时间:2023-03-14 14:49:51
引言:寻求写作上的突破?我们特意为您精选了4篇人教版数学上册教案范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
教学目标:
1、知识目标:通过活动,初步体会分类的含义和方法,感受分类在生活中的作用,能对物体进行整理分类。
2、能力目标:通过学习,培养学生的动手操作能力、判断能力、合作交流能力。
3、情感目标:培养有条理地思考问题与良好的生活习惯。
教学重点:学会按一定标准来分类
教学难点:能用不同的标准来分类
教学准备:课件学具
教学过程:
一、激思:
师:同学们,你们有自己的房间吗?谁是自己整理的请举手。我们共同阅读同学们整理的效果如何?
我们的好朋友淘气和笑笑也有自己的房间,想不想去看看?
这是淘气的房间,这是笑笑的房间,你想说点什么?
今天我们就一起来帮淘气整理房间。
二、启思
1、都说笑笑笑房间整齐,我们来看看她是怎么整理的?学习她的好方法来帮淘气整理好吗?生:好!
2、看看笑笑房间里都有些什么?这么多东西,她是如何摆放的?
3、你知道她为什么把球和玩具熊放在一起吗?仔细想想他们是干什么用的?(引出三类:服装类、学习用品类、玩具类)
4、我们看到笑笑是把有相同用途的物品一类一类来摆放的,分成了“玩具类”“学习用品类”“服装类”。
这就是:分类。
三、展思
1、再来看看淘气的`房间,看来淘气像你们大多数人一样还不会整理自己的物品。
今天老师把淘气房间的一些物品带到了课堂上,来看看这是什么?应该放在哪一类?为什么放在这一类?
例如:这个是铅笔,学习用的,所以放在学习用品类。
2、看看这是什么?应放在哪一类?为什么放在这一类?
(袜子、玩具熊……)
师:现在淘气房间的其余物品都在你们手上了,拿到物品的同学请你想一想,你要把它贴在哪一类?为什么贴在这一类?准备好了来站队,把这些物品在黑板上分类贴好。
5、我们来看看淘气的房间中每一类都有哪些物品?(生读)
6、经过你们的整理,看看淘气的房间变成什么样了?
7、淘气要用铅笔该去哪一类找?玩具小汽车呢?
8、淘气的妈妈又买来了故事书,放在哪一类?为什么?
9、冬天来了,妈妈给淘气买了一条围巾,应该放在哪一类?为什么?
10、现在你觉得分类有什么好处?
四、促思
其实,在我们的生活中分类也有许多分类,我们共同阅读(欣赏生活中的分类)
五、拓思
1、今天学习了分类,帮淘气整理了房间,你收获大吗?敢不敢接受挑战?
2、那就让我们一起开启今天的阳光之旅吧!
(1)一缕阳光:
你能按照会飞和不会飞来给下列动物分类吗?
(2)光芒闪耀:
小组合作:你能给下列物品分类吗?温馨提示:
1、拿出学习袋里的学具,小组内说一说都有哪物品?
2、小组讨论,你想怎样给他们分类?说说你的理由。
(3)潜能无限:
请你给下列图形分类。(形状,颜色、大小)
通过这节课的学习我相信你们一定收获不少,用你智慧的双眼和灵活的大脑去发现生活中的分类吧。
人教版一年级数学上册教案教学内容:
教学目标:
1、在具体情境中,探索并掌握两位数加一位数进位加法的计算方法,进一步体会计算方法的多样化与化。
2、理解个位相加满十要向十位进一的'算理,掌握进位加法笔算竖式的书写格式。
3、进一步体会加法的意义,感受数的运算与生活的密切联系,提高运用所学知识解决有关的简单实际问题的能力。
探索并掌握两位数加一位数的进位加法的计算方法,体会计算方法的多样性。
理解不同算法的算理,尤其是满十进一的运算规则。
教学准备:
教师:课件
学生:课堂练习本、小棒、计数器。
教学过程:
一、创设情境,激趣导入
课件出现晋江市少儿图书馆照片,简介图书馆,引出课题。
二、自主探索,合作交流
1、观察交流,提出问题
课件出示主题图,请学生观察图,了解数学信息,然后根据信息提出数学问题,写在课堂练习本上。
全班交流学生提出的问题。
2、探索算理,体会多样化
(1)解决问题:《童话世界》和《丛林世界》一共有几本?
