识的讲解以本科院校的内容为参考,偏全偏难偏理论,学生在学习的过程中,由于基础差,不能很好地吸收知识,课程学完后,连最基础的高、低电平概念都没有掌握,因此,可以说是失败的教学。2.学生的学习主动性不够。电路与电子技术基础的学习,纯粹由上课听课,课后作业不主动完成,学生往往后面部分学了忘记前面部分,而本身此课程的学习是前后关联紧密的,越学就越不懂,导致学习兴趣缺失。因此,如何在课程教学过程中,吸引学生,培养学生的学习兴趣,在参考了其他院校的教学经验、企业调研及教师在教学中的教学积累,项目组最终确定了引入“五环模式”,可以较好地解决以上存在的问题,从而提高课堂教学质量。

二、什么是“五环模式”

所谓“五环模式”,由“项目导入”、“制定计划”、“实施计划”、“制作实物”和“总结与评价”五个环节组成。下面简单介绍“五环模式”的具体内容:1.“项目导入”环节,任课教师的活动包括三个内容。(1)借助实物展示和虚拟实验平台,导入项目任务及目标、展示项目结果,让学生对项目有一个直观的认识,然后再布置具体的学习任务。(2)利用虚拟实验环境的EDA软件,让学生明确自己应当完成的具体任务和完成任务后可以得到哪些知识以及达到什么样的水平。(3)在充分考虑学生的现有知识和能力水平的基础上,按照适合协作学习的分组办法对学生进行分组,安排具体的完成时间和成果的评价方式等。2.“制定计划”环节,学生通过自主学习、小组协作学习等方式,对该项目的任务目标进行分析,确定任务所涉及的各种要素,充分应用已掌握的前序知识,确定任务的实施步骤,为任务的实施做好充分的准备。3.“实施计划”环节,学生在虚拟仿真实验平台上按照已制定好的计划逐步完成项目任务。教师在此过程中对学生进行过程指导,实现教师和学生以及学生之间的交流。学生通过应用已学习的知识完成工作任务,进行知识的建构,形成职业岗位能力。4.“制作实物”环节,学生在完成设计电路的电路图指导下,进行实物制作,制作完成后,进行调试。在调试过程中,对出现的问题与教师探讨,寻求解决问题的方法,并与理论的仿真进行对比,分析出现问题的可能原因。5.“展示与评价”环节,学生在展示自己的项目成果,然后接受他人的评价和教师的反馈。同时,学生在汇报和听取同学汇报的过程中,通过对比自己与其他同学的成果,查找不足,反思其成败。“五环模式”对电路与电子技术基础的实践过程进行了详细的分解,让学生在整个过程中,把理论知识的学习和实践能力的提升有机地结合在一起。

三、“五环模式”的实施

根据“五环模式”的内容,项目组的教师们注意寻找电路较为简单且知识覆盖面较广的项目,从简单到复杂,以任务为主线,学生为主体,注重基础知识和能力的培养,使学生在教、学、做的过程中真正学到知识、掌握技能,激发学生的学习主动性。项目组成员确定了11个项目:电路基本元器件的识别、应用和测量;电子制作手工焊接技术;基尔霍夫定律的仿真实践;二极管三极管的测试;共发射极放大电路的装配与调试;稳压电源的设计与实现;信号灯的逻辑控制;简单抢答器的电路与试验;由触发器构成的改进型抢答器;编/译码及数码显示;计数显示器。确定了项目后,根据“五环模式”的内容,在教学中设计了主要的教学情境。并在教学过程中,引入多种教学方式,如现代化教学方法、理仿实一体化、教学做一体等的运用。在两届学生的课程教学中实施,效果较好,验证了教学方法改革的可行性和有效性。

四、结束语

在项目实施的过程中,学生对于电路与电子技术基础课程的学习由原先的漫不经心,到后面的痛并喜欢着(在学习过程中,实物制作过程的艰辛和调试成功的喜悦),让教师在教学中有了极大的成就感。“五环模式”的引入,对课程的实践教学有了很大的促进作用。今后的任务是,依托工作室培养的优秀学生,在课堂教学中充当小老师,帮助教师对学生进行指导,促进教学质量的进一步提升;在教学内容方面,如何设计更多更适用的教学案例,更好地发挥电路与电子技术基础课程的基础作用.

参考文献:

[1]高玉良.电路与模拟电子技术课程教学改革的实践[J].长江大学学报,2008(3)

篇7

1 模拟电路与数字电路的定义

模拟电路主要处理模拟信号,如果输入信号有一个微小的变化,输出信号必有一个与之相对应的变化。数字电路主要处理数字信号,它的变化只有高、低电平两个状态,如果输入信号发生一个微笑的变化,输出信号一般不会立即发生变化,需要累积到一定值输出端才会发生变化。

2 模拟电路与数字电路的特点

1.模拟电路的特点:

①处理模拟信号,模拟信号即在时间和幅值上均连续的信号。在一个信号周期内,模拟电路的电流和电压保持持续变化。

②电路中元器件的动作方式为线性变化,如放大器。

③模拟电路是电子技术的基础,应用十分广泛。手机等电子产品的无线收发模块都是模拟电路。自然界中的物理量均为连续量,连续信号的处理离不开模拟电路。

④输出信号随输入信号的微小变化而变化。

2.数字电路的特点:

①处理数字信号,数字信号即在时间和幅值上均离散的信号。在一个信号周期内,数字电路的电流和电压呈现脉冲变化。

②数字电路可对数字信号进行算数运算及逻辑运算。基本逻辑运算有与或非三种,复合逻辑运算有常用的与非、或非、与或非、异或等等。因此,它具有逻辑推理和逻辑判断的能力。

③数字信号只有0、1两种状态,可用晶体管的饱和和截止分别表示,意味着其输出量不随输入量的微小变化而变化,需累积到一定程度才发生变化,由此可以看出,数字电路实现简单,系统可靠,不易受外界的影响而变化。

④数字电路的突出优点之一是集成度高,功耗低,速度快。用数字集成电路不仅缩小了体积,提高了生产技术,更推动了数字电路的发展。

3 模拟电路与数字电路的区别

简单的来说,模拟电路和数字电路中信号的表达方式不同。自然界中许多物理量,如温度、压力等为连续变化,处理此种信号的电路为模拟电路。也有一种物理量,在时间和幅值上均不连续,处理此种信号的电路为数字电路。一个简单的例子帮助我们理解,如对光照强度的感受,模拟电路可直接处理信号,输出随光照强度变化而变化,数字电路则将此信号经过抽样、量化等一系列工作转化为数字信号方可处理。由此总结区别如下:

1.工作的信号不同。模拟电路处理的是模拟信号,一般都具有连续变化的特点;数字电路则处理的是数字信号,它的变化总发生在离散的瞬间,数字信号通常用脉冲的有无来表示,有脉冲为“1”――高电平,无脉冲则为“0”――低电平。

2.电路的作用不同。模拟电路是通过放大器等元器件实现模拟信号的比例放大,其要求输出信号尽量不失真;数字电路处理0、1两种电平的信号,实现输入输出的数字量之间一定的逻辑关系。

3.分析方法不同。模拟电路通常采用图解法和微变等效电路法,如负反馈放大器的框图分析法,即把放大器分解成基本放大电路和反馈网络两部分;数字电路的主要分析方法在组合逻辑电路中有逻辑关系式,真值表等,在时序逻辑电路中有状态转换真值表,状态转换图,卡诺图等。

4.电流和电压的变化方式不同。模拟电路中,电流和电压是呈持续变化的;数字电路中,电流和电压是呈脉冲变化的。

5.三O管的工作状态不同。模拟电路中其作用是放大,这就意味着工作在放大区;数字电路中其相当于开关,这就意味着工作在截止区和饱和区,即“0”、“1”状态。

4 模拟电路与数字电路的联系

从我们可以直接看的到的层面上来说,模拟电路和数字电路的最直接联系就是它们同属于电子电路,只不过处理的信号不同罢了。对接触过数电和模电的我们都清楚,数电是建立在模电的基础之上,换句话来说,数字电路从根本上来说都是模拟电路。模拟电路处理模拟信号,数字电路处理数字信号,但自然界中多为模拟量,所以数字信号通常由模拟信号获得,它是将模拟信号抽样后数字化得到的。模拟电路和数字电路的诸多联系总结如下:

1.它们的基本元器件大都相同,无论是模拟电路,还是数字电路,都是已三极管为基础,不断增加其他功能以实现复杂化。

2.数字电路是在模拟电路的基础上发展而来,数字电路处理的数字信号也是由模拟信号经过采样、保持、量化、编码而来。

3.把模拟信号转换为数字信号的转换器称为A/D转换器,把数字信号转换为模拟信号的转换器称为D/A转换器。如果想要用数字电路处理模拟信号,那么在系统中置入A/D转换器再输入信号就可以了,反之,需要在系统中置入D/A转换器。举例来讲,在自动控制系统中,被控制量,如温度、压力等均为连续量,经A/D转换器转换为数字量即可用数字电路进行处理。

参考文献

1.王敏.模拟电路与数字电路的区别辨析[J].电子世界

2.张剑平.《模拟电子技术教程》.清华大学出版社

3.朱定华.《现代数字电路与逻辑设计》.清华大学出版社

4.岳怡.《数字电路与数字电子技术》.西北工业大学出版社

篇8

中图分类号:TM932 文献标识码:A 文章编号:1674-7712 (2012) 12-0021-02

一、引言

电子技术基础(包括模拟电子技术和数字电子技术)是自动控制、电子信息类专业最重要的基础课程。模拟电子技术研究的是处理仿真信号的模拟电路,数字电子技术研究的是各种逻辑门电路、集成器件的功能及其应用。模拟电路以基本概念、方法为主;数字电路以电路功能、应用为主。课程结合线性、非线性电路,概念抽象,逻辑关系复杂,有很大的学习难度。

在对学习电子技术的困难进行分析后,发现通过实验的学习,特别是综合实验设计的训练,能够更深刻理解模拟电路与数字电路的基本理论知识并能够提高相关技能。下面以电容测量仪的设计为例,探讨电子线路的学习与训练。

