时间:2022-02-25 04:45:07
引言:寻求写作上的突破?我们特意为您精选了12篇数控机械论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
2影响数控机床机械技术加工效率的相关因素
1)规章制度不完善。
近些年,数控机床取得了一定的发,但是针对某些方面仍然存在一定的问题,一些设备与零件仍然存在很大的问题,在实际的工作之中数控机床还没有制定合理科学的规章制度保障数控机床的正常工作,这是影响数控机床发展最为主要的因素之一。
2)编制程序有失规范。
数控机床与传统机床相比较最为突出的有点就是增加了数字与计算机控制的部分,这就必然需要相关软件的支撑,由此可见,软件的编制程序对于提高数控机床机械技术加工效率也有着十分重要的理论意义与现实价值。程序的编制在很大程度上可以对数控机床机械技术加工效率产生最为直接的影响。
3提高数控机床机械技术加工效率的策略
3.1软件系统
1)专业操作人员。
在实际的工作之中,专业的操作人员对于提高控机床机械技术加工效率有着十分重要的作用,他们是对数控机床软件进行实际操作的人员,其专业能力与业务素养对于控机床机械技术加工效率有着直接的关系。因此,加工企业应该充分的重视数控机床操作人员业务能力的提高。具体的实施方式有很多,其中比较重要的方式可以分为以下几种:①加工企业应该针对操作人员进行定期的培训,不断的提高他们的综合素质与业务能力,让员工掌握相关的理论知识与注意事项;②应该不断引进相关的专业人才整体提高数控机床操作人员的整体素质,保障数控机床机械技术加工效率的提高。
2)进一步规范操作流程。
与普通机床相比,数控机床在的操作流程更加复杂,操作工艺相对较多。因此,在实际的工作之中,为了进一步提高数控机床机械技术加工效率,我们应该严格的规范数控机床的操作流程,减少数控机床工作之中的冗杂流程,制度严格的工作步骤与检验步骤,真正实现数控机床工作的科学化与规范化,以此来提高数控机床机械技术加工效率。
3)创新管理模式。
数控机床有着其自身的特点,其中最为突出的特点就是需要进行科学的管理,只有这样才能更好的发挥数控机床的优势,促进加工企业的不断发展与进步。因此,在实际的工作之中一定要注重数控机床管理模式的创新,对不同工艺的数控机床制定不同的管理模式,实现管理模式的与时俱进,只有这样才能更好的促进数控机床机械技术加工效率的提高。
3.2硬件方面
在提高数控机床机械技术加工效率过程中最为重要的方式就是注重硬件方面措施的采取,要充分的分析数控机床的工作特点,针对其具体的工作环境采取相应的措施,在实际的工作中需要注意的方面很多其中比较重要的方面主要是以下几个方面。
1)恒定的电网供电水平。
数控机床依靠科技技术与电脑尖端技术,对电网供电系统有着极为苛刻的限制。就目前应用较为广泛的数控机床来说,其装置内部欠压保护装置的报警系统在不稳定的电网系统中很难维持恒定的工作状态,要解决这个问题最直接的办法就是根据运行中数控机床的自身特性,有方向有策略的针对的配置交流稳压器,以减少高峰及低谷时段供电不稳定对整个加工高效所产生的后果。
2)加强对设备选型的研究。
在实际的工作中,我们应该注重加强数控机床设备选型的研究,尤其是针对数控系统方面也更是需要重视。在具体的工作之中,应该根据工作的具体环境和具体条件,结合生产的产品等因素对设备的型号进行选择。另外,一个加工企业购买多种控机床的过程中应该买一个厂家出产额设备,方便维修,有利于工艺之间的连接,从而实现数控机床机械技术加工效率的提高。
3)做好机床的维护和管理。
数控机床的管理与维护对于保障数控机床正常工作,提高数控机床的使用寿命有着极其重要的作用与价值。机床是对数控机床进行维护和保养最为重要的方式之一,要结合机床实际的工作环境与工作状态,对机床进行适当的保养。另外,还应该针对不同型号的机床选择不同的油,只有这样才能保障机床的正常工作,提高数控机床机械技术加工效率。
2数控机床机械加工精度提升的误差补偿技术
在现代科技的发展和应用中,保证机械加工的精度的方法有两种,一是提高数控机床的质量,二是采用误差补偿技术,本文着重从误差补偿技术进行精度提升的研究。误差补偿一般又可以分为误差预防和误差补偿技术,在误差补偿技术中常用的方法是误差建模、误差测量、误差补偿实施。(1)硬件静态补偿法。在机械加工精度控制中利用硬件静态补偿法是指通过添加外部硬件机构,在外力的作用下让机床运用副位置产生与误差方向相反的运动来减少加工中的误差。在加工螺丝时由于加工机床丝杠之间存在误差,通过螺距校正尺来进行丝杠之间的螺距,就属于是静态补偿法。由于静态补偿法的局限性,只能在停止时进行数值或者是硬件的参数调整进行补偿,在运动时不能进行实时的补偿,这种硬件静态补偿法被使用的频率相对较低,一般会和其他方法进行综合使用。(2)静态补偿法和动态补偿法综合使用。上面已经给提到静态补偿法是在数控机床加工的静止时,通过调整参数进行误差补偿,这种补偿法可以对精度进行系统补偿提高,不能在运动中进行随机的误差补偿,通过和动态补偿法的相结合可以实现加工精度的大大提高。动态补偿是在加工的切削情况下,依据机床的工况、环境条件和空间位置的变化追踪进行补偿量亦或参数补偿,通过运动的实时现状进行反馈补偿,例如在轴承的机床加工中,通过对热量、几何形状、切削程度的监控进行及时的参数修改补偿,是一种具有现实实际意义的误差补偿法,但对于数控机床的技术水平要求极高,投入的成本很大。(3)进给伺服系统补偿法。伺服系统是驱动各加工坐标轴运动的传动装置。这种补偿系统可以正反两个方向运行,能够根据加工轨迹的要求,进行实时的正向或者反向运动,其加工控制精度可以达到0.1微米,另外它的调速范围宽、快速响应并无超调、低速大转矩。在典型的数控机床进给系统中由步进电机构成的开环控制系统,步进电机的角位移或者线位移与脉冲数成正比,其转速与脉冲频率成正比,它将指令脉冲变成步进电机输出轴的旋转运动来控制机床加工;闭环进给位置伺服系统,它主要是采用直流伺服电动机或交流伺服电动机驱动,机床工作台的实际位移可通过检测装置及时反馈给数控装置中的比较器,以便于指令位移信号进行比较,两者差距有作为伺服电机的控制信号,进而驱动工作台消除位移误差;半闭环进给位置伺服系统,该系统由位置控制单元和速度控制单元构成,光电脉冲编码器发出的脉冲,一方面用作位置的反馈信号,另一方面用作测速信号。