时间:2023-03-14 14:53:22
引言:寻求写作上的突破?我们特意为您精选了12篇航空发动机论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
针对航空发动机型号,现有的PDM技术已经可以较好的对其进行技术状态管理。由于实际装配中,单台航空发动机技术状态强调可追溯性,即对于每一台发动机在排故、维修、大修时需要明确其装配技术状态历史,就必须对单台发动机进行装配技术状态管理。进行单台发动机装配技术状态管理的基础是结构化的数据模型,装配环境下的技术状态数据可以分为三大部分:物料信息、工艺信息与检验信息。这里的物料信息是指产品基本信息及组成产品的各种零/组/部件的信息;工艺信息是指装配各级物料节点所执行的工艺/工序/工步的信息;检验信息是指执行装配的关键项进行检验,具体表现为相对应的检验项的规定值与实际值。物料信息、工艺信息、检验信息都可表示为树形结构。它们间也具有复杂的对应关系,其中包括:工艺与部件或组件对应、检验表与工艺对应、检验项与工序对应、子检验项与工步对应等。由于航空发动机的多装多试的特点,单台发动机在其生命周期的多次装配中会频繁的发生物料信息、工艺信息和检验信息的改变,集中表现在由于串换件、寿命件的到期等,发生各级物料(部件/组件/零件)的变化;由于采用不同版次的工艺、针对个别发动机装配下发的技术文件、技术通知、工艺更改单等会产生工艺信息的变化;物料或工艺信息改变同时也伴随产生了检验信息的变化。因此单台发动机的装配技术状态不仅与同型号同批次的其他发动机的技术状态不同,在其生命周期内本身的技术状态也随时间变化。所以,航空发动机装配技术状态数据模型必须包含两个方面,从空间上说,要用尽可能用简单的模型表示出错综复杂的物料、工艺、检验信息的对应关系;从时间上说,要准确地刻画出发动机装配技术状态随时间变化的情况。
发动机装配技术状态数据模型的定义
以下对发动机装配技术状态在时间条件约束下的物料、工艺、检验等信息进行定义。定义1:航空发动机装配技术状态模型,C={M,PAC,R,T}。其中M为物料信息集合、PAC为工检信息集合、R为关系集合、T为时间。当物料信息集合为整台发动机的物料信息时,C表示单台次发动机T时刻的技术状态;当物料信息为整台发动机物料信息子集时,C表示相应部件、组件等的技术状态。定义2:物料节点集合M:航空发动机某一时刻物料集合为:M={m1,m2,m3…,mn},n∈N,N为自然数;mi={IDmi,a1,a2,a3,…,ak},k∈N,mi∈M。M中mi可以是产品、部件、组件或者零件,为产品任意级物料节点。mi中IDmi为物料节点的唯一标识,a1,a2,a3,…,ak为这一物料节点属性,比如关键尺寸、物料寿命、是否为关重件的标识等,可灵活的根据需要进行实例化。定义3:工检信息集合PAC:PAC={pac0,pac1,pac2,…,pacl},l∈N;Paci={IDpaci,b1,b2,b3,…,bl},t∈N,paci∈PAC。由上面的分析可知,虽然物料信息和工艺信息节点不是同级一对一的关系,对于具体的发动机产品,工艺及检验信息节点也总是伴随着唯一的物料节点出现,这里不妨将相对应的两种节点合并为工艺及检验信息节点,也是适应了许多先进发动机制造厂商实行的“工检合一”的需要。对于每一个工艺及检验信息节点paci,IDpaci为工艺及检验信息节点的唯一标识。类似于定义1,b1,b2,b3,…,bt亦为paci(1≤i≤l)工艺信息节点的属性,当paci为不同级别的工艺信息节点时,属性可以实例化为工艺版本、关键工序标识等。当paci为工序级节点,若bj={IDbj,CheckContentbj,CheckStandardbj,CheckValuebj}表示一个子检验项,其中,IDbj唯一标识了该子检验项,CheckContentbj为子检验项的具体内容,CheckStandardbj为检验项的规定值,CheckValuebj为检验项的实际值,该属性可给出单件产品由于每次装配产生的检验项信息,一般表示执行一个工步产生的检验信息。定义4:关系集合R=MR∪PR∪MPR其中:MR={r|r=(mi,mj),若埚mi和mj的父子关系,mi,mj∈M};PR={r|r=(paci,pacj),若埚paci和pacj的父子关系,paci,pacj∈PAC};MPR={r|r=(mi,pacj),若埚mi和pacj的对应关系,mi∈M,pacj∈PAC};该集合可以确定出技术状态模型中存在的物料信息节点之间、工艺及检验信息节点之间、物料信息节点与工艺及检验信息节点之间三种关系。图2展示了一个简化了的技术状态模型的具体例子,该模型具有三层物料信息结构。左面的部分为单台发动机产品的物料状态,右边的部分为与之相对应物料的工检信图1航空发动机装配技术状态息,用连线表示存在相关的关系。
发动机装配技术状态数据模型的基本操作
中图分类号:V233.7 文献标识码:A 文章编号:1672-3791(2015)02(c)-0210-02
1 研究背景
研究目的:针对航空发动机控制部件进行实体建模,建立部件数据库,包含部件的结构参数与控制特性;并搭建控制系统工作特性的仿真平台,能方便地组建控制系统与分析系统的工作特性,并对系统进行优化设计,服务于教学实践。
研究意义:航空发动机的发动机性能计算机仿真不仅能够指导发动机设计、缩短研制周期、节约经费,而且具有良好的可控性、可观性、安全性、重复性和经济性等特点。建立合理、准确的航空发动机工作过程的数学模型是发动机性能仿真的基础,建立适合于各种仿真目的的发动机仿真模型是仿真试验与分析的关键。
2 发动机转速控制系部件及系统
2.1 动态特性
根据航空发动机转速控制系统的工作原理,构建转速控制系统的原理图。
当系统的输入量不变,只考虑干扰量时,系统的传递函数为
2.2 稳态特性
稳态的误差是控制系统准确度的一种量度,是控制系统性能的一项重要指标。在航空发动机控制系统中,由于发动机的外界条件经常发生变化,系统要在频繁的干扰输入下工作,因此,对干扰恢复稳定时,输出量的给定值与实际值的偏差。但作为系统稳态性能分析,需要讨论系统输入和干扰输入两种情况。
主要根据终值定理:
假设系统的干扰输入为零,即,误差传递函数为
系统的开环传递函数为
系统对单位阶跃输入的稳态误差为零,对单位斜坡输入的稳态误差为常数。
2.3 控制系统模型建立
使用AMESim对航空发动机转速调节系统建模仿真过程中,首先基于转速调节器结构原理图,经对原理图及工作过程分析,确定对建模仿真具有重要作用的系统关键元件;其次,根据各元件特点将调节器主要元件分类为机械元件、液压元件等;然后针对不同类别,对各元件采取相应的建模方法分别进行建模;最后,再根据原理图连接各关键元件,构建调节器模型。建模过程的主导思想是力求为用户提供元件尽可能多的输入参数,并具有尽可能准确的数学模型[1]。
3 控制系统的优化
对于控制系统的优化,根据性能的指标要求对系统性能的参数进行调整。其中,系统不可调整参数为油泵参数K3=1.0,K4=1.0;发动机参数TE=0.9s,KE=0.23[2],见表1。
通过参数的调整得到不同的单位阶跃响应曲线、单位脉冲响应曲线、系统的Bode图以及系统根轨迹图(见图1),对在不同参数下的稳定性、灵敏性、系统的开环频率特性和闭环系统的时域响应特性,进行分析,找到并得出最合适的控制参数。
发动机的动态特性随发动机的工作状态和飞行条件改变而改变。高空低速飞行并且发动机在低转速状态工作时,发动机的动态性能最差。因此,在完成设计状态下的系统性能分析检查后,必须在各种飞行条件下,对发动机的各种工作状态进行系统仿真,并按性能指标定量检查仿真结果。若性能不满足要求,应重新调整参数值,直至满足性能指标要求为止。如果调整参数值仍不能达到要求,应重新修改校正装置结构或重新设计。
4 发展的前景以及优势