二、实验电路设计

综合设计是基础实验的综合与提高,更是理论与实际的结合。“电容测量显示仪”需要综合运用模拟电路与数字电路的知识,是一个很好的设计类课题。

设计要求:设计一个可测量电容值的电路,测量范围为1-20uF并能实现电容的测试与显示,电源±5V。

题目分析:先将电容量通过电路转换成电压、时间等参量,然后再将这些量以适当的方式显示出来。利用电容充电、放电的时间与容量值之间的关系,将容量值的测量转化为电压、电流的测量或者时间的测量,通过简单量的测量间接求得电容量值。

设计思路:将电容量转换成时间间隔,然后通过数字方式显示出时间间隔(电容量),由一个多谐振荡器和一个单稳态组成。当R不变时改变电容C则输出脉宽TW也随之改变,由TW的脉宽就可求出电容的大小。TW的脉宽可通过与门转化成若干标准脉冲,送给计数器计得TW的脉宽,当标准脉冲选择合理即脉冲宽度小于最小误差并在合理范围内,译码驱动电路显示计数数值即电容值。

三、实验原理图

根据设计框图和设计要求,具体电路采用如下设计。

(一)脉冲源电路

利用555定时器组成多谐振荡器,用作脉冲发生装置。接通电源后,电容不断充电、放电,输出在高低电平之间不断变换,产生一个方波作为计数脉冲。f不要太高常选200Hz,先令f=200Hz然后再调整其他元件参数。

(二)门控电路

利用555定时器组成单稳态触发器,把被测电容的大小转换成脉冲的宽度,把单稳态触发器的输出脉冲与频率固定的方波相与得到计数脉冲。定时器输出稳态脉冲宽度TW为目标值,接入电容后,归零装置将触发器置于稳态,输入脉冲使电路从稳态跳转到暂稳态,持续时间由TW和充放电容Cx决定,最后电路回到稳态。

只要适当调整阻抗参数,便可在一个VI周期内输出多个周期的VO进行计数。令N=Cx得R4=4.3kΩ、R1=7.5kΩ、R2=30kΩ, =55.5%接近50%,f =211Hz接近200Hz。

(三)微分加法电路

主要为了提高精度,使触发脉冲变窄从而减小误差。先通过微分器求导,得到尖波(峰值±5V)然后通过加法电路抬高电位,这就得到符合实验条件的波形来充当单稳态触发器输入的电压,得到了比较合适的触发信号。

选择小电阻R9=0.2kΩ限制输入电流,反馈电阻上并联稳压二极管限制输出电压,保证运放始终工作在放大区,小电容C5=0.01uF与反馈电阻并联以补偿相位且满足RC

(四)开关电路

采用带正沿触发双D触发器74LS74和组合逻辑电路作开关电路,在单稳态触发器进入暂稳态时CLK边沿触发电路切断单稳态触发器触发端的脉冲信号从而使暂稳态只出现一次,实现单周期计数。在单稳触发器输出脉冲波形的时间间隔里,单稳输入端的低电平信号消失不影响到输出脉冲的宽度。74LS74是上升沿触发的,摁下开关的瞬间清零单稳输出低电平,撒手后低电平信号单稳触发产生一个上升沿触发D触发器,D输出高电平,单稳触发信号消失。

按键开关的接地电阻的选择是通过实验的方法确定的。R11=10Ω取的过大或过小都不行,不能限流或导致低电平过高而不能被IC正确的识别,试验结果为110Ω(低电平为0.1V符合IC判别条件)。

(五)计数电路

多谐振荡器输出的标准脉冲和单稳态触发器的输出脉冲相与后得到一定周期数的信号,通过计数器计算周期个数N,然后通过译码、锁存、驱动装置最后通过七段数码管显示。选取CD40110和七段数共阴码管实现计数、显示功能。数码管的外接电阻不能太大(影响实验效果)或太小(电流大烧坏芯片)最后取470Ω。

(六)设计小结

本设计不但要求有扎实的理论功底,还必须与工程实际结合。电路中许多参数的选择和设定是依据实际的电路效果和元件的规格并非完全依据理论推导。通过这些练习可以很好地提高解决实际问题的能力。

四、电路搭建与调试

在面包板上实现电子线路,方便、简易、可行,易于调试、修改线路。

电路的调试过程一般是从初级单元电路开始,逐级向后进行测试、调整。

利用双踪示波器观察各单元电路的输出波形,先分块调试后联调的方法,按照信号传输的顺序对各单元电路进行调试,使各个单元符合其基本指标,最后进行整体调试。具体调试步骤:①测试多谐振荡器是否波形输出。②用函数发生器提供方波输入单稳态触发器测试输出端波形。③多谐振荡器的波形输入单稳态触发器测试输出波形。④测试触发器各引脚的输出波形(先清零)。⑤测试计数器各引脚的波形(先清零)。⑥观察数码管显示。⑦换测试电容并重新观测。