当点击的负载变化时候,反馈脉冲信号的频率将会随着变化,在实际的机床加工中,通过控制伺服电机的转速进行精度误差的减小。(4)修改G代码补偿法。G代码是编制机床加工程序的语言,G代码中有刀具的补偿功能,像G44、G43是刀具长度补偿。G代码的补偿原理是通过对刀位信息的修改来补偿误差的范围。这种补偿也被广泛用于数控机床的机械加工误差补偿,例如Hsu等人建立的五轴机床误差补偿模型,根据对模型对CAM软件生成的初始刀位进行修改,用修改G代码的方法完成数控机床机械加工误差补偿。这种补偿方法需要G代码的编程人员进行工件的几何形状确定,确定工艺过程和刀具轨迹,在进行实际的运行中,如果出现位置偏移就需要通过修改G代码进行误差补偿,一般运用于比较简单的加工零件,其形状不复杂,主要是直线和圆弧组成的轮廓,数据的处理量不大,在遇到工作量大,复杂的零件时候,就需要通过计算机的G代码控制进行修改,程序员通过计算机辅助进行编程。(5)坐标偏置补偿法。坐标偏置补偿法是利用数控系统的坐标原点偏移,参照位置等信号的反馈进行机床误差的补偿。在程序员进行操作时候,可以通过数控系统的直观显示进行零件加工的误差校对,对于出现误差的,可以通过操作数控系统对原点坐标进行重新设置,使其对出现的误差进行补偿,这种补偿方法适用于三轴坐标的数控机床。这种补偿法一般在使用侧头时候用的是固定侧头,同时还需要一定的软件补偿,保证地基的稳定。
3结束语
综上所述,误差补偿法可以有效的提高数控机床机械加工精度,并能够给数控机床带来经济效益。误差补偿可以有效的控制数控机床机械加工过程的零件精度,有助于提高机械加工工艺技术,能够适应数控机械加工企业的高级精度、高级质量水平化发展方向。误差补偿法是在原有数控机床的基础上,通过科学的技术和手段,来实现零件设计的理论值,目前误差补偿的技术已经被广泛的应用和被相关学者所关注,并且在通过不断完善和更新误差补偿技术,使其成为现代社会精密工程的主要技术。
作者:王少彬 单位:浙江省宁波市宁波大红鹰学院
参考文献
[1]丁来军.误差补偿在提高数控机床机械加工精度中的应用[J].黑龙江科技信息,2016(10):23.
[2]龙鹏,李洪涛,李安国.基于数控机床空间误差提高其加工精度的补偿方法研究[J].机械工程师,2012(6):41-43.
[3]王倩,王贺.误差补偿在提高数控机床机械加工精度中的应用[J].科学与财富,2015(15):161.
通过将计算机技术、通信技术、传感技术以及光、机、电等诸多技术与现代制造技术融合在一起,以实现数字化对机械进行加工以及运动工程进行控制制的技术成为数控技术。目前数控技术主要利用事先编制好的程序,通过计算机来实现对设备的控制。因此数控技术具有效率高、自动化程度高、精密度高等优点。数控加工技术的具体加工特点如下:①对于换批加工和新产品的研发,只需通过改变数控机器内的参数便可实现,因此对产品的改良和新产品的研发带来了很大便利。②缩短加工时间,提高效率。数控技术可以实现一次装夹完成多道工序的加工。这样既保证了加工精度又大大缩短反复装夹浪费的时间。③提高产品品质。利用数控技术可以实现对复杂零件及零件曲面任意形式的加工,这是普通机床难以完成的。④模块化、标准化加工。通过对数控技术的模块化设计,可以大大减少换刀时间及安装时间,从而实现对一种部件的模块化、标准化加工。
1.2数控技术优势
现代数控技术融合了计算机技术、电子技术、自动化技术,具有高精度、高效率等特点而日益成为现代机械加工控制技术的发展方向。另外,现代数控加工技术能将各个单独系统组成模块形成自动化生产线,从而为实现大批量、高效率、自动化加工零件带来可能。自动化生产的同时也可以大大降低生产成本。
2现代机械加工中数控技术的应用
数控技术因其优势而被广泛使用,也很快得到人们的认可。其在机械加工领域的应用体现在以下方面:
2.1数控技术在工业中的应用
数控系统一般由控制单元、驱动单元和执行单元三部分组成。工业生产中数控技术主要运用在机器设备生产线上,以实现大规模集成化生产。如:传统工业如食品加工、造纸印刷行业等;以及恶劣劳动环境下如重工业金属冶炼、化工行业、农药加工、资源开采等方面。数控技术的应用有助于实现大规模自动化生产,因此在恶劣复杂条件下,数控技术有助于改善劳动条件、减少劳动强度、保障人员安全等优点,再加上数控技术高精度、高效率的特点在兼顾质量的同时保持效率。通过编制计算机程序,来控制计算机发出指令到驱动单元,然后由驱动单元带动执行机构实现自动化加工生产。通过传感系统和检测技术控制零件的加工精度以保证质量,若出现错误和故障,传感器和检测系统就会发出故障信号给计算机系统,计算机系统控制发出报警信号,并自动控制系统停止工作以保护机器。
2.2数控技术在机床设备中的应用
数控技术在机床设备加工中的应用更是普遍,现代数控技术是机床设备加工工艺实现现代机电一体化组成中不可或缺的部分。数控技术在机床加工中应用是机床加工工艺发生了革命性的变化。首先数控技术对机床加工设备的控制能力发生质的飞跃。如今我们可以控制设备实现对物件任意形式的加工。通过将刀具、工件之间相对位置、主轴、刀具、速度以及冷却泵的启停等各种设备按照既定动作编排到计算机上,然后计算机发出控制指令实现对所需要部件的加工。
2.3数控技术在汽车工业中的应用
现代汽车工业对零部件的要求极为苛刻,传统加工技术已无法满足现代汽车工业的要求。如今现代数控技术在汽车工业零部件加工和组装中处于支配地位。数控技术使汽车使得汽车两大加工中心合为一体,实现一体式流水线自动加工生产,同时数控技术还具有快速控制,使得加工中心具有高速性。这种“高柔性”与“高效率”的结合,不仅满足了产品更新换代的要求,而且能实现多品种,中小批量的高效生产的特点。数控技术中的虚拟制造技术、柔性制造技术和集成制造技术等,在汽车制造工业中得到了广泛深入的应用。
