电源技术论文范文

时间:2023-03-15 14:56:08

引言:寻求写作上的突破?我们特意为您精选了12篇电源技术论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

电源技术论文

篇1

2.脉冲电源的组成及结构

脉冲电源是适用于电除尘器的电源,目前在世界各地的电厂、钢铁厂及水泥厂的环保除尘机械设备中得到了广泛应用,除尘效果显着。它主要由控制柜和高压输出变压器两部分组成,分别放置于控制室和电除尘器顶部。脉冲电源系统一般由基础电压产生部分、脉冲电压产生部分、控制部分及通讯部分组成。其原理图如图2所示。1)基础电压Vdc产生部分三相交流电源输入至三相升压变压器,经三相整流桥和滤波电路后,产生一个高压直流电压,再经扼流电感L2和耦合电感L4送至电除尘器中,供应电除尘器ESP所需的基础电压。2)脉冲电压产生部分三相交流AC380V输入至三相升压变压器,经整流桥、滤波电路后,得到一个高压直流电压,经扼流电感L1给储能电容Cs充电。当高压IGBT(SW1)导通时,储能电容Cs、扼流电感L3、耦合电感L4、电除尘器ESP等效电容形成谐振回路,储能电容Cs内的电量在该回路内谐振,在电除尘器ESP两端形成一个脉冲电压。该脉冲电压与基础电压叠加,产生最终所需的加至电除尘器ESP上的电压波形,如图3所示。谐振后半部分,电量回充给储能电容Cs,节约电能。当高压IGBT关断时,谐振回路断开,电源继续给储能电容充电至原电压,等待下次脉冲的产生,如此循环。3)控制部分通过一个核心控制器(嵌入式系统),控制基础电压、脉冲电压的产生,并接收脉冲电源的反馈信号、监控关键位置的运行状况,调整脉冲电源的运行状态,使脉冲电源适应各种复杂工况的要求,产生最大的收尘效率及节能目标。同时采用快速、智能的火花响应、处理机制,保证火花状态下设备的安全、稳定运行。4)通讯部分通过以太网控制器,在通讯协议,比如Modbus的基础上搭建整个通讯系统,在上位机界面上监控各个脉冲电源的运行情况,并统一控制、调配,便于运行和管理,提高工作效率。

3.脉冲电源除尘的特点和优势

篇2

1.1整流器时代

大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。

1.2逆变器时代

七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。

1.3变频器时代

进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。

2.现代电力电子的应用领域

2.1计算机高效率绿色电源

高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进人了电子、电器设备领域。

计算机技术的发展,提出绿色电脑和绿色电源。绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日“能源之星"计划规定,桌上型个人电脑或相关的设备,在睡眠状态下的耗电量若小于30瓦,就符合绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。

2.2通信用高频开关电源

通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。

因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。

2.3直流-直流(DC/DC)变换器

DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约电能(20~30)%。直流斩波器不仅能起调压的作用(开关电源),同时还能起到有效地抑制电网侧谐波电流噪声的作用。

通信电源的二次电源DC/DC变换器已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为5W~20W/in3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构,目前已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。

2.4不间断电源(UPS)

不间断电源(UPS)是计算机、通信系统以及要求提供不能中断场合所必须的一种高可靠、高性能的电源。交流市电输入经整流器变成直流,一部分能量给蓄电池组充电,另一部分能量经逆变器变成交流,经转换开关送到负载。为了在逆变器故障时仍能向负载提供能量,另一路备用电源通过电源转换开关来实现。

现代UPS普遍了采用脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,电源的噪声得以降低,而效率和可靠性得以提高。微处理器软硬件技术的引入,可以实现对UPS的智能化管理,进行远程维护和远程诊断。

目前在线式UPS的最大容量已可作到600kVA。超小型UPS发展也很迅速,已经有0.5kVA、lkVA、2kVA、3kVA等多种规格的产品。

2.5变频器电源

变频器电源主要用于交流电机的变频调速,其在电气传动系统中占据的地位日趋重要,已获得巨大的节能效果。变频器电源主电路均采用交流-直流-交流方案。工频电源通过整流器变成固定的直流电压,然后由大功率晶体管或IGBT组成的PWM高频变换器,将直流电压逆变成电压、频率可变的交流输出,电源输出波形近似于正弦波,用于驱动交流异步电动机实现无级调速。

国际上400kVA以下的变频器电源系列产品已经问世。八十年代初期,日本东芝公司最先将交流变频调速技术应用于空调器中。至1997年,其占有率已达到日本家用空调的70%以上。变频空调具有舒适、节能等优点。国内于90年代初期开始研究变频空调,96年引进生产线生产变频空调器,逐渐形成变频空调开发生产热点。预计到2000年左右将形成。变频空调除了变频电源外,还要求有适合于变频调速的压缩机电机。优化控制策略,精选功能组件,是空调变频电源研制的进一步发展方向。

2.6高频逆变式整流焊机电源

高频逆变式整流焊机电源是一种高性能、高效、省材的新型焊机电源,代表了当今焊机电源的发展方向。由于IGBT大容量模块的商用化,这种电源更有着广阔的应用前景。

逆变焊机电源大都采用交流-直流-交流-直流(AC-DC-AC-DC)变换的方法。50Hz交流电经全桥整流变成直流,IGBT组成的PWM高频变换部分将直流电逆变成20kHz的高频矩形波,经高频变压器耦合,整流滤波后成为稳定的直流,供电弧使用。

由于焊机电源的工作条件恶劣,频繁的处于短路、燃弧、开路交替变化之中,因此高频逆变式整流焊机电源的工作可靠性问题成为最关键的问题,也是用户最关心的问题。采用微处理器做为脉冲宽度调制(PWM)的相关控制器,通过对多参数、多信息的提取与分析,达到预知系统各种工作状态的目的,进而提前对系统做出调整和处理,解决了目前大功率IGBT逆变电源可靠性。

国外逆变焊机已可做到额定焊接电流300A,负载持续率60%,全载电压60~75V,电流调节范围5~300A,重量29kg。

2.7大功率开关型高压直流电源

大功率开关型高压直流电源广泛应用于静电除尘、水质改良、医用X光机和CT机等大型设备。电压高达50~l59kV,电流达到0.5A以上,功率可达100kW。

自从70年代开始,日本的一些公司开始采用逆变技术,将市电整流后逆变为3kHz左右的中频,然后升压。进入80年代,高频开关电源技术迅速发展。德国西门子公司采用功率晶体管做主开关元件,将电源的开关频率提高到20kHz以上。并将干式变压器技术成功的应用于高频高压电源,取消了高压变压器油箱,使变压器系统的体积进一步减小。

国内对静电除尘高压直流电源进行了研制,市电经整流变为直流,采用全桥零电流开关串联谐振逆变电路将直流电压逆变为高频电压,然后由高频变压器升压,最后整流为直流高压。在电阻负载条件下,输出直流电压达到55kV,电流达到15mA,工作频率为25.6kHz。

2.8电力有源滤波器

传统的交流-直流(AC-DC)变换器在投运时,将向电网注入大量的谐波电流,引起谐波损耗和干扰,同时还出现装置网侧功率因数恶化的现象,即所谓“电力公害”,例如,不可控整流加电容滤波时,网侧三次谐波含量可达(70~80)%,网侧功率因数仅有0.5~0.6。

电力有源滤波器是一种能够动态抑制谐波的新型电力电子装置,能克服传统LC滤波器的不足,是一种很有发展前途的谐波抑制手段。滤波器由桥式开关功率变换器和具体控制电路构成。与传统开关电源的区别是:(l)不仅反馈输出电压,还反馈输入平均电流;(2)电流环基准信号为电压环误差信号与全波整流电压取样信号之乘积。

2.9分布式开关电源供电系统

分布式电源供电系统采用小功率模块和大规模控制集成电路作基本部件,利用最新理论和技术成果,组成积木式、智能化的大功率供电电源,从而使强电与弱电紧密结合,降低大功率元器件、大功率装置(集中式)的研制压力,提高生产效率。

八十年代初期,对分布式高频开关电源系统的研究基本集中在变换器并联技术的研究上。八十年代中后期,随着高频功率变换技术的迅述发展,各种变换器拓扑结构相继出现,结合大规模集成电路和功率元器件技术,使中小功率装置的集成成为可能,从而迅速地推动了分布式高频开关电源系统研究的展开。自八十年代后期开始,这一方向已成为国际电力电子学界的研究热点,论文数量逐年增加,应用领域不断扩大。

分布供电方式具有节能、可靠、高效、经济和维护方便等优点。已被大型计算机、通信设备、航空航天、工业控制等系统逐渐采纳,也是超高速型集成电路的低电压电源(3.3V)的最为理想的供电方式。在大功率场合,如电镀、电解电源、电力机车牵引电源、中频感应加热电源、电动机驱动电源等领域也有广阔的应用前景。

3.高频开关电源的发展趋势

在电力电子技术的应用及各种电源系统中,开关电源技术均处于核心地位。对于大型电解电镀电源,传统的电路非常庞大而笨重,如果采用高顿开关电源技术,其体积和重量都会大幅度下降,而且可极大提高电源利用效率、节省材料、降低成本。在电动汽车和变频传动中,更是离不开开关电源技术,通过开关电源改变用电频率,从而达到近于理想的负载匹配和驱动控制。高频开关电源技术,更是各种大功率开关电源(逆变焊机、通讯电源、高频加热电源、激光器电源、电力操作电源等)的核心技术。

3.1高频化

理论分析和实践经验表明,电气产品的变压器、电感和电容的体积重量与供电频率的平方根成反比。所以当我们把频率从工频50Hz提高到20kHz,提高400倍的话,用电设备的体积重量大体下降至工频设计的5~l0%。无论是逆变式整流焊机,还是通讯电源用的开关式整流器,都是基于这一原理。同样,传统“整流行业”的电镀、电解、电加工、充电、浮充电、电力合闸用等各种直流电源也可以根据这一原理进行改造,成为“开关变换类电源”,其主要材料可以节约90%或更高,还可节电30%或更多。由于功率电子器件工作频率上限的逐步提高,促使许多原来采用电子管的传统高频设备固态化,带来显著节能、节水、节约材料的经济效益,更可体现技术含量的价值。