目前研发的航空发动机控制部件及系统仿真教学平台主要是针对单转子喷气式发动机的研究,对于目前新一代航空发动机采取的控制手段是电子控制技术,即全权限数字发动机控制器FADEC。数字电子控制器能够进行复杂运算,实现更为复杂的控制规律,可以布置更多的发动机载传感器,用于监控发动机工作状态并且能使发动机控制系统具备故障诊断和故障重构能力,大大提高可靠性,实现发动机自适应控制[3]。
5 结语
该文研究的主要内容包括:首先,分析了航空发动机控制系统建模仿真技术的发展情况;其次,分析研究了液压机械式发动机及其转速控制系统的组成及工作原理,并对带比例反馈的转速控制系统的组成及工作原理进行了详细的分析研究;再次,提出了基于AMESim的航空发动机燃油调节系统建模仿真研究方法;紧接着使用该建模方法对液压机械式发动机转速转速控制系统进行了建模;最后,对开环、闭环转速控制系统性能分析研究,并对“软参数”流量系数的计算及变化情况进行详细的分析研究并得到单位阶跃响应曲线、单位脉冲响应曲线、系统的Bode图以及系统根轨迹图。
该文所建立的航空发动机转速控制系统仿真平台,通用性强,使用灵活,利用此控制系统可以实现各种发动机转速控制系统的仿真。在已研发的航空发动机控制部件及系统仿真教学平台的基础上进行完善、改进,将航空发动机电子控制技术引入进该仿真教学平台去,拓展航空发动机控制部件及系统仿真教学平台的应用范围,有利于更好地理解、学习航空发动机的工作原理。
参考文献
一、引言
20世纪以来,随着航空发动机技术的不断突破,其性能得到了很大的提高。与此同时,航空发动机的各相关成本也在节节攀升,而且在与其性能权衡的过程中逐步凸显出来,成为一个关键问题。
全寿命周期成本(Life Cycle Cost,
LCC)最早是由美国国防部提出的,对于航空发动机来说,LCC是指政府或者其他机构在项目的全寿命周期内所花费的全部支出,这里所提到的全寿命周期一般包括研制、生产和维护、弃置三个阶段。LCC的提出为我们进行成本管理提供了一个新的思路,它的作用至少体现在以下方面:(1)评价竞争项目;(2)寻找成本驱动因素,降低成本;(3)更加准确地预测详细成本;(4)权衡性能与成本。这四个方面的作用都要以LCC的估算为基础。
本文试图以作业成本法的思想为基础,结合已有的研究成果,提出一种新的LCC估算思路,以此改进现有的LCC估算方法。
二、文献回顾
美国国防部于20世纪60年代中期提出了“LCC”的概念,在此之后,包括武器装备在内的产品或系统的LCC估算模型和方法获得了广泛的研究。从国外的情况来看,这些研究主要是集中于美国的一些研制单位和研究机构,比如兰德(Rand)公司、美国国防分析研究所(Institute for Defense Analysese,IDA)、美国航空航天学会(AIAA)等。最早提出的方法是参数估算法(Parametric),它是以航空发动机的性能参数为基础来对LCC进行估算的,运用该方法可以在项目的方案设计阶段对项目的LCC进行估算。J.R.Nelson(1978)在《航空涡轮发动机的全寿命周期成本》一文中提到了兰德公司提出的航空发动机的LCC估算模型,这个模型便是参数估算模型的一种,它是兰德公司在研究了美国29种涡轮发动机的数据以后所建立的,模型中用到了推重比、涡轮进口温度和耗油率等参数。与参数估算法几乎同一时间出现的还有类推估算法(Analogous),这种方法是以参照发动机的LCC为基础来估算新研制发动机的LCC。Boehm(1981)在《软件工程经济》一文中提到了类推成本估算法,这种方法简单易行,通常也用于项目的早期阶段,但其估算结果很大程度上取决于新研制发动机与参照发动机的相似性。随着项目的逐步推进,详细的工程分析得以进行,这便为“自下而上(Bottom-up)”估算法的提出创造了条件。这种方法也被称为工程估算法,它是利用工程分解结构自下而上地逐项计算成本,将整个项目在寿命周期内的所有成本单元累加起来得出LCC的估计值。以上提到的三种方法是较为传统的方法,R.Curran(2004)等人在《航空工程成本模型回顾:遗传因果关系的方法》一文中对近些年来所提出的一些新的方法作了阐述,包括基于特征建模法(Feature-based modelling)、模糊逻辑法(Fuzzy logic)、神经网络法(Neural networks)、不确定性法(Uncertainty)、数据挖掘法(Data mining)。除了美国学者在这方面所作出的贡献外,英国南安普顿大学的S.V.Tammineni(2009)等人提出了基于知识的航空燃气涡轮发动机的成本建模方法,这也是一种较为新颖的方法。
国内的相关研究起步较晚,较早对这一问题进行系统研究的是李屹辉(2000),在其硕士论文《军用航空发动机全寿命费用分析研究》中,李屹辉构建了航空发动机在寿命周期各个阶段的成本估算模型,但由于数据较难搜集,没能确定模型中变量的系数。在这之后,很多学者将研究的重点放在了研制成本的估算上,比如徐哲、刘荣(2005)用偏最小二乘回归法来估算武器装备的研制成本,杨梅英、沈梅子(2006)用灰色组合模型来估算发动机的研制成本,但这两篇文章所用的数据都是美国的。也有学者由于数据较难搜集转而提出一些成本估算的框架,比如尹峰、刘劲松(2006)在《发动机研制费用的测算》一文中以工程估算法为基础构建了成本要素框架,谭云涛、郭波(2007)提出了基于CAIV的航空发动机性能与费用的综合权衡模型框架。除了以上提到的参数估算法和工程估算法,周琦、李震模(1999)用神经网络法对导弹武器系统的研制成本进行了估算。总的来说,国内的研究由于数据搜集问题较难开展。
从国内外的研究情况来看,不论是传统的估算方法,还是较新的估算方法,都有一个共同的缺陷——细化程度不够,成本估算以主要性能参数为输入,直接以LCC为输出,不能对成本形成的原因进行识别和控制。本文试图在性能参数和LCC之间架起“作业”的桥梁,以便更加准确地估算LCC和更好地进行成本控制。
三、基于作业成本法的航空发动机全寿命周期成本估算
(一)作业成本法
作业成本法(activity-based c-
osting,ABC)的基本思想最早由美国会计学者科勒在20世纪30年代末40年代初提出,随着间接费用在产品总成本中的份额越来越大,传统的成本核算方法逐渐露出弊端,作业成本法应运而生。这种方法以作业为间接费用归集对象,通过资源动因的确认、计量,将资源费用归集到作业上,再通过作业动因的确认、计量,将作业成本归集到产品上,其流程如图1所示。
中图分类号:V2 文献标识码:A
Abstract:In order to overcome the modeling errors existing in the controller design of flight control system and the influence of interference during the flight, this paper completed the controller of a certain type battle fuel machine control system by adopting LQG/LTR robust control method. And in order to improve the control precision of the fighter and to solve the limitations of selection of the weight matrix Q and R, genetic algorithm was added to find the optimal online . Simulation results show that, compared with PID controller based on genetic algorithm, LQG/LTR control system based on genetic algorithm has good robustness, rapid response, and high control accuracy, which can meet the flight control requirements of the fighter.