2.4数控技术在煤矿机械加工中的应用
煤炭在我国能源结构中占有重要地位,尤其今年来采煤业发展突飞猛进。作为采煤业必不可少的设备采棉机决定煤炭企业的效率。采煤业以其复杂环境、恶劣条件使得传统加工工艺已越来越无法满足现代采煤业的要求。传统机械加工难以实现单件的下料问题,而数控技术通过对材料进行切割就很轻松地解决了这个问题,它代替了过去流行的仿型法,使用龙骨板程序对象为采煤机叶片和滚筒,从而进一步优化了套料的选用方案。数控技术在采煤机上的应用优势体现在以下几个方面:①切割速度快,提高了采煤效率。数控技术的快速控制使采煤机的快速切割成为可能,切割叶片能在一定时间内完成更多的采集提高了采煤速度。②提高采煤机自动化,降低劳动强度和人工采矿的危险性。自动数控技术在采煤机上的使用不但提高采煤机自动化而且降低劳动强度和危险性。③提高加工质量和效率。数控气割机可自动可调的补偿切缝,一些零件的焊接坡口可直接割出,从而提高了生产效率。另外它允许对构件的实际轮廓进行程序控制,这样就可以通过调节切缝的补偿值来精确地控制毛坯件的加工余量,更好地配置资源,实现最优化生产。
2.5数控技术在兵器工业机械中的应用
传统兵器工业机械加工已经成熟且自成一体。如果全面更换使用现代数控机床技术,既不经济又不现实。因此充分利用现有资源将原有加工机床与现代数控技术结合在一起,这样既可以节省成本又可以提高加工精度以满足兵器工业机械加工现代化要求。对于加工工艺要求不高的部件我们可以运用传统机床进行加工生产,对于加工工艺要求较高的部件我们可以运用数控机床进行加工生产,这样避免了资源的浪费。数控机床以其高精密性、高稳定性、可复制性因此能满足兵器工业机械加工的规模化和大量生产。对传统机床的改造赋予其现代数控技术使普通机床变成了全新概念的数控机床,最终达到投入资金少,方便操作,功能和精度都普遍提高的效果。因此现代数控技术必将为兵器加工工业带来新的飞跃。
在实际工作中,极其的作业形式和作业方法都存在着一定的差异,所以智能控制技术在控制目标和控制策略的选择上也存在着很大的不同。在智能控制技术应用于挖掘机领域方面,其主要要实现的控制目标就是要实现节能环保,同时也要提高机械生产的效率。智能控制技术使用在压路机领域方面主要就是要实现碾压的质量和压实的速度。当前挖掘机主要有两种控制策略,一是“负载适应控制”另一种是“动力适应控制”。负载适应控制主要就是指在发动机发出功率已经稳定的情况下,液压系统能够根据实际的需要对自身的运行状态进行适当的调整,从而使其能够以最佳的状态来完成工作。动力适应控制就是在实际的工作中发动机要根据运行的具体情况支持发动机的动力输出,这也极大的节约了能源。采用“负载适应控制”技术的挖掘机,一般设有几种动力选择模式,如最大功率模式,标准功率模式和经济功率模式,每种模式下的发动机输出功率基本恒定,同时液压泵业设有几条恒功率曲线与之匹配。由于系统中采用了发动机速度传感控制技术(ESS控制技术),在匹配时将每种功率模式下的泵的吸收功率设定为大于或等于该模式下的发动机输出功率,这样可以使液压系统充分吸收利用发动机的功率,减少能量损失。还可以通过对泵的吸收功率的调节,协调负载与发动机的动力输出,避免发动机熄火。在实际的工作中,操作人员需要根据作业面的具体情况选择发动机电费模式,所以这种方式在实行的过程中还需要一定的人工参与,如果操作不当,非常容易造成浪费的现象。采用动力适应控制以后挖掘机就能够开启自动控制的模式,在作业的过程中,该技术可以根据实际的需要为发动机的运行提供一定的动力,这样也有效的避免了资源和能源的浪费现象,该系统可以根据机械运行的实际需要来供给动力,在运行的过程中不需要过多人工的操作和参与,在经济性和高效性上都有着很好的表现。这一系统的运行思路是让机器对施工的具体情况进行有效的识别,同时根据其分析的具体状况制定适当的解决办法,发动机和该系统在运行的过程中会对运行的状态进行适当的调整,这样就能够保证其在运行的过程中处于良好的状态。在挖掘机智能控制技术中还需要一些节能和为操作提供方便的方法,采用这些方法能够更好的对系统进行维护和保养,能够更加有效的提升整个系统的性能和运行质量。智能压路机在使用智能控制技术的过程中需要根据设定的质量和目标对压实的效果进行有效的检测和控制,同时还要通过系统的自我调节来寻找最佳的解决方案。
2.控制方法
任何智能控制系统包含三个过程:
(1)采集信息;
(2)处理信息并做出决策和思考;
(3)决定执行。挖掘机是通过检测液压系统得运行参数来识别载荷大小的,如检测液压系统中泵的控制压力,泵的输油压力和各机构(行走,回转,动臂提升和斗杆收回)的工作压力等。有的还检测先导手柄的位移量和系统流量等。挖掘机控制器根据采集的信息,通过模糊控制理论推理出所需功率的大小和发动机的最佳转速。执行决定的过程是由控制器驱动发动机油门执行器,使发动机设定到理想的转速和输出功率。而压路机是通过连续检测振动轮的振动加速来识别地面压实质量的。振动轮内的旋转偏心快产生的振动,理论上是一条正弦曲线。当振动轮在地面上振动时,曲线总是被扰动的,在软地面上额度扰动小,在硬地面上的扰动大。通过对压路机振动轮的加速度进行快速傅立叶变换处理,能够计算出地面压实的数据。
目前是采用计算机控制,预先编程然后利用控制程序实现对设备的控制功能。由于计算机软件的辅助功能替代了早期使用纯硬件电路组成的数控装置,使得输入数据的存储、处理、判断、运算等功能均由现场可编辑的软件来完成,这样极大的增强了机械制造的灵活性,提高设备的工作效率。
2机械制造中数控技术的应用
2.1工业生产工业机器人和传统的数控系统一样是由控制单元、驱动单元和执行机构组成的。主要运用机器设备的生产线上,或者运用于复杂恶劣的劳动环境下下,完成人类难以完成的工作,很大程度上改善了劳动条件,保证了生产质量和人身安全。
在实际操作中,控制单元是由计算机系统组成,指挥机器人按照写入内核的程序向驱动单元发出指令,完成预想的操作,同时同步检测执行动作,一旦出现错误或发生故障,由传感系统和检测系统反馈到控制单元,发出报警信号和相应的保护动作。而执行机构是由伺服系统和机械构件组成。有动力部分向执行机构提供动力,使执行机构在驱动元件的作用下完成规定操作。
