功能材料论文范文

时间:2023-03-16 17:43:13

引言:寻求写作上的突破?我们特意为您精选了12篇功能材料论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

功能材料论文

篇1

Abstract:Thispaperintroducestheconcept,types,capability,preparationmethodsoffunctionallygradedmaterials.Baseduponanalysisofthepresentapplicationsituationsandprospectofthiskindofmaterialssomeproblemsexistedarepresented.ThecurrentstatusoftheresearchofFGMarediscussedandananticipationofitsfuturedevelopmentisalsopresent.

Keywords:FGM;composite;theAdvance

0引言

信息、能源、材料是现代科学技术和社会发展的三大支柱。现代高科技的竞争在很大程度上依赖于材料科学的发展。对材料,特别是对高性能材料的认识水平、掌握和应用能力,直接体现国家的科学技术水平和经济实力,也是一个国家综合国力和社会文明进步速度的标志。因此,新材料的开发与研究是材料科学发展的先导,是21世纪高科技领域的基石。

近年来,材料科学获得了突飞猛进的发展[1]。究其原因,一方面是各个学科的交叉渗透引入了新理论、新方法及新的实验技术;另一方面是实际应用的迫切需要对材料提出了新的要求。而FGM即是为解决实际生产应用问题而产生的一种新型复合材料,这种材料对新一代航天飞行器突破“小型化”,“轻质化”,“高性能化”和“多功能化”具有举足轻重的作用[2],并且它也可广泛用于其它领域,所以它是近年来在材料科学中涌现出的研究热点之一。

1FGM概念的提出

当代航天飞机等高新技术的发展,对材料性能的要求越来越苛刻。例如:当航天飞机往返大气层,飞行速度超过25个马赫数,其表面温度高达2000℃。而其燃烧室内燃烧气体温度可超过2000℃,燃烧室的热流量大于5MW/m2,其空气入口的前端热通量达5MW/m2.对于如此大的热量必须采取冷却措施,一般将用作燃料的液氢作为强制冷却的冷却剂,此时燃烧室内外要承受高达1000K以上的温差,传统的单相均匀材料已无能为力[1]。若采用多相复合材料,如金属基陶瓷涂层材料,由于各相的热胀系数和热应力的差别较大,很容易在相界处出现涂层剥落[3]或龟裂[1]现象,其关键在于基底和涂层间存在有一个物理性能突变的界面。为解决此类极端条件下常规耐热材料的不足,日本学者新野正之、平井敏雄和渡边龙三人于1987年首次提出了梯度功能材料的概念[1],即以连续变化的组分梯度来代替突变界面,消除物理性能的突变,使热应力降至最小[3]。

随着研究的不断深入,梯度功能材料的概念也得到了发展。目前梯度功能材料(FGM)是指以计算机辅助材料设计为基础,采用先进复合技术,使构成材料的要素(组成、结构)沿厚度方向有一侧向另一侧成连续变化,从而使材料的性质和功能呈梯度变化的新型材料[4]。

2FGM的特性和分类

2.1FGM的特殊性能

由于FGM的材料组分是在一定的空间方向上连续变化的特点如图2,因此它能有效地克服传统复合材料的不足[5]。正如Erdogan在其论文[6]中指出的与传统复合材料相比FGM有如下优势:

1)将FGM用作界面层来连接不相容的两种材料,可以大大地提高粘结强度;

2)将FGM用作涂层和界面层可以减小残余应力和热应力;

3)将FGM用作涂层和界面层可以消除连接材料中界面交叉点以及应力自由端点的应力奇异性;