指名列出算式:28+4
(2)让学生用自己喜欢的方法算一算,写在课堂练习本上,然后与同桌交流自己的算法,教师巡视了解情况。
(3)全班交流算法
方法一:摆小棒
方法二:拨计数器
方法三:8+4=12
20+12=32
方法四:28+2=30
30+2=32
方法五:列竖式(指名学生说一说列竖式要注意什么?)
(4)比较讨论算法的简便性
方法一、二比较直观,但需要借助实物;后三种方法比较简便。
三、选择算法,巩固应用
1、解决问题:《童话世界》和《海底世界》一共有几本?
2、解决问题:《童话世界》和《学院》一共有几本?
要求学生选择比较简便的算法,集体订正时指名学生说说自己是怎样算的。
3、用竖式算一算
58+7=
5+32=
38+6=
8+27=
四、自我评价,课堂小结
这节课你觉得自己表现如何?你有什么收获?
人教版一年级数学上册教案教学目标
1、初步经历从场景图中抽象出数的过程,初步认识按顺序数数的方法;
2、初步经历运用点子图表示物体个数的过程,初步建立数感和一一对应的思想;
3、初步学会用数学的眼光观察现实事物,渗透应用意识;
4、在他人的帮助下,初步体会数学的意义与乐趣。
教学重、难点
初步经历从场景图中抽象出数再用点子图表示数的过程,初步认识按顺序数数的方式。
教具准备多媒体课件等
教学过程
一、创设情境兴趣的产生
谈话:小朋友们都爱玩,你们最想到哪儿去玩呢?这节课老师要带我们班小朋友到儿童乐园。(学生闭上眼后再睁开双眼的同时,课件出示儿童乐园情境图)
[爱玩是孩子的天性,尤其是刚刚升入一年级的学生对于第一节数学课,以儿童乐园游玩作引子,充分调动他们的学习兴趣,从上课开始便能全心投入,进入一个学习状态]。
二、自主探索兴趣的维持
1、初步感知
(1)提问:在儿童乐园,你看见了什么?
分小组交流后集体交流
(2)描述:灿烂的阳光下,绿树成荫,鲜花怒放,鸟儿欢快的歌唱,蝴蝶快乐的飞舞,小朋友们玩得多开心呀,他们有在骑木马,有的在荡秋千,有的在坐小飞机,有的在滑滑梯。
[情感是课堂教学的催化剂,声情并茂的语言渲染,能激起学生的情感共鸣,深切体验教师的可亲,课堂的可爱]。
2、数数交流
(1)提问:儿童乐园里有好多东西,你能数出它们各有多少个吗?
(2)学生先自己数一数,再数给同桌听。
(3)选几名学生做向导,带领其余小朋友按顺序数数。
3、总结方法
(1)展开讨论:怎样数数才能又对又快?
分小组讨论后集体交流
(2)小结并强调一个一个按顺序数。(从左往右,从上往下等)
4、抢答练习
(1)提问:1个……学生接:1个滑梯;2架……,学生接2架秋千……(课件演示,从主题场景中逐个抽取10幅片段图)
(2)自己看图说图意如:3架木马……
5、点子图表示数
我们可以用一些最简单的符号表示物体个数,你想用什么表示?我们就用点子图表示好吗?1个滑梯用1个点子表示(演示出现1个点子)怎样表示秋千的个数?为什么?怎样表示木马、飞机的个数?你还有什么想法?(让学生充分地说)
探索:什么物体的个数用7个点子表示?8个点子表示的`是什么?怎样表示气球的个数?10个点子表示什么?
三、寓教于乐兴趣的体验
过渡:小朋友,美丽的校园就是我们的乐园,让我们一起到儿童乐园中去玩吧!(带领学生走出课堂,走进校园)找找数娃娃美丽的校园藏着许多数娃娃,你愿意找到它们吗?找到后与好朋友(包括老师)交流。
练练点子表示数(课前创设好特定场景)
1位白雪公主、2条手帕、3个蘑茹、4朵花、5只篮子、6个苹果、7个小矮人、8只茶杯、9只梨、10只小碗。
[童话般的美丽场景,学生喜爱的童话人物,学得生动,练得有味]。
四、总结提升兴趣的延伸
人教版六年级上册P107例1,P108做一做,练十二第2题。
教学目标:
1、通过观察、操作、归纳等活动,学生借助“形”来直观感受与“数”之间的关系,体会有时“形”与“数”能互相解释,并能借助“形”解决一些与“数”有关的问题。
2、学生通过数与形结合来分析思考问题,从而感悟数形结合的思想,提高解决问题的能力。
教学重点:
借助“形”感受与“数”之间的关系,培养向上用“数形结合”的思想解决问题。
教学难点:
找到合适的形来表示数和在形中找出数的规律。
教学过程:
一、复习导入:
师:我们已经学过奇数,你还记得哪些数是奇数吗?(PPT出示)
师:相邻的两个奇数之间有什么关系?
