大数据量解决方案范文

时间:2023-03-15 14:56:11

引言:寻求写作上的突破?我们特意为您精选了4篇大数据量解决方案范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

篇1

“一张CT扫描图像,就含有约150MB的数据;一个基因组序列文件大小约为750MB;标准的病理图的数据量接近5GB。如果将这些数据量乘以人口数量和平均寿命的话,仅一个社区医院累积的数据量,就可达数TB甚至数PB之多,而且其中还富含图像、视频等非结构化数据,更别说规模更大的医疗机构,甚至是地区医疗主管部门汇集的数据集了。”嘉和美康副总经理范可方摆出的数据充分说明原有行业解决方案急需针对大数据做出调整和升级,以满足医疗行业对数据处理的需求。

从建立大数据存储、管理和查询平台入手,嘉和美康不断优化应用软件和解决方案,以帮助医疗单位跨过大数据这道门槛。“大数据在医疗行业的前景和收益是嘉和美康最根本的驱动力,作为医疗行业信息系统的开发者和建设者,嘉和美康必须在产品上、技术上、应用上迈上一个大的台阶。”试想,小到辅助临床医生做出更为科学和准确的诊断和用药决策或帮助医院根据患者潜在需求开发全新个性化服务及自动服务,大到帮助研究机构实现突破性的医疗方法和药物革新或支持地区甚至全国医疗行业主管部门优化医疗资源及服务配置,这些美好规划实现的前提即是大数据好好为医疗行业所用。

“嘉和美康在电子病历的基础上,推出了新一代的临床数据中心系统――基于CDR的临床信息系统。” 范可方介绍,这个系统是面向临床的深度应用,基于CDR平台借助大数据处理技术推出的新一代产品。

携手英特尔

篇2

中桥咨询的一份大数据调查报告显示,大部分中国用户还处于“系统整合”阶段,需要对来自企业内外部的大量数据进行收集和整理。

“为什么现在用户对大数据解决方案求贤若渴?”高国辉自问自答,“因为传统的技术和解决方案已经无法解决用户当前遇到的诸多应用难题,比如实时交易数据的处理和分析等。金融行业提出‘小核心、大’,电信运营商积极构建双活的数据中心都是从各自的实际需求出发,以应对大数据带来的新挑战。美国的某电信运营商就采用戴尔的SharePlex技术构建了双活的数据中心。”

其实,无论企业的数据量有多大,数据是结构化还是非结构化,戴尔都可以提供具有针对性的解决方案。Spansion是一家知名的制造企业,它希望通过升级现有的数据库来更好地支持其关键统计流程,从而达到提升业绩的目标。为此,它采用了戴尔的SharePlex技术对原有的Oracle数据库进行升级,不仅安全地完成了数据库的迁移,而且节省了大量资金。

“诸如此类的例子还有许多。”高国辉介绍说,“不同的用户,在大数据方面的需求不同,而且对价格的敏感度不同,这就决定了用户在选择大数据解决方案时有其‘个性化’的需求。比如,许多互联网企业十分热衷采用基于Hadoop的解决方案,就是考虑到经济性的问题。戴尔的优势就在于,可以为不同的用户提供适合其需求的大数据解决方案。”

戴尔软件事业部已成为戴尔企业级端到端解决方案的核心组成部分。具体到软件解决方案本身,戴尔也强调端到端,比如戴尔软件可以提供从移动办公管理到信息数据管理再到数据中心和云计算的全面软件解决方案。其中,信息数据管理软件就与大数据直接相关,它包括数据库管理、应用系统及数据集成,以及大数据分析等产品。

全面的软件解决方案

篇3

全面解决方案才能奏效

当前,越来越多企业将大数据的分析结果作为其判断未来发展的依据。同时,传统的商业预测逻辑正日益被新的大数据预测所取代。但是,我们要谨慎管理大家对大数据的期望值,因为海量数据只有在得到有效治理的前提下才能进一步发展其业务价值。

最广为人知的大数据定义是Gartner给出的大数据的3V特性:巨大的数据量(Volume)、数据的快速处理(Velocity)、多变的数据结构和类型(Variety)。根据这一定义,大家首先想到的是IT系统中一直难以处理却又不容忽视的非结构化数据。也就是说,大数据不仅要处理好交易型数据的分析,还把社交媒体、电子商务、决策支持等信息都融入进来。现在,分布式处理技术Hadoop和NoSQL已经能对非结构化数据进行存储、处理、分析和挖掘,但未能为满足客户的大数据需求提供一个全面的解决方案。

事实上,普遍意义上的大数据范围更加广泛,任何涉及海量数据及多数据源的复杂计算,均属大数据范畴,而不仅局限于非结构化数据。因此,诸如电信运营商所拥有的巨量用户的各类详细数据、手机开关机信息、手机在网注册信息、手机通话计费信息、手机上网详细日志信息、用户漫游信息、用户订阅服务信息和用户基础服务信息等,均可划归为大数据。