4)用FGM代替传统的均匀材料涂层,既可以增强连接强度也可以减小裂纹驱动力。

2.2FGM的分类

根据不同的分类标准FGM有多种分类方式。根据材料的组合方式,FGM分为金属/陶瓷,陶瓷/陶瓷,陶瓷/塑料等多种组合方式的材料[1];根据其组成变化FGM分为梯度功能整体型(组成从一侧到另一侧呈梯度渐变的结构材料),梯度功能涂敷型(在基体材料上形成组成渐变的涂层),梯度功能连接型(连接两个基体间的界面层呈梯度变化)[1];根据不同的梯度性质变化分为密度FGM,成分FGM,光学FGM,精细FGM等[4];根据不同的应用领域有可分为耐热FGM,生物、化学工程FGM,电子工程FGM等[7]。

3FGM的应用

FGM最初是从航天领域发展起来的。随着FGM研究的不断深入,人们发现利用组分、结构、性能梯度的变化,可制备出具有声、光、电、磁等特性的FGM,并可望应用于许多领域。

功能

应用领域材料组合

缓和热应

力功能及

结合功能

航天飞机的超耐热材料

陶瓷引擎

耐磨耗损性机械部件

耐热性机械部件

耐蚀性机械部件

加工工具

运动用具:建材陶瓷金属

陶瓷金属

塑料金属

异种金属

异种陶瓷

金刚石金属

碳纤维金属塑料

核功能

原子炉构造材料

核融合炉内壁材料

放射性遮避材料轻元素高强度材料

耐热材料遮避材料

耐热材料遮避材料

生物相溶性

及医学功能

人工牙齿牙根

人工骨

人工关节

人工内脏器官:人工血管

补助感觉器官

生命科学磷灰石氧化铝

磷灰石金属

磷灰石塑料

异种塑料

硅芯片塑料

电磁功能

电磁功能陶瓷过滤器

超声波振动子

IC

磁盘

磁头

电磁铁

长寿命加热器

超导材料

电磁屏避材料

高密度封装基板压电陶瓷塑料

压电陶瓷塑料

硅化合物半导体

多层磁性薄膜

金属铁磁体

金属铁磁体

金属陶瓷

金属超导陶瓷

塑料导电性材料

陶瓷陶瓷

光学功能防反射膜

光纤;透镜;波选择器

多色发光元件

玻璃激光透明材料玻璃

折射率不同的材料

不同的化合物半导体

稀土类元素玻璃

能源转化功能

MHD发电

电极;池内壁

热电变换发电

燃料电池

地热发电

太阳电池陶瓷高熔点金属

金属陶瓷

金属硅化物

陶瓷固体电解质

金属陶瓷

电池硅、锗及其化合物

4FGM的研究

FGM研究内容包括材料设计、材料制备和材料性能评价。

4.1FGM设计

FGM设计是一个逆向设计过程[7]。

首先确定材料的最终结构和应用条件,然后从FGM设计数据库中选择满足使用条件的材料组合、过渡组份的性能及微观结构,以及制备和评价方法,最后基于上述结构和材料组合选择,根据假定的组成成份分布函数,计算出体系的温度分布和热应力分布。如果调整假定的组成成份分布函数,就有可能计算出FGM体系中最佳的温度分布和热应力分布,此时的组成分布函数即最佳设计参数。

FGM设计主要构成要素有三:

1)确定结构形状,热—力学边界条件和成分分布函数;

2)确定各种物性数据和复合材料热物性参数模型;

3)采用适当的数学—力学计算方法,包括有限元方法计算FGM的应力分布,采用通用的和自行开发的软件进行计算机辅助设计。

FGM设计的特点是与材料的制备工艺紧密结合,借助于计算机辅助设计系统,得出最优的设计方案。

4.2FGM的制备

FGM制备研究的主要目标是通过合适的手段,实现FGM组成成份、微观结构能够按设计分布,从而实现FGM的设计性能。可分为粉末致密法:如粉末冶金法(PM),自蔓延高温合成法(SHS);涂层法:如等离子喷涂法,激光熔覆法,电沉积法,气相沉积包含物理气相沉积(PVD)和化学相沉积(CVD);形变与马氏体相变[10、14]。

4.2.1粉末冶金法(PM)

