无线电论文范文

时间:2023-03-14 14:51:28

引言:寻求写作上的突破?我们特意为您精选了12篇无线电论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

无线电论文

篇1

卫星导航系统的定位技术通常包括四大步骤,首先是根据接收到的信息对飞机的位置信息进行计算与推定,继而对飞机的与卫星之间的相对位置或者是角度与速度等因素进行分析与计算,接着对飞机在系统坐标中的数值进行计算,最后将计算的结果输出、显示,以供系统的使用者使用。整个过程都离不开轨道卫星、地面控制以及用户设备这几大部分设备的组合与协调,也只有这几方面的协调才能够保证信息的获取、传输与计算工作具有高度的准确性。

1.2陆基的无线电导航系统的定位技术

无线电定位技术产生于上世纪的初期,经过多年的发展与研究,当前的陆基定位系统包括了测距仪以及甚高频的全向信标仪(VOR)等设备,能够提供飞机当前的位置信息,保证飞机能够以预定的姿态与速度完成着陆。这种系统主要是通过无线电新海的发射、传播以及接受来进行数据信息的传递与共享,所以其对无线电技术的要求比较高。VOR是一种相位的测角系统,主要由地面的信标台以及机载的接收指示这两部分组成,能够为飞机提供信标台的位置坐标,在200nmile的距离之内的测角精度由于1.4度,其基本的测向原理如图1。

2陆基无线电导航系统建模分析

2.1陆基无线电导航系统建模方案设计

利用DME、VOR进行导航定位的过程中,需要建立起相应的导航数据库模型,并对DME、VOR系统的测距与测角的误差进行分析与建模,进而贾里奇合理的选台算法的模型,进而对VOR的定位进行解算。建模的基本方案设计为根据陆基无线电系统来建立起系统误差的模型,负责对测角与测距的误差建模工作,同时也需要根据无线电系统的特点与结构建立起导航的数据库模型,确定定位系统的台站建立、选台的算法以及工作方式的选择等,最后根据数据模型以及系统的误差模型来对导航定位进行计算,完成飞机的定位工作。

2.2VOR、DME的建模分析

VOR的误差分析与其建模。对VOR的精度造成影响的因素可以划分为两大类,分别存在于制造公差、随机应变环节与独立变量的计算环节,通常来讲在实际的测量工作中大小在一度以内的误差是允许存在的,因此可以建立起相位误差在一度以内的白噪声形式的模型。DME误差分析与建模。影响DME测量精度的因素包括电表在空气中的传播速度、电波折射的误差以及测时工作存在的误差,其中尤以电波在大气中传播造成的影响最大最显著,所以在模型建立的过程中主要考虑的也是这一因素。

3无线电建模与机载综合导航可靠融合技术及其算法

3.1民航机载综合导航系统信息可靠融合的关键技术

民用机载组合导航不仅能够把各种传感器的信息通过计算机组合在一起,进而实现对于信息的集中控制、管理与显示,还能够采用不同的方法来对导航的数据进行优化处理,进而提高导航系统定位的精准性,为民航提供可靠的保障。在对机载的综合系统进行融合的过程中,将惯性的导航系统作为了骨干系统,其他的系统设备则作为了辅助的子导航系统,对系统的惯导定位的发散进行控制。信息融合的过程中主要采用的是故障检测算法,对融合中的系统数据进行检测,进而及时的处理融合过程中的故障,将系统中的健康信息进行保留,进而保证系统的可靠性。

3.2民航机载综合导航系统信息可靠融合的结构与算法

(1)子滤波器的算法。子滤波器是一种最优的融合设计,这种设计的基础便是测量模型的统计特性。如果系统具有自己确定的数学模型,并且系统的噪声以及量测的噪声均符合了高斯分布的特征,那么此时的卡尔曼滤波算法便能够提供系统基于融合数据的最优估计的计算结果。(2)主滤波器的算法。主滤波器的主要功能便是对子滤波器的计算结果进行融合,并且将融合后的计算结果反馈到各个滤波器上,作为下一次处理周期的基础数值,此过程中的参考系统与其余的子系统之间两两形成了局部的滤波器,局部的滤波器负责使用独立的卡尔曼算法进行独立的局部最优估计,而主滤波器则负责将各个计算结果融合,实现最优融合的计算。

篇2

一、感知无线电的概念

感知无线电技术用以实现动态频谱共享。通过检测空中信号占用频谱,通过探知无线环境中空闲频谱资源,选择可被自己利用频率进行通信。租借系统通过采用感知无线电技术,实时跟踪授权系统占用频率状况,随时使用、释放频段,在保障授权系统通信前提下,与授权系统动态共享频谱。论文百事通采用频谱检测方式获取频谱信息可使感知无线电技术能适应无线环境频谱使用状况短期变化,高效利用频谱,并且感知无线电技术不要求改造现有系统,对无线信道环境和用户需求都将具有较好适应性。

感知无线电技术动态频谱共享是自适应传输技术思想在频谱分配领域的运用。自适应传输使无线通信系统数据传输适应信道传输能力的变化,通过提高数据传输速率来改善频谱利用率。而感知无线电使无线通信系统占用的频谱适应无线环境频谱使用状况的变化,通过增加共享同一频段的系统数、用户数来提高频谱利用率。不管是自适应传输技术还是感知无线电技术,其思想的核心都是无线通信系统能自动地适应外界环境和自身需求的变化。

感知无线电思想可以推广到移动通信其它层面。从低层到高层,要求未来移动通信系统能检测系统各层参数与状态,如链路质量、网络拓扑、业务负载、甚至用户需求,并能适应这些变化。从通信端到端,在存在重叠覆盖多种无线电通信环境下,要求移动设备能够在异构网络间切换,实现包括终端、网络和业务在内的端到端重配置。这也就是所谓的认知网络(CognitiveNetwork)。

二、感知无线电关键技术分析

作为一种新的智能无线通信技术,感知无线电可以感知到周围的环境特征,采用构建方法进行学习,通过相关描述语言与通信网络智能交流,实时调整传输参数,使系统的无线规则与输入的无线电激励的变化相适应,以达到随时随地通信系统的高可靠性和频谱利用的高效性。无线规则指一系列适合无线频谱合理使用的射频带宽、空中接口、相关协议和空间时间模式的设置。感知无线电系统的重构能力很重要,该功能就是以软件无线电作为平台来实现的。重构功能是由软件无线电实现,而感知无线电的其他任务是通过信号处理和机器学习的过程实现,其感知过程开始于无线电激励的被动感应,以做出反应行为而终止,一个基本的感知周期要大致分为3个基本过程,分别是无线传输场景分析、信道状态估计及其容量预测、功率控制和频谱管理,它们的顺序执行使感知无线电系统的感知功能得以实现。

2.1感知无线电技术与动态频谱分配

未来移动通信系统满足用户需求的关键点是提高频谱利用率。移动通信的发展使带来了越来越严重的频率短缺问题。解决频率短缺大致有两类方法,一是扩大可利用的频率范围,二是提高频谱利用率。为增加可用频率,移动通信系统的频率已扩展至300GHZ。无线信道的路径损耗是随频率升高而迅速增加的,所以频率过高并不利于移动通信。因而,更加有效的方法是提高频谱利用率。

提高频谱利用率有三类途径,改进通信设备的传输技术,优化网络、提高组网能力。目前广泛采用这两种途径,但是这两种方法能够获得的频潜利用率增益将越来越少。第三种提高频谱利用率的途径是改进频谱分配方式。

目前国际上主要采用固定频谱分配方式,一个频段只分配给一个无线接入系统,不管分配的频段是否被频率牌照的所有者实际使用,其它无线接入系统不能占用该频段。为提高频谱利用率,可以将一些频段分配给了多个系统,允许它们同时占有同一个频段,甚至一些频段可以开放为不需牌照的频段,允许任意系统占用。尽管固定频谱分配方式能够改善系统干扰问题,但由于频谱的授权系统并不是在任何地区的任何时刻都使用频率,其频谱利用率很低。而简单地允许多个系统共享一个频段,虽然优于独占性的固定频谱分配方式,但由于它对频谱共享没有加以必要的控制,一个系统占用频率前并不知道该频率是否正在被其它系统使用,从而导致了两方面的问题。可见,如果仅仅是简单地允许多个系统共享频谱,而不避免系统间干扰,会制约频谱利用率的提高,并且不能保证通信质量。

