时间:2023-03-16 17:43:03
引言:寻求写作上的突破?我们特意为您精选了4篇测绘技术装备论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
主管单位:国家测绘局
主办单位:国家测绘局测绘标准化研究所;全国测绘科技信息网
出版周期:季刊
出版地址:陕西省西安市
语
种:中文
开
本:大16开
国际刊号:
国内刊号:61-1363/P
邮发代号:711569
发行范围:国内外统一发行
创刊时间:1978
期刊收录:
核心期刊:
中文核心期刊(2000)
中文核心期刊(1992)
期刊荣誉:
中图分类号:P624文献标识码:A
引言
随着计算机、网络技术的发展及测量仪器的智能化,特别是全球定位系统技术全面用于大地测量定位,全数字化测图系统、影像扫描系统、全数字摄影测量工作站等数字化测绘技术装备以及地理信息系统基础软件和应用软件相继问世,实现了地理信息获取、处理、管理和分发服务全过程数字化,测绘生产力水平和生产效率大大提高。作为地质勘查专业单位,山西省地球物理化学勘查院(简称山西物化院)已经全面涉入了数字化测绘生产技术,具备了空间定位(GPS系统)、数据采集、外业一体化数字成图与建库等技术生产能力。从事控制测量、地形地籍测量、房产测绘工程与精密工程测量、航空摄影测量、地理信息工程、立体模型制作,服务领域涉及土地管理、水利工程、城市建设、房地产开发、公路与铁路交通、国防建设、基础测绘、地质找矿与矿山开发。作为一名测绘工作者,笔者简要谈一下对数字化测绘技术和地质工程测量发展应用的认识。
一、数字测图的优点
大比例尺数字测图有力地冲击着传统的平板仪或经纬仪的白纸测图方法,大有取代白纸测图之势,这是因为数字测图具有诸多的优点。
(一)测图用图自动化。
传统测图方式主要是手工作业,外作业测量人员人工记录,人工绘制地形图,在图上人工量算所需要的坐标、距离和面积等等。数字测图则使野外测量自动记录,自动解算,使内业数据自动处理,自动成图,自动绘图,并向用图者提供可处理的数字地形图软盘,用户可自动提取图数信息。
(二)图形数字化。
用软盘保存的数字地形图,存储了图中具有特定含义的数字、文字、符号等各类数据信息,可方便地传输、处理和供多用户共享。数字地图不仅可以自动提取点位坐标、两点距离、方位以及地块面积等,还可以供工程、规划CAD计算机辅助设计使用和供GIS地理信息系统建库使用。数字地图的管理,既节省空间,操作又十分方便。
(三)便于成果更新。
数字测图的成果是以点的定位信息和属性信息存入计算机,当实地有变化时,只需输入变化信息的坐标、代码,经过编辑处理,很快便可以得到更新的图,从而可以确保地面的可靠性和现势性,数字测图可谓“一劳永逸”。
(四)避免了因图纸伸缩带来的各种误差。
表示在图纸上的地图信息随着时间的推移,会因图纸的变形而产生误差。数字测图的成果以数字信息保存,避免了对图纸的依赖性。
二、数字化技术在矿区地质勘查中的应用
(一)数字化测绘工作方法。
基础控制部分,D、E级GPS的布设及选点埋石:根据煤矿区视野开阔,通视良好的实际情况D级GPS网在三等三角点之间布设为点连式、边连式相结合的GPS网,每个点至少有4条基线与其相连。D级GPS点共布设点位50+,平均边长1.5km。E级GPS点的布设在D级CPS的基础上采用点连式的方法进行布设两已知点问最多布设5个三角形,边数不超过8条,共布设E级GPS点60+。D、E级平面控制网均采用GPS静态相对定位测量布网,网形大多由三角形单点连接,少部分三角形边连接。GPS控制点在测区内分布较均匀,网形合理,强度较高。
外业观测:数据采集利用美国三台阿什泰克M单频接收机标称精度5mm+2ppm。D进行观测,观测时段D级>~60min,E级>~45min,数据采集间隔10s,同步接收卫星频数最少为5颗,绝大部分为7-8颗,卫星高度角大于15°,接收机与卫星的图形强度良好。