调试中面临的最大问题就是锁存问题,数字一直跳,每次锁的数字不同,但是只要综合分析定时器的输出波形与锁存周期就不难解决。

五、总结

综合实验是对理论知识和基本实验的综合应用,是培养学生电子工程实践能力的一个重要环节。通过小型的综合设计并搭建实际电路,实现综合实验的可操作性,在目前的教学情况下,是可行的方法之一,有较强的推广价值。

参考文献:

[1]童诗白,华成英.模拟电子技术基础(第四版)[M].北京:高等教育出版社,2006

篇9

作者简介:张宇飞(1961-),女,江苏丹阳人,南京邮电大学电子科学与工程学院,副教授;史学军(1967-),女,江苏宜兴人,南京邮电大学电子科学与工程学院,讲师。(江苏 南京 210023)

基金项目:本文系南京邮电大学教学改革项目(项目编号:JG03311J61)的研究成果。

中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)16-0080-02

随着电子信息技术的快速发展,新知识和新技术的不断涌现,电路作为电类本科生必修的专业基础课,改革教学内容势在必行。在南京邮电大学(以下简称“我校”),培养高素质创新型人才的需求成为该课程改革的强大推动力。本文讨论了电路课程体系,强调了电路理论的应用,阐述了电路和信号与系统、模拟电子技术、数字电路、通信电路、电力电子技术课程的一些关联内容,对教学内容进行了重组,引导学生通过电路课程的学习,充分了解电路知识体系构架,为学生后续专业课的学习确立明确的方向和目标。

一、对电路教学内容改革的认识

目前,在我校自动化、电气工程及其自动化、测控等电气工程类各专业所开设的电路课程,内容主要涵盖直流电路、动态电路和正弦稳态电路的分析,理论教学64学时。为适应该类专业的要求,通过调整增加了正弦稳态电路、三相电路部分的课时,以加强交流部分内容;通过调整部分例题内容,加强了能量传输的概念;为引用工程应用的实例,增加了运算放大器的内容,通过补充介绍应用实例,以强调工程概念的培养。并尝试在教学中予以实施。通过几届学生的教学实践,也取得了初步的成效,在改革的过程中也看到了目前电路课程仍存在的不足以及和兄弟院校的差距。根据我校培养高素质创新型人才的需求,通过对兄弟院校教学的考察和调研,电路教学组深入研究了我校学生现状,提出应着重从以下几个方面进行改革。

1.学好电路、用好电路

传统的电路课程只研究基于电路模型的分析,不讨论实际电路元件的建模背景;只研究模拟电路,不讨论数字电路。其结果使学生学完电路后甚至不知道受控源为何物,往往是考试成绩很好,遇到问题却不知如何下手。随着电子信息技术的快速发展,超大规模集成电路和数字系统得到广泛应用,新知识越来越多,而学时是有限的,这些都给电路教学带来了新的挑战。一些新的知识应在电路课程中体现,电路理论的应用也应该在课堂加以讨论。学习电路不应当立足于只会解电路题,要会用电路所学知识解决实际问题。使学生进一步明确学习电路的目的,体会到要用好电路,必须要学好电路。因此电路教学应当教什么,怎么教,是任课教师迫切需要研究和解决的问题。

2.电路与后续课程的联系

任课教师在授课过程总是会强调电路课是本科生必修的专业基础课、是后续专业课程的重要基础,如何让学生在学习电路这门课的过程中真正体会到电路课的基础性和桥梁作用,正是我们需要探讨和解决的问题。应提炼出与后续课程关联的电路教学的具体内容,使学生切实感受到各门课程之间不是相互独立的,而是相互关联的,也就自然体现出了电路课的基础性和重要性。如果在电路课程的学习中打下了良好的基础,将有利于学生进入后续课程的学习或将来进入其他领域的进一步深造。因此,迫切需要适当调整教学内容,使学生在有限的课时内不仅掌握好基本概念、基本理论和基本的分析方法,也能通过对基本电路理论的应用,使学生真正感受到一些知识点在实际中的应用和后续课程中的延深,深刻感受到电路课程承上启下的作用,充分调动学生学好电路课的积极性。

二、与相关课程交叉的主要内容

我校电路课程在大一下学期开设,电路是第一门具有工程色彩的专业基础课,这时的学生并不清楚电路与自己所学的专业有多大关系以及它的重要性。不能等学生把四年大学读完了,才知道一些知识点的重要性,这就会使学生失去主动学习的积极性。教师有责任在授课过程中梳理出电路和后续相关课程的内在关系,引导学生尽早对本专业课程体系、知识体系、研究对象和发展方向等有所了解,使学生早日认识本领域研究内容的宏观面貌,这将有助于学生主动的有目标的学习。基于此,笔者梳理了电路和信号与系统、模拟电子技术、数字电路、通信电路教学的一些关联内容,为电路课程内容的重组奠定了基础。