为解决频谱短缺与频谱利用率低下的矛盾,可以考虑采用动态频谱分配方式。允许多个系统共享同一频段,各系统只在需要通信时才能占有频段,通信结束就释放频段,而且必须控制系统间干扰,后接入的系统不能影响其它已有系统的通信。为与现有通信系统兼容,分配频段上授权系统有使用频谱的最高优先级,只要不影响授权系统通信,租借系统与授权系统动态共享频谱。这种动态的频谱共享包含时间与空间两方面。在时间上,当授权系统不使用所分配的频率时,租借系统可以占用频率,但当授权系统重新占用频率时,租借系统必须及时地归还频率。

2.2信道状态估计及其容量预测

信道估计的结果可用来计算信道容量,用于控制发送端的信号能量,可使用香农法则计算信道容量C,但在感知无线电系统中并不直接在发送端传输C的信息,而是量化C,一定的量化率用于反馈发送端,量化比率是预先确定的,所以接收机接收的信息量要小于信道容量C。一般来说,无线系统的传输率是波动的,当其超出一定界限时,就会引起系统的不正常工作,这个界限决定了最大的传输比特率。

2.3功率控制和频谱管理

2.3.1功率控制

在感知无线电通信系统中功率控制的实现以分布方式进行,以扩大系统工作范围,提高接收机性能。控制发送端功率是感知无线电系统的关键技术之一。在多址接入的感知无线电信道环境中,主要采用协作机制方法,包括规则及协议和协作的Adhoc网络两方面内容。多用户的感知无线电系统彼此协作工作,基于先进的频谱管理功能,可以提高系统工作性能,支持更多用户接入。

2.3.2动态频谱管理

动态频谱管理也称为动态频谱分配,具有实现系统频谱高效利用的功能。在感知无线电系统中,频谱管理的算法可这样描述:基于频谱空穴和功率控制器的输出,选择一种调制方式以适应时变的无线传输环境,使系统工作在可靠传输的状态下。系统工作的可靠性可由信噪比差额(SNRgap)的大小确定。

2.4无线电知识描述语言

传统的软件无线电不能与网络进行智能交流,因为没有基于模式推理计划能力和没有相关描述语言。在以软件无线电为发展平台的感知无线电研究中,研究表示无线系统知识、计划和所需语言是关键技术,无线电知识描述语言(RKRL)应运而生,它表示了无线规则、系统配置、软件模块、网络传送、用户需求、应用环境等知识。

参考文献:

[1]何丽华,谢显中,董雪涛,周通.感知无线电中的频谱检测技术[J].通信技术,2007,(05)

[2]王军,李少谦.认知无线电:原理、技术与发展趋势[J].中兴通讯技术,2007,(03)

[3]谭学治,姜靖,孙洪剑.认知无线电的频谱感知技术研究[J].信息安全与通信保密,2007,(03).

篇3

就目前来说,能对直流输电线路无线电干扰的因素很多,这些因素包括当时电压的具体数据,无线电设备的部署情况等,除此之外,在某些特定的自然环境下也会对直流输电线路无线电干扰产生影响,如雨雪天气或者风力级数过大等。当直流线路在运转中,会有一部分的运输电力变成直流电晕,这时电压状况会变得不稳定,而直流线路的两极波动会一直不停,产生一定的粒子流,粒子流会与无线电的电磁波进行碰撞,改变电磁波的频率,从而干扰了无线电的信号的稳定性与完整性,而且也会对电网系统造成安全隐患,

二、正负极导线电晕放电机理

输电线路的电晕产生在现代的技术标准下是容许的,它是在因为电压的压力大小不同和电流相遇时产生的变化所发生的,因此易变性较强,比较容易受到外界因素的影响而发生频率上的变化,进而对无线电产生或大或小的影响。它的发生机制是线路的导线表面不能承受过多的电位梯度,然后便将这部分动能传到了空气当中,这时空气中的粒子受到了动能的充能便开始发光发电,让这部分空气也具有了导电性。这种现象不仅会造成电力系统的安全隐患,更是造成了巨额的电力资源浪费。因为电晕放电的原因于两极波动产生的,因此当两极的极性改变时,对电晕也会产生影响,极性的改变会让电晕在进行放电时的方式改变,运行线路也会与之前不同。根据研究表明,当放电电极为负极电极时,电晕放电时会比较均匀的扑在导线的表面,这时负电极产生的脉冲也比较弱,复制脉冲的次数也很少,因此这时产生的电晕现象就比较微弱,不会对无线电的电磁波造成较大的影响,无线电的信号基本可以正常使用。但是开始使用正极电极时情况便正好相反,放出的电晕会没有规律的铺在导线的表面,而且这些电流很活跃,脉冲量很大,复制次数也比较多,这时产生的粒子就会对电磁波的频率产生比较严重的影响,从而比较严重的干扰了无线电信号的稳定性与完整性。因此正极放出的电晕要比负极大的多,是对电磁波产生干扰的主要原因。

三、大气条件对无线电干扰的分析影响

因为自然的环境变化性较强,因此大气条件也是在不断变化,比如气压的强弱、温度的增减等,这也导致了在大气变化下对无线电干扰程度的变化,总体来说变化的规律比较复杂,主要与温度和湿度有关有关,具体表现为在湿度减少时干扰会变大,而增加时便会减少。当温度开始降温时对无线电的干扰开始减少,但是升温时变开始变大。

(一)下雨对自流输电线路无线电十扰的分析影响

在下雨的环境下,无线电干扰会发生比较明显的变化。一般在下雨的初期,由于部分水滴会与电晕放电产生反应,然后继续放电,所以会增强对无线电的干扰,但是在下雨的事件延长以后,这部分放电现象会栾国祥国网黑龙江省电力有限公司哈尔滨供电公司黑龙江哈尔滨150000消失,这时对无线电的干扰也会慢慢下降,下降的最大值可以到正常情况下的三分之一的程度。当下雨完毕以后,无线电的干扰的程度又会恢复到原来的正常水平。

(二)风对自流试验

1.特高压自流试验线段电晕电流驻波对无线电十扰水平分析影响

分特高压自流试验线段长度有限,无线电十扰测量位置与试验段末端(试验线段末端开路1距离仅为450m,山于无线电十扰电流在试验线段末端发生反射,可能出现驻波,从而,有限长的试验线段产生的无线电十扰水平与相同条件下的正常输电线路(长线段)产生的无线电十扰水平可能小同。根据理论分析,受驻波影响,正极导线外20m处无线电十扰频谱将出现震荡趋势,取震荡波形的上下包络线的几何平均值,即为短线段等效至长线段的无线电十扰水平。

2.不同风速下自流输电线路无线电十扰试验

通过试验发现,风对自流输电线路无线电十扰的影响与风速和风向有关,取风向较为稳定的冬季,统计北风(山负极性吹向正极性)情况下,双极运行小同风速时自流试验线段的无线电十扰横向分布。

3.晴天无风时无线电十扰水平试验

研究风对自流输电线路无线电十扰的影响,确定风对无线电十扰影响的修正方法,首先要确定无线电十扰的基准计算方法。风速增大会使电晕层外积聚的正电荷容易被驱散,使正极导线流注型放电的间隔减小,强度增加,无线电十扰场强值增大。另外,山于风向为负极指向正极,风会将负极电晕产生的负电荷吹到正极导线附近,中和掉部分电晕层外积聚的正电荷,使流注型放电的间隔减小,强度增加,无线电干扰场强值增大,说明风使无线电干扰值增加的原因,主要是将负极导线放电产生的负电荷吹向正极导线,中和掉部分电晕层外积聚的正电荷,从而使正极导线电晕将更加强烈。