3.2模块化

模块化有两方面的含义,其一是指功率器件的模块化,其二是指电源单元的模块化。我们常见的器件模块,含有一单元、两单元、六单元直至七单元,包括开关器件和与之反并联的续流二极管,实质上都属于“标准”功率模块(SPM)。近年,有些公司把开关器件的驱动保护电路也装到功率模块中去,构成了“智能化”功率模块(IPM),不但缩小了整机的体积,更方便了整机的设计制造。实际上,由于频率的不断提高,致使引线寄生电感、寄生电容的影响愈加严重,对器件造成更大的电应力(表现为过电压、过电流毛刺)。为了提高系统的可靠性,有些制造商开发了“用户专用”功率模块(ASPM),它把一台整机的几乎所有硬件都以芯片的形式安装到一个模块中,使元器件之间不再有传统的引线连接,这样的模块经过严格、合理的热、电、机械方面的设计,达到优化完美的境地。它类似于微电子中的用户专用集成电路(ASIC)。只要把控制软件写入该模块中的微处理器芯片,再把整个模块固定在相应的散热器上,就构成一台新型的开关电源装置。由此可见,模块化的目的不仅在于使用方便,缩小整机体积,更重要的是取消传统连线,把寄生参数降到最小,从而把器件承受的电应力降至最低,提高系统的可靠性。另外,大功率的开关电源,由于器件容量的限制和增加冗余提高可靠性方面的考虑,一般采用多个独立的模块单元并联工作,采用均流技术,所有模块共同分担负载电流,一旦其中某个模块失效,其它模块再平均分担负载电流。这样,不但提高了功率容量,在有限的器件容量的情况下满足了大电流输出的要求,而且通过增加相对整个系统来说功率很小的冗余电源模块,极大的提高系统可靠性,即使万一出现单模块故障,也不会影响系统的正常工作,而且为修复提供充分的时间。

3.3数字化

在传统功率电子技术中,控制部分是按模拟信号来设计和工作的。在六、七十年代,电力电子技术完全是建立在模拟电路基础上的。但是,现在数字式信号、数字电路显得越来越重要,数字信号处理技术日趋完善成熟,显示出越来越多的优点:便于计算机处理控制、避免模拟信号的畸变失真、减小杂散信号的干扰(提高抗干扰能力)、便于软件包调试和遥感遥测遥调,也便于自诊断、容错等技术的植入。所以,在八、九十年代,对于各类电路和系统的设计来说,模拟技术还是有用的,特别是:诸如印制版的布图、电磁兼容(EMC)问题以及功率因数修正(PFC)等问题的解决,离不开模拟技术的知识,但是对于智能化的开关电源,需要用计算机控制时,数字化技术就离不开了。

3.4绿色化

电源系统的绿色化有两层含义:首先是显著节电,这意味着发电容量的节约,而发电是造成环境污染的重要原因,所以节电就可以减少对环境的污染;其次这些电源不能(或少)对电网产生污染,国际电工委员会(IEC)对此制定了一系列标准,如IEC555、IEC917、IECl000等。事实上,许多功率电子节电设备,往往会变成对电网的污染源:向电网注入严重的高次谐波电流,使总功率因数下降,使电网电压耦合许多毛刺尖峰,甚至出现缺角和畸变。20世纪末,各种有源滤波器和有源补偿器的方案诞生,有了多种修正功率因数的方法。这些为2l世纪批量生产各种绿色开关电源产品奠定了基础。

现代电力电子技术是开关电源技术发展的基础。随着新型电力电子器件和适于更高开关频率的电路拓扑的不断出现,现代电源技术将在实际需要的推动下快速发展。在传统的应用技术下,由于功率器件性能的限制而使开关电源的性能受到影响。为了极大发挥各种功率器件的特性,使器件性能对开关电源性能的影响减至最小,新型的电源电路拓扑和新型的控制技术,可使功率开关工作在零电压或零电流状态,从而可大大的提高工作频率,提高开关电源工作效率,设计出性能优良的开关电源。

总而言之,电力电子及开关电源技术因应用需求不断向前发展,新技术的出现又会使许多应用产品更新换代,还会开拓更多更新的应用领域。开关电源高频化、模块化、数字化、绿色化等的实现,将标志着这些技术的成熟,实现高效率用电和高品质用电相结合。这几年,随着通信行业的发展,以开关电源技术为核心的通信用开关电源,仅国内有20多亿人民币的市场需求,吸引了国内外一大批科技人员对其进行开发研究。开关电源代替线性电源和相控电源是大势所趋,因此,同样具有几十亿产值需求的电力操作电源系统的国内市场正在启动,并将很快发展起来。还有其它许多以开关电源技术为核心的专用电源、工业电源正在等待着人们去开发。

参考文献

(l)林渭勋:浅谈半导体高频电力电子技术,电力电子技术选编,浙江大学,384-390,1992

(2)季幼章:迎接知识经济时代,发展电源技术应用,电源技术应用,N0.2,l998

(3)叶治正,叶靖国:开关稳压电源。高等教育出版社,1998

篇3

引言

电子系统可视为是种类不同的元件集合,有些元件有着固定的性能指标和耗能,这些元件被称为非电源管理元件;上反,有些元件可以在不同时间工作,并且有多种耗能状态,相应地消耗着不同的系统电能,这些元件称为可电源管理元件。可电源管理元件的有效使用成为节省系统耗能,使整个系统在有限电能下长时间工作的关键所在。

系统元件从一种耗能状态到另一种耗能状态往往需要一段时间,并且在这段时间内会消耗更多的额外能量。状态的改变会影响系统的性能,所以设计者需要在系统节能和系统性能之间找到恰当的折衷切入点。本文介绍了动态电源管理中的一些方法。这些方法将决定元件是否改变耗能状态和何时改变。

1动态电源管理技术

“动态电源管理”是动态地分配系统资源,以最少的元件或元件最小工作量的低耗能状态,来完成系统任务的一种降低功耗的设计方法。对于电源管理实施时间的判断,要用到多种预测方法,根据历史的工作量预测即将到来的工作量,决定是否转换工作状态和何时转换。这就是动态电源管理技术的核心所在——动态电源管理方法。

动态电源管理技术适用的基本前提是,系统元件在工作时间内有着不相同的工作量。大多数的系统都具有此种情况。另一个前提是,可以在一定程度上确信能够预知系统、元件的工作量的波动性。这样才有转换耗能状态的可能,并且在对工作量的观察和预知的时间内,系统不可以消耗过多的能量。

2电源管理

各个系统设备当接到请求时,设备忙;而没有请求时,就进入了空闲状态。设置进入空闲时,可以关闭设备,进入低耗能的休眠状态;当再次接到请求后,设备被唤起。这就是所谓的“电源管理”。然而,耗能状态的改变是需要时间的,也就是关闭时延和唤起时延。唤起休眠状态中的设备需要额外的能量开销,如图1所示。如果没有这项开销,也就用不着电源管理技术了,完全可以只要设备空闲就关闭设备、这种时延和能量开销确定存在,所以必须考虑,只有当设备在休眠状态所节省的能量至少可以抵得上状态转换耗能的情况时,才可以进入休眠状态。

电源管理技术是一个预知性问题。应寻求预知空闲时间是否足够长,以及于能否抵得上状态转换的耗能开销。空闲时间过短时,采用电源管理的方案就得不偿失了。所以事先估计出空闲时间的长短是电源管理技术中的首要问题。定义“恰当的停止时间段”(tBE):能达到系统节能的最短空闲时间段。此时间与设备元件本身有关,与系统发出的请求无关。假设状态转换延时t0(包括关闭和唤起延时)耗能为E0;工作状态功率Pw,休眠状态功率Ps,可由以下式求出tBE。

Pw×tBE=E0+Ps×(tBE-T0)

等式左边为“适合暂停时间段”内的耗能,也就是系统在这段用于节能的最短空闲时间内继续工作所需能量;右边是状态转换耗能和休眠时间内的系统耗能。tBE换和这段休眠时间内的系统耗能。电源管理技术就是要预知将要发生的休眠时间是否能够大于tBE,只有大于它,设备才有休眠的必要。

3基于先验预知的动态电源管理技术

对于大多数真实系统,即将输入的信号是难以确定的。动态电源管理的决策是基于对未来的不确定预知的基础之上的。所有的基于预知的动态电源管理技术的基本原理是探过去工作量的历史和即将发生的工作量之间的相互关系,来对未来事件进行可靠的预知。对于动态电源管理,我们关心怎样预知足够长的空闲时间进入休眠状态,表达如下:

p={tIDLE>tBE}

我们称预知空闲时间比实际的空闲时间长(短)为“预知过度”(“预知不足”)。预知过度增加了对性能的影响;预知不足虽对性能无影响却造成了能量的浪费。要是能既无预知过度又无预知不足,那就是一个理想的预知。预知的质量取决于对观察样本的选择和对工作量的统计。

3.1静态预知方法

固定超时法:最普遍的电源管理预知法,用过去的空闲时间作为观察校本对象来预知当前空闲时段的总持续时间。此方法总结如下:空闲时钟开始,计时器开始计时,超过固定超时时间tTO系统仍处于空闲,则电源管理使得系统休眠,直到接收到外界请求,标志着空闲状态的结束。能够合理地选择tTO显然是这种方法的关键。通常在要求不高的情况下取tTO=tBE。

固定超时法优点有二:①普遍适用(应用范围仅限决于工作量);②增加固定超时值可以减少“过度预知”(即预知时间比实际空闲时间长)的可能性。但是其缺点也明显:固定超时过大则将引起预知不足,结果不能有效的节省能量,相当多的能量浪费在等待超时上。