与几年前兴起的云计算相比,大数据实现其业务价值所要走的路或许更为长远。但是企业用户已经迫不及待,越来越多企业高层倾向于将大数据分析结果作为其商业决策的重要依据。在这种背景下,我们必须找到一种全面的大数据解决方案,不仅要解决非结构化数据的处理问题,还要将功能扩展到海量数据的存储、大数据的分布式采集和交换、海量数据的实时快速访问、统计分析与挖掘和商务智能分析等。

典型的大数据解决方案应该是具有多种能力的平台化解决方案,这些能力包括结构化数据的存储、计算、分析和挖掘,多结构化数据的存储、加工和处理,以及大数据的商务智能分析。这种解决方案应具有以下四个特性:软硬集成化的大数据处理、全结构化数据处理的能力、大规模内存计算的能力、超高网络速度的访问。

软硬件集成是必然选择

我们认为,大数据解决方案的关键在于如何处理好大规模数据计算。过去,传统的前端数据库服务器、后端大存储的架构难以有效存储大规模数据并保持高性能数据处理。这时候,我们让软件和硬件更有效地集成起来进行更紧密的协作。也就是说,我们需要软硬一体化的专门设备来应对大数据的挑战。

篇4

2012年,在美国旧金山召开的秋季英特尔信息技术峰会(IDF)上,柏安娜接受了本刊的独家专访,这是她近期首次对中国媒体就英特尔的大数据战略进行详细的解读。她透露了自己的目标:五年内英特尔数据中心的相关业务将会实现倍增,2016年时达到200亿美元,而这一高速增长的乐观期望,正是来自于云服务商提供的大数据业务。

移动设备爆炸带来变革机会

云计算会吸引更多人上网,接入更多设备,从而产生更多海量数据——这个即将出现的循环将带来巨大的机会。

《数字商业时代》:云计算的出现让全世界所有信息和通信技术覆盖的地方,都试图通过技术来生成一个数字化的投影。这种更彻底的数字化浪潮将为商业和经济带来怎样的影响?

柏安娜:云计算从提出到取得飞速发展是最近五年的事,它在面向消费者和企业的相关服务及应用的数量都在快速增加。云计算模式很有吸引力,它可以在低运营和低拥有成本的基础上进行大规模的扩展,而且它具有按需提供服务的能力,因为它的基础设施是共享的。可以看到,中国和美国的云建设都在飞速发展。这就像一个虚拟的循环,随着越来越多的人上网——目前有23亿人上网,他们会购买更多设备。这些设备与数据中心连接,需要建设云基础设施来支持这些设备。这会推动新服务和解决方案的创新,从而吸引更多人上网。这些推动了云计算的发展,并推动相关服务的发展。在这个令人惊叹的循环中,随之带来的是我们从未想过的新式服务和解决方案。就像你所说的,我们现在真正处于数字创新时代,新服务在线上不停地涌现,因为我们能够在云中进行新功能的快速部署。

《数字商业时代》:与这种数字化浪潮最为匹配的技术,似乎就是大数据分析技术,现在和未来一段时间内,有哪些因大数据技术而生的商业模式值得人们关注?

柏安娜:一直有很多企业数据,但从来没有分析和利用这些数据的高效方式。这种情况下,数据就没有发挥作用。现在围绕大数据有很多行业创新。一个是计算成本继续增加,例如横向扩展存储等。一个重大成本是这些数据的存储成本,传统存储方式太过昂贵。因此,你看到存储创新,基于英特尔平台的横向扩展存储。然后是围绕开源数据分析解决方案的大量创新。Hadoop是个非常好的开源框架,让你能够提取所有这些数据,高效地存储并实时分析。计算存储平台和分析解决方案相结合,让企业和消费者都能看到重大数据。有个很好的例子,中国政府要求电信运营商为消费者提供90天的交易记录,让消费者能够上网了解过去90天的所有消费情况,这是一个重大的大数据问题,涉及的数据量也非常巨大。我们与电信运营商合作,利用Hadoop向他们提供一个稳定、优化的Hadoop平台以分析和报告这些信息,从而满足政府的监管要求。我们目前是Hadoop框架的分销商,我们现在所做的是以前从未做过的事情。

数据就是价值

大数据时代,IT将不再是成本,而成为价值。

《数字商业时代》:有迹象表明在云计算与数据的时代它将开始主导企业业务的发展甚至是变成一个核心业务,简而言之就是变成企业的盈利中心,你对这一趋势有何看法?

免责声明:以上文章内容均来源于本站老师原创或网友上传,不代表本站观点,与本站立场无关,仅供学习和参考。本站不是任何杂志的官方网站,直投稿件和出版请联系出版社。
友情链接
发表咨询 加急咨询 范文咨询 杂志订阅 返回首页