2.2煤矿机械现代采煤机开发速度快、品种多,都是小批量的生产,各种机壳的毛坯制造越来越多地采用焊件,传统机械加工难以实现单件的下料问题,而使用数控气割,代替了过去流行的仿型法,使用龙骨板程序对采煤机叶片、滚筒等下料,从而优化套料的选用方案。使其发挥了切割速度快、质量可靠的优势,一些零件的焊接坡口可直接割出,这样大大提高了生产效率。同时,数控气割机装有自动可调的切缝补偿装置。它允许对构件的实际轮廓进行程序控制,好比数控机床上对铣刀的半径补偿一样。这样可以通过调节切缝的补偿值来精确的控制毛坯件的加工余量。
2.3汽车工业汽车工业近20年来发展尤为迅猛,在快速发展的过程中,汽车零部件的加工技术也在快速发展,数控技术的出现,更加快了复杂零部件快速制造的实现过程。
将高速加工中心和其它高速数控机床组成的高速柔性生产线集“高柔性”与“高效率”于一体,既可满足产品不断更新换代的要求,做到一次投资,长期受益,又有接近于组合机床刚性自动线的生产效率,从而打破汽车生产中有关“经济规模”的传统观念,实现了多品种、中小批量的高效生产。数控加工技术中的快速成形制造技术在复杂的零部件加工制造中可以很轻易方便的实现,不仅如此,数控技术中的虚拟制造技术、柔性制造技术、集成制造技术等等,在汽车制造工业中都得到了广泛深入的应用。21世纪的汽车加工制造业已经离不开数控加工技术的应用了。
2.4机床设备机械设备是机械制造中的重中之重,面对现代机械制造业的需求,具备了控制能力的机床设备是现代机电一体化产品的重要组成部分。计算机数控技术为机械制造业提供了良好的机床控制能力,即把计算机控制装置运用到机床上,也就是用数控技术对机床的加工实施控制,这样的机床就是数控机床。它是以代码实现机床控制的机电一体化产品,它把刀具和工件之间的相对位置、主轴变速、刀具的选择、冷却泵的起停等各种操作和顺序动作数字码记录在控制介质上,从而发出控制指令来控制机床的伺服系统或其他执行元件,使机床自动加工出所需零件。
3数控技术的发展
从第一台数控机床开发成功到现在已有50多年的历史,由传统的封闭式数控系统发展到现今的开放式PC数控系统。传统的计算机数控系统,由于采用封闭的体系结构,它的通用性、软件移植性、功能扩展和维修都比较困难;开放式体系结构的计算机数控系统的发展,使传统的计算机数控系统的市场正在受到挑战。开放式计算机数控系统,采用软件模块化的体系结构,显示了优良的性能,能适应各种计算机的软件平台,具有统一风格的用户交互环境,操作、维护、更新换代和软件开发都比较方便,具有较高的性能价格比,已成为数控系统发展的方向。
4结束语
机械制造技术不仅是衡量一个国家科技发展水平的重要标志,也是国际间科技竞争的重点。我国正处于经济发展的关键时期,制造技术是我们的薄弱环节。PC机进入数控领域,极大的促进了数控技术的发展,也为我国在数控生产领域赶超发达国家提供了机遇。跟上发展先进数控制造技术的世界潮流,将其放在战略优先地位,并以足够的力度予以实施,尽快缩小与发达国家的差距,在激烈的市场竞争中立于不败之地。同时,数控加工技术的发展孕育产生大量的数控专业技术人才,进而推动我国现代机械制造业进一步走向繁荣。
参考文献:
[1]马岩.中国木材工业数控化的普及[J].木材工业.2006(02).
[2]陈光明.基于数控加工的工艺设计原则及方法研究[J].制造业自动化.2005(09).
[3]南生春,傅万四.浅谈数控技术在木材加工机械上的应用[J].木材加工机械,2004(01).
数控技术作为一种高新技术,从实质上而言,其是指利用计算机技术对传统机械制造技术进行科学的控制,以便保证机械制造过程的安全性,并提高机械制造的效率和质量。在机械制造中,数控技术的应用主要是为了对机械设备的角度、速度等进行合理的控制。与传统机械制造技术相比,数控技术具备三个优点,即效率高、精度高、柔性自动化。数控技术在机械制造中的应用是以机械自动化为基础,其也是构成机械制造集成系统的主要部分之一。
1.2原理
在机械制造中,数控技术属于一种高新技术,而这种技术的应用也是对计算机技术、精密测算、自动控制等综合使用的重要体现。从结构方面而言,数控技术的主要构成部分是现代数控系统,而要想利用这种系统对不同的机械设备进行控制,论机械制造中数控技术应用孙响英双峰县职业中专417700需要依靠存储程序来实现。现代数控系统(CNC系统)作为构成数控技术的主要部分,该系统主要包括CNC装置、输入和输出装置、速度控制单元及软件等多个部分,而其中最为重要的部分是CNC装置。CNC系统中的CNC装置属于一种特殊的电子计算机,这种装置的使用是为了利用硬件对软件的运行进行合理的控制,以便保证软件的运行效果。在机械制造中,数控技术的应用原理是将机床加工信息输入到CNC系统中,再经由电子计算机输出到驱动电路。另外,在数控技术的应用过程中,机械制造人员需要对该过程进行实时控制,以便保证对机械制造过程的控制能够更加精准,机械制造的质量和效率能够得到有效的提升。
2数控技术在机械制造中的应用
随着科学技术的不断创新,以及机械市场的激烈化发展,数控技术在生活中各个行业也得到了更为广泛的应用,而这主要体现在以下几个行业中的应用。
2.1机械设备
在机械制造中,机械设备是基础条件,但其所起的作用却极为重要。数控技术在机械制造中的应用可以使机床加工得到更好地控制,而数控机床的应用是指利用数字化方式对机械零件加工工艺的各种信息进行处理,并以代码的方式对机械制造过程进行管理,以便确保机械制造过程能够真正实现机电一体化管理。在机械制造中,数控技术的应用是利用计算机对机床进行控制,以使机械制造的精度和效率能够得到有效提升,并真正实现自动化操作。利用数控技术对机床进行控制的优势在于零件加工过程比较简便,不像传统操作方式那样复杂,制造人员只要将零件加工信息输入到存储程序中,就可以实现自动化操作。由此可以看出,数控技术在机械制造中的应用,不仅能够提高机械制造的质量及设备的运行效率,也能够对机械制造过程进行合理的简化,而这对增强机械设备的可控性有很大帮助。