预知关闭法:此方法可以解决固定超时法中等待固定超时而耗费过多能量的问题,即预知到系统的空闲可能性就立即关闭系统,无需等到空闲时间超过超时值。预知方法是对历史工作量的统计上做的有肯定性估计。

Srivastave提出了两种先验关闭的方案。

①非线性衰减方程(φ)。此方程可由过去的历史中得到。

t的上标表示过去空闲和工作时期的序号,n表示当前的空闲时期(其长度有待于预知估计)和最近的工作时段。此方程表明了要估计将发生的空闲时期,要考虑到过去的空闲和工作时期。

如果tpred>tBE,那么系统一空闲就立即关闭。观察样本是

此方法的局限:

*无法自主决定衰减方程的类型;

*要根据收集和分析的分散数据建立衰减模型,并且这些数据适合此衰减模型。

这些数据适合此衰减模型。

②极限方案。此方案基于一个极限。观察样本为紧挨着当前空闲时期之前的工作时期,如果便认为空闲时期比前一个工作时期长,则系统关闭。

注意:统计研究表明,短时间的工作时期后是长时间的空闲期;长时间的工作期后是短时间的空闲期。这样的系统可以用极限法,如图2所示。而短时期的工作期后是短时期的空闲期这种情况下就不能用些极限法。总之,对tthr的选择尤为重要。

预知唤起法:可以解决固定超时方法中唤起时的性能损耗。当预知空闲时间超时后则系统唤起,即使此时没有接收收到任何系统请求。使用此方法应注意的是,如果tidle被“预知不足”,则这种方法增加了能量的消耗,但同时也减少了等待接收第一个系统请求的时间,还是在一定程度上节省了能量,提高了系统性能。

3.2动态预知方法

由于动态电源管理方法的最优化取决于对工作量的统计,当工作量既未知又非静态时,静态预知方法就不是十分有效。因此,就有了动态预知方法。对非静态工作量有几种动态的预知方法。

①设定一套超时值,每个值与一个参数相关。此参数表明超时值选择的准确性。此方法是在每一个空闲时间内,选择这些超时值中最有效的一个值。

②此方法同样有一些供选择的超时值,分配给每个值一个“权”。此“权”是对过去相同要求下,采取此超时值带来的满意度为衡量对象抽象出的参数。实际采用的超时值是取所有被选超时值的权的平均。

③只采用一个超时值,当选择此超时值后会引起许多不尽如人意的“系统关闭”后,再适当增加此值。当更多的“系统关闭”可以被接受了,则适当降低此值。

4总结

篇4

基本的拓扑包括BUCK、BOOST、BUCK-BOOST、CUK、正激变换器、反激、半桥、全桥、推挽变换器。在课堂教学中应该使学生熟练掌握其工作原理、应用场所、电流连续和电流断续的工作波形、拓扑中的关键参数的计算,为学生设计基本的开关电源电路打下坚实的基础,这是第一层次,要求学生必须熟练掌握。尤其要着重讲解基本拓扑BUCK变换器,因为很多拓扑结构甚至是基本拓扑都可以由BUCK变换器变换得来。如果能在课堂上重点讲解BUCK变换器,使学生完全掌握BUCK变换器的原理和波形,对学生后期的开关电源学习将会大有助益。第二层次是以基本拓扑为核心部分的主功率电路各部分参数计算,相当于电源工程师的项目计算书部分,这也是电源工程师必须掌握的基本技能。由于课上时间有限,教师在课上会把拓扑中关键器件主要参数的计算方法给出,不可能把所有的参数计算一遍,所以导致有些学生就停滞在这个层次上,没有在课下把所有的参数,尤其是关系到器件选型的参数进行设计,为了解决这个问题,在课程中后期安排学生团队制作实物开关电源,在这个过程中就必须要对每个计算参数都要反复核算,这个教学环节取得了较好的效果。第三层次是主功率电路器件选型和调试,基本上只有参加过实物制作、电子设计大赛、实习项目的学生有机会达到这一步,通过实际存在的问题,就问题去解决,才会在实践当中结合他们上课学习的电源理论切实地体会调试电路的乐趣。

1.2PWM和PFC控制芯片

这部分会通过调研报告的形式让学生先去搜集相关PWM和PFC控制芯片的最新信息,先让学生去感知、去了解现在出来最新的控制芯片已经可以做到哪些功能了,此外重要的是积累总结每一个拓扑可以有哪些控制芯片来控制。让他们自己去发现问题,感知问题,带着问题和好奇,在课堂上授课教师会深入讲解PWM控制芯片的基本控制原理,通过工程项目详细讲解如何快速掌握一个新的控制芯片每个引脚的功能,电路的设计方法、元器件参数计算方法,使学生掌握如何用控制芯片来控制变换器实现电能的变换,学会设计控制芯片与变换器的连接电路,即检测电路和功率管的驱动电路。在课堂上教会学生使用PWM控制芯片数据说明书设计控制电路达到层次一,在课程学时中专门安排学生学习控制芯片电路的设计方法和参数计算方法达到层次二,不仅让学生掌握一种控制芯片的电路设计方法,更重要的是举一反三,在以后的设计和工作岗位上面对新的平台和控制芯片依然可以设计出符合要求的电路。

1.3变压器和电感设计

授课教师在课堂教学中依据教学改革培养电源工程师为目标不仅要介绍变压器和电感的各个参数的计算方法,还会结合实际项目讲授变压器同名端和异名端在实际电源制作时的注意事项,变压器的制作方法,掌握电压器参数的测试方法和测试工具,掌握用示波器和信号发生器测试变压器的匝比和同名端的方法。变压器和电感的设计直接关系到隔离型变换器的性能,很多学生对变压器和电感磁路设计部分学习起来会有些困难,所以这部分将作为课程的难点来重点讲解。

1.4保护电路设计

课堂教学中一部分学时将用来着重讲解各种保护电路,包括输入输出过压保护、过温保护、过流保护、输入欠压保护等。将采用调研报告、启发式和讨论式等教学方法引导学生去积累这些保护电路,学会在不同平台、不同应用场合使用不同的保护电路。

1.5闭环电路调试

结合自动控制原理课程的相关知识,着重讲解开关电源闭环电路的设计和分析,尤其是PID调节器的调试方法,结合实际项目演示电源工程师闭环电路调试过程,激发学生学习开关电源的学习兴趣,通过实物和仿真软件让学生体验调试的乐趣,这部分是开关电源课程重点讲解的内容,要联系实际项目,是课程的核心内容。以上5个部分是课程的主要教学内容块,完全按照培养电源工程师的目标下制定的教学计划,可以做到较好地给学生从课堂到就业的过渡,而不再是到了工作岗位上感觉课堂学习的东西和实际工作联系不紧密,什么知识什么技能都要工作之后学习。在课堂上,保证学生完全掌握第一个层次,通过课后作业、课堂实际项目案例、电源制作等形式的教学方法使大部分学生掌握层次二,在平时的教学中注意动手能力强或者电路设计能力强的学生,通过带学生电子设计大赛、创新大赛,或者学生在项目中辅助教师担任研发助理的工作等,使一部分学生研发能力可以快速提高,培养成具有基本技能的初级电源工程师。

2课程考核方式改革

考虑到开关电源课程的实践性强的特点,着重考核学生掌握所学的基本电路拓扑理论和技能,能综合运用所学知识和技能去分析电路、调试和测试电路、分析电路故障及排除电路故障的能力。

2.1制作电源实物

基于课堂系统的理论学习,独立制作75W单管正激变换器实物的能力考核,该正激变换器采用何种磁复位技术不限,根据班级人数,3~4名同学为一个小组,明确不同分工,共同制作出一款正激变换器。同时培养学生的团队合作意识,考核的内容也要增加当该团队遇到分歧和困难的时候,是如何解决的。

2.2课堂表现

主要是包括回答问题的情况,对问题分析的程度,出勤率,在平时小组讨论时的表现和活跃程度。

2.3科研报告、口头汇报

通过让学生搜索近3年国内外开关电源、尤其是通信电源技术和产品的最新发展概况,增强学生的自我学习能力,在以后的学习和工作中掌握更新自己开关电源知识体系的能力,这是我们教学的重点,不只是教会学生电源的基本知识,还要教学学生学习探索开关电源领域的学习方法。选取部分优秀学生的科研报告由学生浓缩成5分钟的口头汇报结合PPT、实物动画等多媒体展示方法在上课前5分钟做口头汇报分享给学生们。不仅较好地激发学生学习开关电源的兴趣也能够充分锻炼学生的公开演讲能力。

2.4作业

作业着重在学生是否是自己独立完成的电路设计,而不是应付了事。哪怕学生的设计内容很少,但是只要是他们自己经过思考得来的就要比其参考其他人的作业效果要好很多。

篇5

移动电源结构一般由电压转换电路、可充电电芯或电芯组、外壳组成。其中电压转换电路分为充电电路、升压电路、管理控制IC以及保护电路。充电电路用以保证输入端能以恒流和恒压的方式为电芯充电。升压电路的作用是将电芯电压提升到输出端额定电压。管理控制IC起到电量监控和开关控制的作用。保护电路用以提供过充电、过放电等保护作用。电芯根据电解质材料不同大致分为液态锂离子电池和聚合物锂离子电池两大类。外壳的主要作用包括机械防护、散热和阻燃等。各组件应当以适当的方式连线、支撑并固定。使用人员可接触区应当有适当保护,以保证不会产生机械危险。