四、减少电晕的措施

第一种是将电力系统电压降低,使电压达不到电晕的起始电压,但是这种方法不符合电力系统的运行要求,基本不能运用。第二种是减少导体电极曲率半径小的部位。这是减少和防止电晕的最佳途径。鉴于此,我们可以对电力系统易产生电晕的三个地方进行适当技术处理。首先,在变电所母线两端加装球形附件,使母线两端不平滑部分不暴露在空气中,以及在耐张线夹与绝缘子碗头连接处采用线夹穿钉开口销封闭装置,使开口销不会暴露在空气中。然后,在线路耐张杆塔的跳线两头套用球头状铝筒棒;对于直线杆塔悬垂线夹挂板穿钉上的开口销和耐张杆塔、终端杆塔绝缘子碗头与耐张线夹连接的穿钉上的开口销,采用线夹穿钉开口销封闭装置。

篇4

由于网格化无线电监测系统目前发展仍不完善,存在相当多的问题,在试点的基础上推动网格化无线电监测的发展。同时,注意和传统无线电监测系统的融合,为网格化无线电的发展提供可供参考的经验和教训。

2网格化无线电监测系统需要解决的主要问题和有效的应对方案

2.1无线电监测传感器选址方面的思考

地理位置和地形地势对无线电频谱资源的利用产生很大的影响,尤其是许多多山的西部城市,监测传感器的正常工作以实现低功率和高密度的要求,对整个无线电监测系统的建设产生关键的作用的是站址的选择。TDOA的精度要控制在300m以下。为了完成这一要求,首先,根据时差定位的原理,笔者推荐在成都市已经得到验证的三站TDOA定位的方法,通过信号处理技术进行时差参数估计,计算信号抵达接收站的时间差以实现目标定位,把目标设置在等边三角形的内部以实现监测精度的完美测算。然后,因为无线电信号经过多次反射之后会出现信号衰落等现象,导致数据信息准确性大打折扣,频率选择性出现偏差,因此在无线电监测传感器位置的选择上要充分考虑这一现象。最后,对于地形比较复杂的地区,需要进行布点修正来解决高山等地形带来的监控盲区问题。综上所述,监测传感器的位置选择应结合地形(充分考虑高楼等因素)按照蜂窝的形状进行设置,在城市中心的郊区进行不同疏密程度的选择。

2.2建立标准统一的频率台站数据系统问题

在传统的大站制无线电监测系统时代,由于监测网的结构方面的局限性,各站点之间的时间性和空间性联系不大,而且其数据采集机制和储存机制之间也存在方式上的差异,数据融合没有任何意义。网格化的无线电监测体系,能够有效地解决这一问题,网格化的无线电监测体系首先要解决的问题就是建立标准统一的频率站台数据系统,使监测的数据都能都统一起来便于信息的交互和分析。在网格化无线电监测系统的试点过程中,建立起一套与国家推荐标准相同的数据信息系统。

篇5

在无线电能传输系统中,当工作频率在谐振点附近时,传输效率较高,随着工作频率偏离谐振点,传输效率会下降[8]。由于接收线圈两端的感应电压决定了接收模块的驱动能力,为了方便对传输效率进行测量,简单以接收线圈两端的电压与发送线圈两端电压之比衡量系统的传输效率。在频率较低时,增加频率可以提高传输效率,而当频率高于某一值时,继续增加频率则传输效率反而会降低,即存在一个频率点可以使传输效率取得最大值。实验显示,可以用高斯函数近似模拟传输效率随传输频率变化的趋势,如图1所示。发送设备自动调整工作频率到发送模块谐振点与接收模块谐振点之间的某一值,从而使传输效率达到最优。综上所述,以频率为变量对传输效率最大值的寻优过程就是寻找效率随频率变化曲线的最大值。模糊控制器是一种不需要了解被控对象的精确数学模型的控制器,它根据一套控制规则推理出控制决策。模糊控制的实质是用人的经验知识进行控制的一种控制方式[9-11],它是一种非线性控制,对参数的变化不敏感,具有很好的鲁棒性[12]。在无线电能传输系统中,工作频率由频率发生器决定,系统中采用单片机模拟输出PWM波形来作为频率发生器[13-15]。因此,可以直接在单片机中编程实现模糊控制器。利用实时采集到的数据计算出传输效率及传输效率变化率(传输效率变化量除以频率变化量)作为模糊控制器的输入,利用模糊控制规则推理出控制决策,调整工作频率,使系统始终工作在传输效率较高的频率点处。控制器设计思路如下:在系统开始工作时,由于无法计算传输效率变化率,任意设定1个较小的初始频率调整量,此后,则根据当前传输效率及传输效率变化率确定下一步频率调整量。不同频率处传输效率及传输效率变化率的曲线图如图2所示。当传输效率较低而传输效率变化率较大时,频率调整量取一个比较大的值,频率是增加还是减小则取决于传输效率变化率的符号。当传输效率变化率为正是,说明频率处于谐振点左边,频率调整量为正;当传输效率变化率为负时,则说明频率处于谐振点右边,频率调整量应该为负。而当传输效率较高或者传输效率变化率很小时,频率变化量应该取较小的值,其正负同样取决于传输效率变化率的正负。

2模糊控制器的设计

传输效率自寻优的过程实质上是一个通过不断改变工作频率进行尝试从而逐渐逼近极值点的过程。要尽快逼近到极值点附近就需要选取合适的频率调整量。在本文的设计中频率调整量由模糊控制器推理得出,因此,传输效率自寻优的实现关键是设计合适的模糊控制器。本文设计了1个双输入单输出模糊控制器,其中,两个输入变量分别为传输效率η(f)及传输效率变化率dη(f)/df。通过测量发送线圈两端电压u(1)与接收线圈两端电压u(2)可求得传输效率,即η(f)=u(2)u(1)×100,(2)作为输入变量1;将当前传输效率减去前一次测得的传输效率求得传输效率改变量,然后除以频率调整量得到传输效率对频率的变化率dη(f)/df,作为输入变量2。输出变量为频率调整量的决定因子U,由映射df=g(U),(3)决定下一步的频率调整量df。模糊控制器将输入变量1和输入变量2进行模糊化后根据控制规则推理出下一次的频率调整量df,以当前频率加上求得的频率调整量作为下一步的工作频率。模糊控制器结构示意图如图3所示。输入变量1,即η(f)采用6个语言值,分别为5(很大)、4(大)、3(一般大)、2(小)、1(很小)、0(零);输入变量2,即dη(f)/df采用5个语言值,分别为-2(负大)、-1(负小)、0(零)、1(正小),2(正大);输出变量U采用11个语言值,分别为5(正很大)、4(正大)、3(正一般大)、2(正小)、1(正很小)、0(零)、-1(负很小)、-2(负小)、-3(负一般大)、-4(负大)、-5(负很大)。输入变量及输出变量均采用三角形隶属度函数。各变量隶属度函数的图形分别用图4、图5和图6表示。分析频率调整因子U与输入变量1(传输效率)和输入变量2(传输效率变化率)之间的关系,可得到模糊控制器的规则表如表1所示。系统采用Mamdani模糊模型,在模糊推理过程中,“与”运算采用最小值运算,“或”运算采用最大值运算,模糊蕴含采用最小值运算,综合规则采用最大值运算,解模糊化采用中心法。