2.2工业生产
市场竞争的激烈化发展也现代工业生产增加了很大的难度,而对工业生产而言,数控技术的应用可以使机械设备完成机械操作人员在恶劣工作环境下无法完成的任务。同时,数控技术在工业生产中的应用不仅能够提升机械设备的运行效率,也能够提高工业产品的生产质量。比如汽车零件的生产由数控机械进行控制,可以有效的提高汽车零件生产的质量。汽车齿轮需要依据设计的图纸及实验所得的数据进行生产,利用数控技术控制汽车齿轮的生产,可以提高汽车齿轮的契合度,也能够提升数控机械生产汽车齿轮的精准度。在工业生产中,数控技术包含的控制单元是由计算机构成,而将工业生产程序输入数控技术包含的现代数控系统中,并利用计算机将指令输送给驱动单元,及时检测指令输出情况,以便保证工业生产的质量和效率。假如在数控技术应用中,操作人员存在错误操作,传感装置会及时将信息反馈给控制单元,从而确保控制单元能够及时的采取保护措施。一般情况下,执行控制单元保护措施的结构主要是由机械原件和伺服系统构成。此外,在工业生产中,数控技术的使用不仅能够减轻机械操作人员的工作压力,也能够提高工业产品的生产质量和效率,这对提升工业生产安全性有很大帮助。比如,在汽车零部件生产中,高速电主轴的HVM800型卧式加工中心的转速最高可达到24000r/min,而工作台在不到1s行程就可以达到1m,这不仅提高了汽车零部件生产的效率,也在一定程度上增加了汽车制造企业所获得的经济利益。
2.3煤矿机械
煤矿开采必须使用的设备是采煤机,而当前煤矿开采所使用的采煤机的改良速度比较快,且具备品种多、批量小等特点,这也代表着采煤机生产技术比较简单,往往是采用焊件生产。在煤矿机械的焊件下料中,传统机械制造技术很难得到煤矿机械制造要求,而如今所使用的数控气割技术是利用龙骨板程序进行采煤机焊件下料,这可以有效的提高采煤机焊件下料的安全性。
2机械制造业各领域中数控技术的重要应用
数控技术经过了几十年的研究与发展,已经非常广泛的植入到工程机械制造业中,在自动化与集成化的模式背景下,数控技术发挥着别的技术无法替代的作用。
2.1数控技术在工业生产中的应用
数控技术在工业制造中的合理运用,可以在保证生产人员人身安全的基础上,进一步的提升其工业产品、工业设备的生产质量。比如一些特种加工和高危的行业,引入数控技术,让其事先对生产状况,做一个模板仿真分析。在冶炼重金属工业上,可以将一些操作难度大的,危险系数高的,劳动环境差的环节,采用数控技术,当这些环节发生错误或者故障时,相关故障信息,就会传感到控制中心,控制系统就会传送报警信号,启动设备自身保护功能,并通知相关人员,对其进行纠正,这样就形成了闭环的生产加工过程,极大的降低了该行业的危险性。
2.2数控技术在汽车制造业中的运用
小米科技、乐视科技等互联网公司,进军汽车制造业,昭示着汽车的需求越来大,伴随着私人定制概念的出现,以及个性化需求的增长,汽车制造技术将朝着复杂、多变、小批量生产的方向发展,这就对其的制造技术提出了很高的要求。将数控技术与汽车制造业有机融合,充分发挥其柔性制造单元的作用,将其生产线合理分配和精细划分,真正有效提升了汽车制造的生产效率、质量以及规模。同时,针对个性需求的零部件,运用数控技术可以快速对其进行加工生产,在特定环境下,与计算机虚拟技术的融合,更好更快的发展汽车制造行业。
2.3数控技术在3D打印设备中的应用
3D打印的概念近日一直被追捧,其中很重要的原因之一,就是因为它可以让小批量的生产更加便捷和廉价。尽管,3D打印比数控机床技术更神奇一些,但3D打印技术和数控机床并非无法共存。如果在机床领域引入3D打印技术,对数控机床来说,无疑是如虎添翼。在数控机床中,加入生产型的适配器,结合一款专有的控制软件(Winmax控制系统),可以瞬间、切实的把数控机床转变为神奇的3D打印机,通过图纸的计算机建模,实体造型,轻松实现从平面的图纸到立体的塑料原型,最后变成工业需要的金属成品。一系列的过程,只需要在一台机床上就能实现,这样就可以避免反反复复的调试和为优化原型而多次试生产而导致昂贵金属和原料的浪费。
1)工业领域中数控技术的应用。无论是轻工业食品加工,还是重工业的金属冶炼,数控技术都能够找到其用武之地。从整体角度来讲,其发挥的效能就在于代替工作人员完成一系列的工作任务,从而使得劳动强度降低,劳动环境良化,工作人员更加安全,工作质量更加高,消耗成本更加低。在工业领域中,数控技术的操作同样是由计算机系统去实现控制的,简单来讲,就是将事先做好的编程纳入到计算机系统中去,在运行过程中发出指令,使得其处于自动运行状态。
2)机床设备领域中数控技术的应用。在机械加工体系中,机床设备控制技术是很关键性的技术,其拥有控制机床设备的能力,是现代机电一体化的重要组成部分。尤其在数控技术的帮助下,不仅仅可以使得机床控制能力得以强化,还使得机床的生产效率得以全面提升。一般情况下,同样是以代码控制方式为主,确定刀具,工件之间的位置,选择主轴,变速和刀具,冷却泵的顺序方案,在此基础上计算机发出相应的指令,要求机床完成相应的动作。
3)煤矿机械加工领域中数控技术的运用。数控技术在煤矿机械加工中的应用,主要体现在采煤机的发展上。一般情况下,各个煤矿的开采环境是千差万别的,由此导致采煤机也难以实现大批量的标准化生产模式,更多情况下是以研发速度快,品种多,小批量的生产模式。尤其在初步试件以焊件的方式运行,给予传统机械加工造成了很大的困难,而数控技术可以轻易的对其进行切割,并且以龙骨版程序实现运作,能够在以下几个方面表现出其优势:其一,切割速度变快,使得采煤的速度变快,也就是说在同等时间下可以获得更多的劳动收益;其二,采煤质量更加稳定,能够产出更加高质量煤炭产品;其三,规避了人力采掘的危险,使得煤矿生产处于安全的状态下进行;其四,直接切割的操作方式,可以使得生产效率得以全面提升,是实现资源优化配置的重要途径,能够在生产利润最大化方面发挥作用。
2数控技术如何更好的运用