Key words:LQG/LTR;robust control;genetic algorithm;PID;Matlab/Simulink
1引言
航空发动机是一个结构极其复杂、工作环境极为恶劣、强非线性的被控对象。在实际工作过程中, 航空发动机特性会随着负荷或飞行条件的变化而发生变化。近年来,航空发动机控制性能改善方面发展了许多新方法,文献[1]针对航空发动机分布式控制系统,提出了基于鲁理论容错控制,针对系统的参数扰动,不确定时延等不确定性问题进行控制调节,取得了良好的控制效果;文献[3]针对发动机的非线性和不确定性,采用径向基神经网络逼近系统的方法,验证了其有效性;文献[4]采用基于遗传算法的PID控制具有良好的寻优特性,在不同飞行条件下获得了较好的控制效果;文献[5]通过遗传算法对LQR权矩阵Q和R进行优化,进而提升控制效果。可见,遗传算法在航空发动机控制过程中,因其具有良好的寻优性,同时克服了单纯形法对参数初值的敏感性的优势,应用比较广泛,且取得了良好的寻优效果。
LQG/LTR(Linear Quadratic Gaussian with Loop Transfer Recovery)方法作为鲁棒控制系统中,研究比较多的方法,这种设计方法具有计算简单,控制器结构简单、鲁棒性能好等优点,在工程应用中价值很高。本文采用LQG/LTR控制方法,利用遗传算法在线寻优,设计了某型战斗机的燃油控制系统的控制器,分别用该方法和基于遗传算法的PID控制方法等对不同马赫数和高度下的飞行情况进行仿真,同时为了验证该算法对系统参数摄动不确定性,也进行了相关仿真。
2基于遗传算法的LQG/LTR控制器的设计
基于遗传算法的LQG/LTR控制方法,包括LQG/LTR控制器设计,同时与遗传算法结合,适应度函数选取跟误差积分以及u2(t)相关,同时增加了惩罚手段,减少阶跃响应超调量。通过遗传算法迭代,对权矩阵Q和R进行优化进而得到最优的状态反馈矩阵,代入simulink仿真模块,进而得到仿真结果。
2.1LQG/LTR控制器的设计
LQG/LTR是近年来鲁棒控制发展的重要理论之一,可应用于单输入-单输出(SISO),也可应用于多输入-多输出(MIMO)系统,它以分离原理为核心。通过设计一个Kalman滤波器和一个最优反馈控制器来完成。
选择合适的参数W,V使图1中的I′处卡尔曼滤波器的回比函数HI′的奇异值曲线形状满足系统的鲁棒性要求;再设计一个LQR调节器,通过调节Q,R直至I处的HI的主增益曲线足够地趋近于卡尔曼滤波器回比函数HI′的主增益曲线。因此,应用LQG/LTR设计方法时,只需要设计好I'处的卡尔曼滤波器的回比函数,然后通过LTR就可以使系统性能得到保证。但是一般情况下,LQR调节器中的Q,R权矩阵的选择是通过专家经验,一步步试验得到,工程计算量大,实际上很难达到最优,论文在这个问题上加入了遗传算法进行在线寻优。
2.3遗传算法多目标寻优
LQG/LTR设计方法中,决定闭环系统性能的回比矩阵奇异值图的形状只能通过对LQR加权矩阵Q和R的不同选择来调整,如何去选择,并没有解析方法,只能定性的去选择矩阵参数,实际上很难达到最优,故调整范围有一定的局限性,直接影响了控制性能和鲁棒稳定性。为克服该局限性,本文提出一种LQG/LTR改进方案。
论文应用遗传算法,将LQG/LTR方法中的LQR调节器权矩阵Q和R作为优化对象,以控制系统的e(t),u(t),ts(阶跃响应上升时间)作为性能指标,组成适应度函数,通过全局搜索能力,对加权矩阵进行优化设计,以提高LQR的设计效率和性能。图2为基于遗传算法的LQG/LTR控制的流程图。
从上述仿真曲线可知:
1)由图4.1可看出,随着种群代数的不断增加,最优个体的适应度函数值不断的减小,也就是说,遗传算法搜索到的适应度函数值也越来越小,更符合我们的控制要求。
2)由图4.2可明显看出,基于遗传算的LQG/LTR控制下的系统阶跃响应时间很快,波形稳定,没有稳态误差,上升时间有明显的优势。同时,四种飞行条件下的曲线对比,阶跃响应并没有随着马赫数和高度的增加而呈现明显的趋势变化,但在马赫数为0,高度为0 km的情况下,控制效果更好,响应时间更快。
3)由图4.3至图4.6可看出,曲线①控制效果一般,响应时间较其他两种控制方法较长,只有在图3情况下,响应时间最快,但是却有明显的超调现象;曲线②控制效果较好,响应时间较长,但是一直没有超调不明显;曲线③控制效果最好,响应时间最短,超调也不明显,没有稳态误差。
4)图4.8和图4.9可看出,即使是在参数不确定的情况下,基于遗传算法的LQG/LTR控制仍然能够保持很好的控制效果,具有很好的鲁棒性和抗干扰能力。
5)根据不同马赫数和高度下四个系统的控制效果参数对比,以及对其参数不确定性和外部干扰仿真,基于遗传算法的LQG/LTR控制均具有比较良好的控制效果,具有很好的鲁棒性和抗干扰能力。
5结论
本文通过LQG/LTR方法,设计了模型战斗机的燃油系统的控制器,解决了LQG/LTR在设计LQR调节器时,权矩阵Q和R的选取困难的问题,提出了基于遗传算法的LQG/LTR控制算法,并与经典控制理论基于遗传算法的PID控制算法相比较,进行了不同飞行条件下的控制试验,同时针对航空发动机建模的参数不确定性以及外部干扰试验,经试验结果证明,基于遗传算法的LQG/LTR控制不仅鲁棒性好,控制精度高,而且阶跃响应灵敏,反应快速,同时具有很好的抗干扰能力,更能满足战斗机快速反应的要求,具有很好的现实意义和应用前景。
参考文献
[1]王磊,谢寿生,彭靖波,等. 航空发动机分布式控制系统不确定性鲁棒H∞容错控制[J].推进技术,2013, 34(6):836-842.
[2]傅强,樊丁. 模糊自适应整定PID在航空发动机中的应用研究[J]. 计算机仿真,2006, 23(3):54-57.
[3]傅强,智能PID控制器在航空发动机控制中的应用研究[D].2005
[4]彭靖波,谢寿生,胡金海. 基于遗传算法的某型涡扇发动机数字PID控制器设计[J]. 燃气涡轮试验与研究,2008 ,21(1):47-50.
[5]郭一峰,徐赵东,涂青,等. 基于遗传算法的LQR算法中权矩阵的优化分析[J].振动与冲击,2010,29(11).
[6]MACIE JOWSKI J M. Multivariable feedback design [M].British:AddisomWesley Publishers Ltd,1989.
[7]樊思齐.航空发动机控制[M].西北工业大学出版社,2008:422-476.
[8]薛定宇. 控制系统计算机辅助设计――MATLAB语言及应用[M].北京:清华大学出版社,2011.