今天我们继续研究奇数。(出示加法算式口算得数:1+3,1+3+5)
师:同学们算得真快。(出示:1+3+5+7+9+11+13
=)你还能马上报出得数吗?老师能。你们也想算的很快吗?今天我们就来研究数与形。板书课题:数与形
二、探究新知:
教学例一
师:这条算式中是不是存在一些规律,可以帮助我们快速的计算呢?
复杂的问题都是从简单开始的。我们先来观察一下前面的两条算式。
(一)画图形
1、提示用1个小正方形表示1,那+3就是再加三个一样的小正方形。
出示图片:有几个小正方形?你是怎么知道的?
2、再+5呢?可以怎么摆?
出示图片
(
二)形与数对应
为了便于观察,老师给他们都涂上了颜色,是不是更清楚呢?
我们把刚才表示小正方形数的2种算式综合起来,可以用什么号连接?
板书:
1=1的平方
1+3=2的平方
1+3+5=3的平方
小结:这里的正方形直观的解释了数的两种运算,同学们想一想,按照这样的规律,图四会是什么样子,与它配套的算式又是什么样子?同桌合作,画出草图,写出算式。
(三)找规律
观察这些数和形,你有什么发现?
生1:大正方形右上角的小正方形和其他“L”形所包含的小正方,形数之和正好是每行每列小正方形数的平方
生2:加法算式中的加数都是奇数,(都是从1开始的)
生3:有几个数相加,和就是几的平方
想一想,第10个图中有几个小正方形?第100个图呢?这个规律可以用到所有类似数的计算吗?
只有从1开始的,连续奇数相加时,我们可以转化为求正方形的个数。
(四)总结
刚才的学习中,我们利用数的计算求出了小正方形的个数,反过来正方形也帮助我们理解了计算中各数的含义。
(五)没有图你会计算这几题吗?
(1)1+3+5+7=
(2)1+3+5+7+9+11=
(3)
=9的平方
回忆一下,刚才我们是如何学习正方形和它算式之间的联系的?
1、写算式
2、增加图
3、找规律
4、拓展
掌握这个方法,我们可以解决很多问题。
三、练习拓展
P108“做一做”第2题
1、出示问题,生独立观察。
2、小组讨论、发现规律。
3、全班汇报、交流。(PPT展示)
二十二第2题(三角形数)
1、小组合作探究
运用刚才的方法,完成书中P109
2题
2、生汇报
(1)写算式
(2)增加图
(3)找规律
形的特点:第几幅图就有几行,最下方就有几个
数的特点:都是从1开始,相邻两数相差1
和的特点:(首行+末行)×行数÷2
(4)拓展
第十个图
3、讲解三角形数
由于数量为1,3,6,10……的原片可以组成三角形,数学上,这些数也叫做“三角形数”。那么我们之前学过的1,4,9,16……,这样组成正方形的数,它叫什么呢?正方形数。
其实每个正方形数可以拆成两个不同的三角形数,比如5的平方=10+15。
4、回顾以前涉及的一些数形结合的例子。
四、全课总结
通过这节课的学习,你有什么收获?
通过探索简单的数与形的关系,我们发现了数与形的密切联系。欣赏华罗庚的一首诗:
数与形,本是相倚依,焉能分作两边飞。
数无形时少直觉,形无数时难入微。
数形结合百般好,隔离分家万事休。
切莫忘,几何代数统一体,永远联系,切莫分离。”
五、作业
教材第109页第1题。
数学广角——《数与形》
狄
艳
学科:数学
第一章;有理数
第2小节
第3课时
累计
课时
主备教师:
上课教师:
审批领导:
授课时间:
年
月
日
课
题
1.2.3
相反数
教学目标
1.借助数轴了解相反数的概念,知道表示互为相反数的两个点的位置关系;
2.会求一个已知数的相反数,会对含有多重符号的数进行化简。
重点难点
重点:理解相反数的意义,能熟练地求出一个已知数的相反数。
难点:理解和掌握多重符号的化简规律。
法制渗透
中考链接
在中考中常考填空题或选择题
一、激趣导入
提问
1、数轴的三要素是什么?