1.2电性能输出

电压为移动电源最基本的参数,电压过高、过低都会对被充电设备造成一定程度上的损害。测量时移动电源应在达到充电饱和状态30min后,空载情况下使用功率计测量其输出电压。测量的输出电压值与额定电压容差为±5%[2]。常温放电性能是移动电源最为重要的参数,此参数标志着移动电源的实际输出容量。移动电源应在23±2℃环境温度下,以额定输入电压和电流进行充电,直至饱和状态。静置30min后,以额定输出电流进行放电,直至移动电源放电输出终止,记录放电时间[3]。输出容量等于放电电流乘以放电时间。测量的移动电源输出容量应不低于其额定容量。转换效率测量时使用直流电源模拟电芯接入电路板输入端,直流电源输出电压调至电芯组标称电压。电路板输出端连接电子负载,调节电子负载使得电路板输出为额定输出。仪表连接示意图见下图1。电流表和电压表测量得到输出端Iout和Uout、输63入端Iin和Uin可以通过公式η=Uout·IoutUin·Iin(1)计算得到转换效率,转换效率应不小于85%。

1.3安全性

移动电源的安全性包括:过充电保护、过放电保护、短路保护、发热和防火等[4]。1)过充电保护。测量移动电源过充电保护时,移动电源在充电饱和状态下,使用直流源输入,持续加载充电12h,设置直流源输出电压为移动电源额定输入电压的1.2倍,输出电流为移动电源额定输入电流。整个过程中移动电源应不泄露,不破裂,不起火,不爆炸。2)过放电保护。移动电源放电至输出终止状态下,测量其过放电保护性能。在输出端接30Ω负载,持续加载放电24h。整个过程中移动电源应不泄露,不破裂,不起火,不爆炸。3)短路保护。短路保护为防止使用中正负极短路时提供的保护。测量时使移动电源在充电饱和状态下,将输出端正负两极,使用0.1Ω电阻短路24h。整个过程中移动电源应不泄露,不破裂,不起火,不爆炸。4)发热。移动电源在工作状态时,不应对使用人员造成热危险。测量其发热温度应在正常负载条件下工作直至温度稳定,使用数据采集器和热电偶测量移动电源外壳温度值。接触温度限值是塑料外壳为95℃,金属外壳为70℃,玻璃、瓷料和釉料为80℃。测量温度应低于各使用材料的发热限值[5]。5)防火。移动电源外壳应当使用V-1级材料进行阻燃防火保护。试验样品选用移动电源外壳,试验火焰顶端与样品相接触,施加燃烧30s,然后移开火焰停烧60s,然后不管样品是否还在燃烧,再在同一部位重复烧30s。合格判据为在试验期间,当试验火焰第二次施加后,样品延续燃烧不得超过1min,而且样品不得完全烧尽。

1.4环境适应性

移动电源环境适应性包括:高温放电、低温放电、温度循环、恒定湿热、振动、自由跌落、重物冲击和机械冲击[6]。高温放电测量中,移动电源在充电饱和后,放入55±2℃的温度试验箱中恒温放置2h,最后以额定输出电流进行放电,直至移动电源放电输出终止,记录放电时间,计算输出容量,其容量应不低于额定容量。低温放电测量中,移动电源在充电饱和后,放入-10±2℃的温度试验箱中恒温放置2h,最后以额定输出电流进行放电,直至移动电源放电输出终止,记录放电时间,计算输出容量,其容量应不低于额定容量。温度循环测量中,移动电源在充电饱和后,放入温度为75±2℃的温度试验箱中,保持6h后,将温度试验箱温度设置为-40±2℃,并保持6h,温度转换时间不大于30min,上述过程循环10次,如图2所示。温度循环试验结束后,取出在环境温度23±2℃的条件下搁置2h,以额定输出电流进行放电,直至移动电源放电输出终止,记录放电时间,计算输出容量,其容量应不低于额定容量。图2温度循环示意图恒定湿热测量中,移动电源在充电饱和后,放入温度为40±2℃,相对湿度为90%—95%的温度试验箱中搁置48h后,再取出在环境温度23±2℃的条件下搁置2h,以额定输出电流进行放电,直至移动电源放电输出终止,记录放电时间,计算输出容量,其容量应不低于额定容量。振动测量中,移动电源在充电饱和后,将其安装在振动台台面上,按以下所述振动频率和振幅对振动台进行设置,X,Y,Z3个方向每个方向从10—55Hz循环扫频,持续时间为3h,扫频速率为1oct/min。频率在10—30Hz范围内时,位移幅值为0.38mm,频率在30—55Hz范围内时,位移幅值为0.19mm。振动结束后,移动电源应不泄露,不破裂,不起火,不爆炸。结果位置跌落到水平表面试验台上,跌落高度为1000±10mm,试验次数为3次。水平表面试验台应当是由至少13mm厚的硬木安装在两层胶合板上组成,每一层胶合板的厚度为19—20mm,然后放在一水泥基座上或等效的无弹性的地面上。跌落试验结束后,移动电源应不泄露,不破裂,不起火,不爆炸。重物冲击测量中,移动电源放置于平面,并将一个Φ15.8±0.2mm的钢柱置于电池中心,钢柱的纵轴平行于平面,让质量9.1±0.1kg的重物从610±25mm高度自由落到中心上方的钢柱上,样品纵轴要平行于平面,垂直于钢柱纵轴,试验次数为1次。重物冲击试验全过程中,移动电源应不泄露,不破裂,不起火,不爆炸。机械冲击测量技术中,移动电源在充电饱和后,采用钢性固定的方法固定在冲击试验台上。在3个相互垂直的方向上各承受一次冲击。冲击在最初的3ms内,最小平均加速度为735m/s2,峰值加速度应在1225m/s2和1715m/s2之间,脉冲持续时间为6±1ms。机械冲击试验结束后,移动电源应不泄露,不破裂,不起火,不爆炸。

1.5电磁兼容性

移动电源应满足静电放电抗扰度[2]要求。使用静电放电模拟器施加干扰信号,严酷等级为接触放电±4kV,空气放电±8kV。静电放电抗扰度试验全过程,移动电源应不泄露,不破裂,不起火,不爆炸。

篇6

1引言2计算机电源发展历程

在计算机各部件中最令人注意的就是CPU的频率、内存的大小、硬盘容量,显卡的性能等等。而对于电脑中的一个重要部件电源.却往往总会受到忽略。而事实上,电脑的许多奇怪症状都是由电源引起的。假如我们把计算机比作一个人的话,CPU作为计算机的核心部件起着运算和控制的作用,它相当于我们人类的大脑;而电源作为计算机的动力提供者,完全等价于我们人类的心脏,其重要之处由此可见。所以有必要了解电源内部结构,熟悉电源的工作原理,才能更好地维护好计算机电源,才能从根本上保障公司各部门计算机设备长时间稳定工作。

2计算机电源发展历程

PC/XT_IBM最先推出个人PC/XT机时制定的标准;AT_也是由IBM早期推出PC/AT机时所提出的标准,当时能够提供192W的电力供应;ATX—Intel公司于1995年提出的工业标准。与AT比较主要变化为:

1、取消了AT电源上必备的电源开关而交由主板进行电源开关的控制,增加了一个待机电路为电源主电路和主板提供电压来实现电源唤醒等功能:

2、ATX电源首次引进了+3.3V的电压输出端,与主板的连接接口上也有了明显的改进:ATX12V——支持P4的ATX标准,是目前的主流标准:ATX12V一1.1:在ATX的基础之上增加了4pin的+12V辅助供电线(PIO)为P4处理器供电,改变了各路输出功率分配方式,增强+12V负载能力;ATX12V一1.3:提高了电源效率,增加了对SATA的支持。去掉了一5V输出,增加了+12V的输出能力;ATX12V一2.0:尚未有产品实施的最新规范;电源连接器由20针改为24针,以支持75W的PCIExpress总线.同时取消辅助电源接口;提供另一路+12V输出,直接为4Pin接口供电;WTX—ATX电源的加强版本:尺寸上比ATX电源大。供电能力也比比ATX电源强,常用于服务器和大型电脑;BTX一现有架构的终结者,电源输出要求、接口等支持ATX12V。

3计算机开关电源的工作原理

电源是一种能量转换的设备,它能将220V的交流电转变为计算机需要的低电压强电流的直流电。首先将高电压交流电(220V)通过全桥二极管整流以后成为高电压的脉冲直流电,再经过电容滤波以后成为高压直流电。此时,控制电路控制大功率开关三极管将高压直流电按照一定的高频频率分批送到高频变压器的初级。接着,把从次级线圈输出的降压后的高频低压交流电通过整流滤波转换为能使电脑工作的低电压强电流的直流电。其中,控制电路也是必不可少的部分。它能有效的监控输出端的电压值,并向控制功率开关三极管发出信号控制电压上下调整的幅度。目前的常见产品主要采用脉冲变压器耦合型开关稳压电源,它分为交流抗干扰电路、功率因数校正电路、高压整流滤波电路、开关电路、低压整流滤波电路5个主要部分。

4交流抗干扰电路

为避免电网中的各种干扰信号影响高频率、高精度的计算机系统.防止电源开关电路形成高频扰窜,影响电网中的其他电器等;各种电磁、安规认证都要求开关电源配有抗干扰电路。主要结构为兀型共模、差模滤波电路.由差模扼流电感、差模滤波电容、共模扼流电感、共模滤波电容组成:

5功率因数校正电路

开关电源传统的桥式整流、电容滤波电路令整体负载表现为容性,且使交流输入电流产生严重的波形畸变,向电网注人大量的高次谐波,功率因数仅有0.6左右,对电网和其他电气设备造成严重的谐波污染与干扰。因此,我国在2003年开始实施的CCC中明确要求计算机电源产品带有功率因数校正器(PowerFactorCorrector,即PFC),功率因数达到0.7以上。PFC电路分为主动式(有源)与被动式(无源)两种:主动式PFC本身就相当于一个开关电源.通过控制芯片驱动开关管对输入电流进行”调制”,令其与电压尽量同步,功率因数接近于1;同时.主动式PFC控制芯片还能够提供辅助供电,驱动电源内部其他芯片以及负担+5VSB输出。主动式PFC功率因数高、+5VSB输出纹波频率高、幅度小,但结构复杂,成本高,仅在一些高端电源中使用。目前采用主动式PFC的计算机电源一般采用升压转换器式设计,电路原理图如下:被动式PFC结构简单,只是针对电源的整体负载特性表现,在交流输人端.抗干扰电路之后串接了一个大电感,强制平衡电源的整体负载特性。被动式PFC采用的电感只需适应50~60Hz的市电频率,带有工频变压器常用的硅钢片铁芯,而非高频率开关变压器所采用的铁氧体磁芯,从外观上非常容易分辨。被动式PFC效果较主动式PFC有一定差距,功率因数一般为0.8左右;但成本低廉,且无需对原有产品设计进行大幅度修改就可以符合CCC要求,是目前主流电源通常采取的方式。

6高压整流滤波电路

目前的各种开关电源高压整流基本都采用全桥式二极管整流,将输人的正弦交流电反向电压翻转,输出连续波峰的“类直流”。再经过电容的滤波,就得到了约300V的“高压直流”。

开关电路

开关电源的核心部分.主要由精密电压比较芯片、PWM芯片、开关管、驱动变压器、主开关变压器组成。精密电压比较芯片将直流输出部分的反馈电压与基准电压进行比较.PWM芯片根据比较结果通过驱动变压器调整开关管的占空比,进而控制主开关变压器输出给直流部分的能量,实现“稳压”输出。PWM(PulesWidthModulation)即脉宽调制电路,其功能是检测输出直流电压,与基准电压比较,进行放大,控制振荡器的脉冲宽度,从而控制推挽开关电路以保持输出电压的稳定,主要由1CTL494及周围元件组成。使用驱动变压器的目的是为了隔离高压(300V)区与低压区(最高12V),避免开关管击穿后高压电可能对低压设备造成的危害,也令PWM芯片无需接触高压信号,降低了对元件规格的要求。

冲变压器耦合型开关稳压电源主要的直流(高压到低压)转换方式有5种,其中适合作为计算机电源使用的主要为推挽式与半桥式,而推挽式多用于小型机、UPS等,我们常见的电源产品则基本都采用半桥式变换。

8低压整流滤波电路

经过调制的高压直流成为了低压高频交流,需要经过再次整流滤波才能得到希望的稳定低压直流输出。整流手段与高压整流类似,仍是利用二极管的单向导通性质,将反向波形翻转。为了保证滤波后波形的完整性,要求互相配合实现360。的导通,因此一般采用快速恢复二极管(主要用于+12V整流)或肖特基二极管(主要用于+5V、+3.3V整流)。滤波仍是采用典型的扼流电感配合滤波电容,不过此处的电感不仅为了扼制突变电流,更为重要的作用是像高压滤波部分的电容一样作为储能元件,为输出端提供连续的能量供应。实际产品中高压整流滤波电路、开关电路、低压整流滤波电路是一个整体,虽然原理与前述基本相同,但元件个数、分布方式会有很大变化。例如采用半桥式电压变换的电源就有两个高压滤波电容,每一路直流输出对应两个整流管,各负责半个周期的输出;而采用单端正激式电压变换的电源则只有一个高压滤波电容,每一路直流输出对应两个整流管,工作时间按照开关管占空比分配。其他较为重要的部分还有辅助供电电路与保护电路:辅助供电电路一个小功率的开关电源,交流输入接通后即开始工作。300V直流电被辅助供电开关管调制成为脉冲电流,通过辅助供电变压器输出二路交流电压。一路经整流、三端稳压器稳压,输出为+5VSB,供主板待机所用;另一路经整流滤波,输出辅助+12V电源,供给电源内部的PWM等片工作。主动式PFC具有辅助供电的功能,可以提供+5VSB及电源内部芯片所需电压;故采用主动式PFC的电源可以省略掉辅助供电部分,只使用两个开关变压器。

9保护电路

电源主要的保护措施有7种:

1、输入端过压保护:通过耐压值为270V的压敏电阻实现:

2、输入端过流保护:通过保险丝:

3、输出端过流保护:通过导线反馈,驱动变压器就会相应动作,关断电源的输出;

4、输出端过压保护:当比较器检测到的输出电压与稳压管两端的基准电压偏差较大时,就会对电压进行调整:

5、输出端过载保护:过载保护的机理与过流保护一样,也是通过控制电路和驱动变压器进行的:

6、输出端短路保护:输出端短路时,比较器会侦测到电流的变化,并通过驱动变压器、关断开关管的输出:

7、温度控制:通过温度探头检测电源内部温度,并智能调扇转速,对电源内部温度进行控制;

10电源的好坏对其他部件的影响

CPU对电压就非常敏感,电压稍微高一点就可能烧毁CPU,电压过低则无法启动;而硬盘在电压不足时就无法正常工作,在电压波动大时甚至会划伤盘片,造成无法挽救的物理损害;诸如此类,不一而足。在很多情况下,主机内的配件损坏了,用户只是认为是配件本身的质量问题.而很少考虑可能是电源输出的低压直流电电压不稳所造成的。所以,输出电压的波动范围就是考查电源质量的重要指标之一。目前,一般的电源产品在空载和轻载时的表现都较好(假冒伪劣产品除外),而重载测验才是烈火试真金的真正考验。

篇7

摘要:随着我国国力的增强,医疗卫生事业将在一定时期得到长足的发展,作为我们医疗工程设计人员,要不断了解学习最新的医疗设备,学习了解国内外的新规范。关键字:医院电气设计电气安全供电负荷

1医院的分类及规模版权所有

根据我国医院建设的规划,综合医院按床位可分为300、400、500、600、800及1000床。

按照医院等级可分为三、二、一级医院,目前经常涉及的一般为二级以上的医院。

在这些范围内的医院就用电负荷而言,有一类负荷,还有部分二类负荷及三类负荷。

医院按照功能划分,一般分为门诊部、医技部、护理部、行政部、后勤部等。目前综合性医院的布局有分散式、集中式和半集中式。目前建筑设计中考虑节能及使用便利,多采用半集中式。

2医院负荷分析

2.1医院负荷计算

按照目前调研的医院负荷情况,医院的用电负荷比例仍然以空调照明为主体,医疗设备用电所占比例很小,这也许与我国目前的医疗设备的水平有关。根据日本有关资料,80年代的医院变压器安装容量为250~300va/m2,当然日本等国的用电负荷计算与变压器的安装容量与我国差别很大,总体变压器容量较我国大很多。但这其中医疗设备用电占50%。而我国目前医疗设备用电总体占不到20%。因此目前我国的医院设计的用电负荷总体上仍然是以空调照明为主要负荷。其中空调电制冷的45%~55%,照明30%,动力包括医疗用地15%~25%。

根据近10年来完成的医院工程的运行情况可以得出如下结论,我国医院的用电负荷标准与商业写字楼相比是较低的。综合医院护理单元照度需求较低

由以上数据可以看出,医院虽然为功能性民用建筑,用电设备较多,但它总体照明的标准比起商业楼、写字楼要低。从用电负荷计算的角度而言并不高,按照北京市供电规划8va/m2,即可满足要求。医院变压器安装指标并不是很高,一般在65~75va/m2之间,分析原因如下:

真正意义上的医疗用电负荷并不多,且大型设备的需要系数较低。

综合医院护理单元的面积所占比例较大,此部分用电量较低。

医院目前的运行状况,全日制的门诊医技面积不大,白天空调等用电高峰时照明需求较小。

2.2医院的负荷性质及负荷类型

医院供电系统应遵循国内供电规范,并参考国际iec相关标准进行设计,按照我国现行医院等级和标准地区医院及二类医院的供电等级为一级或二级负荷。因此电源一般采用两路10kv供电。根据医院的规模可分为如下几类系统形式;

1采用两路10kv电缆专用供电、自备柴油发电机,重要设备末端采用ups供电。此类系统适用于特级及三甲级医院。

2采用两路10kv电缆专线供电,重要设备末端采用ups供电。此类系统适用于三甲级医院。

3采用两路10kv供电或一路10kv专线供电,一路低压供电,此类系统适用于二甲级医院。

4一路10kv供电,重要设备末端采用ups供电,仅用于一级医院。

根据医疗建筑用电负荷的特殊性并考虑到医院的可持续发展,低压系统建议采用如下形式:

电压波动大的空调及动力负荷为一个低压系统,如空调采用专用变压器供电;

电压波动小的照明及一般医疗用电插座负荷为一个低压系统;

电压要求高且自身压降大,医用数字检影成像系统设备,单独采用一台变压器。对于电网电压变化较大的系统,建议采用有载调压变压器。

按照iec标准,医院各部位的供电等级,接地方式见表2。

2.3应急电源系统

医院存在着大量的一级、二级用电负荷,应急电源系统一般采用柴油发电机系统、ups系统。柴油发电机容量一般为变压器总安装容量的15%~20%。而重要设备则采用ups系统。

3低压配电系统

医院用电负荷一般分成照明系统、医疗动力插座系统、空调系统新风机、空调机、风机盘管,应急照明系统等。

大型、重要性设备由配电变电所放射式供电,一类负荷均为双路供电末端自投。冷水相组、真空吸引、x光机、ct机、mri机、dsa机、ect机等设备主机、烧伤病房、血透中心、中心手术部的电力及照明、ct机、mri机、dsa机、ect机的空调电源、电梯及屋顶排风机、洗衣房及营养部的动力也分别由变电所低压屏放射式供电。

树干式供电由变电所将各类电源分别引至各竖井,通过母线输至各层。各竖井内分别设有照明、配电、空调及应急照明配电箱。配电、照明分别放射至各科室的配电、照明配电箱,各科室的计量表设在竖井配电箱内,空调配电箱配电至末竖井区域内的普通空调机及风机盘管。应急照明配电箱由双路电源供电并自动切换,供各应急照明灯及防火卷帘门,排烟风机的用电。