[9]黄辉先,李燕,庄选,等.基于LMI的滑模控制在航空发动机中的应用[J].计算机工程与科学,2014,36(6):1198-1203.
[10]苗卓广,谢寿生,吴勇,等. 基于改进粒子群算法的航空发动机状态变量建模[J]. 推进技术,2012,33(1):73-77.
[11]李述清,詹济民,李明,等. 鲁棒PID设计在涡扇发动机中的应用[J]. 计算机仿真,2011,28(3):106-109.
[12]孙健国. 面向 21 世纪航空动力控制展望[J]. 航空动力学报, 2001, 16(2): 97-102.
[13]郭虹. 航空发动机控制系统的发展趋势[J]. 沈阳航空工业学院学报, 1997, 14(1):70-74.
中图分类号:V235.13 文献标识码:A 文章编号:1009-914X(2017)13-0123-01
1 起动过程简介
航空发动机从零转速加速到慢车转速的过程称为起动过程。发动机的地面起动一般包含以下三个阶段[1],第Ⅰ阶段:燃烧室点火燃烧之前,在起动机的辅助下,将发动机的转子加速接近至点火转速。当高压转速到达时,向燃烧室中喷入燃油并点燃。第Ⅱ阶段:待燃烧室内燃油点燃形成稳定的火源之后,涡轮便开始进入工作状态,发出功。第Ⅲ阶段:当发动机转速达到时,涡轮的输出功率已明显远大于压气机所需要的功率,此时,可以断开起动机与发动机之间的联接,发动机依靠涡轮的扭矩独自将发动机从加速到慢车转速,至此,完成发动机的整个起动过程(图1)。
2 起动油量对发动机起动情况的影响
从式中可见,某型发动机转速与油量呈函数关系,对其地面起动过程来说,选择合适的起动供油规律至关重要。
试验在地面环境温度达到36~38℃时进行,当大气温度较高时[2],虽然滑油、燃料的物理性质变化都会更有利于起动,但由于空气流量的减小,燃烧室内容易形成过分富油燃烧,从而导致温度过高。故高温条件下对起动油量的考核最苛刻,起动油量选择不恰当极易导致温度上升过快而超温。
3 试验结果分析
3.1 试验方法
试验设计过程中尽量避免其他因素对试验的影响,仅分析起动供油量对发动机起动的影响。试验点选择过程中尽量保证环境温度和压力变化不大。
起动过程中起动机脱开的逻辑是:起动到达一定时间或者发动机n2转速大于一定值。发动机起动试验过程中,为了避免起动机功率影响,起动过程中尽量保证起动机进口空气参数一致。
试验过程中选择4种供油规律,通过分析4种供油规律的起动机脱开转速、起动机脱开时的排气温度、起动过程中最大的排气温度和起动时间来分析起动油量对地面起动的影响。
3.2 试验结果分析
由于在高温天气起动,起动过程中起动时间较长,4种方案的起动机脱开均为时间脱开。
a)方案1
选择起动油量为下图2中方案1。起动过程中,转速上升缓慢,起动机脱开转速为41.2%,后3阶段排气温度上升至接近起动极限排气温度,S后停止起动发动机。
从起动不成功的现象看,2阶段起动机脱开时排气温度为4方案中最高,可见起动前期温度上升较快,而后期排气温度上升至其起动排气温度最大值,故将起动供油规律调整为方案2,在原始供油基础上2阶段段减6%油,控制前期过快上升的温度;对起动机脱开后3阶段油量也进行更改,减4%油,抑制排气温度上升。
b)方案2
采用方案2后再次起动,发动机起动成功,起动机脱开时转速48.4%,较方案1有明显提高,脱开时排气温度降低23℃,但起动过程中最大排气温度接近极限温度,起动时间82s。从起动机脱开加速至慢车转速时间(起动3阶段)为32s,后期发动机转速上升缓慢,起动时间仍较长,排气温度最大值也较高。
c)方案3
方案2虽然能够起动成功,但其排气温度在起动机脱开时已经较高,最大排气温度接近极限,起动时间较长。故采用方案3,2阶段在方案2的基础上再减4%的油量,抑制前期过快排气温度增长;起动机脱开后发动机转速上升缓慢,在起动3阶段增加油量。从表1中可知,采用方案3后起动发动机成功,起动时间缩短3s,排气温度最大值比方案2高5℃,起动机脱开转速为45.1%,脱开时排气温度比方案2低31℃,起动时间缩短2s,从起动的情况来看,采用方案3后,虽然起动机脱开时排气温度较低,起动2阶段转速上升较慢,起动时间较长。而发动机排气温度在3阶段上升过快,起动后段增加油量不可行。
d)方案4
方案4相对方案1在起动2阶段减小5%左右,起动机后段后油量和方案1相同。发动机起动成功,起动时间较方案2减少6s,起动排气温度最大值较方案3减小29℃,起动机脱开转速47.4%,脱开时排气温度减小11℃,相较与其他几次规律较好。
方案4减少了2阶段段供油量,抑制了前期过快增长的温度,同时又不至于使转速上升过慢,使排气温度控制在较为合理的范围内;在3阶段期的供油与方案1相同,使起动机脱开后涡轮带转阶段转速上升在合适范围之内(表1)。
4 结论
通过实验得到以下结论:
a)对于起动供油规律为转速-油量规律的发动机,合适的起动供油规律至关重要,选择合适的起动供油规律能有效的降低排气温度最大值,缩短起动时间;
b)所选择的4个方案中4号方案起动时起动油量较为合适,抑制排气温度过快上升,发动机转速上升快,起动时间短。
一、模拟的类型
1.模拟的基本类型
模拟是以科学技术理论与实践为基础,在一定环境与条件下,将研究对象用其它手段进行模仿的一种实验方法。该方法不直接涉及研究对象固有的现象与过程本身,而是设计一个和该现象与过程相似的模型,并通过该模型间接地呈现出该现象与过程。模拟实验的目的主要是便于经济地检验、验证、再现、发现或揭示该现象与过程的特征、演变规律与内在机制。
模拟的基本类型有物理模拟与计算机模拟。
物理模拟是制作和某现象与过程相似的物理模型,并对该模型研究,获取该现象与过程的特征。
计算机模拟是利用计算机对某现象与过程进行求解、分析、判断以及图像显示等,得出该现象与过程的特征。计算机模拟有模型模拟和统计模拟两种基本方法。
2.模拟实验方法的进展特征
科学技术的发展,对许多航空航天系统有越来越严格的性能要求[4-7]。为探索性能的未知特性,实时评估与预测性能退化轨迹,科学技术研究已经从静态发展到动态、从线性发展到非线性、从确定性参数发展到不确定性参数、从不变性函数发展到多变性函数。面对这些新问题,现有研究所采用的模拟实验方法取得了许多进展。
以近年来航空航天技术领域的某些中文科技论文为案例,经研究发现,模拟实验方法的最新进展以依赖问题的属性信息和现场信息为特征,旨在求解动态、非线性、不确定性与多变性等复杂问题,根据对问题信息的依赖特征,将现有的模拟实验方法归纳为属性依赖法与现场依赖法。
二、属性依赖法
属性依赖法是基于属性、目标属性与层次属性等3个信息要素的模拟实验方法。
属性是问题的抽象刻画,表示问题的性质与关系。性质表示问题的固有特征,关系表示不同问题之间的性质传承与影响。
目标属性是期望得到的对问题属性的某种解答或认知。
层次属性是目标属性的分解,即将目标属性分解为若干个子属性。若子属性彼此独立,则称为同层次子属性;否则称为非同层次子属性。层次按从低到高的顺序分为多层,目标属性依赖于最高层子属性,最高层子属性依赖于次高层子属性,依次类推,直到最低层子属性。
根据目标属性的不同,属性依赖法又细分为同步进化法与层次进化法。
1.同步进化法
同步进化法是将问题分解成低一层次的多个彼此独立的子问题,用基本模拟方法逐个解决各子问题,最后融合出结果。这是一种化整为零、逐个击破、同步进化的方法。具体做法是,若目标属性是由多个低一层次的独立子属性综合构成,则可以根据各独立子属性的特征,进行子属性模拟,然后推断各子属性的模拟结果,使各子属性由低层次同步进化至高层次,获得目标属性特征。
例如,揭示航空发动机非线性动力学特征是相关领域的一个重要问题。为此,文献[7]综合现有方法的优点,提出一种振动耦合动力学模型,计算出系统非线性响应,并在两个航空发动机转子模拟装置上进行模态实验,发现计算结果与实验结果有很好的吻合性。
在这个案例中,非线性响应特征问题被分解为2个同层次的子问题,即理论建模计算与模态实验,2个子问题解答的融合是将计算结果与实验结果进行对比分析。可以看出,解决这2个子问题的实验模拟方法分别是物理模拟和计算机模型模拟,经过对2种模拟结果的对比检验,最终推断出航空发动机非线性响应的某些特征,为探索航空发动机非线性动力学特征提供了新思路。
2.层次进化法
层次进化法是将问题按属性层次由低到高地分解成多个前后有联系的子问题,用基本模拟方法逐步解决各子问题,最后直接得到结果。该方法的特点是化整为零、逐步击破、依次进化。具体做法是,若目标属性可以分解为多个彼此低一层次的关联子属性,则可以根据各子属性的特征,按照设计好的步骤,依次进行子属性模拟,逐步使属性由低层次向高层次进化,逼近目标属性特征。
例如,航空发动机的故障诊断技术对发动机性能的可靠性、维护性和保障性有重要影响。但是,现有研究主要关注故障诊断算法的有效性,尚未有效验证故障检测率、定位率与虚警率等指标,从而无法定量评价故障诊断系统性能。这里的问题是如何定量评价故障诊断系统性能?