3仿真结果使用

Matlab对所设计的无线电能传输自寻优算法进行仿真验证。实验室所研究的无线电能传输系统在接收端靠近发送端时的理论谐振频率为530kHz。在实际工作过程中,由于元器件参数变化及测量误差,谐振频率会偏离理论谐振频率,因此,在实际系统运行时,可将初始传输频率设置为理论谐振频率,随后按文中控制方法进行传输效率自寻优。在做仿真验证时,将初始频率设置为530kHz,假设由于参数的改变,谐振频率变为600kHz,且理想最佳传输效率为80%,用高斯函数η=80×exp-f-600000()200000[]2,(4)模拟实际系统的传输效率随工作频率的变化曲线。经试验,当df与U的映射关系取df=sign(U)×10×10|U|时控制效果较好。系统在工作时有两种调整方式,第一种方式是持续调整,始终保持效率最优;第二种方式是连续5次调整量df均小于某一固定值时结束调整,系统传输频率不再改变。对应第一种工作方式,观察100个调整周期,其仿真结果如图7所示。对应第二种方式,设定结束条件为连续5次|U|<2,即频率调整量df≤100,仿真结果如图8所示。由图7、图8可以看出,经过4个调整周期后,传输效率就很接近理想传输效率,此后,传输效率均能一直保持在最优传输效率附近。

篇6

磁耦合谐振式无线电能传输系统大多都是两线圈结构和增加两个线圈组成的四线圈结构。整个能量传输系统分为能量发射端和能量接收端两部分,其中能量的发射端包括发射能量线圈和高频率的电源,能量接受端包括接收线圈和谐振电路板及负载电路。

1.2工作原理

磁耦合谐振式无线电能传输技术的工作原理是导线缠绕制成的发射线圈(空芯电感)与谐振电容共同并列形成的谐振体。谐振体所容纳的能量在电场和磁场之间或者自谐振频率在一定空间的随意振动,在此基础上产生的以线圈为原点,以空气为传输媒介时更换磁场。能量的接收端是由接收线圈带有一个单位电容组成的谐振体,在相同条件下的谐振频率与能量发送端频率相同,并能够在所能感应的磁场与电场之间进行自由的谐振,实现两个谐振体共同的交换,在交换的同时谐振体之间也存在着相同频率的震动以及能量的交换,这就叫做两个谐振体共同组成的耦合谐振系统。

2磁耦合谐振式无线电能传输技术研究现状与热点问题

2.1传输水平

磁耦合谐振式无线电能传输技术是一种中距离传输电能的方式,很多研究者都对其进行了深入的研究,对于技术传输水平的研究主要体现在传输效率和传输距离上,与系统共振的频率有关。一般普通的谐振频率都选用13.56MHz的频率,需求比较高的系统采用比较高端的频段。

2.2传输特征

磁耦合谐振式无线电能传输系统在传输过程中具有以下特征:一是频率分裂和调频技术,频率分裂是指在整个系统线圈传输结构中,随着传输距离的减少,传输的速率也会出现不同的值域;二是在传输结构中加入中继谐振线圈和接收终端的线圈。在具体的设备中结合多个中继谐振线圈和接收线圈的结构中,对传输系统进行研究和分析,可以充分说明系统不受弱导磁性物体的影响;三是磁耦合谐振式无线电能传输系统只有在一定的水平位置角度移动下才能实现较高速率的无线电能传输。

2.3新材料的应用

无线电能传输最重要的就是实现传输的高效率、传输的距离长、传输功率大,但是由于多方面原因的限制,无法实现上述三个目标。在磁耦合谐振式无线电能传输系统中是利用附近外界的能量进行传送的,主要的耗损有欧姆损耗和辐射损耗。在这种情况下,提高速率,首先要减少欧姆损耗,利用超导材料可以实现这一目的。2.4干扰问题无线电能传输线圈会受人们日常生活用品摆放位置的影响。当用品靠近线圈时,会导致系统传输谐振频率的偏差。根据实践证明,无线电能传输对干扰源的频率非常敏感,离线圈越近,影响越大。

3磁耦合谐振式无线电能传输技术需要解决的问题和发展的趋势

磁耦合谐振式无线电能传输技术在发展中已经取得了比较大的成果,但是在个别方面的研究还不够深入。首先关于磁耦合谐振式无线电能传输技术没有形成一套完整的设计方法;其次,系统参数没有进行有效的分析以及校正;再次,对于系统应用中与实际相关的内容没有进行解决;最后这种技术需采用高强度的磁场,但至今没有在如何减少磁场危害上达到共识。

篇7

1数字调幅广播技术的发展

1.1广播技术的发展

从20世纪二十年代开始,商业广播先后在美、苏、英、德、法、中等国开播,在此后的近百年时间,广播作为重要的传媒工具,受到各国的重视。广播无后经历了中波调幅、短波调幅、调频、调频立体声几个阶段,表1罗列了部分国家的广播发展情况。

表1世界主要国家的广播发展情况

中波短波调频调频立体声

美国192019421941/

苏联1922192919461960

英国192319381955/

法国1923193619501954

德国1923192919491958

中国1923193419741979

日本1925193519571969

1.2调幅广播的优势

尽管调幅广播的带宽只有9kHz或10kHz,音质无法与调频立体声相比,但是由于调幅广播发展时间最久,全球标准统一,在任何地方购买的收音机在全球各地都能使用,接收工具简单,而且可以方便地进行室内、外的便携接收与车、船中的移动接收。因此至今它仍然是世界上使用最广泛的广播媒体。

短波国际广播则由于在国际交往中的极端重要性与最适合对象为财力处于中下层的听众,所以各国仍继续大量投资支持短波业务。

今天,世界上有160多家国际广播电台在进行着无形的“星球大战”。美国之音(VOA)的一项研究甚至认为:未来40年没有其它媒体能以相同的优点替代。据统计,全世界现在已有3333座短波发射台,12590府中波发射台,25亿台调幅收音机,其中7亿台可收短波广播。

1.3DRM的产生

由于调制广播的竞争,音、视频数字化的发展,传媒手段的多样化和九十年代开始的全球数字化浪潮,使许多广播机构认识到,调幅广播必须数字化才能适应竞争日益激烈的传媒环境,纷纷开始了数字调幅广播的试验。

德国电信(DT)从1994年11月开始进行数字中被广播的试验。法国汤姆喀斯特(Thomcast)公司则从1995年起斥巨资进行数字调幅广播系统的开发,并从1996年6月起演示了它的天波(SKYWANE)2000系统,到1998年4月,研制中的数字调幅广播系统已至少有6个。

1994年,电联曾要求各成员国提出数字系统的建议,并建议建立一个世界性的集团以评估不同的方案,最终提出单一的建议由电联推荐各国使用,由此诞生了DRM。DRM的全称是DigitalRadioMondiale,其中Mondiale为法文,即“世界数字广播”集团(Consortium)。DRM于1998年3月在中国广州宣告成立。到2002年2月,DRM已有来自27个国家的正式会员(Fullmembers)47个,和非正式会员(Associatemembers)25个。

1.4国内外数字调幅广播技术发展情况

目前,欧洲和北美的一些国家均研制了DRM接收设备,这些接收设备更接近于专业接收设备,主要采用计算机插板方式,绝大多数的解调、解码工作均由基于DSP和计算机CPU的软件完成,它们具有便于软件更新,可以方便适应不同标准和新业务,便于在线测试,可以方便地使用各种分析工具等优点。同时具有体积大(一般需计算机,也有较小的),功耗大(普通干电池无法满足工作),不兼容原有设备等缺点。客观地讲,这些设备只能算作实验性质的设备,不具备投放市场的能力。

我国在数字广播领域与国际完全同步(DRM集团在我国成立足以说明),国内已经有了类似的产品,水平与国外产品没有明显珠差距。

图2

1.5DRM技术发展的机遇与挑战

DRM系统已基本成熟,即将进入实施阶段。但是,一项新技术能否在全球推广,技术本身的先进性与可行性虽是前提,却远非决定因素,市场条件和消费者的接受程度十分关键。历史上已经有不少成功的经验与失败的教训,DRM也把实施问题看作为严重挑战,还把影响国家或地区一级启动新技术的因素归纳为以下几点:①技术变更的步伐;②进口或出口控制;③市场成熟性;④财富或个人可支配的收入(PDI);⑤法规;⑥消费者是否是新技术的早期采用者。