到机械加工领域中去数控技术的确可以在机械加工领域发挥巨大的作用,但是由于现阶段还存在很多制约数控技术发展的因素,使得其效能未能完全发挥出来。因此为了促进数控技术效能的发挥,我们还应该积极采取措施去促进数控技术的发展和进步。具体来讲,我们可以从以下几个角度入手:
1)明确数控技术的发展方向,建立完善的理论研究体系。从数控技术的运用实践经验来看,其未来的发展方向为:越来越高性能,越来越高精度,越来越高速度,越来越高柔性化,越来越模块化,并且在这样的发展过程中,促进制造业朝着自动化,网络化,智能化和复合化的方向发展和进步。在数控技术发展方向确定之后,就应该建立完善的理论研究体系。具体来讲,应该做好以下几方面的工作:其一,高度重视数控技术理论研究工作,设立课题项目,注重企业与高校之间的联合研究,不断夯实自身的数控技术理论基础;其二,积极学习西方数控技术应用经验,引进先进的数控技术设备,在实践中去总结和归纳先进数控技术的优势,并且在此基础上进行大胆创新,促进数控技术理论的综合利用率提升;其三,不断总结和归纳自身数控技术发展存在的缺陷和不足,以此为出发点进行理论研究,找到查缺补漏的环节。
2)注重工序安排和编程工作,形成高效的加工运行模式。从本质上来讲,所谓的数控技术就是以程序化的语言指令去实现机械控制,使得其达到高效的运转状态。在此过程中的工序安排和编程工作,往往就决定了数控技术的质量和水平。因此高度重视此项工作的开展,显得尤为重要。尤其在此方面实践经验不足的背景下,很容易出现忽视的问题,难以发挥数控技术的全部效能。一般情况下,会出现的问题在于:其一,加工时先加工套类工件,不能先加工轴;其二,外圆锥测量最好使用车好的内锥和内圆弧去进行测量;其三,精度控制不能单单依靠机床,应该采用二次精车的方式来保证其正确性。上述的各种问题,往往会影响到高效加工运行质量和效率。
3)培养专业化数控技术人才,形成高效的数控机械管理团队。专业化的数控技术人才,也是发挥数控技术在机械加工领域效能的关键所在。对此,应该积极做好以下几方面的工作:其一,严格做好企业招聘管理工作,保证进入到数控岗位的人员都是经过严格审查的,以保证人才队伍整体素质处于较高水平;其二,积极开展专业化的数控知识培训和教育,使得数控技术人员具备专业化素养和技能,以保证数控技术可以顺利的运用到机械加工领域中去。
1.2在煤矿提升、运输方面的应用煤矿提升、运输是煤矿生产中的关键环节,其工作效率直接影响着煤矿的生产效率,矿井提升机和带式输送机的使用正是机电一体化数控技术应用的具体体现。其中,矿井提升机能够实现全数字提升,而内装式提升机是一种典型的机电一体化设备,简化了机械的结构,将滚筒和驱动有机地连接起来,大大提升了设备运行的安全、稳定性;带式输送机是目前最主要的输煤设备,具有可靠性强、自动化程度高、输送量大、适合长距离输送等优点。
1.3在煤矿安全生产方面的应用煤矿的安全生产离不开监控系统的支持,良好的监控系统能够有效地避免煤矿安全事故的发生。煤矿矿井对监控系统的要求极高,必须保证系统时刻连通,保证随时能与工作人员联络,从而保证井下工作人员的人身安全。机电一体化数控技术在矿井监控系统中的应用,可以将系统主机内的数据库进行连接,利用局域网使其连成同步模式,由专用的通信接口负责主备机的监控工作,并利用专业的软件,对产生的数据进行整理和分析,同时实现了上传、检索、图形显示、打印等多项功能,为矿井监控系统的发展提供有力的技术支持,对煤矿的安全生产具有十分重要的意义。
1.4在其他方面的应用煤矿安全生产离不开井下支架设备,而机电一体化数控技术在支架设备中也有着广泛的应用。利用计算机系统与液压支架系统的充分结合,实现了成组自动移架和定压双向临架,有效地避免了支架与模板和顶板发生碰撞。目前,掘进机的电气部分普遍采用了由矿用隔爆兼本质安全型开关箱、矿用本质安全型操作箱、矿用隔爆型电铃、矿用隔爆型压扣控制按钮、隔爆照明灯、掘进机用隔爆型三相异步电动机、GJC4低浓度甲烷传感器等组成的电气系统。
2机电一体化数控技术应用的相关建议
我国煤矿机电一体化数控技术与国外先进技术相比,仍然具有一定的差距,这就需要相关部门加大科研力度,加大对机电一体化数控技术开发的资金投入,提高我国机电一体化数控技术水平,提高煤矿机械自动化程度。另外,还可以大胆借鉴国外先进技术,根据我国煤矿行业的实际发展情况,制订符合我国煤矿企业发展的机电一体化数控技术的开发规划。随着我国煤矿机电一体化数控技术水平的提高,煤矿生产的效率、安全性等得到了全面的提升,但与此同时,也应该加强对煤矿工作人员的技术培训,使其能够熟练操作这些自动化机械,并且加强对机械设备的管理和维护,确保煤矿生产的安全与稳定。
1)数控技术带动汽车工业发展
数控技术在各行业的生产中起到了重要的作用,通过运用数控技术,改善劳动者的作业条件,减少劳动者在高危险环境中的作业次数,降低劳动者的作业强度,实现生产线的机械化甚至自动化。在汽车工业领域,零部件的制造过程中广泛使用数控技术,大大提高了零部件的制造效率,实现标准化生产;在汽车行业的高速加工中心,普遍应用数控技术,促进汽车制造现代化生产线的构建,满足产品不断更新换代的需求,同时保证了产品的质量。数控技术在汽车工业的整体运用,提高了汽车行业的整体效率,促进汽车行业由传统的制造业向现代先进高效的制造业过渡。
2)数控技术带动机床设备的更新
机床设备是制造行业发展的重要组成,数控技术在车床方面的应用直接推动机电一体化的发展。数控技术通过计算机控制增强了机床设备的控制能力,准确控制刀具与工件的具置,提高机床运行中的精度,增强了车床的运转效率,促进车床在高精度、高效率、精细化方面的不断发展。
3)数控技术带动采煤业发展
众所周知,在采煤过程中,对于采煤机的要求极高,采煤机的状况直接影响到人工作业的危险程度及采煤作业的完成与否。采煤机改变传统制造的技术工艺,通过数控技术使用龙骨板进行下料工作,同时,改变采煤生产过程中劳动者的作业条件,不仅解决了采煤作业的效率问题,而且提高了采煤作业的精准程度,将作业人员处于危险环境的程度降至较低程度,降低矿难事故的发生频率。
2新时期数控技术在机械制造中的发展趋势