为此,文献[4]将问题分解为混合卡尔曼滤波器组故障诊断理论,发动机故障诊断系统和故障诊断实验等3个不同层次的子问题。这3个层次的进化关系为:(1)用计算机模型模拟方法构建混合卡尔曼滤波器组,为发动机故障诊断系统奠定理论模型基础;(2)基于理论模型,针对民用涡扇发动机常见的4种故障,用物理模型模拟方法搭建发动机故障诊断系统,为故障诊断实验奠定基础;(3)基于故障诊断系统,用统计模拟法评价出发动机故障诊断系统性能的定量指标值。
在该案例中,依次解决3个子问题的实验模拟方法分别是计算机模型模拟、物理模型模拟和统计模拟,最终目标是实现故障诊断系统性能的定量评价,为工程实践提供了重要依据。
三、现场依赖法
现场依赖法是基于时间序列和参数序列的模拟实验方法,时间序列和参数序列统称为序列。时间序列是将某现象的某一个指标在不同时间上的各个数值按时间先后顺序排列而形成的序列,序列中的信息与时间密切相关。参数序列是由某现象的某些特征值构成的序列,序列中的信息与时间没有关系。
现场依赖法是指依赖于问题真实现场信息的一种模拟实验方法,其特点是,在模拟实验中有现场的实时信息输入、输出与交流,可以及时矫正评估与预测结果。按照现场实时信息特征,现场依赖法可以细分为时间序列依赖法与参数序列依赖法。
1.时间序列依赖法
时间序列依赖法是根据现场实时信息的输入时间序列来实施输出序列运行轨迹评估与预测的一种模拟实验方法。
不确定性的输入时间序列干扰会导致输出时间序列运行轨迹发生未知的非线性与多变性演化,通过将外界的真实或模拟真实的时序干扰输入模拟实验系统,获取输出时间序列的演化响应机制,及时预测与矫正其运行轨迹,可以为真实航空航天系统的可靠运行奠定基础。
例如,为揭示大气阻力导致卫星轨道衰减的机制,文献[1]构建了模拟实验系统,将地球扁率与大气阻力摄动影响作为输入时间序列,通过模型模拟输出轨道根数变化,获取卫星轨道高度衰减结果即输出时间序列。其中,依赖的现场实时信息是经模拟改进的用某卫星高精度加速度仪测量得到的大气密度数据。尽管热层大气密度数据呈现出明显的动态、非线性、不确定性与多变性时序特征,模拟轨道序列与卫星实际轨道序列仍然保持一致,发现了卫星运行轨迹演变的新特性,研究成果具有创新性。
2.参数序列依赖法
参数序列依赖法是根据现场实时信息的输入参数序列来实施输出序列运行轨迹评估与预测的一种模拟实验方法。
常见参数有刚度、阻尼、固有频率、压力、流量与温度等,多种参数的组合构成参数序列。模拟实验系统的参数序列取值应该与真实系统的参数序列保持一致,才能可信赖地实施输出序列运行轨迹评估与预测。
例如,文献[8]的卫星在轨微振动环境模拟实验,用物理模拟方法构建出低频弹性支撑装置,揭示出自由边界条件对卫星动力学特征的影响机制,为提高卫星在轨微振动地面模拟实验精度奠定了基础。其中,依赖的现场实时信息是微振动扰振,输入参数序列为激振力参数,输出序列为模拟卫星弹性体的模态相应。
四、结 语
基于科学技术问题的属性信息和现场信息特征,提出模拟实验的属性依赖法与现场依赖法,可以解决动态、非线性、不确定性与多变性问题,为模拟实验方法的发展提供新思路。
模拟实验方法归类为科学技术研究方法论,合理运用属性依赖法与现场依赖法可以有效地验证或再现研究对象的表现,揭示其演变规律,发现某些未知特性。
引言
在航空发动机结构中,高压压气机转子后轴承属主轴轴承,工作时支撑着发动机的高速旋转转子,属高速旋转件,亦是关键件,工作时最高转速达17626r/min,对发动机的安全可靠工作起着非常重要的作用。高压压气机转子后轴承为内圈无挡边的圆柱滚子轴承,轴承内环与高压压气机转子轴颈过盈量最大达到0.038mm,其主要分解工艺方法是采用拔卸工具。因此,在常温下任何分解操作不当都易造成高压压气机转子后轴颈外表面产生严重拉伤、拉沟、甚至报废,严重影响航空发动机的生产交付。
感应加热是一种典型的电加热。主要是利用电磁感应的方法在被加热工件的内部产生电流(即涡流),通过涡流产生的涡流热来加热工件。该方法具有加热效率高、节能;温度易控制和调节;升温快;无明火,可控性好等优点。特别适用于圆筒形导电物体的加热,在轴承分解中使用方便。
1.感应加热原理及设备参数选择
1.1感应加热的基本工作原理
如图1所示,导电物体被置于交变电磁场中,利用电磁感应的涡流及磁滞所产生的热量加热,它是电磁感应、涡流的集肤效应及热传递三项基本原理的实际应用。集肤效应表明:电流或电压以频率较高的电子在导体中传导时,会聚集于导体表层,而非平均分布于整个导体的截面积中。频率越高,趋肤效用越显著。电流在表面流动,中心则无电流。同时,涡流的电流密度由物体的表面向内部方向按指数规律衰减。
1.2分解工艺方法
由于高压压气机转子后轴承内环感应加热后,向轴颈传递热量较快,因此分解过程应迅速。通过研究分析,若在加热过程中,将高压压气机转子后轴颈置于竖直向下,轴承内环感应加热后在自重作用下能够实现自动脱落。采用该方式,保证轴承内环分解迅速,不会造成高压压气机转子后轴颈外表面产生机械损伤。但加热后应保证轴承内环温度不能超过最高允许温度。
1.3设备基本参数确定
感应加热器的设备参数一般根据工艺要求的功率、轴承内环的外形尺寸、材料性能等来计算线圈的匝数、导线的截面、加热频率大小及磁路的结构等。
1.3.1 线圈匝数
因影响因素较多,常采用如下经验公式来确定线圈的匝数:
3.检测
3.1残磁检测
对于航空轴承而言,若残磁量较大,对航空发动机的安全使用存在很大隐患。不同于电阻加热、电弧加热等其它加热方法,轴承内环经过感应加热后存在残磁。经检测,轴承内环残磁值符合GJB 269A-2000《航空滚动轴承通用规范》中,轴承外径﹥50~120mm,残磁最大值不大于0.6mT的规定。
3.2硬度检测
为了检测高压压气机后轴承内环在感应加热后机械性能的变化情况,本论文对实验件进行了硬度检测。检测结果表明,轴承内环感应加热前、后,硬度无明显变化。并符合GJB 269A-2000《航空滚动轴承通用规范》中,同一零件的硬度差不超过1HRC的规定。
结束语:
本论文研制的中频感应加热设备,工作稳定,体积小,经加热后的轴承内环残磁值小于0.2mT,表面硬度无明显变化,完全符合GJB 269A-2000标准。该设备除用于小型轴承的分解外,也可用于其它具有类似配合的导电工件分解,如隔圈、轴外衬套等,并广泛用于汽车、机床、铁路等行业。
电火花表面强化是利用电极材料与金属材料表面间的脉冲火花放电,将电极材料熔融到金属表面,形成合金化熔渗层。电火花放电属于高能量密度放热,亦成电火花熔覆或称为脉冲电弧显微堆焊,可以提高零件的硬度、耐磨性、腐蚀性及热硬型等表面性能。电火花强化工艺方法简单,装备造价低,经济效益明显,因而广泛应用模具、导轨及齿轮、轧辊工件面的表面涂覆强化。此外还可以采用不同电极材料对工件表面的性能进行改性处理,亦可收到非常明显的工艺效果[1-6]。
航空发动机的涡轮导向叶片,普遍采用高温镍基合金制成,使用过程中这些部件经常出现裂纹等损伤。高温合金价格昂贵,如果受损部件一次性报废,势必造成极大的浪费,因此如何良好修复航空发动机的涡轮导向叶片等热端部件是一个亟待解决的问题。本文尝试采用电火花技术对受损部件进行修复。
1 试验步骤1.1 试验条件