数据处理:GPS外业数据处理和基线向量采用GPS接收机随机商用软件“Loucus轨迹处理软件”在笔记本电脑上采用独立基线平差方法进行。GPS网先在WGS-84坐标系中进行三维无约束平差,其目的在于检核GPS网的内部符合精度,亦即处理由于多余观测而引起的网内不符值问题,本次作业所有基线向量无一剔除,顺利通过了检验,然后在基准点已知点的约束下进行二维约束平差,最后提供各点在高斯平面,第33度,带上的1954年北京坐标系坐标和1956年黄海高程系。高精度均符合量规范要求。
数字化测图的工作方法:由于测区的D、E级GPS点的密度能够满足地形图的测绘要求,因此本次测图直接在D、E级GPS点上进行。
(二)常规测图方法和数字化测图的精度比较
野外大比例尺数字化测图的全过程几乎都是用解析法进行的。虽然最后成果仍表现为图解的线划图,但与传统的平板仪测图相比,有着本质的差别。数字化测图不仅在效率上有很大提高,而且大大减轻了野外的劳动强度,更为突出的是地形图数学精度的提高。
三、数字化测绘技术展望
现代测绘技术及测绘仪器向数字化、电子化、自动化方向发展,打破了传统的手工测绘理念,形成目前较好的一套数字化测绘解决方案。但是,目前的测绘技术在地质工程测量中的应用依旧存在着若干问题.需要我们广大测绘工作者的不懈努力,不断提出新的任务、新课题和新要求.有力地推动和促进工程测量事业的进步与发展。目前,数字化测绘技术传统的定位和绘图仍是重要的社会需求,但社会已经对测绘部门提出了新的需求.以前和测绘部门无关或关系小大的属性信息的采集、综合分析利用等也开始要测绘部门承担。由于社会发展和人民生活的各类信息都要以空间定位为基础,由于市场需求的大量涌现,信息化测绘将迅速推动测绘企业的技术进步,测绘企业参与地理信息系统在各方而的应用和开发是总体趋势,也是测绘企业生存和发展的方向。信息化测绘将是我国测绘由传统测绘向数字化测绘转化和跨越之后进入的又一个新的发展阶段,它代表着我国测绘技术总的战略方向。
四、结束语
本单位自数字化测绘技术应用于生产后,生产效率和经济效益得到显著提高。数字化测绘技术的探讨,可使作业人员少走弯路、降低出错率。数字化测绘技术的提高,可为提供数字产品奠定基础,并提高了职工的技术素质。随着数字工程的深入发展,GIS技术的不断成熟、GPS技术在各行各业的广泛应用。大力开展数字化测绘技术是地质测绘单位科技创新的任务和方向、也是提高地质测绘单位自身实力和经济效益的重要手段。
参考文献:
[1]廖立新,对数字化测绘技术在地质勘查中的应用探讨[J].广东科技,2009,4.
Abstract: the 21 st century digital mapping technology is with the development of computer and network technology and intelligent measuring instrument and the rise of the emerging of surveying and mapping technology. Global positioning system GPS, geographic information system, GIS and remote sensing Rs and photogrammetry digital surveying and mapping and ground measurement advanced geological surveying and mapping model paper of the development of the technology, especially the tilt photography technology introduce, make engineering surveying the means and methods of produce profound changes.