医技检验科、血液透析室等处的仪器对电源要求较高,部分电源通过稳压器后备ups供电。

4数字检影成像设备的配电要求及内阻计算

数字检影成像设备是医院的重要设备,现代医院数字检影设备的种类很多,目前比较常见的有:x光透视机、x光摄影机、x光治疗机、x光造影机包括x光介入机、心血管造影机dsa、计算机断层扫描机ct机、同位素断层扫描机ect、磁共振机mri以及x刀、γ刀、直线加速器等设备。根据设备的不同用途、设备的工作制分为长期工作制、短时反复工作制。各种设备工作制见表3。

目前,许多x光机同时具有摄影、造影、透视、治疗等多种功能。

4.1数字检影设备供配电系统

数字检影设备工作原理各有不同,但统一的一点是对电源的要求较高。由于数字检影设备的以上特性,如果医院有一定规模,此类设备应由专用变压器供电。设备球管电流在400ma以上的设备应采用放射式供电。

心血管造影机、磁共振机、同位素断层扫描机ct机、大型介入机等设备的主机电源一般需要双路供电。且有些设备本身需要冷却,设备有冷水机组,此部分的电源与主电源同样重要。主电源进一步分成高压发生器电源、行走机构电源、影像设备电源及插座电源。此类设备的布置一般为扫描室、控制室两部分。系统的电源一般送至控制室。大型设备还专门有电源室配电室。

心血管造影机房的高压发生器电源、行走机构电源、影像设备电源采用一般配电方式,其插座电源与胸腔手术室的要求相似:病人可能接触用电设备采用it系统及局部等电位接地,电位差小于50mv。设备厂家对于电源的要求引出了电源内阻这一技术指标。设备对电源电压的要求越高,电源内阻越小。

4.2用电负荷计算

x射线机瞬时最大用电负荷一般由设备厂家提供,如未提供也可根据如下公式计算:

sm=1/k×1/f×esf×10-3

sj=a×ssm/η

4.3电源变压器容量的确定

1单台设备的计算负荷。

2二项式法计算多台设备计算负荷。

多数数字检影设备是短时反复工作制,因此,进行负荷计算时可以采用较小的需要系数,根据目前一些医院的实际运行结果表明,4台设备同时曝光的可能性很低,日本有关资料也表明,选择电源变压器时,4台以下的设备可以按1台容量进行考虑。10~15台设备的场所采用防止同时曝光设备可共用1台变压器。

4.4保护设备的选择

数字检影设备瞬时电流很大,保护设备宜用熔断器。目前多数设备的技术要求中已对保护设备提出具体要求。

4.5配电线路导线截面的确定

数字检影设备的配电线路导线截面要满足设备的内阻及压降的要求。

电源变压器内部电阻:rt

电源变压器额定容量:ptkva

电源变压器相数:三相

电源变压器电压变动率:ε%

额定二次电压:vtv

1计算变压器内部电阻rt

rt=2×ε×0.01×vt2/pt×103ω

计算干线电阻r1ω:

考虑到低压开关的电阻及其它接触电阻,电源变压器和电源变压器二次侧的干线电阻为总电源电阻的80%。

r1=80%rg-rtω

最大允许内阻:rgω

计算干线截面:amm:

单相设备a=2×p×l/r1mm

三相设备a=p×l/r1mm

由上可见,要满足设备内阻要求,实际就是要满足设备的电源电压要求。它受来自变压器阻抗、变压器至设备的配线长度、配线截面三个方面的因素的影响。

在系统设备时,应尽量减小变压器阻抗、减小变压器至设备的距离、在满足电源内阻的条件下、减少配线电缆截面,以节约投资。

5医院的电气安全及电力系统保护方式

医院电气安全是医院电气设计的一个重要环节。涉及到的电力系统的保护方式有接地保护tn-s系统、局部中性线不接地系统it系统、医用局部等电位接地电位差小于10mv、建筑物总等电位及卫生间局部等电位接地、漏电保护lm=30ma。

一般场所的移动式设备均采用了漏电断路器进行保护。冶疗室、功能检查室、手术室、抢救室、心血管造影室dsa、卫生间浴室均设置了局部等电位连接。中心手术室的配电系统为保证病人的安全采用了it系统。

医院接地问题,是一个较为敏感的问题,它涉及到病人的安全,设备正常运行等。按照我国现行各类规范中医院设计的规定,我院目前设计采用的是防雷接地、电力系统接地、设备保护接地公用接地系统。目前各医院及设备厂家经常提出医疗设备、医用等电位接地要单独设置接地极,且要求与防雷接地、保护接地绝缘。实践证明,由于场地的原因,这些单独接地极不可能完全与建筑物的金属大地绝缘,而一旦绝缘遭到破坏,医用等电位接地与电力系统的保护接地则可能不是一个等电位,此时,在患者的周围如果存在这样两个电位,将产生触电的危险。

电气设备对病人的影响,即电击。电击包括宏电击和微电击。防止宏电击可以采用接地线及漏电保护器来完成。而引起微电击的主要因素是电子仪器的泄漏电流及病人所处的环境非等电位。因此减少泄漏电流及局部等电位,是在保证电子仪器cf型绝缘的条件下的克服微电击的重要手段。

减少泄漏电流的方式是将电源进行隔离。通过隔离变压器,二次侧两相导线对地高阻抗,减小了系统的泄漏电流。当泄漏电流在0.7ma~2ma范围内设绝缘监视报警。以上系统称之为局部it系统。采用局部it系统辅以局部等电位连接,就可以保证防止心脏手术及检查中的微电击。目前,我院地本工程中对需要仪器进入心脏区域的局部地区,如心脏手术室、icu等处配置了上述系统。以上配电方式也是国际电工委员会iec所倡导的。电子仪器的接地宜采用共用一点接地。基于目前电子仪器的频率较高,要求地线短而粗,地线过长反而成为干扰源。

目前我国与国际上防雷接地的规范是除爆炸危险场所外均为利用建筑物金属体作为防雷、接地体,因此建筑物内的所有金属体如钢筋等不可避免的与防雷系统为一体。而作为病人周围的金属体如水管、金属门窗等均与建筑物金属体连接。为保证病人的安全,也要求设备仪器等的保护接地与病人周围的金属体局部等电位。因此防雷接地、设备的保护接地是不能分开设置的,否则病人反而会因接触到不同电位而有触电的危险。因此,此类与人体有接触的医疗设备是不能单独接地的。

医院目前有着越来越多的先进仪器和设备,多数归结为敏感电子设备。而雷电对敏感电子设备的影响,可通过设置spd加以保护。对于有大电流接地的医疗设备的接地,应避免接地线过长,宜采用就地接地,因采用局部等电位接地,周围的病人也是相对安全的。

对于电磁干扰的问题,为减少电磁干扰的感应效应,我院采用了如下措施:

1建筑物及房间外部设置屏蔽,如建筑中含金属的墙、柱均可以作为格栅屏蔽分流,将建筑物金属等电位连接。

2电气线路采用穿金属管,减少干扰。

关于雷电对病人的影响,由于雷电的陡度大,散流快,建筑中含金属的墙、柱均可以作为格珊屏蔽分流,且病人周围采取了等电位的措施。因此在屏蔽范围内雷电病人是安全的。在手术部等设备进入病人体内的部位均位于建筑物内部,没有外墙,因此病人是很安全的。

我们认为在医疗工程中防雷接地、电力系统接地、设备保护接地采用公用接地系统是可能的,也是必须的。只有完善好这一方法,病人的安全才能得到保证。我院在近几年的医院工程设计中均采用了上述接地方式,实践证明也是很有效果的。该做法不仅节约了大量投资,而且真正实现了病人的电气安全。数字检影等设备投入使用的后,图像清晰,运行良好。

在国内,推行iec关于医疗场所局部it系统的设计思想也是为进一步保证病人的安全。由于没有相应的强制规范及投资等方面的原因,这一设计思路在设计中很难得到充分的体现。目前仅在与心脏介入相关的场所设置了it系统,而在iec推荐标准中目前要求多处场所设置该系统。

6手术部、icu、血透等场所的配电系统

中心手术部是医院的核心,手术部的配电采用双路电源末端切换。这包括手术室内配电及手术室洁净空调系统的配电。电源由变电所专线供电。每一间手术室应单独设置配电箱,按照新的《医院洁净手术部建设标准》中的规定,容量不能小于8kva。每间手术室的电源进线是否采用三相进线。主要根据布局及医院的具体要求进行。目前部分手术室内设置的高低温冷柜等三相设备,电源三相引起的情况越来越多。作为与病人接触的电源部分,应尽量考虑单相供电。每间手术室考虑3~4个插座组,其中一组在综合医疗柱上,每组插座组3~4组插座及2~3组接地端子。手术室内设置观片灯、书写板照明、接地中心可设置在配电箱内。配电箱可与手术室内的控制面板结合。控制面板上有各类气体出口、时钟及定时钟、实施空调检测及控制、照明控制、废气检测及排放。

心血管造影室除数字成像系统采用专门配电外,室内设置要求与心脏手术室相同。

目前国内心脏手术室、icu、心血管造影、抢救室、血液透析等采用局部it系统。iec标准强烈要求it系统不配出n线,目前病人接触的用电设备均为单相设备,通过隔离变压器配出的it系统均为单相。

it系统应注意如下问题:版权所有

必须设置绝缘监视装置;

尽量减少系统容量,减小系统线路的长度;

增加线路的绝缘等级;

辅助以局部等电位接地,等电位干线保证在16mm2,支线在6mm2以上;

配电线路采用穿钢管敷设,减少干扰;

变压器二次出线采用双极保护开关。

7照明设计

由于经济发展水平的差异,我国与国外发达国家的医院照度标准相差甚远,发达国家的照度标准约是我国现行标准的5~10倍。目前完成的各医院工程的照度水平在我国现行标准的基础均有所提高,如一般环境为150lx、诊室等为200lx、医技科室300~500lx、病房100lx。实施后效果良好,体现了现代化医院的良好形象。设计中应注意医疗功能性用房照明的特殊要求。