试样用阴极射线从涡轮导向器上切下,材料为镍基高温合金K418,其化学成分(质量分数,%)为:C0.08~0.16,Cr11.5~13.5,Ti0.5~1.0,Fe1.0,Mn0.5,Al5.5~6.4,Si0.5,Nb1.8~2.5,Zr0.06~0.15,Mo3.8~4.8,B0.008~0.02,余为Ni。试样经100号粗砂纸打磨,再用丙酮清洗试样表面、干燥以脱脂。
试验设备为3H-ES型金属表面强化修复机。输入电压AC220 V,单相50/60 HZ,功率1500 W,频率70~700 HZ。采用HXS-1000型号的显微硬度仪,测试试样的显微硬度。
电极为旋转式,强化电极材料与试样材料相同。试验中采用氩气保护。
1.2 试验数据
为了尽可能从较少的实验中寻找出结论,采用正交实验法。电火花修复试验工艺参数如表1所示。
Abstract: with the rapid development of national economy, automobile production increased year by year, our country more and more cars, cars are more and more complex. Especially the rapid development of science and technology, the automobile industry competition has changed from single performance competition steering performance, environmental protection, energy saving, comprehensive competition. Only the automobile engine, to cope with the world energy crisis and reducing the environmental pollution, the research and development work has focused on reducing fuel consumption, reduce emissions, lightweight and reduce wear and so on, to optimize the technology will be widely used in these studies.
Keywords: engine, machine, technology, performance
中图分类号:S219.031文献标识码:A 文章编号:2095-2104(2012)
发动机是一部由许多机构和系统组成的是将某一种型式的能量转换为机械能的复杂机器。其作用是将液体或气体燃烧的化学能通过燃烧后转化为热能,再把热能通过膨胀转化为机械能并对外输出动力。而汽车发动机是汽车的动力装置。由机体、曲柄连杆机构、配气机构、冷却系、系、燃料系和点火系(柴油机没有点火系)等组成。按燃料分发动机有汽油和柴油发动机两种。按工作方式有二冲程和四冲程两种,一般发动机为四冲程发动机。
随着世界能源问题和环境污染问题的日趋严重,飞机及汽车作为污染环境和消耗能源的大户,备受人们的关注。发动机燃烧过程直接影响节能和环保,对发动机燃烧过程优化的研究越来越受到重视。
发动机设计以结构、热力、燃烧、强度、振动、流体、传热等多个学科为基础,可变因素多,随机性大,是一个可变互耦系统的优化问题。多学科设计优化通过充 分利用各个学科之间的相互作用所产生的协同效应,获得系统的整体最优解,因而在发动机传统设计流程图上有很大的应用优势。
发动机的优化涉及到多个目标,与单目标优化问题不同的是这些目标函数往往耦合在一起,且每一个目标具有不同的物理意义和量纲。它们的关联性和冲突性使得对其优化变得十分困难。多目标优化方法可以分为如下两大类并且已在发动机的优化设计中得到了应用。1.基于偏好的多目标优化方法此方法根据工程实际的具体情况,首先选择一个偏好向量,然后利用偏好向量构造复合函数,使用单目标优化算法优化该复合函数以找到单个协议最优解。如利用线性组合法对发动机的悬置系统进行多目标优化;利用加权法对液体火箭发动机的减损和延寿控制进行多目标优化。2.基于非劣解集的多目标优化方法 此方法首先需要找到尽可能多的协议解,然后根据工程实际情况,获得决策解。相比基于偏好的多目标方法,该方法更系统、实用和客观。如通过多目标遗传算 法,以单位推力、耗油率等为目标函数对航空发动机总体性能进行优化;基于多目标遗传算法对固体火箭发动机的性能和成本进行优化。在发动机的生产及实际使用中,总是存在着材料特性、制造、装配及载荷等方面的误差或不确定性。虽然在多数情况中,误差或不确定性很小,但这些误差或不确定性结合在一起可能对发动机的性能和可靠性产生很大的影响。对于此类不确定性问题的优化,传统的优化方法已无法解决,而必须求助于不确定性优化方法。 随着发动机质量越来越轻,而其功率和转速不断提高,振动和噪声问题越来越突出。振动不仅影响到发动机自身的强度和性能,而且会给车辆整体寿命和乘客舒适 性造成很大的影响。除了对发动机本身结构进行改进外,对发动机的减振系统进行优化也是一条提高车辆整体振动性能的有效途径。传统的弹性减振系统已无法满足 舒适性要求,未来的趋势是半主动减振和主动减振控制系统,即能根据发动机激励、路况、车辆行驶状态和载荷等自动调节系统参数,优化车辆动力学特性,实现主 动减振。车用发动机的减振系统是一复杂的非线性系统,而神经网络因其自身的非线性映射能力在未来发动机减振系统的优化设计中具有很大的潜力。另外,由于发 动机动力系统的复杂性,在模型、载荷、激励等方面都具有很大的不确定性,减振系统的优化不可避免地应考虑系统不确定性的影响,可以利用模糊集或区间数学理 论结合神经网络进行不确定性优化,以提高减振系统的可靠性和鲁棒性。
发动机的燃烧和排放系统直接影响到 发动机的燃油经济性、噪声、排放等重要指标,影响到汽车的节能与环保性能。对燃烧与排放系统的优化可从两个方面进行。一方面是燃料喷射系统的优化,可通过 电控单元精确控制各气缸的燃油喷射量,自由控制发动机的转矩,使得发动机具有良好的启动性能和最佳的输出响应特性,并使得气缸达到最佳混合气状态,提高燃 油热效率,降低噪声;另一方面是优化进气管系的结构参数,改进发动机燃烧室,优化压缩比。未来的燃烧与排放系统的设计,应当综合考虑喷射系统和发动机结 构,同时注重结构、燃烧、流体、噪声等不同专业领域的性能提高,进行多学科优化设计。汽油发动机的热效率为 20 %~30 % ,柴油发动机为 30 %~40 %。如能广泛地使用柴油机 ,将会节约大量燃料。柴油机的优点还在于它可以使用纯度比较低、价格比汽油便宜的柴油作燃料。据统计 ,将汽油机转换为柴油机 ,每升燃料的行程里程平均可增加 35 % ,同样质量和功率相同的柴油机与汽油机相比 ,油耗可降 15 %~ 25 %。因此 ,各汽车制造商都积极地增加柴油车的比重 ,目前绝大多数商用车都装备柴油机 ,而各汽车厂商提供的装有柴油机的轿车、行车也日益增多 ,如宝马、奔驰、奥迪、丰田、本田、马自达等都在全力开发并推出环保型柴油车。在欧洲 ,轿车柴油化的比例已高达 40 % ,且有不断上升之势。