Keywords: digital surveying and mapping; Geological exploration; Engineering measurement
中图分类号:F407.1文献标识码:A 文章编号:
0引言
随着计算机、网络技术的发展及测量仪器的智能化,特别是全球定位系统技术全面用于大地测量定位,全数字化测图系统、影像扫描系统、全数字摄影测量工作站等数字化测绘技术装备以及地理信息系统基础软件和应用软件相继问世,实现了地理信息获取、处理、管理和分发服务全过程数字化,测绘生产力水平和生产效率大大提高。已经全面涉入了数字化测绘生产技术,具备了空间定位(GPS系统)、数据采集、外业一体化数字成图与建库等技术生产能力。从事控制测量、地形地籍测量、房产测绘工程与精密工程测量、航空摄影测量、地理信息工程、立体模型制作,服务领域涉及土地管理、水利工程、城市建设、房地产开发、公路与铁路交通、国防建设、基础测绘、地质找矿与矿山开发。作为一名测绘工作者,笔者简要谈一下对数字化测绘技术和地质工程测量发展应用的认识。
1数字测图的优点
大比例尺数字测图有力地冲击着传统的平板仪或经纬仪的白纸测图方法,大有取代白纸测图之势,这是因为数字测图具有诸多的优点。
1.1 测图用图自动化。传统测图方式主要是手工作业,外作业测量人员人工记录,人工绘制地形图,在图上人工量算所需要的坐标、距离和面积等等。数字测图则使野外测量自动记录,自动解算,使内业数据自动处理,自动成图,自动绘图,并向用图者提供可处理的数字地形图软盘,用户可自动提取图数信息。
1.2 图形数字化。用软盘保存的数字地形图,存储了图中具有特定含义的数字、文字、符号等各类数据信息,可方便地传输、处理和供多用户共享。数字地图不仅可以自动提取点位坐标、两点距离、方位以及地块面积等,还 省略 可以供工程、规划CAD计算机辅助设计使用和供GIS地理信息系统建库使用。数字地图的管理,既节省空间,操作又十分方便。
1.3 便于成果更新。数字测图的成果是以点的定位信息和属性信息存入计算机,当实地有变化时,只需输入变化信息的坐标、代码,经过编辑处理,很快便可以得到更新的图,从而可以确保地面的可靠性和现势性,数字测图可谓“一劳永逸”。
1.4 避免了因图纸伸缩带来的各种误差。表示在图纸上的地图信息随着时间的推移,会因图纸的变形而产生误差。数字测图的成果以数字信息保存,避免了对图纸的依赖性。
2数字化技术在矿区地质勘查中的应用
2.1数字化测绘工作方法。基础控制部分,D、E级GPS的布设及选点埋石:根据煤矿区视野开阔,通视良好的实际情况D级GPS网在三等三角点之间布设为点连式、边连式相结合的GPS网,每个点至少有4条基线与其相连。D级GPS点共布设点位50+,平均边长1.5km。E级GPS点的布设在D级cPS的基础上采用点连式的方法进行布设两已知点问最多布设5个三角形,边数不超过8条,共布设E级GPS点60+。D、E级平面控制网均采用GPs静态相对定位测量布网,网形大多由三角形单点连接,少部分三角形边连接。GPs控制点在测区内分布较均匀,网形合理,强度较高。
外业观测:数据采集利用美国三台阿什泰克M单频接收机标称精度5mm+2ppm。D进行观测,观测时段D级>~60min,E级>~45min,数据采集间隔10s,同步接收卫星频数最少为5颗,绝大部分为7-8颗,卫星高度角大于15°,接收机与卫星的图形强度良好。
数据处理:GPs外业数据处理和基线向量采用GPs接收机随机商用软件“Loucus轨迹处理软件”在笔记本电脑上采用独立基线平差方法进行。GPS网先在WGS-84坐标系中进行三维无约束平差,其目的在于检核GPS网的内部符合精度,亦即处理由于多余观测而引起的网内不符值问题,本次作业所有基线向量无一剔除,顺利通过了检验,然后在基准点已知点的约束下进行二维约束平差,最后提供各点在高斯平面,第33度,带上的1954年北京坐标系坐标和1956年黄海高程系。高精度均符合量规范要求。
数字化测图的工作方法:由于测区的D、E级GPs点的密度能够满足地形图的测绘要求,因此本次测图直接在D、E级GPs点上进行。
2.2常规测图方法和数字化测图的精度比较