PM法是先将原料粉末按设计的梯度成分成形,然后烧结。通过控制和调节原料粉末的粒度分布和烧结收缩的均匀性,可获得热应力缓和的FGM。粉末冶金法可靠性高,适用于制造形状比较简单的FGM部件,但工艺比较复杂,制备的FGM有一定的孔隙率,尺寸受模具限制[7]。常用的烧结法有常压烧结、热压烧结、热等静压烧结及反应烧结等。这种工艺比较适合制备大体积的材料。PM法具有设备简单、易于操作和成本低等优点,但要对保温温度、保温时间和冷却速度进行严格控制。国内外利用粉末冶金方法已制备出的FGM有:MgC/Ni、ZrO2/W、Al2O3/ZrO2[8]、Al2O3-W-Ni-Cr、WC-Co、WC-Ni等[7]。

4.2.2自蔓延燃烧高温合成法(Self-propagatingHigh-temperatureSynthesis简称SHS或CombustionSynthesis)

SHS法是前苏联科学家Merzhanov等在1967年研究Ti和B的燃烧反应时,发现的一种合成材料的新技术。其原理是利用外部能量加热局部粉体引燃化学反应,此后化学反应在自身放热的支持下,自动持续地蔓延下去,利用反应热将粉末烧结成材,最后合成新的化合物。其反应示意图如图6所示[16]:

SHS法具有产物纯度高、效率高、成本低、工艺相对简单的特点。并且适合制造大尺寸和形状复杂的FGM。但SHS法仅适合存在高放热反应的材料体系,金属与陶瓷的发热量差异大,烧结程度不同,较难控制,因而影响材料的致密度,孔隙率较大,机械强度较低。目前利用SHS法己制备出Al/TiB2,Cu/TiB2、Ni/TiC[8]、Nb-N、Ti-Al等系功能梯度材料[7、11]。

4.2.3喷涂法

喷涂法主要是指等离子体喷涂工艺,适用于形状复杂的材料和部件的制备。通常,将金属和陶瓷的原料粉末分别通过不同的管道输送到等离子喷枪内,并在熔化的状态下将它喷镀在基体的表面上形成梯度功能材料涂层。可以通过计算机程序控制粉料的输送速度和流量来得到设计所要求的梯度分布函数。这种工艺已经被广泛地用来制备耐热合金发动机叶片的热障涂层上,其成分是部分稳定氧化锆(PSZ)陶瓷和NiCrAlY合金[9]。

4.2.3.1等离子喷涂法(PS)

PS法的原理是等离子气体被电子加热离解成电子和离子的平衡混合物,形成等离子体,其温度高达1500K,同时处于高度压缩状态,所具有的能量极大。等离子体通过喷嘴时急剧膨胀形成亚音速或超音速的等离子流,速度可高达1.5km/s。原料粉末送至等离子射流中,粉末颗粒被加热熔化,有时还会与等离子体发生复杂的冶金化学反应,随后被雾化成细小的熔滴,喷射在基底上,快速冷却固结,形成沉积层。喷涂过程中改变陶瓷与金属的送粉比例,调节等离子射流的温度及流速,即可调整成分与组织,获得梯度涂层[8、11]。该法的优点是可以方便的控制粉末成分的组成,沉积效率高,无需烧结,不受基体面积大小的限制,比较容易得到大面积的块材[10],但梯度涂层与基

体间的结合强度不高,并存在涂层组织不均匀,空洞疏松,表面粗糙等缺陷。采用此法己制备出TiB2-Ni、TiC-Ni、TiB2-Cu、Ti-Al[7]、NiCrAl/MgO-ZrO2、NiCrAl/Al2O3/ZrO2、NiCrAlY/ZrO2[10]系功能梯度材料