为使DRM取得成功,需要处理好三个关键性因素,即广播机构/网络运行者、接收机制造商与听众之间的关系。可以列出以下的实话依赖关系表(见表2)。

表2实施依赖关系表

参与者依赖性关键推动者

广播机构/网络运行者接收机可用性听众市场频谱可用性

法规协议

发射机可用性

接收机制制造商内容可用性听众市场低知识产权费用

市场规模

广播机构签约承担义务

芯片组可用性

听众接收机可用性内容可用性信息的需要

接收机的费用

明确的独特销售点

1.6DRAM在我国发展的前景

我国是AM广播的大国,新世纪开始实话的西部创新工程还将进一步扩大AM广播的规模,提高广播覆盖率与改变边远地区空中秩序。

1998年的广州会议已注意到了中国这样的大国不容易由调频(FM)广播覆盖(注:中国的陆地面积与欧洲大致相当,比美国本土大200万平方公里,中国最小的浙江省相当于比、荷、丹三国的总和,新疆则相当于三个欧洲大国德、法、西的总和),因而数字调幅广播具有很大的市场。由于许多重要的国际广播机构一直积极参与DRM的活动,今后这些机构很可能较早地开始数字化的短波国际广播,从而使他们的国际广播效果大大改善与具有良好的抗干扰性。

我国虽然从1997年起就一直关注与跟踪数字AM广播的发展,北京广播学院还进行了计算机模拟试验。但鉴于DRM很快进入实话阶段,美国开发与评价IBOCDAB技术有较大进展,日本也参加了DRM,因此应该更加积极地创造条件,早日在我国开展相应的实验室与现场测试,积累自己的数据(中国地形复杂,横跨寒、温、热三带,电离层条件也不同),并争取有自己的知识产权,还要利用作为国际电联与亚广联成员的条件和参加各种国际会议与相关活动的机会,积极了解国际新进展,调整与确定发展我国数字声音广播的方针政策与计划日程,积极维护中国在二十一世纪数字调幅广播领域的权益。

2软件无线电技术的发展

软件无线电技术是近年来新兴的一种技术,它最早由MITRE公司的约瑟夫·米托拉(Joseph.Mitola)在1992年5月“美国远程系统会议(NationalTelesystemsConference)”上提出。该项技术一经提出就在世界上产生了重大影响,受到了各方的高度重视。

软件无线电技术的核心思想是软件无线电技术将宽带的A/D变换器尽可能的靠近射频天线,即尽可能早的将接收到的模拟信号转化为数字信号,最大程度上通过DSP软件来实现通信系统的各种功能。图1为理想软件无线电系统组成框图。

作为软件无线电技术载体的软件无线电电台是“用软件定义波段、调制方式、信号波形的电台。信号波形由数字信号采样产生,用宽带的数模转换器转换成模拟信号,可能还要由中频上变频到射频。类似地,接收机使用宽带的模数转换器获得该软件无线电电台节点所有波段的信号。接收机用通用处理器上的软件完成信号的提取,下变频和解调。”(约瑟夫·米托拉给软件无线电电台做的定义。)

理想的软件无线电电台应该拥有在全频带工作的能力,具有极大的灵活性,任何功能的改变或增加都可以通过软件升级来完成。由于实际条件的限制,比如宽带前端射频模块的性能不够理想、宽带A/D/A的工作带宽和采样速率有限、DSP的处理能力不足、总线数据受限等,导致在目前的技术条件下无线实现上述理想软件无线电系统。为了使得软件无线电技术可以应用于实践,就在理想软件无线电系统的基础上增加了若干限制条件,使得软件无线电牺牲了一些灵活性,换来了可实现性。

考虑到DRM目前的牺牲性,为了减小研发的风险,可以考虑采用软件无线电技术研制发射接收设备,在目前模拟数字混合暑期可以兼容原有的模拟设备,随着社会的发展,当DRM技术成为主流技术时通过软件升级就可以将用于兼容的资源专用作数字广播质量的提升,从而最大限度的保护用户的利益。

3基于软件无线电技术的DRM系统

3.1DRM的主要标准介绍

2001年4月4日ITU已通过DRM的标准建议书为ITU-RBS.1514,2001年9月通过欧洲标准为ETSITS101980V1.1.1。单个调幅频道码率可达24kbps,双频道可达72kbps。在ETSITS101980V1.1.1标准中,主要规定了了频道使用模式、信源泉编码方式、复用情况、信道编码与数字调制方式等内容。

具体来说DRM信号有三种频道使用模式:半个频道、一个频道和四个频道。半个频道的模式可以用作模拟和数字同播,作为模拟和数字广播的平滑过渡的方法。信源编码推荐了四种方式:MPEG-4AAC(高级音频编码),MPEGCELP(刺激线性预测编码),MPEGHVXC(谐波矢量刺激编码),SBR(频带复制编码)。复用情况比较复杂,包括信道复用、帧复用、业务复用、数字复用等。信道编码与数字调制方式包括扰码生成多项式(x9+x5+1)、TCM编码方式采用删除卷级码与QAM调制结合的方式,交织深度分为短交织(交织长度为0.4s)和长交织(交织长度为2s),数字调制方式采用OFDM和QAM调制。

3.2国外同类产品(SKYWAVE2000)的性能

SKYWAVE2000采用的基本技术情况如表3所示。

表3SKYWAVE2000采用的基本技术情况

频谱适用波段LF、MF、HF

带宽选择复用

与现有范围的兼容YES

带外发射与发射机Tx有关

单频网络支持YES

频谱掩蔽在选定的带宽内为矩形

系统特性调制/信道编码TCM+RSOFDM/QAM(8、16、64、256)

混合/同播方式YES(DSB/VSB)

音频编码MPEG-2Layer3,在电路实施中等待MPEG-4

灵活性YES

交织深度长交织6.6s

短交织0.3s

比特率Min6kbps

Max36kbps

灵活性YES

发射机峰值/平均值功率比4-8dB(与工作模式有关)

SKYWAVE2000的数字编码与调制原理框图见图2。

3.3基于软件无线电技术的DRM系统接收机

鉴于广播的特点:带宽窄,一般为9kHz~10kHz;信号动态范围大,短波波段的动态范围高达120dB以上。在软件无线电电台选用实现方案方面必须予以考虑。根据文献[2]的论述,选择了基于中频采样技术的体系结构:在A/D/A与天线之间增加一个宽带变频模块,将全频带的信号变频为一个固定的中频,通过对该中频处理实现预定的功能。图3所示为中频采样软件无线电系统的组成框图。

3.4基于软件无线电技术的DRM系统发射机

由于广播自身的特点,相比于接收机,发射机的研制更为复杂。基于软件无线电技术的DRM系统发射机由三个较为独立的子系统:数字编码与调制子系统、模拟处理子系统和发射子系统组成,其组成框图及相互关系见图4。

数字编码与调制子系统主要负责数字信号处理和幅度、相位的计算;模拟处理子系统负责将I、O的基带复信号变换到无线发射频率的调相信号或幅相信号;发射子系统实现功率放大及信号发射。

图5

3.5基于软件无线电技术的DRM系统工作原理

基于软件无线电技术的DRM系统工作原理如图5所示:

图5中,信源编码、复用、能量分集、信道编码、交织、数字基带的OFDM映射部分的功能将在数字编码与调制子系统中利用计算机的处理器、DSP处理器以及专用芯片等通过软件编程来实现。而无线射频信号的生成、稳定载波的产生等模拟处理功能将在模拟处理子系统中通过DDS、I、Q调制器等技术或专用器件实现。

篇8

1无线电通信技术的发展历程

1895年5月7日俄国物理学家波波夫已“金属屑与电振荡的关系”的论文向全世界宣布无线电通信技术的诞生,并当众展示了他发明的无线电接收机,那天俄国当局定为“无线电发明日”。

1896年3月24日,波波夫将无线电通信的通信距离延长到250米,做了用无线电传送莫尔斯电码的表演为无线电通信技术拉开新的序幕。

1898年,年轻的意大利青年马可尼利用游艇证明了他的无线电电报能够在20英里的海面畅通无阻地通信,第一次实际性地使用无线电通信技术。

1901年,他在相隔2700公里英国和纽芬兰岛之间成功地进行了跨越大西洋的远距离无线电通信,从此人类进入无线电波进行远距离通信的新时代。

随后,无线电通信技术如雨后春笋其涌现出来。直到1946年,美国人罗斯.威玛和日本人八本教授利用高灵敏度摄像管家用电视机接收天线问题,从此超短波转播站一些国家相继建立了,无线电通信技术迅速普及开来[2]。