1.与信号与系统交叉内容

电路课程在正弦稳态电路的分析中,专门介绍了非正弦周期电路的稳态分析,讨论这一问题,是因为工程实际中经常遇到的是激励为非正弦的周期信号,比如自动控制和计算机领域常用的脉冲信号就是典型的非正弦周期信号,对于这类信号,利用傅里叶变换将信号分解为一系列不同频率的正弦量,然后根据叠加定理就可以求出电路的响应。在后续的信号与系统课程中,对连续信号与系统的频域分析做了详细的讨论,同样以傅里叶变换理论为工具,将信号从时间域映射到频率域,进一步揭示了信号内在的频率特性以及信号时间特性与频率特性之间的对应关系,才有了信号和系统的频谱、带宽及无失真传输等重要概念。在对信号有了全面认识的基础上,就有可能对实际工程问题进行准确的分析,并解决实际中关于电信号的处理问题。可见信号与系统中的傅里叶变换是电路课程相关内容的延伸。

2.与模拟电子技术交叉内容

在电路课程中,大量的篇幅都是针对由理想电路元件(线性元件)构成的模型电路的分析,关于非线性电阻电路的分段线性化、小信号分析法以及含有二极管的电阻电路分析,往往不作为重点内容讲解。而模拟电子技术中所用到的电路主元件都是非线性元件,比如二极管、三极管、场效应管等,小信号分析法就是工程上的近似方法,在模拟电子技术课程中用于解决放大器的交流等效电路问题,将非线性电路在一定条件下线性化,这才有可能对放大器构成的电路进行解析分析。电路课程关于非线性电阻电路的分析是模拟电子技术中放大器交流等效电路分析的基础。

3.与数字电路交叉内容

虽然电路课程只研究模拟电路,不讨论数字电路,但当今数字系统的广泛应用,促使教师在电路课程中有责任引入数字电路的一些基本概念。在使用数字计算机控制的工业生产自动化系统中需要把模拟量转为数字量,即模数转换(A/D),如果要用计算结果去控制工业对象,又需要把数字量转换为模拟量,即数模转换(D/A)。计算机为一个二进制系统,因此可以方便地和逻辑系统结合起来,且在物理上实现具有两个稳态值的数字系统也比较容易。在电路课程中,当学习了电路的基本概念以及叠加定理后,就可以讲解由直流电源和电阻元件构成D/A解码网络、实现D/A转换的内容,可以让学生在电路课程中就能学习到数字电路的一些基本概念,以便于在以后的数字电路学习中能够与电路的相关内容融会贯通,从不同角度全面深入掌握重要的知识点。应当将电路学习阶段已经涉及到的数字电路的基本概念介绍给学生,帮助学生及时掌握所需的基础知识,让学生带着探究的心态进入到后续课程的学习。

4.与通信电路交叉内容

通信电路中无线通信系统的各个重要部分都需要由具有特定功能的电路来实现,建立这一系统的目的是做好信号的产生、传输和处理,也是电路用于信号处理的典型应用。电路课程中关于电路的频率特性和L、C谐振电路的分析等内容都是通信电路中的重要电路部分。

5.与电力电子技术交叉内容

电力电子技术中发电系统的各个重要部分都需要由具有特定功能的电路来实现,这一系统是电路用于能量处理的典型应用。电路中有关三相电路的基本概念、基本分析方法以及三相电路功率的计算,是电力电子技术课程中三相整流电路、逆变电路的基础。即电路课程中关于三相电路分析的基本概念和基本理论都是发电系统的重要基础内容。

三、教学内容的重组

在电路教学中,教师应当下工夫、花时间提炼出经典内容并不断总结教学经验,将基本内容和重点内容以更简明、更容易被学生接受的方式传授给学生,不失时机地讲解与知识点相关的新知识及实际应用,同时要注意到电路与后续课程相关内容的讲授,使学生在电路这门课程的学习中能对本专业的知识体系结构有一个全面的认识,切实感受到各门课程之间不是相互独立的,而是相互关联的,以便于学生针对自己将来的发展方向,积极主动学习相关课程。基于以上的思考,对电路教学内容进行了重组。

1.电阻电路部分

网络定理讲解之后,引入例题D/A解码网络,通过电路实现D/A转换,引导学生建立数字电路的基本概念;将二端口网络内容提前,强调二端口网络端口的u、i关系,运算放大器就是一个典型的二端口网络,实际使用时只需关注其端子上的u、i关系,即端子效应。这种抽象观点是今后分析和设计复杂电路所必须具备的。这一内容是模拟电子技术和数字电路分析的基础。

2.动态电路部分

在电路课程中,对零输入响应、零状态响应、全响应的内容应当从概念上扩展到非直流激励的响应问题,引导学生提出这个问题,关注在信号与系统中的解决方法;强调动态电路阶跃响应的概念及重要性,增加介绍阶跃响应和电路系统响应之间关系的内容。这样极大地增强了学生的探究意识,有利于学生带着问题进入到信号与系统课程的学习中。

3.正弦稳态电路部分

正弦稳态电路中的频率特性和L、C谐振电路的分析等内容都是通信电路中的重要电路部分,为此应当把一个完整的无线电发射、接收系统介绍给学生,让学生深刻领会电路的基础作用,基础打好了,在通信电路中才能掌握好这部分内容。而三相电路分析的基本概念和基本理论都是电力电子技术中的重要电路部分,是发电系统的重要基础内容,为此应当把整流电路、逆变电路的概念介绍给学生,引导学生早点接触本专业所研究的基本内容,激发学生学习的积极性,便于学生自主学习。

四、总结

在电路教学中,对教学内容的改革进行了探讨,阐述了电路和信号与系统、模拟电子技术、数字电路、通信电路、电力电子技术等课程相关联的教学内容,对教学内容进行了重组,引导学生通过电路课程的学习,充分了解电路知识体系构架以及所学专业的研究对象、发展方向,对激发他们的学习兴趣和热情、学习后续专业课起到了积极的作用。

参考文献:

[1]于歆杰.研究型工程教育的特点与实现[J].高等工程教育研究,2004,(6).