4.2.3.2激光熔覆法

激光熔覆法是将预先设计好组分配比的混合粉末A放置在基底B上,然后以高功率的激光入射至A并使之熔化,便会产生用B合金化的A薄涂层,并焊接到B基底表面上,形成第一包覆层。改变注入粉末的组成配比,在上述覆层熔覆的同时注入,在垂直覆层方向上形成组分的变化。重复以上过程,就可以获得任意多层的FGM。用Ti-A1合金熔覆Ti用颗粒陶瓷增强剂熔覆金属获得了梯度多层结构。梯度的变化可以通过控制初始涂层A的数量和厚度,以及熔区的深度来获得,熔区的深度本身由激光的功率和移动速度来控制。该工艺可以显著改善基体材料表面的耐磨、耐蚀、耐热及电气特性和生物活性等性能,但由于激光温度过高,涂层表面有时会出现裂纹或孔洞,并且陶瓷颗粒与金属往往发生化学反应[10]。采用此法可制备Ti-Al、WC-Ni、Al-SiC系梯度功能材料[7]。

4.2.3.3热喷射沉积[10]

与等离子喷涂有些相关的一种工艺是热喷涂。用这种工艺把先前熔化的金属射流雾化,并喷涂到基底上凝固,因此,建立起一层快速凝固的材料。通过将增强粒子注射到金属流束中,这种工艺已被推广到制造复合材料中。陶瓷增强颗粒,典型的如SiC或Al2O3,一般保持固态,混入金属液滴而被涂覆在基底,形成近致密的复合材料。在喷涂沉积过程中,通过连续地改变增强颗粒的馈送速率,热喷涂沉积已被推广产生梯度6061铝合金/SiC复合材料。可以使用热等静压工序以消除梯度复合材料中的孔隙。

4.2.3.4电沉积法

电沉积法是一种低温下制备FGM的化学方法。该法利用电镀的原理,将所选材料的悬浮液置于两电极间的外场中,通过注入另一相的悬浮液使之混合,并通过控制镀液流速、电流密度或粒子浓度,在电场作用下电荷的悬浮颗粒在电极上沉积下来,最后得到FGM膜或材料[8]。所用的基体材料可以是金属、塑料、陶瓷或玻璃,涂层的主要材料为TiO2-Ni,Cu-Ni,SiC-Cu,Cu-Al2O3等。此法可以在固体基体材料的表面获得金属、合金或陶瓷的沉积层,以改变固体材料的表面特性,提高材料表面的耐磨损性、耐腐蚀性或使材料表面具有特殊的电磁功能、光学功能、热物理性能,该工艺由于对镀层材料的物理力学性能破坏小、设备简单、操作方便、成型压力和温度低,精度易控制,生产成本低廉等显著优点而备受材料研究者的关注。但该法只适合于制造薄箔型功能梯度材料。[8、10]

4.2.3.5气相沉积法

气相沉积是利用具有活性的气态物质在基体表面成膜的技术。通过控制弥散相浓度,在厚度方向上实现组分的梯度化,适合于制备薄膜型及平板型FGM[8]。该法可以制备大尺寸的功能梯度材料,但合成速度低,一般不能制备出大厚度的梯度膜,与基体结合强度低、设备比较复杂。采用此法己制备出Si-C、Ti-C、Cr-CrN、Si-C-TiC、Ti-TiN、Ti-TiC、Cr-CrN系功能梯度材料。气相沉积按机理的不同分为物理气相沉积(PVD)和化学气相沉积(CVD)两类。

化学气相沉积法(CVD)是将两相气相均质源输送到反应器中进行均匀混合,在热基板上发生化学反应并使反映产物沉积在基板上。通过控制反应气体的压力、组成及反应温度,精确地控制材料的组成、结构和形态,并能使其组成、结构和形态从一种组分到另一种组分连续变化,可得到按设计要求的FGM。另外,该法无须烧结即可制备出致密而性能优异的FGM,因而受到人们的重视。主要使用的材料是C-C、C-SiC、Ti-C等系[8、10]。CVD的制备过程包括:气相反应物的形成;气相反应物传输到沉积区域;固体产物从气相中沉积与衬底[12]。