综上所述,优化技术在发动机的设计 制造中占有非常重要的地位。包括常规优化方法和智能优化方法在内的优化技术已被应用于发动机设计。考虑到能源的短缺和环境问题的重要性,未来的车用发动机 优化设计的研究将是以节能和环保为重点的综合最优,应当建立并应用多种不确定多目标多学科优化理论方法、策略及算法;并应大力开发在一个优化平台上集成各 个学科设计要求的多学科多目标优化设计系统,该系统将具有更高的优化效率和较好的开放性,可以更好地适应未来汽车个性化设计的趋势。
摘要:
[1]汽车行业一体化 (质量、境、业健康安全)管理体系认证的研究 .吉林大学 . 2007中国优秀硕士学位论文全文数据库 .
1引言
在现代工程应用中,PID控制以其结构简单、稳态无静差、鲁棒性强等优点一直处于主导地位。但PID控制在面对“黑箱”、非线性或时变对象时,其控制品质却不尽理想。航空发动机是存在一定不确定性的多输入多输出的对象,在整个飞行包线内,其特性变化很大,难以用线性模型精确描述。要保证发动机控制系统在飞行包线内稳定且具有良好的动、静态性能非常困难,单纯地依靠传统的PID控制难以达到所需的技术指标。模糊控制是近十几年来发展迅速的一项技术,与神经网络及专家控制并称为智能控制,该控制无需知道被控对象的数学模型就可以对对象进行研究,具有良好的鲁棒性,在被控对象的参数和结构发生小范围内的变化时仍能很好地工作,但其克服稳态误差的能力较弱。采用模糊控制和经典PID控制相结合并进行改进的控制策略,可以使系统既有PID控制精度高的特点,又有模糊控制灵活、适应性强的特点。因此,研究这种新的控制方法对实际工程应用具有非常重要的意义。
2模糊PID控制原理简介
进一步研究发现,针对发动机不同工况整定PID参数后的控制器的控制品质可以达到所要求的技术指标,在此基础上发展出了变参数PID控制器。但这类控制器的切换逻辑比较复杂,适应性也不够理想。
我们运用模糊数学的基本理论和方法,把变参规则的条件、操作用模糊集来表示,并把这些模糊控制规则以及有关信息(如评价指标、初始PID参数等)作为知识存入知识库中,然后计算机根据控制系统的实际运行情况(即专家系统的输入条件),运用模糊推理,即可自动实现PID参数的最佳在线调整,这就是模糊自适应PID控制。模糊自适应PID控制器可以有多种结构形式,但其工作原理基本一致。我们所设计的自适应模糊PID控制器以误差e和误差的变化率ec作为输入,以不同的e和ec为依据对PID参数进行自整定。
3控制策略的实现
模糊自适应整定PID控制器结构如图1所示。
PID参数模糊自整定是找出kp、ki、kd三个参数与e和ec之间的模糊关系,在运行中通过不断检测e和ec,根据模糊控制原理来对3个参数进行在线修正,以使控制系统有良好的动、静态性能。在参数整定过程中,要充分考虑在不同时刻三个参数的作用以及相互之间的互联关系。一般情况下要经过充分的实验和仿真研究,以便获得准确的模糊控制规则。
参数调整的基本原则为:
(1)当|e|较大时,取ki=0,分离积分项,这样既可以及时消除瞬时变大的误差e,又避免出现较大超调,产生积分饱和。这时所用的控制器实质上就是模糊自适应整定PD控制器。
(2)当|e|和|ec|中等大小时,为使系统具有较小的超调,k取小一些,ki取值适当,kd要大小适中,以保证系统响应速度。这时所用的控制器实质上就是模糊自适应整定PID控制器。
(3)当|e|较小接近设定值时,为使系统具有良好的稳态性能,分离模糊控制项。这时所用的控制器实质上就是经典PID控制器。在上述的控制方案中,控制策略的改变是通过改变模糊规则来实现的,实质上是使用了三种控制策略完成对整个过程的控制,从而使系统具有良好的动、静态性能。
4控制器的设计
如前所述,模糊自整定PID是在PID算法的基础上,通过计算当前系统误差e和误差变化率ec,利用模糊规则进行模糊推理,查询模糊矩阵表进行PID控制器的参数调整。模糊控制器设计的核心是总结工程设计人员的技术知识和实际操作经验,建立合适的模糊规则表,也即得到分别整定kp、ki、kd三个参数的模糊整定表,进而根据如下方法进行kp、ki、k的自适应校正:
将系统误差e和误差变化率ec变化范围定义为模糊集上的论域。其模糊子集为e,ec={NB,NM,NS,O,PS,PM,PB}子集中元素分别代表负大、负中、负小、零、正小、正中、正大。设e,ec和kp、ki、kd均服从正态分布,由此可得出各模糊子集的隶属度,根据各模糊子集的隶属度赋值表和各参数的模糊控制模型,应用模糊合成推理设计修正PID参数的模糊矩阵表,查出修正参数代入下式计算:kp=kp′+!kp,ki=ki′+"ki,kd=kd′+#kd(1)其中$kp={ei,eci}p,%ki={ei,eci}i,&kd={ei,eci}d,可分别由kp、ki、kd的模糊规则表得出。而kp′、ki′、kd′为修正前的参数量值。在线运行过程中,系统通过模糊逻辑规则的处理、查表和运算,完成对PID参数的在线自校正,由于控制计算工作量较小,该算法的实时性良好。
转贴于
5设计的控制器在某型弹用涡扇发动机
控制中的应用由于弹用涡扇发动机的结构无尾喷口面积调节机构,故选用的控制规律为:mfn=const(2)约束条件为:mf"mfmax(3)’mf"(mfmax(4)式中,mf为发动机燃油流量,n为发动机转速,mfmax为燃油流量上界值,)mf为单位时间内燃油增量,*mfmax为单位时间内燃油增量的上界值。
发动机的稳态数学模型可以采取按照飞行包线的范围,把飞行包线区域分成许多小的区域,在这些区域中找一个点,算出在该点的小偏离化模型,以表示发动机在此小区域内的特性方法,从而建立一系列的发动机小偏差数学模型。方便起见,下文选取两个点做比较研究。
根据某型弹用涡扇发动机在H=0km、Ma=1的飞行条件下的试车数据,通过辨识的方法建立该发动机在某两个点的数学模型:
其中:A2=0.76A1,B2=1.05B1,C2=1.48C1,D2=0.84D1。图2为经典PID控制器和模糊PID参数自整定控制器对某型弹用涡扇发动机在某两个工作点进行控制的转速响应仿真曲线,其输入量为发动机燃油流量。
曲线a、b为同一个PID控制器在综合考虑工作点1、2控制效果下的控制结果,曲线c、d为模糊PID参数自整定控制器在综合考虑工作点1、2控制效果下的控制结果。
控制器作用下的燃油流量曲线如图3所示。其中,A、B、C、D是对应于转速响应曲线a、b、c、d的燃油流量曲线,E为单位时间内燃油增量的界限,F为燃油流量的上界值。
从仿真曲线可以看出:在被控对象参数发生变化时,经典PID控制器难以同时在两个工作点下取得理想的控制结果,而设计的模糊PID控制器比经典PID控制器具有更强的适应被控对象特性参数大幅度变化的能力,且能保持良好的控制品质。
6结束语
将经典PID控制和模糊控制结合起来,设计了模糊PID参数自适应整定控制器。通过对某型弹用涡扇发动机的仿真实验,所设计的控制器具有控制过程无超调、调节时间短、无稳态误差、对被控对象特性变化适应性强等良好的动、静态品质。
参考文献
1樊思齐等.航空推进系统控制.西安:西北工业大学出版社,1995.