诊室、病房、急诊观察室、治疗室等处采用高显色荧光灯,以便于观察病人的情况。色温在3500k左右,病房、急诊观察室、治疗室等处的顶灯采用漫反射型灯具,以减少眩光。在病房建议用间接照明,手术室、手术部清洁走廊、传染科、污物、污洗等处与业主结合确定是否设置紫外线灯。

对特殊场所的照明采取了不同方式:磁共振扫描室、理疗室、脑血流图室等需要电磁屏蔽的地方,灯具采用了直流电源;测听室的照明采用白炽灯;眼科暗室采用可调光的白炽灯。

8其他

医院发展快,变化多,在设计中我们将配电箱设置在夹墙内,此方式配合吊顶线槽配电,使系统更加灵活,方便日后用电的发展需要。在检验科、中心实验室等用房设置了沿墙附设的电气配电槽,并将电源断路器设置其上,以适应实验室用电设备多,用电变化多的需求。

在病房设置综合医疗槽、槽内设置插座组,接地端子,局部照明等,并在床头方向距地0.3m处加设一组电源插座,方便电动床等固定设备的使用。

篇8

2电力营销中远程用电检查在工作中存在的问题

2.1技术、设备问题远程用电检查技术与设备

在不同位置、不同地区存在一定的差异,这也为技术的应用以及维护增加了很大的难度,正因为在设备与技术上存在这些差异,所以远程用建设与电力营销之间的连接也增加了很大的难度,对电力营销中远程用电检查技术各项功能的正常发挥带来了一定的阻碍。

2.2采集终端问题采集终端存在的差异性

主要表现在环境适应能力与实际工作环境间存在的不同,正因为存在这种差异性使得采集终端的安全运行受到影响,同时数据的准确性也受到了影响。

2.3通信问题远程用电检查技术的实际

应用过程中,通信方法也是对技术应用效果产生影响的重要因素之一,在不同通信方法之间存在着不同的优势与不足,现阶段主要使用的通信方式有无线传输、通信光线等,这些通信方在传输过程中会受到不同强度的干扰,同时通信的可靠性也会受到影响。

2.4应用问题远程用电技术

在电力营销中的应用还存在应用上的问题,例如管理和技术人员较少,系统的功能不能得到正常发挥等,这些问题的存在使得远程用电检查技术的正常应用受到了严重的影响。

3电力营销中远程用电检查技术的应用

3.1对统一的用电检查设备进行使用

从现阶段远程用电检查技术在企业电力营销中的应用现状尅看出,所述电力企业现在应经形成了属于自己的远程用电检查系统,但是该系统在实际应用过程中在技术上始终存在一定的差异性,使得用电数据信息的采集受到了严重的影响,为了对用电信息检查的准确性进行保证,需要对统一的远程用电检查设备进行使用,将电力系统和用电检查系统紧密的联合在一起,并对目前的电力营销方式进行适当的调整,对良好的远程用电检查系统进行构建,这样就能创建一个良好的用电环境,对远程用电检查技术功能的发挥进行保证。

3.2使用电子电表

电表是对用户用电量进行计量的一种设备,目前在对电表进行使用过程中,电表的工作状态会受到各种因素的音响,为了对这一问题进行解决,可以对电子电表进行使用,这种电子电表在使用过程中计算电量的准确度更高,减少维修工作量,同时对其进行远程用电监控也比较便利。

3.3对通信方式进行合理选择

在应用远程用电检查技术的过程中会受到通信方式的严重影响,在电量传输过程中不同通信方式会受到不同因素的影响,每种通信方式的优势与不足都不同,为了使远程用电检查技术的各项功能得到更好的发挥,电力企业应该与自身的工作、供电环境相结合,对最佳的通信方式进行选择,进而使电量在传输过程中受到的干扰得到降低,最终促进电量传输质量得到提高。

3.4对电力营销管理体系进行完善

在电力企业中有一个良好的管理体系能够保障营销工作得到正常进行,同时保证远程用电检查技术得到高效的运用,因此在电力工作中应该对电力营销管理相关制度进行完善,保证远程用电检查工作得到顺利的开展。在电力营销工作中,应该不断对各项制度进行完善,以便于各项店里工作的顺利开展,同时加强供电服务制度建设,更好的为电力工作提供良好的制度环境。

篇9

机械制造技术的特点

机械设备的设计、研发、生产,是促进国民经济发展、推进企业创新的一个重要因素。因为无论是新产品的制造,或是新技术的推广,都离不开新的、高科技的机械设备的支持。要想使机械设备的设计研发工作更加合理、科学,要想促进机械水平的整体快速提高,就必须清楚的了解和掌握机械制造技术的特点,只有这样,才能设计出符合规范的大中小型机械设备[3]。

作为一项先进的制造技术,往往在机械产品设计制造、生产组织、管理销售以及售后服务等方面,特别强调计算机技术、信息传感技术、自动化技术以及现代系统管理技术的应用。其原因在于,它要不断使一直以来的传统制造技术和最近的高新技术成果相结合,从而使机械制造技术成为能够驾驭生产过程的物质流、能量流和信息流三者合一的系统工程。

促进国家经济和综合实力的增强、提高我国企业在国际市场上的竞争能力是先进的制造技术应用的两大目标。因此,它往往并不限于制造过程本身,而是涉及了产品从市场调查、产品研发、工艺设计、生产准备、制造加工以及售后服务等一般产品涵盖的所有内容,在此基础上,将它们结合成为一个有机的整体。最终,提高制造业在所有行业的综合经济效益和社会效益。

怎样提高企业的生产率,是企业参与市场竞争的核心问题。20世纪80年代以后,随着全球市场的进一步融合及发展,制造业要想在市场上拥有一席之地,就必须以侧重提高劳动生产率为根本,转变为侧重时间为核心的时间、质量和成本三者的有机统一为根本。只有达到了三者的统一,机械制造技术才能真正的进步,才能在日渐激烈的市场竞争中处于不败之地。

上世纪80年代开始,全球市场逐步形成,以欧美为首的发达国家通过金融、科技等手段争夺其在全球的市场份额,利用其自身优势,向不发达国家倾销商品、输出资本,导致市场的竞争趋于白热化。为了不被激烈的市场大潮冲垮,各个国家争相发展本国的机械制造技术。只要一个国家的机械制造技术能够赶超世界先进水平,并能成为该国制造业赢得全球市场的支撑力,整个国家的经济实力才能有所提高。与此同时,机械制造技术是21世纪的高科技技术,它理应和最先进的科技成果相集合,理应有明确的新的技术领域。

我国机械制造技术的未来发展

制造技术分为传统制造技术和先进制造技术。显然,先进制造技术是由传统制造技术发展而来的,它保留了传统制造技术中的有效部分,又源源不断的吸取各种新的高技术成果,之后将二者结合到生产的所有领域及其全部过程[4]。扫描显微镜的发明和使用,使人类认识和改造世界的能力进入纳米的尺度。纳米技术是指产品能够实现纳米级精度,是在纳米尺度范围内研究物质原子和分子结构、物质特性及其相互作用和运动,最终运用这种技术为人类服务的高新科技。纳米技术对制造业的发展进程产生了极其深远的影响,就目前来说,它的应用范围十分广泛,包括纳米材料技术、纳米加工技术、纳米装配技术以及纳米测量技术等等。2000年,超精密加工的加工精度已经达到纳米级。而在21世纪初开发的分子束生长技术、离子注入技术和材料合成、扫描隧道工程可使加工精度达到0.0003-0.0001μm。目前的精密工程正向其终极目标——原子级精度的加工逼近,即可以做到移动原子级别的加工[5]。

1)对于现代机械制造技术的未来发展,将主要体现在两个方面:(1)精密工程技术。它以超精密加工的前言部分、微细加工、纳米技术为代表,目的是将来进入微型机械电子和微型机器人的时代。(2)机械制造的高度自动化。它以CIMS和敏捷制造等的发展为代表。

2)飞速发展的网络通讯技术的发展和普及,给从事机械制造业的众多企业的生产经营活动带来了翻天覆地的变化。因此,必须加速技术信息的交流、加强产品开发的合作和经营管理的学习,从而推动机械类企业朝着良性竞争和多方合作的方向发展。

篇10

作者:张建英 范春甫 胡建云 单位:重庆工业自动化仪表研究所

系统特点我们通过对优化设计前智能切换屏存在的问题进行了大量分析,并依据《GB/T19826-2005电力工程直流电源设备通用技术条件和安全要求》及《YD/T5027-2005通讯电源集中监控系统工程设计规范》等相关要求,对该装置进行了优化设计,确保在设备正常运行方式、交流电源中断或充电装置发生故障的情况下,直流母线连续供电[1]。该装置具有掉电保持、信息多点处理、远程监控等特点,实现了机房对该装置进行集中监控管理的功能,设备更加安全、可靠,更加人性化[2]。据梁平供电局值班人员的信息反馈:在近19个月的运行过程当中,通过监控管理系统发现并解决相关设备问题已有3次,告警及时准确,维修人员反应迅速,没有导致输出电源中断现象发生;并且,在蓄电池充放电过程中,该装置都成功切换,除了定期巡检外,真正实现了机房无人值守。系统介绍系统参数工作方式:设有手动和远程控制方式(手动时采用刀闸并联在接触器旁);标称电压:直流48V;输入电压:2路直流-48V,正极接地;输出电压:2路直流-48V,每路分别对应10个电流为15A的配电回路;工作电压:-56V到-42V(范围通过管理系统可调节),正极接地;启动电压:≥-42.5V或≤-56.5V(可调),正极接地;故障切换时间:0秒;网络通讯:采用RS485与触摸屏通讯进行现场监控,通过以太网与上位机通讯进行集中管理;通用参数按照相关规定[1]设计。