新时期数控技术在工业各方面得到了普遍的应用,对于提高工业的效率,增强工业方面的竞争力发挥了不可替代的作用,在不久的未来,数控技术在硬件、程序的编制及结构方面会不断优化,促进数控技术的发展,也带动机械制造行业的迅速前进。
1)机电一体化结构
优化之后的数控技术在数控结构方面也将发生巨大的变化,显著变化便是实现了机电一体化。通过自动交换刀具、自动交换工件、主轴立卧自动转换、工作台立卧自动转换、主轴带C轴控制、万能回转铣头、以及“数控夹盘”、“数控回转工作台”、“动力刀架”和“数控夹具”等程序的控制,优化期机械结构,提高其自动化的效率与效果,使得系统与机床的机电系统实现完美的配合,最终实现机械结构的模块化发展。
2)编程系统的优化
数控的编程技术在编程平台、编程功能及整个编程系统方面将实现高效优化。在编程平台方面,脱机编程可扩展至在线编程,通过CNC装置将自动编程设备所具备的功能转移至数控装置的计算机之中,实现在线的人机对话。在编程功能方面,不再仅局限于固定循环与图形循环,扩展至子程序设计功能,会话式自动编程、蓝图编程等多方面。在整个编程系统方面,可同时处理几何信息与工艺信息,在选择刀具及切割量方面实现全自动化。
3)数控设备的更新
对数控技术的要求逐渐提高,相应的其硬件设施也要跟得上数控技术的步伐。电主轴的转速、CPU的运转频率、进给运动部件的位移速度将得到极大的提高,同时在计算机方面,将向基于PC的开放式数控系统不断更新发展,以此降低数控设备的成本,提高机械制造业的整体水平,增强我国机械制造业在国际市场中的竞争能力。
一、引言
信息时代的高新技术流向传统产业,引起后者的深刻变革。作为传统产业之一的机械工业,在这场新技术革命冲击下,产品结构和生产系统结构都发生了质的跃变,微电子技术、微计算机技术的高速发展使信息、智能与机械装置和动力设备相结合,促使机械工业开始了一场大规模的机电一体化技术革命。
随着计算机技术、电子电力技术和传感器技术的发展,各先进国家的机电一体化产品层出不穷。机床、汽车、仪表、家用电器、轻工机械、纺织机械、包装机械、印刷机械、冶金机械、化工机械以及工业机器人、智能机器人等许多门类产品每年都有新的进展。机电一体化技术已越来越受到各方面的关注,它在改善人民生活、提高工作效率、节约能源、降低材料消耗、增强企业竞争力等方面起着极大的作用。
在机电一体化技术迅速发展的同时,运动控制技术作为其关键组成部分,也得到前所未有的大发展,国内外各个厂家相继推出运动控制的新技术、新产品。本文主要介绍了全闭环交流伺服驱动技术(FullClosedACServo)、直线电机驱动技术(LinearMotorDriving)、可编程序计算机控制器(ProgrammableComputerController,PCC)和运动控制卡(MotionControllingBoard)等几项具有代表性的新技术。
二、全闭环交流伺服驱动技术
在一些定位精度或动态响应要求比较高的机电一体化产品中,交流伺服系统的应用越来越广泛,其中数字式交流伺服系统更符合数字化控制模式的潮流,而且调试、使用十分简单,因而被受青睐。这种伺服系统的驱动器采用了先进的数字信号处理器(DigitalSignalProcessor,DSP),可以对电机轴后端部的光电编码器进行位置采样,在驱动器和电机之间构成位置和速度的闭环控制系统,并充分发挥DSP的高速运算能力,自动完成整个伺服系统的增益调节,甚至可以跟踪负载变化,实时调节系统增益;有的驱动器还具有快速傅立叶变换(FFT)的功能,测算出设备的机械共振点,并通过陷波滤波方式消除机械共振。
一般情况下,这种数字式交流伺服系统大多工作在半闭环的控制方式,即伺服电机上的编码器反馈既作速度环,也作位置环。这种控制方式对于传动链上的间隙及误差不能克服或补偿。为了获得更高的控制精度,应在最终的运动部分安装高精度的检测元件(如:光栅尺、光电编码器等),即实现全闭环控制。比较传统的全闭环控制方法是:伺服系统只接受速度指令,完成速度环的控制,位置环的控制由上位控制器来完成(大多数全闭环的机床数控系统就是这样)。这样大大增加了上位控制器的难度,也限制了伺服系统的推广。目前,国外已出现了一种更完善、可以实现更高精度的全闭环数字式伺服系统,使得高精度自动化设备的实现更为容易。
该系统克服了上述半闭环控制系统的缺陷,伺服驱动器可以直接采样装在最后一级机械运动部件上的位置反馈元件(如光栅尺、磁栅尺、旋转编码器等),作为位置环,而电机上的编码器反馈此时仅作为速度环。这样伺服系统就可以消除机械传动上存在的间隙(如齿轮间隙、丝杠间隙等),补偿机械传动件的制造误差(如丝杠螺距误差等),实现真正的全闭环位置控制功能,获得较高的定位精度。而且这种全闭环控制均由伺服驱动器来完成,无需增加上位控制器的负担,因而越来越多的行业在其自动化设备的改造和研制中,开始采用这种伺服系统。
三、直线电机驱动技术
直线电机在机床进给伺服系统中的应用,近几年来已在世界机床行业得到重视,并在西欧工业发达地区掀起"直线电机热"。
在机床进给系统中,采用直线电动机直接驱动与原旋转电机传动的最大区别是取消了从电机到工作台(拖板)之间的机械传动环节,把机床进给传动链的长度缩短为零,因而这种传动方式又被称为"零传动"。正是由于这种"零传动"方式,带来了原旋转电机驱动方式无法达到的性能指标和优点。
1.高速响应由于系统中直接取消了一些响应时间常数较大的机械传动件(如丝杠等),使整个闭环控制系统动态响应性能大大提高,反应异常灵敏快捷。
2.精度直线驱动系统取消了由于丝杠等机械机构产生的传动间隙和误差,减少了插补运动时因传动系统滞后带来的跟踪误差。通过直线位置检测反馈控制,即可大大提高机床的定位精度。
3.动刚度高由于"直接驱动",避免了启动、变速和换向时因中间传动环节的弹性变形、摩擦磨损和反向间隙造成的运动滞后现象,同时也提高了其传动刚度。