2冯冬青,谢宋和.模糊智能控制.北京:化学工业出版社,1998(9).
[6]焦瑞莉,南利平,李学华. 基于LabVIEW的通信专业远程虚拟实验室[J]. 国外电子测量技术(虚拟仪器),2005(3):4-7.
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2015)30-0086-02
民机发展,适航先行。加强适航意识、提高适航能力是我国民机未来发展的关键技术之一,对提高我国民航竞争力具有战略意义。航空器适航技术与管理是一个涉及航空器设计、系统安全和管理等多个学科的新型交叉学科,欧美在该学科的教育已有数十年的历史。我国适航技术研究和人才培养起步较晚,面对具有相当特殊性的专业人才,其培养模式与体系建设目前已在国内航空和民航领域的院校中逐步展开。由于我国航空器适航技术与管理人才相当紧缺,2011年3月教育部正式批准了南京航空航天大学国防紧缺专业“适航技术与管理”,培养民航发展急需的专门人才。南京航空航天大学针对适航学科对人才要求的特殊性,采用分阶段、本―硕连读培养模式,探索培养适航技术与管理人才的新途径。
一、跨学科本科―硕士连读培养机制
1.培养目标。依据合理的培养模式,制定完善的培养体系,培养以航空器结构、材料、系统,以及航空器发动机等专业为基础,熟悉航空器适航条例和规章体系,掌握基本的适航符合性验证方法,并具备航空器安全性评估能力的专门技术人才。使其能够满足大型民用飞机研制、通用航空器设计与制造、航空公司运营与管理、局方部门监督与管理等方面的适航人才需求。
2.培养模式。航空器适航与管理技术涉及到多个飞机设计学科以及管理学科,是综合性比较强的专业,它不仅需要从业者具有较高的航空器设计水平,也需要从业者熟悉适航条例、法规和流程等知识,同时,必须具备较高的协调、沟通能力。为适应从业岗位要求,达到该专业的人才培养目标,适航技术与管理人才采用培优淘汰模式、本硕连读机制,学制总计6.5年。
学生来源(选拔):学生可通过高考进入适航培优班,高考成绩优秀、综合素质高的考生经审查择优录取;另一部分生源为校内其他相关专业优秀大学生,经过申请、考核、审批的流程进入适航培优班。
考核淘汰制:适航培优班的学生实行考核淘汰制,大学本科阶段每年都要进行考核,考核合格的学生,方可留在适航培优班继续学业,并保留免试攻读硕士资格;考核不合格者,则不再保留培优资格,并取消免试攻读硕士的资格。
分阶段培养:适航技术与管理培优班学生的培养分为3个阶段,各阶段培养过程如图1所示。
产学研合作、讲座型课程:建立适航领域产学研合作培养机制,在民航、航空企事业单位建立实习实践基地,在第一和第二阶段,学生的专项实习和工程实践学分与普通专业学生不同,比重较大。同时,研究生阶段开设2~3门专家讲座型课程,邀请企业和局方的适航技术与管理专业人员授课,贴近职业方向的需求。
二、面向职业需求的研究生培养方向
1.适航技术与管理人才需求。适航技术与管理领域学生培养的职业特点非常明显,目前该领域人才非常短缺,根据职业需求,大致包括以下四大类:(1)参与航空器或相关民机产品设计制造的厂、所内部适航工作人员;(2)航空公司、民航监管部门的适航工作人员;(3)负责适航规章、条例颁布与实施、航空器设计/制造单位和航空器适航审定的局方人员;(4)适航条例和法规、适航技术与验证方法等相关研究人员等。四大类相关工作对从业人员的要求都很高,不仅需要具备扎实的专业技术能力,而且必须具备适航法规与规章的研究/理解能力,较强的协调、沟通和管理能力等。
2.面向职业需求的研究生培养方向。适航技术与管理培优班学生研究能力和职业能力的培养主要在研究生阶段。根据该领域四大类人才需求,我们针对以不同学科为基础的适航培优班学生设计了5大研究方向及其相关的研究技术,如图2所示。本科阶段学生的学科跨度较大,不同的跨学科专业的学生可以在5大方向中,选择合适的专业技术从事研究工作。
三、跨学科研究生培养和过程管理
1.课程设置与优化。适航技术与管理学科的研究生来自于航空器主机设计(含结构)、机械设计和强度、航空器发动机,以及航空器各分系统等专业,前三年的课程体系与原专业学生的课程体系一致;同时,增设了相关的适航概念性课程。本科四年级与硕士一年级的课程,以及硕士阶段的研究方向则侧重于系统工程、适航技术与管理方面;以促使适航技术与管理学科和各专业学科的相互融合,满足跨学科适航学科人才培优的需要;并不断探索、实践和改进。硕士阶段必修课设置:注重前沿性和综合性,以便弥补不同学科之间的差异,侧重系统工程与安全工程,切合适航技术与管理方向人才分类需求,初步设置的课程有:航空器可靠性工程、航空器适航验证与审定技术、航空器安全管理工程、航空器持续适航技术、系统工程。硕士阶段选修课设置:面向航空器适航,注重适航工程实践类课程,并由各专业学科课程进行支持;学生可根据后续课题研究内容的需要,在全校工科类硕士选修课中选择其他课程。实践类课程可包括,旋翼类飞机适航审定与验证工程实践,通用飞机适航审定与验证工程实践,机载设备适航审定与验证,航空发动机适航审定与验证,持续适航工程实践等。目前第一届培优学生已进入硕士阶段,培养过程进展顺利,根据后面的反馈情况,我们将进行课程的优化。