物理气相沉积法(PVD)是通过加热固相源物质,使其蒸发为气相,然后沉积于基材上,形成约100μm厚度的致密薄膜。加热金属的方法有电阻加热、电子束轰击、离子溅射等。PVD法的特点是沉积温度低,对基体热影响小,但沉积速度慢。日本科技厅金属材料研究所用该法制备出Ti/TiN、Ti/TiC、Cr/CrN系的FGM[7~8、10~11]

4.2.4形变与马氏体相变[8]

通过伴随的应变变化,马氏体相变能在所选择的材料中提供一个附加的被称作“相变塑性”的变形机制。借助这种机制在恒温下形成的马氏体量随材料中的应力和变形量的增加而增加。因此,在合适的温度范围内,可以通过施加应变(或等价应力)梯度,在这种材料中产生应力诱发马氏体体积分数梯度。这一方法在顺磁奥氏体18-8不锈钢(Fe-18%,Cr-8%Ni)试样内部获得了铁磁马氏体α体积分数的连续变化。这种工艺虽然明显局限于一定的材料范围,但能提供一个简单的方法,可以一步生产含有饱和磁化强度连续变化的材料,这种材料对于位置测量装置的制造有潜在的应用前景。

4.3FGM的特性评价

功能梯度材料的特征评价是为了进一步优化成分设计,为成分设计数据库提供实验数据,目前已开发出局部热应力试验评价、热屏蔽性能评价和热性能测定、机械强度测定等四个方面。这些评价技术还停留在功能梯度材料物性值试验测定等基础性的工作上[7]。目前,对热压力缓和型的FGM主要就其隔热性能、热疲劳功能、耐热冲击特性、热压力缓和性能以及机械性能进行评价[8]。目前,日本、美国正致力于建立统一的标准特征评价体系[7~8]。

5FGM的研究发展方向

5.1存在的问题

作为一种新型功能材料,梯度功能材料范围广泛,性能特殊,用途各异。尚存在一些问题需要进一步的研究和解决,主要表现在以下一些方面[5、13]:

1)梯度材料设计的数据库(包括材料体系、物性参数、材料制备和性能评价等)还需要补充、收集、归纳、整理和完善;

2)尚需要进一步研究和探索统一的、准确的材料物理性质模型,揭示出梯度材料物理性能与成分分布,微观结构以及制备条件的定量关系,为准确、可靠地预测梯度材料物理性能奠定基础;

3)随着梯度材料除热应力缓和以外用途的日益增加,必须研究更多的物性模型和设计体系,为梯度材料在多方面研究和应用开辟道路;

4)尚需完善连续介质理论、量子(离散)理论、渗流理论及微观结构模型,并借助计算机模拟对材料性能进行理论预测,尤其需要研究材料的晶面(或界面)。

5)已制备的梯度功能材料样品的体积小、结构简单,还不具有较多的实用价值;

6)成本高。

5.2FGM制备技术总的研究趋势[13、15、19-

20]

1)开发的低成本、自动化程度高、操作简便的制备技术;

2)开发大尺寸和复杂形状的FGM制备技术;

3)开发更精确控制梯度组成的制备技术(高性能材料复合技术);

4)深入研究各种先进的制备工艺机理,特别是其中的光、电、磁特性。

5.3对FGM的性能评价进行研究[2、13]

有必要从以下5个方面进行研究:

1)热稳定性,即在温度梯度下成分分布随时间变化关系问题;

2)热绝缘性能;

3)热疲劳、热冲击和抗震性;

4)抗极端环境变化能力;

5)其他性能评价,如热电性能、压电性能、光学性能和磁学性能等

6结束语

FGM的出现标志着现代材料的设计思想进入了高性能新型材料的开发阶段[8]。FGM的研究和开发应用已成为当前材料科学的前沿课题。目前正在向多学科交叉,多产业结合,国际化合作的方向发展。

参考文献:

[1]杨瑞成,丁旭,陈奎等.材料科学与材料世界[M].北京:化学工业出版社,2006.