野外大比例尺数字化测图的全过程几乎都是用解析法进行的。虽然最后成果仍表现为图解的线划图,但与传统的平板仪测图相比,有着本质的差别。数字化测图不仅在效率上有很大提高,而且大大减轻了野外的劳动强度,更为突出的是地形图数学精度的提高。
3数字地图的发展与工程测量
中图分类号:P23 文献标识码:A 文章编号:1674-098X(2014)02(a)-0022-04
航空摄影测量技术是在飞机上利用航摄相机对地面连续摄取像片,结合地面控制点测量、处理和立体测绘等步骤,绘制出地形图的作业,是我国获取基础地理信息数据的主要手段之一。目前,我国重大自然灾害监测与预警、资源利用与环境监测等领域都需要大量的高分辨率、高精度的地理信息数据,这些数据与我国经济的可持续发展紧紧相关。
航空摄影测量的基本原理就是利用航摄像片对每对同名像点的投影光线进行后方交会,获得相应地面点的空间坐标。为了获得正确的交会结果,必须确定摄影像片影像每一条投影光线在摄影时刻的空间位置与方向,而其空间位置与方向是由其航摄相机的内方位元素和外方位元素所决定的。内方位元素是指摄影中心与相片中心位置的三个参数,可以通过测试航摄相机来完成;外方位元素是指像点在摄影瞬间的空间三维位置与三维姿态六个运动参数,外方位元素则需要采用其它更复杂的技术途径来解决。
传统航空摄影测量一般需要使用野外控制点并通过空中三角测量加密求解外方位元素,而野外控制点的布设工作繁琐,在荒漠、高山等困难地区野外控制点更是难以布设,因此,尽量减少乃至摆脱对野外控制点的依赖而直接对像片定向一直是摄影测量的重要研究方向之一。为此,人们一直试图在航空摄影飞行过程中直接记录或确定航摄相机的位置和方向,并利用这些定向数据实现航摄像片的绝对定向。
20世纪90年代,GPS(Global Position System,全球定位系统)辅助空中三角测量的方法得到了广泛应用,利用GPS获得的定位信息用来辅助空中三角测量,展现了导航技术在测绘领域的应用前景。GPS技术虽然解决了像片的定位问题,但是无法获取像片的姿态参数,不能彻底摆脱地面控制。随着航空摄影测量技术和惯性导航技术的发展,一种新的方法开始应用于航空摄影测量――定位定向系统(Position and Orientation System, 简称POS系统)辅助航空摄影。机载POS系统集GPS技术与惯性导航技术于一体,使准确地获取航摄相机曝光时刻的外方位元素(GPS测量得到位置参数,惯性导航系统得到姿态参数)成为可能,从而实现了无(或少量)地面控制点,甚至无需空中三角测量加密工序,即可直接定向测图,从而大大缩短航空摄影作业周期、提高生产效率、降低成本。因此,POS系统的出现,将从根本上改变传统航空摄影的方法,进而引起航空摄影理论与技术的重大飞跃。随着计算机技术的发展及其惯性、GPS器件精度水平的提高,POS无论定位定向精度还是实时数据处理能力都会有质的提高,将会在航空摄影测绘方面发挥越来越重要的作用。POS系统高精度定位定向技术是POS系统应用的关键技术,它的研究可以极大的推动POS系统的发展。
1 POS工作原理
IMU惯性测量单元最大优点是不依赖于任何外界信息,能够进行完全自主的导航。惯性测量单元能够连续长时间的工作,可以提供多种导航信息如位置、速度、航程、航向,还可以提供水平及方位基准,精度较高。但是,惯性测量单元的精度主要取决于惯性器件(陀螺仪和加速度计)的精度,并且其定位误差随时间积累,精度逐渐降低,这对于需要长时间工作的情况是极为不利的。而且其初始对准时间长,所以想到利用其它定位手段作为参考信息源,定期或不定期地对惯性测量单元进行综合校正,对惯性器件的漂移进行补偿。
GPS卫星导航系统具有定位精度高的特点,而且能够进行全球、全天候、全天时、多维连续定位,其精度不随时间变化。然而,GPS是非自主式的系统,不能提供诸如载体姿态等参数,运动载体上的GPS接收机不易捕获和稳定跟踪卫星信号,动态环境造成中信噪比下降。这些原因都容易产生周跳。而且由于GPS信号在传播途中的干扰,使得系统定位精度有所下降,定位结果较为离散。
如上所述,GPS和IMU惯性测量单元各有所长,具有可互补的特点,两者的组合不仅具有两个独立系统各自的主要优点,而且随着组合水平的提高,它们之间信息传递、融合、使用的加强,组合系统的总体性能要远优于任一独立系统。