随着电子技术的高速发展,信息超远控制技术为满足遥控、遥测和遥感技术的需要,于人们生产与生活中被广泛使用;后来微电子技术也推动了电子计算机的更新换代,使电子计算机信息处理功能大大增加,日益成为信息处理最重要和必不可少的工具。

信息技术是以微电子和光电技术为基础,以计算机和通信技术为支撑,以信息处理技术为主题的技术系统的总称,是一门综合性的技术。今天的信息化时代,就是电子计算机和通信技术紧密结合的标志。

无线电通信技术发展到今日,拥有无限潜力。军事、气象、生活、生产等各个领域都对其都有空前的需求。虽然无线电通信技术优点虽然卓越,但其缺点至今给技术的发展带来很大的障碍,都是我们亟须解决的难题。

2无线电通信技术的特点

近些年无线电通信技术领域引入无线接入技术,是迅速发展起来的新技术领域,不需要传输媒质,部分接入网甚至入网的全部皆可直接采用无线传播手段代替,无论是概念上还是技术含量上都产生了一个重大的飞跃,实现了降低成本、提高灵活性和扩展传输距离的目的。其特点喜忧参半,优点主要体现在传输线路线、通信方式等方面,我们可以总结如下:

不受时空限制。大多数情况下,人们对通信运用的时间、地点、容量需求无法预知,而无线电通信不受时空限制的优点能够采取灵活多样的手段和方法,确保通信联络综合高效,语音、数据、图像的综合传输畅通无阻,随着近年来国内各个经济领域和国际经济的来往,无线电通信技术不受时空限制方法为其打开方便之门,尤其通信与网络的连接,通信技术踏上新的台阶。

具备高度的机动性及可用性。无线电通信技术传输数字化、功能多样化、设备小型化、智能化及系统大容量化决定了其具备高度的机动性和可用性,尤其在军事构建地域通信网方面起到很大的作用。

可靠性高。无线电通信比起有线通信的一个卓越优点在抵抗水淹、台风、地震等方面有较大的可靠性,一般情况下除非信号干扰都能保持通信的畅通,这也是无线架输的最大特点。

无线电通信技术虽然解决了架设传输线路线、脱离传输距离限制、传输距离远、通信灵活等的难题,但其信号容易受到干扰、影响,还有容易被截获造成了该项技术的保密性极差。无线电通信技术的缺点几百年来都是让人头疼的问题,目前全球化经济愈演愈热,其信号的稳定性与安全性上升为经济领域里关注的焦点,因此,无线电通信技术的通信方法拓新成为其发展的新话题。

3无线电通信技术之通信方法的拓新

21世纪无线电通信技术正处在关键的转折时期,尤其最近几十年最为活跃。信息化的飞速发展和IP技术的兴起,欲求无线电通信技术适应未来社会生产和生活的需求。务必在通信方法上进行一系列的拓新。针对以上无线电通信技术的缺陷,笔者认为,我们可以从通信技术、信息技术、网络技术、蓝牙技术、软件技术等方面进行尝试,主要可总结一下八点:

3.1采用了数字通信技术

提高系统频谱资源的利用率,维持信号上的稳定,避免通信信号收到干扰,增大了系统通信容量,提供话音、图像和数据等多种通信服务,确保用户信息安全保密。

3.2推广通信信息技术宽带化的发展

信息的宽带化对于光纤传输技术和高通透量网络的发展起到关键的推进作用[3],尤其近年来世界范围内全面展开,无线通信技术正朝着无线接入宽带化的方向演进,这个方向对无线电通信信号源稳定来说的确非常之重要。

3.3推广个人信息化技术

个人信息化在全球个人通信已经有着不争的发展趋势。个人信息话,能够有效地减低传输路线的信息量堵塞,大幅度提高通信的传播速度。

3.4拓新接入网络的样式

技术上融合实现固定和其他通信等不同业务,在无线应用协议(WAP)的出现以后,无线数据业务的开展得到大幅度的推动,促进了信息网络传送多种业务信息的发展。随着市场竞争的需要,传统的电信网络与新兴的计算机网络融合,尤其具备开发潜力接入网部分通过固定接入、移动蜂窝接入、无线本地环路入等不同的接入设备,满足了生活与生产地各种通信需求。

.5过渡电路交换网络

关于过渡电路交换网络,IP网络无疑是核心关键技术,是最合适的选择对象,处理数据的能力电路交换网络大大提升,这一点对保持通信畅通方面解决了信号容易受到干扰的难题。

3.6使用Bluetooth技术作为信号传感器

Bluetooth技术具有更高的安全性和适用性,利用蓝牙做出来的传感器随时反映出用户所需要的信号方向,一旦连接到Internet上的话,即可以实现更具备高度的机动性及可用性。

3.7推广软件无线电

软件无线电通信侦察与对抗方面世人瞩目,但它仅限于军事通信领域,如果能够推广到市场,对于无线电通信技术的通信内容保密性来说将是一大跨步的改革创新。

3.8提高无线通信网络可持续性

无线电通信技术的网络设备如果没有良好的配置和网络部署,一旦受到安全威胁,其后果不堪设想。因此,无线电通信技术通信方法的拓新我们与必要提高网络设备性能、优化设备配置、冗余备份等等手段来保证网络的可靠性[4]。

结束语

回顾无线通信的发展历程,无线电通信技术的传输路线、传输距离、通信灵活性、信号稳定性、保密性等方面的需求将愈来愈突出。通信方法新技术的拓新将有愈来愈广阔的活动舞台及光明的发展前景。鉴于市场对经济的推进作用,尽管我国的无线电通信技术发展速度飞快,但面对我国12亿人口的通信需求,无线电通信技术普及率低的问题,面对我国12亿人口,网络规模和容量方面就变得苍白无力了。同时,无线电通信技术愈来愈激烈竞争局面促使各无线电通信运营企业积极拓新新的技术涵盖面,提升自身的营业水平,为市场提供丰更加富的选择,满足用户各个方面、各个层次的需求。因此,在无线电通信技术通信方法应用开发的发展潜力无穷,这要求我们积极加快无线领域的科技进步,为无线电通信技术创新出谋划策,为全球信息化及经济全球化的通信事业贡献力量。

参考文献

[1]《信号与系统(第二版)》A.V.Oppenheim西安交通大学出版社2000年.

篇9

我国的现今卫星通信技术的发展在扩展新的频段,加强先可用的频段的利用率以及现在公用干线的通信网都应该一步步转向跟随宽带化的发展趋势,能够准确地利用卫星通信技术来建立我国的卫星宽带业务以及数字化通信网络。所以对于卫星通信网技术而言应该逐渐的走向小型化的、智能化的未来方向。从目前我国的计算机科技的水平来看,假设把设备功能全部换由软件来进行操作实现,那么由于软件的特点也就是需要按照一条条的指令来运行,就算我们采用多处理器的方式来进行协助共同运算,也没有办法真正保障高频率情况下的处理能够及时有效,也使得软件无线电技术在卫星通信领域中的使用范围明显受到限制。基于以上原因,以下设计想法是为了能够让软件无线电技术能真正应用在卫星通信方面。