[2]李永,宋健,张志民等.梯度功能力学[M].北京:清华大学出版社.2003.

[3]王豫,姚凯伦.功能梯度材料研究的现状与将来发展[J].物理,2000,29(4):206-211.

[4]曾黎明.功能复合材料及其应用[M].北京:化学工业出版社,2007.

[5]高晓霞,姜晓红,田东艳等。功能梯度材料研究的进展综述[J].山西建筑,2006,32(5):143-144.

[6]Erdogan,F.Fracturemechanicsoffunctionallygradedmaterials[J].Compos.Engng,1995(5):753-770.

[7]李智慧,何小凤,李运刚等.功能梯度材料的研究现状[J].河北理工学院学报,2007,29(1):45-50.

[8]李杨,雷发茂,姚敏,李庆文等.梯度功能材料的研究进展[J].菏泽学院学报,2007,29(5):51-55.

[9]林峰.梯度功能材料的研究与应用[J].广东技术师范学院学报,2006,6:1-4.

[10]庞建超,高福宝,曹晓明.功能梯度材料的发展与制备方法的研究[J].金属制品,2005,31(4):4-9.

[11]戈晓岚,赵茂程.工程材料[M].南京:东南大学出版社,2004.

[12]唐小真.材料化学导论[M].北京:高等教育出版社,2007.

[13]李进,田兴华.功能梯度材料的研究现状及应用[J].宁夏工程技术,2007,6(1):80-83.

[14]戴起勋,赵玉涛.材料科学研究方法[M].北京:国防工业出版社,2005.

[15]邵立勤.新材料领域未来发展方向[J].新材料产业,2004,1:25-30.

[16]自蔓延高温合成法.材料工艺及应用/jxzy/jlkj/data/clkxygcgl/clgy/clgy16.htm

[17]远立贤.金属/陶瓷功能梯度涂层工艺的应用现状./articleview/2006-6-6/article_view_405.htm.

篇2

2003年在国际和中国都发生了具有突发性的灾难事件,但中国的GDP仍以9.1%的高速度在增长,达到了人民币11.6万亿元,其中第二产业贡献4万多亿元。中国现今的第二产业主要领域是冶金、制造和信息,在世界的地位是大加工厂,也是大市场。在国际竞争中所以有优势是中国的劳动力廉价,这个优势我们能保持多久?我们还注意到与化工有关的产品中,我们的生产效率是国际发达国家的5%,能耗是3倍,环境的破坏是9倍。这就是我们所付出的代价。不论形势如何严峻,21世纪是中华民族振兴的机遇期,制造业绝对是一个极其重要的领域,是个急速发展变化的领域。2003年3月国际真空学会执委会在北京举行,会议上讨论了将原来的冶金专委会改名为“表面工程专委会”,当时也考虑了另一个名字“涂层专委会”,我想用涂层材料更合适,含有继承性和变革性。20世纪70年代曾经说成是塑料年代,此后塑料科技和工业迅速崛起,极大地改变了人类社会。继而是信息时代,通信网、计算机网、万维网、智能网,信息流,日新月异地改变着人类的生活和观念。我们这个时代是高速发展的时代,技术和观念都在与时俱进地改变着。

本世纪初兴起了纳米科技,促进其到来的是由于微电子小型化的发展趋势,推动科技发展进入纳米时代[1],不仅电子学将进入纳电子学领域,物理学进入介观物理领域,各类科技,包括生物医学等都在探索纳米结构与特性。涂层和表面改性越来越多地增加了纳米科技的内容,这是一种低维材料的制造和加工科技,将是制造技术的主流,将迅速地改变传统制造技术的方法、理论和观念,作为现今国际上的制造大国,世界加工厂,我们更应该注意研究制造技术的发展和未来。