[2]张建荣.工科学生实践能力培养的探索和实践[J].辽宁教育研究,2007,(7).

[3]孙雨耕,等.“电路”课程研究型实验的有益探讨[J].电气电子教学学报,2008,(6).

[4]邱关源.电路原理[M].北京:高等教育出版社,2005.

[5]张宇飞,史学军,周井泉.电路分析基础[M].西安:西安电子科技大学出版社,2010.

篇10

在数字电子电路这门课程学习的过程中,理论知识的学习固然重要,但是相应的实验技能也是必备的。在学好理论知识的基础上,可以从实验方面出发,更透彻的学习这门课程。在实验的过程中,传统的实验就是通过导线把各种实际的实验器材连接在一起,主要在实验的过程中,通过实验的结果,更好的理解实验原理,从而有助于理论知识的学习。随着科学技术的不断发展,有了EDA这项技术。EDA技术就以计算机为载体,承载着各种模拟的软件,然后通过在相应软件的操作界面上进行软件的连接以及操作,这样大大方便了学生的实验,而且还能从一定程度上节省实验器材的经费,总之,这样的做法有很多的好处。本文将重点讨论关于数字电子电路设计之中EDA技术的应用探究。

1关于数字电子电路设计之中EDA技术的应用探究

1.1数字电子电路的概述

在我国职业教育体系中,与电子技术相关的专业中都设置到相关的专业基础课程,比如说模拟电子技术、数字电子技术基础等课程,其中数学电子基础这门课程还是比较重要的。在数字电子技术这门课程中,主要讲述一些逻辑关系,以及以逻辑关系为基础的各种门电路,除此之外就是各种组合而成的逻辑电路,其中包括TTL逻辑门电路,CMOS逻辑门电路等等,这些逻辑电路都是与生活息息相关的。在平时的生活中也会用到很多,比如说家里的开关,现在很多家中都会安装两个开关,当进门的时候在门口开灯,睡觉时在卧室关灯,这个就是是使用了最简单的逻辑电路。逻辑电路的使用方便了人们的生活。

1.2数字电子电路与EDA技术

数字电子电路技术这门课程在学习的过程中,除了要学好基础的理论知识,更重要的是在学好理论知识的基础上,要提高动手实验的能力,因为现在社会需要的是实践性的人才,正如在教育大会中指出,要平衡教育人才的培养,并且要重视实践性人才的培养。要培养实践性的人才,首先要做的就是对他们基础的动手能力进行培养,要如何培养才是要思考的问题。那就是从实验做起,实验技术随着科学的不断发展也在不断进步,如今已经有了比较成熟的EDA实验技术,这项技术就是让学生在虚拟的软件中模仿实物进行一定的实验训练。在数字电子技术中使用EDA这一项技术大大方便了教学,而且同时也能有效的提高学生对理论知识的理解。

1.3数字电子技术未来发展前景

目前我国的电子技术方面还是有一定的欠缺的,而且我国的市场这么大,所以要努力发展属于我国自己的电子信息技术。而且电子信息技术是一个非常核心的力量,只有掌握了这样的核心力量,才能让我国的电子技术发展的更好。通过电子信息技术,可以成为击垮一个国家的秘密武器,所以努力发展自己国家的核心技术力量,并且还要不断的更新,这样才能在未来的世界中变得强大。所以,电子信息技术的发展趋势良好,而且发展空间也足够大。

2数字电子电路设计之中EDA技术应用的作用

2.1有助于更好的学习理论知识

在数字电子电路这门课程的学习过程中,都是一些枯燥无味的理论知识,这样容易造成学生在学习过程中的疲劳,而且会造成课堂效率大大降低的不良影响。数字电子技术是一门纯粹的理论知识,而且都是一些我们不熟悉的电路方面的内容,所以在单单的讲解理论知识的时候,学生们不容易想象到他的具体的实物,这样就对学习造成了很大的困扰。但是通过借助EDA技术在数字电子信息技术的学习过程中,会对学生的学习有很大的帮助。在学习了抽象的理论知识之后,通过在EDA技术上进行模拟,这样就比较容易理解理论知识。这样的做法对学习理论知识都很大的帮助,不仅能提高学生的学习效率,而且还能培养实践性的人才。