首先我们所有的设备都需要经过模块化处理,各个模块分开保证控制功能,以及各个模块之间的高速数据的交换问题。而信道设备以及接口设备的内部结构信道设备包括调制解调器、信道的编译码器和置乱器等,在总的CPU的控制之下,信道设备的具体参数值可以做到由软件来进行定义处理。而将无线射频的设备、信道设备和接口设计在卫星通信技术中也是十分关键的存在。再来考虑到了卫星通信技术有着多址方式,业务类型广以及其频率高且变化区域广等各种优点,在信道设备和接口设备的设计选用模块化的设计构思。各个模块应该能够各自拥有能定义自身功能的各个软件接口,而选用的软件接口更应保证标准化以方便各个不同供应商的生产。然后在各个模块的具体设计上面,也要根据具体运算量大小,选择不同的软件接口功能。再来根据具体的各类应用环境,更加灵活地修改和使用数据帧结构,并且保证以软件协同硬件两相结合的方式实现。最后就是设备功能和系统功能的定义要靠网络管理系统来最终实现。

伴随着因特网大面积普及及现在移动网络的迅猛发展,卫星通信技术绝对会在未来迎来更进一步的发展机会。现在我国逐渐采用自主研发的通信卫星为主体,来建立完善的卫星通信系统。软件无线电技术作为一个可利用在卫星通信方面的技术来说,也一定会伴随卫星通信的脚步,成为加速我国科技发展的重要技术。

篇10

无线电经纬仪探测信号生成系统主要由上位机、控制电路、调制电路、信号产生电路、数控移相器以及和差信号形成网络组成,如图1所示。无线电经纬仪数据处理计算机作为上位机,通过管理软件向控制电路下发探测模拟信息和放球、电磁干扰等控制指令。控制电路主要由DSP及附属电路组成,控制电路将接收到的温度、气压和相对湿度信息按固定格式转换为二进制流,并通过串口发送给调制电路;将接收到的天线角度偏移信息根据单脉冲测角原理分成四路移相控制信号,发送给数控移相器。在探空二进制流作用下,调制电路实现对信号产生电路输出的中频信号调制,产生模拟探空信号,经过放大器放大后,通过功分器分成四路。数控移相器在移相控制信号作用下对四路探空信号进行相位控制,并通过环形器将四路信号生成一路包含探空信息的和信号,以及两路包含测角信息的方位差和俯仰差信号,最后三路信号输入至无线电经纬仪的中频接收机中,从而实现了探空和测角信号的模拟。当需要进行复杂电磁环境训练时,控制电路可控制信号产生电路产生干扰信号,通过耦合器加载到探空信号中。图1系统组成框图

2硬件系统设计

2.1控制电路

控制电路是无线电经纬仪探测信号生成系统的控制核心,探空信号、测角信号和干扰信号都是在该电路控制下产生的。它主要由数字信号处理器DSP、串口扩展芯片、RAM和一些电路组成,如图2所示。为满足高速运算要求,选用TI公司生产的主频为40MHz的TMS320LF2407作为数字信号处理器,该DSP运算性能高,片上资源丰富,具有544字DARAM、2K字SARAM、32字FLASH、2个事件管理器和丰富的外部存储器接口[2],程序存储于DSP内置的FLASH中,当电路加电后,FLASH中的程序代码装入RAM中,在RAM中运行程序代码。控制电路需要6路串口进行数据通信,因此选用2片德州仪器公司生产的4通道异步收发器TL16C754B作为串口扩展芯片,共扩展出8个串口,数据率可达3Mbps[3]。图2控制电路框图

2.2调制电路

由于的中频探空信号是受32.7kHz的方波和二进制气象代码多重调制的,因此调制电路通过多谐路振荡器产生32.7kHz的方波信号,通过模拟电子开关4066实现信号的选通。当控制电路发送来的探空二进制信息为“1”时,模拟电子开关选通32.7kHz方波,并传输至信号产生电路中的晶体管振荡器。方波正负半周变化,改变晶体管的偏置电压,使振荡器振荡回路中的电容量发生变化,从而使振荡器频率发生变化,方波的正半周发射载波频率为f1,负半周的发射载波频率为f2。当二进制信息为“0”时,模拟电子开关停止输出32.7kHz方波,信号产生电路中晶体管的偏置电压是一恒定电压,因此只输出f1一个频率。

2.3信号产生电路

信号产生电路主要用于产生模拟探空信号所需要的中频信号和用于复杂环境构建的噪声干扰信号。其中中频信号由晶体三极管产生,经过缓冲放大器放大后,再通过去耦电路滤除高次谐波以保证波形的纯度。噪声干扰信号产生电路主要由FPGA、DDS、时钟电路、PDRO、放大滤波电路构成,如图3所示。图3噪声产生电路框图控制电路通过串口向FPGA噪声控制器发送控制指令,使其产生DDS可识别的噪声数据,再通过时序电路的控制DDS和PDRO产生所需要的噪声信号,最后通过放大滤波电路输出到耦合器。DDS采用ADI公司生产的AD9739,FPGA选用低功耗ACEX1K系列器件,并在FPGA内部以文件形式存储随机噪声数据[4-5]。

3软件系统设计

3.1管理软件

管理软件部署在上位机中,采用VC++6.0作为开发工具,通过网络与控制电路进行数据通信,主要由探测信号管理模块、信号设置模块和网络通信模块组成。探测信号管理模块主要用于对不同高度的气温、气压、相对湿度和不同探测时刻无线电经纬仪天线的仰角和方位角数据的添加、删除和修改操作。由于探测信号的数据量非常大,所以该模块提供实装探测数据自动识别录入功能,从而减少操作量。信号设置模块主要用于对探空、角度以及干扰信号进行选择和设置,通过网络通信模块将设置和选择的信息发送至控制电路的DSP。

3.2主控制程序

主控制程序部署在控制电路中,是无线电经纬仪探测信号生成系统的程序核心和主线。程序启动后首先进行初始化工作,然后进行运行前处理,最后转入死循环,通过中断触发、时间标志等方式进行工作。初始化工作包括对DSP、RAM、网络接口和串口等部分的设置。运行前处理包括探空和测角信号的接收和初始化,干扰信号设置参数等。主控制程序流程如图4所示。图4主控制程序流程

3.3探空编码程序

探空编码程序主要用于将DSP接收到的气温、气压和相对湿度信息进行编码处理,最后生成与真实探空信号相同的二进制流。其中帧速率为0.3~1Hz,数据(二进制符号)传输速率为960~1200bps,每个信息字的数据位为8位,按RS-232C协议E82方式编码。

3.4移相控制程序

移相控制程序主要用于生成上、下、左、右4路相位偏差信号,从而为无线电经纬仪提供模拟角度跟踪信息。当DSP接收到上位机发送来的探空仪模拟角度和无线电经纬仪天线真实角度信息后,将二者的俯仰和方位角度进行比较得到偏角。根据相位和差式单脉冲测角原理,目标的偏角与和差比率成正比[6]。因此,可通过查表的方法通过偏角查取偏移的相位。

篇11

1SiW1701简介

SiW1701无线电调制解调器是SiliconWave''''sOdyssey公司推出的用来解决蓝牙无线通信用的IC,频率范围2400~2800MHz,接收机灵敏度-80~85dBm,射频输出发射功率-4~+4dBm,睡眠模式电流消耗7~90μA。SiW1701完全符合蓝牙1.1规格,适合2级或3级发射功率分类,或者有外部电路的一级功率分类。直接转换的无线电结构与集成的VCO和频率合成器只需要很少外部组件。集成的模拟/数字转换电路转换在无线电和GFSK调制解器之间I/O信号。完整的GFSK调制解调器包含数字调制器。信道时限校正和比特限制器。集成的0dBm发射激励器(末级前置放大器),有8个输出功率等级控制。通过数字接口可与蓝牙控制器Ics直接接口。对功耗进行了优化设计,睡眠模式电流消耗7~90μA。工作温度-40~+85℃。

图1SiW1701内部结构方框图

SiW1701无线电解调器适合所有需要一个无线电连接的应用。它是应用了蓝牙无线技术、低功率和高性价比的方案。可应用于手持移动电话及其附件、办公电脑、笔记本电脑和打印机、PDAs(个人数字助理)、个人备忘记事本和移媒体设备、数字相机和游戏手柄,遥控车锁等。