2、填空:数轴上与原点的距离是2的点有
个,这些点表示的数是
;与原点的距离是5的点有
个,这些点表示的数是
。
(小组讨论,交流合作,动手操作)
二、预习分享
采用教师抽查或小组互查的方法检查学生的预习情况:
1.什么叫做相反数?
2.5的相反数是
,-(-7)=
,-(+7)=
。
三、合作探究
探究1:
相反数的概念
观察下列各数:1和-1,2.5和-2.5,,并把它们在数轴上标出来。
学生讨论:
(1)上述各组数之间有什么特点?
(2)表示这三组数的点在数轴上的位置关系有什么特点?
(3)你还能写出具有上述特点的几组数吗?
教师点评:
只有符号不同的两个数,我们称它们互为相反数,零的相反数是零。
概念的理解:
(1)互为相反数的两个数分别在原点的两旁,且到原点的距离相等。
一般地,数a的相反数是,不一定是负数。
(2)在一个数的前面添上“-”号,就表示这个数的相反数,如:-3是3的相反数,-a是a的相反数,因此,当a是负数时,-a是一个正数
-(-3)是(-3)的相反数,所以-(-3)=3,于是
(3)互为相反数的两个数之和是0
即如果x与y互为相反数,那么x+y=0;反之,若x+y=0,
则x与y互为相反数
相反数是指两个数之间的一种特殊的关系,而不是指一个种类。如:“-3是一个相反数”这句话是不对的。
例1
求下列各数的相反数:
(1)-5
(2)
(3)0
(4)
(5)-2b
(6)
a-b
(7)
a+2
探究2:多重符号的化简
学生讨论:
若a表示一个数,-a一定是负数吗?
教师点评:
在正数前面添上一个“-”号,就得到这个正数的相反数,在任意一个数前面添上一个“-”号,新的数就表示原数的相反数,如:-(-5)=+5,那么你能借助数轴说明-(-5)=+5吗?
四、目标检测
[基础题]
1、判断:
(1)-2是相反数
(2)-3和+3都是相反数
(3)-3是3的相反数
(4)-3与+3互为相反数
(5)+3是-3的相反数
(6)一个数的相反数不可能是它本身
[能力提高题]
2、化简下列各数中的符号:
(1)
(2)-(+5)
(3)
(4)
[探索拓展题]
3、填空:
(1)若-(a-5)是负数,则a-5
0.
(2)
若是负数,则x+y
0.
五、小结
本节课你学到了什么?还有哪些疑惑?
1.相反数的概念
2.多重符号的化简
六、巩固目标
作业:课本P14
第4题
七、安排下节预习
预习课本P11至P13“1.2.4
绝对值”并回答:
1.绝对值的概念.
数学》六年级上册75及76页练习十六。
教材分析:
本节课是人教版《义务教育教科书
数学》六年级上册75页的内容,本课“扇形”的教学,是在学生了解圆、掌握圆的周长和面积的计算的基础上进行的,目的在于通过教学引导学生把生活中随处可见的扇形、扇环的数学元素引入到数学学习中,通过学习引导学生初步认识扇形,为后续学的扇形统计图的学习提供知识基础,并培养学生从数学的角度观察生活的习惯,积累数学活动的经验。
学情分析:
学生在日常生活中随处可见扇形、扇环等物体,但对于扇形的具体特征还没有深入的了解,因此,在教学时首先组织认识扇形,通过折一折,画一画引导学生构建“扇形”这一数学模型,培养学生的空间观念。
教法:
教学时,重点引导学生通过找一找、说一说等方式激活了学生原有的“扇形”生活经验,结合活动帮助学生构建“扇形”这一数学模型,并在这过程中培养学生观察能力和发现问题的能力。
教学目标:
1.理解弧、圆心角、扇形等概念,能准确判断圆心角,会进行简单的扇形面积的计算。
2.体会扇形和圆的关系,感受扇形图与名称的联系,能在圆中画出扇形。
3.在观察、讨论、判断等活动中,经历初步认识扇形的过程,通过比一比、画一画等操作活动,培养学生动手操作的能力。
4.培养学生用数学的眼光去思考问题,体会数学的应用价值。
教学重点:认识弧、圆心角、扇形,能准确判断扇形,会求扇形的面积。
教学难点:如何按要求画扇形和求扇形的面积。
教具准备:课件
学具准备:圆规、直尺、量角器、搜集生活中的扇形。
教学过程:
一、猜谜引入,揭示课题
1.出示谜面:有风不动无风动,不动无风动有风。
(1)请学生猜。
(2)揭示谜底。
2.揭示课题。
师:近一段时间我们都在学习圆的有关知识,那么扇形跟圆有没有联系?有哪些联系呢?今天我们就一起来研究扇形。
教师板书课题:扇形。
二、自主探究,初步认识扇形。
1.认识弧。
(1)用课件出示一个圆,在圆上取A、B两点,再用黄色的线描出这两点间的圆的部分。
(2)学习弧的概念。
师指图:这段黄色的线叫做“弧”。因为这条弧的两个端点分别是A和B,所以称这条弧为“弧AB”,弧是圆上的一部分。
课件出示概念:圆上A、B两点之间的部分叫做弧,读作:“弧AB”。
指导学生学写弧AB,学生书空练习。
(3)教师指出“弧AB”的反弧,让学生知道这也是一条弧。
2.认识圆心角。
(1)课件显示:OA、OB两条半径,然后问:“两条半径所夹的角∠AOB,它的顶点在哪儿?”