2.2通过学习EDA技术,不断创新

在数字电子信息技术的学习过程中,通过借助EDA技术,可以培养学生的动手能力。在实验的时候,学生一般都是通过对课本上已有的知识进行模拟,学习。但是实验就是创造的过程,有很多伟大的发明就是在实验的过程中发现的。在学生进行实验的过程中,不断对实验结果进行调试的过程中,有可能就会发现新的成果。所以可以通过借助EDA技术在数字电子信息技术中,让学生在不断实验的过程中,碰撞出科学的火花,不断的创新,壮大我国的电子科学技术。所以说要大量的运用EDA技术在数字电子电路的学习中,这样可能某个时刻就会对我国的科学作出贡献。

2.3更好的适应于未来的社会

现阶段我国的科学技术不断发展,日新月异,尽管如此我国的科学技术与世界还有一段差距,所以说还是要不断发展科学技术,尤其是电子科学技术,因为现在的社会已经是非常现代化的电子信息社会了,未来的社会更是电子信息的社会,任何事情都离不开电子技术。所以在目前这个阶段要大力发展电子信息技术并且掌握基本的电子信息技术的使用方法,这样才能在将来的社会中立足。所以在目前的学习中不断使用实用性的EDA软件的过程也是在不断适应现代社会的过程。

3结束语

本文中,通过讲述数字电子电路,数字电子电路与EDA技术以及数字电子技术在未来的发展前景这三点来阐述了关于数字电子电路设计之中EDA技术的应用探究。数字电路是一门贴近生活的比较基础的课程理论,它的成果运用于人们的生活中大大方便了人们的生活。相信通过使用EDA技术在数字电子电路设计之中,一定会使数字电子技术发展的更好,同时也会促进EDA技术不断成熟。

参考文献

[1]关于数字电子电路设计之中EDA技术的应用探究;陈惠娟;《电子制作》;2015年23期

篇11

在讲授电子线路基础的基本电路部分时,涉及到含双极型晶体三极管BJT的基本电路处于什么状态的问题,这样的电路所处的状态决定于双极型晶体三极管BJT所处的状态。现行教材[1—7]普遍画出BJT的输出曲线,根据输出曲线来讨论BJT工作在三个区域当中的一个:截止区、放大区和饱和区。一些教材[5,6]还介绍通过测量实际电路中BJT各极电位来判断其工作状态的方法,但对于非实际电路而言,无法进行实际测量,就不能用上述方法来判断BJT的状态了。对于发射极没有电阻的电路,可以求出基极电流IB及临界饱和基极电流IBS,比较它们的大小,如果基极电流IB小于临界饱和基极电流IBS,BJT处于放大状态;否则处于饱和状态[1]。对于发射极有电阻(称为射极电阻)的电路,在BJT处于导通状态的情况下,假设BJT处于放大状态,求出BJT的集电极和发射极的电势差UCE,若UCE>0,则BJT处于放大状态;反之,BJT处于饱和状态[7]。本文将给出另一种判断有射极电阻的基本电路中BJT所处状态的判断方法,假设BJT处于放大状态,求出相应的集电极电流IC或基极电流IB,用IC(或IB)与临界饱和时的集电极电流ICS(或基极电流IBS)比较,若IC

1.假设法

下面以NPN型Si管为例,来说明判断有射极电阻的基本电路中BJT工作状态的假设法,对于NPN型Si管而言,临界饱和电压UCES=0.3V,导通管压降UBE=0.7V。

对有射极电阻的电路,

3.结论

从以上实例可以看出,对于有射极电阻的基本电路,因为不知道电路的状态,所以不能直接求出BJT的基极电流,可以先假设其中的BJT处于放大状态,求出BJT在放大状态下的集电极电流IC或基极电流IB,然后与临界饱和状态下的集电极电流ICS或基极电流IBS比较,如果IC

参考文献

[1]江晓安,杨有瑾,陈生潭.计算机电子电路技术—电路与模拟电子部分[M].西安电子科技大学出版社,1999:12.

[2]靳孝峰,穆国华,郭建英,等.电工电子技术[M].北京理工大学出版社,2011:1.

[3]张剑平.模拟电子技术教程[M].清华大学出版社, 2011:3.

[4]魏秉国,梁成升.模拟电子技术与应用[M].国防工业出版社,2008:81.

[5]徐新艳,李厥瑾,孟建明.电工电子技术[M].电子工业出版社,2011:1.

[6]华成英,童诗白.模拟电子技术基础[M](第四版).清华大学出版社,2006:2.

篇12

以数字化、网络化、智能化为特征的信息化浪潮蓬勃兴起,开启了通信大发展的时代,使社会对高职通信类专业人才的需求迅速增长。电子技术课是高职通信类专业的必修基础领域课程,是完成好通信技能培养的奠基石。开展电子技术课工学结合的教学改革,构建以学生为主体、以项目为载体的课程教学模式,对提高教学质量具有重要意义。