组合导航把无线电导航长期精度高与惯性测量短期精度高和不受干扰的优点结合起来,因而GPS与IMU的组合被认为是目前导航领域最理想的组合方式,其基本原理如图1所示。POS都是采用这样的组合系统,其优点主要表现在。
1.1 GPS/IMU组合提高了系统的精度
高精度GPS信息作为外部测量信息输入系统,在运动过程中频繁修正IMU测量值,以控制减弱其随时间积累的误差;而短时间内IMU定位结果可以很好的解决GPS动态环境中由于信号失锁和周跳导致的精度跳跃下降问题。因而,GPS/IMU组合测量误差实际上比单独的GPS或IMU的误差都小。
1.2 GPS/IMU组合加强系统的抗干扰能力
由于IMU可以独立进行导航,因而当GPS信号受到干扰时,IMU不仅能提供导航信息,而且其导航解可作为辅助信息,对GPS码和载波的再捕获起辅助作用,大大缩短了GPS恢复工作的时间,提高了GPS接收机的跟踪能力。而GPS信息对IMU的辅助可使IMU在运动中不断进行初始对准。
1.3 GPS/IMU组合解决了GPS动态应用采样频率低的问题
由于GPS的数据采样率低,不能达到某些动态应用中的要求,这时高频IMU数据可以在GPS定位结果之间高精度内插所求事件发生的位置,如航空相机曝光瞬间的位置,从而保证了组合系统对整个航线的各个摄影位置的高精度定位。当然GPS本身的采样频率也随着设备的发展不断提高。
1.4 GPS/IMU组合将降低对惯导系统的要求
长期以来,IMU的高价格一直是限制其广泛应用的主要原因。而组合系统提供另一种解决方案,利用IMU的速度信号解决动态跟踪问题,而高精度定位则由GPS来实现,因此可以采用较低性能的IMU,从而降低了组合系统的成本(如图1、2)。
2 应用案例概况
POSAV510辅助RC30相机在2006年关中地区进行了两次飞行。根据应用的目的和技术要求,结合实际工作的需要选定测区。测区内分布有水系河流、城镇市区、山区和主要交通道路等典型地形地貌,较有利于对设备精度的评估。选择了1∶10000和1∶40000两个摄影比例尺。如表1所示。
3 应用区控制点的布设
为了对POS的精度作出客观的评估,在关中某应用区内根据《GB/T13977-921∶5000、1∶10000地形图航空摄影测量外业规范》、《GB/T13990-92 1∶5000、1∶10000地形图航空摄影测量内业规范》、《P0S/TRACKER系统应用航空摄影试飞方案》技术设计书进行应用区控制点布设。
3.1 A区控制点布设方案
根据《POS/TRACKER系统应用区航空摄影技术设计书》要求,A区范围覆盖6幅(3x2)1∶50000地形图。依据关于1∶50000比例尺成图丘陵地和山地的区域网布点及构架航线的布点要求,A区控制点布设如图3所示:
3.2 B区控制点布设方案
根据《POS/TRACKER系统应用区航空摄影技术设计书》要求,B区范围覆盖2幅(1*2)1∶10000地形图。关于1∶10000比例尺成图平地的区域网布点要求,同时结合检校场控制点布设要求。B区控制点布设如图4所示。
为了提高量测精度,在像片上更准确地判别出控制点的位置,本次应用在B区采用了先布控后飞行的方法。根据控制点周围的环境情况,对B区100平方公里内的42个控制点分别用埋石、砸木桩及铁钉的方法将控制点标记到位,其中大标石6个(预计作为检校场控制点永久保留)、小标石11个、木桩19个、铁钉6个。
为了使控制点在像片上容易判别,飞行前对测区100平方公里内的42个控制点进行标志布设。根据控制点的情况,采用1 m×1 m的标志布和刷漆等办法,在飞机起飞前将标布设到位。
4 基准站布设
为保证POS辅助航空摄影飞行,需要在测区内布设基准站。考虑到基准站观测数据备份和检核,根据测区大小和应用为中、小比例尺航摄的特点,按照GB/T18314与GJB2228-1994规定的GPS基准站选址原则,结合已知大地测量控制成果,并经过现场踏勘,在摄区内布设1个地面GPS基准站。同时为了验证基准站距离对测量精度的影响,在宝鸡(距测区约200 km)和郑州(距测区约500 km)地区分别布设长基线和超长基线GPS基准站。
5 航摄飞行