2SiW1701内部结构与工作原理

SiW1701采用MLF-48封装,内部结解调器内,为了转换到一个外部设备,使用数据检测和定时恢复回路来转换数据。发射进程控制恰好以相反的顺序进行。数据控制功能和一个编程接口,允许无线电调制解调器控制和一个柔性的接口一起,连接到外置蓝牙链接控制器芯片上。为了有效地进行功率控制,此无线电的每个部分都可在不用时被关闭。主时钟基准和低功率时钟用来提供时钟信号到外部设备和SiW1701。发射的信号是被GFSK调制过的数据,在芯片产生一个+4dBm的无线电输出,并允许提供给外置放大器一个功率控制信号。

(1)无线电接口

无线电接口允许通过一个外部线路与发射和接收蓝牙无线电信号的天线连接;可以使用外部发射/接收转换和功率放大器的控制信号;需要外部阻抗匹配和不平衡变压器回路完成接到天线的接口。信号描述如表1所列。

表1信号描述

引脚名称说明

4RF_OU发射器射频输出

3RF_IN射频输入到接收器

7IDAC外部功率放大器的功率控制,此输出提供个可变的电流源,可用来控制外部功率放大器

33TX-RX-SWTTCH输出信号指示无线电的电流等级。极性可以编程。默认设置:高电平时不射模式,低电平时发射模式

(2)调制解调器接口

调制解调器接口在SiW1701和外部控制器IC之间传输蓝牙数据。SiW1701上的可编程接口可以被设置成多种操作模式。接口的编程是通过内置寄存器实现的。调制调解器接口信号说明如表2所列。

(3)时钟信号

32MHz时钟用来作为射频电路的基准,也为大部分内部数字电路提供时钟信号和为外部处理器提供定时信号,说明如表3所列。

表2调制调解器接口信号说明

引脚名称方向说明

23TX_DATAI发射数据

24RX_TX_DATAI/O接收数据或进发射数据(当设置为双向I/O时)

22CD_TXENI/O具有载波检波和发射启动双重功能。此双向信号可以通过内置寄存器激活。在发射期间,此引脚可以用来作为一个输入信号指示正确的发射数据(TXEN);在接收期间,此引脚可以用来作为输出信号指示载波检波(CD)

28RX_CLKO接收时钟输出,为蓝牙分组数据恢复时的1MHz定时。可按需要禁止输出

20ENABLE_RMI使能SiW170lg工作

21HOP_STRBI由链路控制器产生的俣,用来指示TX或RX上升沿的开始

27BB_CLKO时钟输出,输出到基带回路。时钟频率可编程为32MHz输入时钟的1/1、1/2、1/3或1/4

32REXET_NI仅用于数字电路复位。状态机构和内置寄存器复位到默认状态。此信号应具有10μs的最小脉冲宽度。注意:当RESET_RM被激活时,BB_CLK将被禁止

17PROTOCOLI设置接口协议,“0”标准模式

表3时钟信号

引脚名称方向说明

1XTAL-P/CLKI系统时钟晶体振荡器正输入或者基准时钟输入

48XTAL-NI系统时钟晶体振荡器负输入,或者基准时钟输入时,此引脚端不连接

27BB_CLKO时钟输出,输出到基带电路。可以提供4个时钟频率:12、13、16、32MHz

(4)串行编程接口

通过串行编程接口(SPI)来访问SiW1701IC的内部寄存器。SPI是一个可以由时钟控制加速到4MHz的同步串行接口。SPI通信使用4种信号,见表4所列。

表4SPI可编程接口

引脚名称方向说明

26SPI_RXDISPI接收端口,写/输入

30SPI_TXDOSPI发射端口,读/输出

31SPI_CLKISPI总线的同步数据发射使用的时钟输入

29SPI_SSI从属选择输入。选择SiW1502IC作为一个发射的目标

(5)其它I/O

表5中的引脚由无线电调制解调器的各种模拟和数据电路使用。

表5其它I/O

引脚名称方向描述

41VREFP_CAPI内置A/D转换器基准电压的退耦电容。建议值=100nF

42VREFM_CAPI内置A/D转换器基准电压的退耦电容。建议值=100nF

43VC_CAPI内置A/D转换所依据的电压的退耦电容。建议值=100nF

44VTUNEIVCO调谐控制输入

16CHRG_PUMPIPLL充电泵输出,到外部环路滤波器电路

表6电源和接地引脚

引脚名称方向说明

6VCCI模拟3V电源输入

36VBATT_DIGI数字3V电源输入

8VBATT_ANAI用来提供芯片内低功率调节器电源

9VCC_OUTO芯片内低功率稳定器的输出(模拟部分)

35VBB_OUTO芯片内低功率稳定器的输出(数字部分)

25VDD_IOI电源电压到芯片接口

5,14,37GNDI接地引脚(总共3个)。另外,在插件的中心有一个可提供更好的

10REG_BYPASSO接电源旁路电容

19ENABLE_MOSFETO控制外部的电源电压开关

(6)电源和接地

篇12

1.1基于软件的广电系统

软件无线电的最大特色在于其在底层硬件的支持之下,以软件编程的模式来完成传统广电系统的所有技术功能,从而一举改变了传统的仅仅依赖硬件的方案。基于软件的广电系统正是通过此原理来构建的数字化技术的广电系统。最重要的核心模块是“数字电视(广播)通用调制”模块,其主要功能一方面能够进行所有类别的广播电视数字信号的产生,还包括为原始信号插入各类辅助功能信号,例如同步信号、时钟信号以及纠错冗余信号等等。通过灵活的软件编程,一方面能够方便地产生所需的各种格式的数字信号,从而使之能够和各类底层协议模块相互匹配,另一方面也能够较方便地进行升级换代,和几乎所有的主流传输介质相兼容。如果体制中增加了新的编码模式,则不必更换硬件模块,只需在软件方面进行接口和协议的改动即可完全适应新的方式,因此设备的升级换代变得非常方便,节约了投资,设备的研发周期也大大缩短,新的功能能够灵活地加入进来。在具体的技术实现方面,由于当前的光电通信底层网络已经拥有很高的传输速率与很高的带宽水平,而当前的各类硬件价格正在不断下降,升级更新周期也逐渐缩短,因此应该将灵活的软件模块与固有的硬件模块进行协同配合设置,以实现技术收益的最大化。结合当前的信息技术现状,假若将整个的系统均交由软件来设计与实现,则软件的执行对于CPU等资源的耗费是必须考虑的。因此在全面考虑之下,其可行的方案为:

(1)底层信息传输系统以模块化的方式进行构建,由不同的模块提供针对性的软件接口,共同构建信道系统,主要有调制解调模块、频率分配模块、编译码模块等等,这些模块均接受中央处理单元的控制,软件的使用主要体现在对信息传输系统的参数设置方面,例如调制解调模式的设置与选择、信道编解码方式的设置于选择、信道加密解密模式的确定等等。

(2)具体模块在实现方面则选择硬件与软件配合使用的模式,将各类负载合理地分配在软件单元与硬件单元之上,为了减少软件对于资源的消耗,可以在硬件方面做出一些调整,例如增加一些可编程芯片等。

1.2基于软件的数字电视系统

当前,我国比较通行的数字电视主要存在着DVB-S,DVB-C以及DVB-T等制式,而且由于用户的原因,数字电视将在很长的一段时期之内同时兼容各类制式。这些情况也直接体现在我国目前的主流数字电视接收机的厂商中,当前的机顶盒也充分考虑了多种制式的现象,这也能够推进我国数字电视的推广速度,使其覆盖范围扩大,使用户的投入减少。构建的数字电视系统,能够结合不一样的传输制式,来为其加载相对应的软件单元,从而实现终端与传输底层协议的匹配,已经被证实是一种比较可靠的实现方法和解决方案。目前对这种技术进行推广的主要阻力来自于成本问题,由于数字电视最终归属于普通的家电类商品,如果定价偏高则会鲜有人问津。而随着微电子技术突飞猛进的发展,不少产品的成本正在逐步降低,因此给予软件的数字电视产品最终会通过市场来反哺其研发,实现良性的循环。

友情链接