4.速度快、加减速过程短由于直线电动机最早主要用于磁悬浮列车(时速可达500Km/h),所以用在机床进给驱动中,要满足其超高速切削的最大进个速度(要求达60~100M/min或更高)当然是没有问题的。也由于上述"零传动"的高速响应性,使其加减速过程大大缩短。以实现起动时瞬间达到高速,高速运行时又能瞬间准停。可获得较高的加速度,一般可达2~10g(g=9.8m/s2),而滚珠丝杠传动的最大加速度一般只有0.1~0.5g。
5.行程长度不受限制在导轨上通过串联直线电机,就可以无限延长其行程长度。
6.运动动安静、噪音低由于取消了传动丝杠等部件的机械摩擦,且导轨又可采用滚动导轨或磁垫悬浮导轨(无机械接触),其运动时噪音将大大降低。
7.效率高由于无中间传动环节,消除了机械摩擦时的能量损耗,传动效率大大提高。
直线传动电机的发展也越来越快,在运动控制行业中倍受重视。在国外工业运动控制相对发达的国家已开始推广使用相应的产品,其中美国科尔摩根公司(Kollmorgen)的PLATINNMDDL系列直线电机和SERVOSTARCD系列数字伺服放大器构成一种典型的直线永磁伺服系统,它能提供很高的动态响应速度和加速度、极高的刚度、较高的定位精度和平滑的无差运动;德国西门子公司、日本三井精机公司、台湾上银科技公司等也开始在其产品中应用直线电机。
四、可编程计算机控制器技术
自20世纪60年代末美国第一台可编程序控制器(ProgrammingLogical Controller,PLC)问世以来,PLC控制技术已走过了30年的发展历程,尤其是随着近代计算机技术和微电子技术的发展,它已在软硬件技术方面远远走出了当初的"顺序控制"的雏形阶段。可编程计算机控制器(PCC)就是代表这一发展趋势的新一代可编程控制器。
与传统的PLC相比较,PCC最大的特点在于它类似于大型计算机的分时多任务操作系统和多样化的应用软件的设计。传统的PLC大多采用单任务的时钟扫描或监控程序来处理程序本身的逻辑运算指令和外部的I/O通道的状态采集与刷新。这样处理方式直接导致了PLC的"控制速度"依赖于应用程序的大小,这一结果无疑是同I/O通道中高实时性的控制要求相违背的。PCC的系统软件完美地解决了这一问题,它采用分时多任务机制构筑其应用软件的运行平台,这样应用程序的运行周期则与程序长短无关,而是由操作系统的循环周期决定。由此,它将应用程序的扫描周期同外部的控制周期区别开来,满足了实时控制的要求。当然,这种控制周期可以在CPU运算能力允许的前提下,按照用户的实际要求,任意修改。
基于这样的操作系统,PCC的应用程序由多任务模块构成,给工程项目应用软件的开发带来很大的便利。因为这样可以方便地按照控制项目中各部分不同的功能要求,如运动控制、数据采集、报警、PID调节运算、通信控制等,分别编制出控制程序模块(任务),这些模块既独立运行,数据间又保持一定的相互关联,这些模块经过分步骤的独立编制和调试之后,可一同下载至PCC的CPU中,在多任务操作系统的调度管理下并行运行,共同实现项目的控制要求。
PCC在工业控制中强大的功能优势,体现了可编程控制器与工业控制计算机及DCS(分布式工业控制系统)技术互相融合的发展潮流,虽然这还是一项较为年轻的技术,但在其越来越多的应用领域中,它正日益显示出不可低估的发展潜力。
五、运动控制卡
运动控制卡是一种基于工业PC机、用于各种运动控制场合(包括位移、速度、加速度等)的上位控制单元。它的出现主要是因为:(1)为了满足新型数控系统的标准化、柔性、开放性等要求;(2)在各种工业设备(如包装机械、印刷机械等)、国防装备(如跟踪定位系统等)、智能医疗装置等设备的自动化控制系统研制和改造中,急需一个运动控制模块的硬件平台;(3)PC机在各种工业现场的广泛应用,也促使配备相应的控制卡以充分发挥PC机的强大功能。
运动控制卡通常采用专业运动控制芯片或高速DSP作为运动控制核心,大多用于控制步进电机或伺服电机。一般地,运动控制卡与PC机构成主从式控制结构:PC机负责人机交互界面的管理和控制系统的实时监控等方面的工作(例如键盘和鼠标的管理、系统状态的显示、运动轨迹规划、控制指令的发送、外部信号的监控等等);控制卡完成运动控制的所有细节(包括脉冲和方向信号的输出、自动升降速的处理、原点和限位等信号的检测等等)。运动控制卡都配有开放的函数库供用户在DOS或Windows系统平台下自行开发、构造所需的控制系统。因而这种结构开放的运动控制卡能够广泛地应用于制造业中设备自动化的各个领域。
2嵌入式系统
嵌入式系统以整个硬件设计为基础来实现自身功能,而一些应用程序的管理以及硬件的分配需要软件的帮助,这样便于开发程序。嵌入式操作系统经历了四个发展阶段,首先是嵌入式算法阶段,该阶段没有操作系统,主要是通过汇编语言来直接控制系统,因此整个系统相对较为单一,工作效率也相当低,用户对接较为困难。在嵌入式算法的基础上又发展了一种简单的操作系统,该系统主要以嵌入式CPU为核心,其特点是功能简单,成本较低,工作效率高,所用操作软件较为专业化,兼容性和扩展性较好,但是在处理用户界面时还不是特别容易。因此嵌入式操作系统阶段又发展成为一种嵌入式的通用操作系统,此阶段的嵌入式操作系统兼容性较好、工作效率较高、体积小、扩展性较好,而且用户界面友好。目前正在飞速发展的一个阶段是以Internet为基础,Internet的接入为嵌入式系统提供了强大的网络运作功能,这是嵌入式操作系统的需求,也是其飞速发展的一个标志。开发嵌入式系统主要是选择操作系统,选择原则包括:
(1)兼容性,操作系统是否具有兼容性在各异的平台或者各异的系统上显得尤为重要,良好的软件兼容性可以使系统在不同的平台上方便地运行,或者通过简单的微调就可以运行。
(2)实时性,嵌入式操作系统的应用广泛,因此需要其对各种异常或者各种命令随时随地做出回应。
(3)丰富的资源信息,这对提高系统开发的效率起着至关重要的作用。
(4)定制能力,硬件系统各不相同,因此要求系统的定制能力也相当的高。
(5)成本,这是任何一个开发商对产品都必须要考虑的问题。
(6)中文支持度。基于上述的因素,在选择操作系统时要慎重,而Linux操作系统是最符合上诉原则的操作系统。Linux操作系统稳定性较高,性能较好,支持各种不同的任务,可以调试结构,资源丰富,成本较低,结构多变,应用广泛。