模拟量数据采集采用EM231的8回路输入模块,用来测量母线电压和电流值;以太网模块选CP243-1作为通讯模块,和监控站进行信息联络,监控中心通过监控站对智能切换屏进行集中管理。接触器之前的设备选用的是NDZ1-400K型接触器,其主触点为常开状态,当系统出现故障或控制线圈故障时,接触器主触点失电断开,导致整个通信电源设备掉电。为了避免这种情况的发生,我们选用了天水213电器厂的单级直流接触器,型号为:GSZ2-400D,其主触点为常闭,故障时其主触点会立即闭合,同时PLC向监控站发出故障信号,等待处理。这里需特别注意的是,在检修输出设备需断电时,必须取出对应输出回路熔断器FU3、FU4的熔芯,防止故障时接触器掉电闭合。触摸屏为了方便现场巡检人员查看设备的运行状态,同时维修人员可以更加直观的查看告警记录,快速判断故障位置,我们选用威伦通科技生产的8寸触摸屏,型号为:MT4403TE。该款触摸屏配置了10M/100M自适应以太网接口RJ45,支持给予CS架构的以太网通讯,同时也可以通过以太网接多个HMI构成多HMI联机或与PC机通讯,方便了多点监控和通讯,这样,大大提高设备的可扩展性。组态软件MT5000可以实现参数设定、数据监视、运行监控、故障显示、历史记录及数据报表,功能十分强大,这也是我们选它的主要原因。开关电源开关电源在本系统中作为控制电源起着非常关键的作用。这里我们选用航天朝阳军品电源:4NIC-TX250DC/DC输入直流48V,输出直流24V。其特点是:低纹波、免维护、功率密度大及良好的电磁兼容性;在工作时,该电源是双路输入,双路输出,当任意一路出现电源故障将不会影响两路输出,而且电源输出两个回路并联使用,其中的一路出现故障将不影响另外一路的电压波动;它还具有宽电压输入范围:DC36V-DC72V,同时电压精度达到:≤±1%,纹波Vrms≤0.1%VP-P≤1%。上述这些特点正是我们选择控制电源最关注的地方,也是其它同类开关电源不具备的方面。集中监控管理系统优化设计前设备只有唯一人机交互界面——触摸屏,并且只能在现场监控,值班人员必须每天值守。不仅如此,设备没有跟其他相关设备联网,不能和其它设备联动,且只有本地操作,及不方便。优化后,设备集中监控管理系统具有故障管理、性能管理、配置管理和系统本身安全管理功能,实现了供电电源相关设备无人自动联动功能,并且可以进行远程集中管理。值班人员只需在通信局监控(站)中心对该设备集中监控,派专人进行需定期巡检和设备保养即可,无需专人值守机房。使设备更加可靠、更加人性化。

新型智能切换屏内部具有监控性能和通信接口的PLC监控模块(以太网模块),通过该模块与通信局(站)的监控站通信,最终将信息上传至上级监控中心。新型智能切换屏的工作状态通过监控中心实现的管理功能有:(1)故障管理功能:当出现熔断器熔断、接触器误动作、母线掉电、系统运行异常等情况时,具有多点、多事件同时告警的能力,并向值班人员提示故障位置及处理建议,同时支持操作人员对告警信息进行确认。(2)性能管理功能:可以进入到智能切换屏元件工作状态的画面,对其运行状态进行监控;能对告警、值班人员的操控等信息进行保留;所保存的历史数据可以以图形和表格的方式显示和打印。(3)配置管理功能:监控中心能调整PLC内部的系统参数、修改操控人员的权限等功能。(4)安全管理功能:具有完备的操作管理功能,对该装置参数设置和系统参数设置具有多级管理权限,通过操作口令可以对设备进行“遥控”和“遥调”。

篇11

其次,电力公司对专业技术人员没有采取很好的激励措施,在人事管理中没有构建起良好的人才激励机制。由于深受传统人事管理的影响,电力公司在制定薪酬待遇时,没有充分地将工作绩效纳入到薪资评定中,这样容易对专业技术人员的工作积极性产生不利影响。电力公司在对专业技术人员的人才资本投入方面力度不够,一些电力公司尚未针对专业技术人员建立全面的培训体系,没有为那些希望吸收新知识与技能的人员提供良好的教育环境和氛围,一些现有的培训形式呆板、内容枯燥无味,对于专业技术人员不能产生吸引力。

第三,电力公司对专业技术人员的工作考核存在不足,由于考核制度不科学,造成专业技术人员缺乏工作积极性,很少有主动工作的意识。当前电力公司在对员工进行工作考核的惯用形式是通过让员工填写年度考核表,仅仅以年终的一份表格很难全面客观真实地对专业技术人员进行评定。使人事管理部门不能及时准确地了解员工所取得的最新工作成果,容易错过对专业技术人员提升培养的最佳时机。在评价体系里,对相关指标无法进行具体量化,评定的形式也较为单一,没有很好的评定体系等都会造成工作考核效果不明显。而且对员工的考核结果并未第一时间告知专业技术人员,使他们对考核结果一无所知,使他们对考核产生反感情绪。

二、电力公司专业技术人员人事管理的目标定位

在竞争日益激烈的环境中,电力公司专业技术人员人事管理需要进行全新的定位,以指导实践,使公司在竞争中立于不败之地。

首先,要对专业技术人员进行优化配置,对专业岗位紧缺的人才人事部门要积极开展招聘引进工作,电力公司可以和对口院校进行长期合作,借助高校优秀的教育资源定向培养公司所需的专业技术人才,实现公司有源源不断的专业技术人才输入的目标。在进行外部招聘的同时,公司也要拿出一些岗位用于企业的内部竞聘,使专业技术人才更好地发挥其专业技能,在对岗位人员进行考核时,对于不满足岗位要求的技术员要进行专项教育培训,培训仍不能胜任的应当及时调离技术岗位。通过这些举措保证技术岗位人员技术过硬。为电力公司的日常生产通过可靠保障。

其次,电力公司要针对专业技术人员建立相应的人才培养与激励体系。通过对专业技术人员的激励能够极大地调动他们的工作积极性。建立富有成效的激励体系对企业人事管理部门而言具有重要意义,人事管理部门要对这方面给予足够的重视。在对专业技术人员进行激励时可以根据不用的环境情况选择不同的激励方式,如物资奖励、精神慰问以及岗位晋升等。在进行激励的同时也要注重提升他们的综合能力素质,综合能力素质是技术人员后续发展所必备的基本素质,人事管理部门要为结合专业技术人员的特征,制定出他们今后的培养方向。通过培训不仅能让他们熟练掌握其所从事专项工作的实用知识和技能,并从职业道德方面对他们进行教育,使其具备良好的职业素养,另外公司还可以激励员工自主学习,让他们从自身角度出发,进修自身欠缺的知识,让他们养成自我学习的良好习惯。

第三,人事管理部门在对专业技术人员进行工作考核时,要构建科学的考核体系。公司制定系统科学的专业技术人员工作考核体系是保证公司健康运行的前提。通过对专业技术人员的考核,作为他们岗位职务安排的重要依据,优化人员配置,使公司的人才运用效率得到提升。同时依靠工作考核可以及时发现技术人员在工作中的问题,以考核结果作参考对他们进行相应的激励或教育。总的目标是让技术人员积极进取踏实工作,发扬优点,弥补不足,使整个人才队伍的素质得到全面的提升。

篇12

2高职院校电脑艺术设计专业建立工作室制实践教育模式的探索

(1)明确高职院校电脑艺术设计专业的教育改革目标

新时期高职院校电脑艺术设计专业应该立足自身特点和实际,以教育改革为目标进行不断地探索和有益地创新,这是保障高职院校电脑艺术设计专业持续发展的根本与基础。要建立高职院校电脑艺术设计专业的教育改革目标体系,树立从教育模式、教育体制、教育内容中进行高职院校电脑艺术设计专业创新和改革的策略与方法,通过优化高职院校电脑艺术设计专业的教育和教学、教授和学习、理论和实际等各类关系,做到对从实践的层面上做到对高职院校电脑艺术设计专业的创新和发展。

(2)建立工作室制实践教育模式的建设目标

高职院校电脑艺术设计专业推行建立工作室制实践教育模式是一项崭新的教育改革和尝试,是新时期人才培养、校企合作的新模式,应该在实施建立工作室制实践教育模式的过程中明确清晰而准确的建设目标,以此来适应建立工作室制实践教育模式建设与改革过程的需要。现阶段高职院校电脑艺术设计专业在建设工作室制实践教育模式的过程中要建立系统性的目标,从教师团队、学生综合能力、学生实践能力、企业合作等重要方面出发,设立指导工作室制实践教育模式实施和建设的目标体系,进而确保工作室制实践教育模式在高职院校电脑艺术设计专业的有效实施。

(3)建立工作室制实践教育模式的管理体系

高职院校电脑艺术设计专业应该勇于打破学科、内容方面的限制,建立起以工作室制实践教育模式为核心的管理新体系,整合现有的教育资源、师资力量和社会资源,重新对专业、学科进行分类和归集,建设出适于专业建设和学生发展的工作室,设立便于实施工作室制实践教育模式的新系统,将对工作室制实践教育模式的管理做到科学化、系统化、专业化。

(4)工作室制实践教育模式建设应该注意的要点

建设工作室制实践教育模式过程中必须围绕高职院校电脑艺术设计专业的教育体系和任务,在确保学生发展的基础上,建立起崭新的工作室制实践教育方法与模式。要针对高职院校电脑艺术设计专业学生的设计能力、职业能力、服务能力等复制和意识,加强在实践教育中的锻炼和学习,将教育质量和效果落实在模式的不断推进和改进的过程中,达到对高职院校电脑艺术设计专业学生发展和专业建设的支撑作用。

友情链接