一、传统教学模式下电子技术课开设的现状

电子技术是一门理论与实践相结合的课程。在高职通信类专业教学计划中,电子技术的教学目标是:培养学生的电工电子应用职业能力,包括熟悉元器件与性能、掌握基本电路分析方法、熟悉电工电子一般应用、熟练使用常见仪器仪表;在课程学习的过程中培养方法能力与社会能力;为专业领域课的学习奠定电工电子基本理论知识。在教学组织方式上,囿于传统学科体系的课程组织方式和讲授式的教学模式,电子技术课普遍采用了“理论课程+实验教学+实习课程”的分设方式。仍然遵循着课程、实验、实习分离开设,一学期理论教学和实验,另一学期再实习;一位老师讲授理论,另一位再指导实验实习。在教学内容上,电路分析、模拟电子和数字电子的理论知识体系严谨慎密,但实验基本以实验箱验证测试为主,设计性和综合性实验较少,学生常常是为完成实验而实验,很难将实验上升到知识;实习则用1~2周,完成某单一电路安装为主。在教学考评上,一般以单独的理论笔试、实验验证操作、实习操作等终结性考核为主,辅以平时出勤与纪律的考核。与本科相比,高职学生底子相对薄、基础相对弱,对单纯的知识讲授感到乏味,学习积极性不高,甚至厌倦电子技术的学习。学科化的电子技术课程体系和授受式教学模式,在高校精英教育时期,以及在学生素质较高、学习能力较强、逻辑思维较好的学生中,发挥了重要的作用。但是随着高职进一步放宽入学门槛,高职学生普遍趋于行为导向能力和感知能力较强,对策略性体验型知识易于掌握。因此,电路与电子技术课就亟需改革传统学科化的课程组织模式和授受式的教学模式。

二、通信类专业的电子技术知识与技能需求

通过对高职通信类专业面向的主要从业岗位职责进行调研,分析提炼岗位工作典型任务,湹清通信类专业岗位的核心职业能力,分析核心职业能力所在的专业领域课程,建立通信类专业核心职业能力对电路与电子知识技能的主要需求关系。

三、以项目为载体的电子课体系建构设计

以项目为载体的工学一体化,就是把项目作为学习载体,教学以项目任务的形式开展。重构以项目为载体的电子技术课基本思路是:先选择合适的载体,即设计出能承载图1中技能和知识点的项目。在实施项目的过程中,通过学生主动参与项目的“咨询、决策、计划、实施、检查、总结”,教师对项目任务进行“布置、引导、提问、检查、小结、反馈”,从而达成电子技术课的教学目标,完成“电路电子能力+方法能力+社会能力”的培养。电子技术课程的知识与技能包括四个部分:电工与电路、模拟电子、数字电路和常见仪器仪表。但高职通信类专业一般只包括图1所列的24个基本知识点。为此只需对应选择相应的有效载体,如图2所示,可选择7个项目24个子任务,来承载24个知识点并完成相应的知识与技能。

四、以学生为主体的电子课教学模式构建

选定了7个载体24个子任务,逐一明确每个任务引导知识点,其设计思路即体现了以学生为主体的教学思想,但还需站在高职学生的认知水平去组织教学。先引导知识点,再采取“关联、主动、合作、对话”的方式去实现工学结合的教学。即在在关联方面,情境化的设置,体现真实工作场景,使学生身临其境。在主动方面,让学生领受任务任务阅资料制定计划,分析解决问题并进行具体实施。在合作方面,小组讨论提升团队能力。在对话方面,学生展现项目,书面和口头总结策略、步骤,展现成果。实现电子技术工学结合教学模式的路径:一是要设计编写项目任务所需的引导讲义;二是要准备项目任务书材料;三是要建立任务所需的教学情境并做好准备;四是要合理教学调度安排。通过项目设计、任务引导、情境设置、学生咨询决策计划、讨论实施总结、教师点评、布置作业等步骤,达到“让我去做,我会理解”的目的,从而实现电子技术课的教学目标。

五、构建知识与技能并重的考核评价

课程评价是教学过程必备的重要环节,既要达到考核目的又要能调动学习积极性。电子技术课教学改革后,需要过程评价和终结评价结合,也需要知识考核和项目动手技能相结合。考核方式的设计,着重要体现完成任务与掌握知识并重,知识融于任务过程。避免改革后出现轻知识的情况,考核方式建议包括:平时成绩由任务引导的准备与提问、分工与提交的任务方案计划、任务总结发言情况、作业练习等环节构成;项目成绩由任务进程中的观察记录、制作项目结果情况、操作规范情况等构成;笔试成绩由单元知识测试、半期笔试、期末笔试等构成。

六、结语

实施高职通信类专业电子技术课教学改革,着重体现了以学生为主体的教学情境构建、以项目为载体的课程设计、以教学做一体化的教学模式构建、以过程评价和终结考核相结合的考评方式设计。突出学生参与电子项目后再上升到知识的过程,契合了高职学生的思维模式,有助于提高学习的愉悦度,从而提高电子技术技能和知识素养,为后续通信职业能力奠定基础。

参考文献

[1]杜爽,朱凤武,郭瑞娟,孙上媛.电工与电子技术教学改革的研究与探讨[J].高教学刊,2016(9).

[2]庄晓燕.电子技术课程的课堂教学研究与探索[J].教育教学论坛,2016(5).

[3]韦泽训.构建高职移动通信技术专业工学结合人才培养模式的思路与方法[J].继续教育,2011(9).

友情链接