师明确:像这样,顶点在圆心的角叫做圆心角。
师生共同总结:圆心角应该满足两个条件:一是角的顶点在圆心;二是角的两条边是圆的半径。
3.认识扇形。
(1)课件演示:先出现彩色的OA、OB两条半径,同时在弧AB与半径OA、OB所围成的图形中涂上颜色。
(2)扇形的概念。
师指图:弧AB和半径OA、半径OB围成的蓝色部分叫什么吗?
学生:扇形。
师:根据刚才的演示和讲解,大家能说说什么是扇形吗?
(生回答后,师小结)一条弧和经过这条弧两端的两条半径所围成的图形叫做“扇形”。
(3)教师指着屏幕上圆中扇形的另一边空白部分问学生,这个图形叫什么?
师明确:这个图形也是由一条弧和经过这条弧的两端的两条半径围成的图形,所以也是一个扇形。
(4)扇形在生活中的运用。
师:生活中有哪些东西是扇形的?
学生说一说。
欣赏美丽的扇形图片。
(5)画扇形
①出示画图要求:尝试画出一个半径是2厘米的圆,再在圆中画一个圆心角是100o的扇形。
②学生试画。
③说一说画法,然后师生共同总结画扇形时应注意些什么。
④师:扇形和三角形、平行四边形一样,都是平面图形,那么它是轴对称图形吗?
学生活动,通过折一折,知道扇形也是轴对称图形。
师说明扇形圆心角的角平分线所在的直线就是扇形的对称轴。
三、探究扇形大小与什么有关。
1.出示两个等圆。
(1)让学生说一说以半圆为弧的扇形圆心角是(
)度;以四分之一圆为弧的扇形圆心角是(
)度。
(2)学生小结出计算方法,同时让学生比较出以上两个扇形的大小。
2.猜一猜:扇形的大小和什么有关?(生:圆心角)
(1)圆心角的大小和扇形的大小有什么关系呢?
学生说一说。
看图小结:在同圆或等圆中,圆心角变大,扇形就变大;圆心角变小,扇形就变小。
(2)出示两个同圆心角但不同半径的扇形。
师:这两个扇形一样大吗?
生:不一样大。
师:扇形的大小还和什么有关系?
生观察得出半径不同。
师生小结:圆心角相等,半径越长,扇形越大;半径越短,扇形越小。
(3)总结影响扇形大小的因素:一、圆心角度数;二、半径。
四、扇形的面积
1.出示圆心角分别是180o、270o、60o、90o的扇形,说一说它们的面积分别占所在圆面积的几分之几?并说明理由。
2.问:圆心角是1o的扇形的面积是圆面积的几分之几?
圆心角是no的扇形的面积是圆面积的几分之几?
3.扇形面积公式
如果用字母S表示扇形的面积,n表示圆心角度数,r表示圆的半径,那么扇形的面积公式是:?
(1)教师引导学生总结扇形面积公式:S=r2
(2)师:已知这个公式,我们能干什么(算扇形面积),换句话说,要算扇形面积需要具备什么条件?(圆心角度数和半径)
五、巩固新知。
1.判断。
(1)圆的一部分就是扇形。
(
)
(2)顶点在圆内的角一定是圆心角。
(
)
(3)扇形只有一条对称轴。
(
)
(4)圆心角越大,扇形越大。
(
)
2.填一填。
(1)如果扇形的圆心角是60o,那么这个扇形的面积等于这个扇形所在圆的面积的————。
(2)扇形面积是它所在圆面积的,这个扇形的圆心角的度数是————。
3.求阴影部分面积。
4.
为了做实验滤纸,在半径为3厘米的圆中,
剪去一个圆心角为60°的扇形,求剩余部分