根据《POS/TRACKER系统应用区航空摄影技术设计书》和《POS/TRACKER系统应用区航空摄影实施计划》,共飞行5架次,完成了应用区1∶10000及1∶40000的航摄工作,获取了1∶10000、1∶40000有效黑白像片323片,l∶10000彩色有效像片133片随后再次完成POS辅助RC30相机B区1∶10000飞行。
6 POS外方位元素解算
(l)偏心角解算。在1∶10000黑白影像扫描完毕,获得检校场像控测量数据以及检校场空三加密数据后,结合POS原始数据及基准站数据,利用PosPac软件中的PosGPs、PosPro及CalQc模块对偏心角进行解算,获得了305 mm镜头进行1∶10000飞行时的偏心角。同时解算出152 mm镜头进行1∶40000飞行时的偏心角。
(2)像片外方位元素的解算。将获得的偏心角输入PosPac软件的PosPEO模块进行解算,获得像片的外方位元素EO。
7 空三处理
由于现有的海拉瓦软件和适普软件都不支持POS数据的空三处理,因此数据后期的空三解算采用了Leica公司的LPS软件。在LPS中建立与EO数据坐标相一致的工程,进行了直接定向法和POS辅助空三法两种方法的应用。
直接定向法。在LPS中建立工程,输入应用区影像,生成缩小片。在自动完成内定向后,在Fiducial orientation and Exterior Orientation Parameter Editor直接输入EO解算出的外方位元素,将其作为确定值,应用区的立体即可完全恢复,最终进行精度检测。
POS辅助空三法。前期与直接定向法一致,不过在输入外方位元素后,将其设为初始值,再按直接定向法检测出的精度给出一个外方位元素合适的标准方差。进入Orima软件,通过APM选点,判读合适的控制点,进行平差解算,最后将结果写出。退回到LPS中,进行精度检测。应用进行了仅有连接点无控制的平差、加入1个控制点的平差、加入4个控制点的平差。
8 POS数据直接定向精度分析研究
在内定向结束后,输入RC30的POS数据"按照LPS中影像的数据顺序,依次将其对应的EO数据拷贝到相应的位置,获得POSEO数据直接定向的结果。从表2中可以看出。
(1)200X年B区直接定向,精度已经可以满足1∶10000成图要求;
(2)200X年B区直接定向,平面精度可以满足1∶10000成图要求,但高程精度超限。这是因为我国的外业大地高均为ITRF97或与其相似的框架下的大地高,而我们所采用的EO数据的大地高是初始WGS84的大地高,两者之间有固定差,在引入一个控制点平差后,高程精度马上符合精度要求。
9 结语
通过本次课题应用精度分析,POS辅助RC3相机航摄,在成小于1∶10000地形图时,可采用直接定向的方法。在成1∶10000或更大比例尺地形图时,应采用POS辅助空中三角测量的方法。
参考文献
[1] 刘军,王冬红,刘敬贤,等.IMU/DGPS系统辅助ADS40三线阵影像的区域网平差[J].测绘学报,2009(1).
[2] 马红涛,余涛,郑逢斌,等.基于IMU/DGPS的航空遥感影像快速纠正方法[J].光盘技术,2009(1).
[3] 蔡文惠,梁国华.IMU/DGPS辅助航空摄影测量应用探讨[J].测绘通报,2009(4).
[4] 吕亚军.IMU/DGPS辅助大比例尺航空摄影检效场布设的研究[J].测绘技术装备,2009(1).
[5] 张寰,贾满.IMU/DGPS辅助航空摄影测量在线路工程测量的应用[J].矿山测量,2009(2).
[6] 胡震天,黄炳强,王文瑞.基于IMU/DGPS辅助航测技术的大比例尺地形图测绘的应用研究[J].城市勘测,2009(2).
[7] 王铁军,郑福海,王俊杰.IMU/DGPS辅助空中三角测量精度分析[J].地理信息世界,2009(4).
[8] 郭大海,吴立新,王建超,等.IMU/DGPS辅助航空摄影新技术的应用[J].国土资源遥感,2006(1).
[9] 严海英,邓新安,石洁.IMU/DGPS辅助航测技术在1:1万航测成图中的应用试验[J].测绘通报,2007(2).
[10] 沈高钰.航测空中三角测量新思路研究[J].科技资讯,2011(8).
[11] 易映辉,肖远焕.基于航测实例的IMU/DGPS辅助航空摄影测量技术探讨[J].科技创新导报,2010(11).
[12] 吕亚军.IMU/DGPS辅助大比例尺航空摄影检效场布设的研究[J].测绘技术装备,2009(1).