1突破传统制造技术的观念

纳米科技研究的内容主要是在原子、分子尺度上构造材料和器件,测量表征其结构和特性,探索、发现新现象、新规律和应用领域。与我们熟悉传统的相比,纳米材料和器件具有显著的维数效应和尺寸效应。近几年来,在纳米材料制造方面做了大量的研究工作,在纳米粒子粉材的制造,以及材料结构和特性测量、表征上取得了显著成果[2~7]。接下来深入到纳米线、纳米管和纳米带的研究[8~14],出现了一些成功有效的制造方法,发现了一些惊人的结构和特性。在此基础上,发展了纳米复合材料的研究,展现了非常有希望的应用前景[15~17]。近来人们在纳米科技初期成果的基础上挑战某些产品的传统加工技术,比如Al组件的快速加工。

T.B.Sercombe等人报道了快速加工铝(Al)组件的新方法[18],这个方法的主要特征是用快速成型技术先形成树脂键合件,然后在氮气氛中分解其键和第二次渗入铝合金。在热处理过程中,铝与氮反应形成氮化铝骨架,在渗透过程中得到刚体结构。与传统制造工艺相比,这个过程是简单的快速的,可以制造任何复杂组件,包括聚合物、陶瓷、金属。图1是过程示意和原型样品,(a)是尼龙巾镶嵌铝粒子的SEM像,中心有结构细节的是Mg粒子,白色是Al粒子,加入少量的Mg是为还原氧化铝,它将不是铸件中的成分。在尼龙被烧去时,这个结构基本保持不变。(b)是氮化物骨架,围绕Al粒子的一些环状结构的光学显微镜像,再渗入Al时将形成密实结构。(c)是烧结的氮化铝和渗铝组件,小柱的厚为0.5mm其密度和强度都达到了传统铸造技术的水平。他们还制作了公斤重量多种结构的样品。这是一种冶金技术的探索,开辟了一种新的冶金和制造技术途径。

2纳米材料的完美定律

描述材料结构的常用术语是原子结构和电子结构。原子结构的主要参量是晶格常数、键长、键角;电子结构的主要参量是能带、量子态、分布函数。对于我们熟悉的宏观体系,这些参量多是确定的常数,但对于纳米体系,多数参量随着原子数量的改变而变化。这是纳米材料和器件的典型特征,它决定了纳米材料的多样性。其中有个重要规律,我们称之为纳米材料的完美定律,用简单语言表述:“存在是完美的,完美的才能存在”。它包括了纳米晶粒的魔数规则,即含有13、55、147…等数量原子的原子团是稳定的,对于富勒烯碳60和碳70存在的几率最大,而对于碳59或碳71等结构体系根本不存在。这就是为什么斯莫利(Smmolley)他们当初能在大量的富勒烯中首先发现碳60和碳70,从而获得了诺贝尔奖。对于一维纳米结构,包括纳米管和纳米线,存在类似的规则。可以模型上认为是由壳层构成的,每个壳层中更精细的结构称为股,每一股是一条原子链,中心为1股包裹壳层为7股的表示为7-1结构,再外壳层为11股的,表示为11-7-1结构,等等,构成最稳定的结构,这是一维纳米结构的魔数规则。对二维纳米膜存在类似的缺陷熔化规则,即不容许存在很多缺陷,一旦超过临界值,缺陷自发产生,完全破坏二维晶态结构。上述这些低维结构特征是完美定律的具体表述,进步普遍表述理论是正在研究中的课题。

完美定律是我们讨论涂层材料的出发点,因为纳米材料有更多的人造品格,是大自然很少存在或者不存在的,需要人工大量制造。在制造过程中,方法简单、产额高、成本低是最有竞争力的。可以想象,制造成本很高的材料和器件能有市场,一定是不计成本的特殊需要,有政治背景或短期的社会需求。因此在我们探索纳米材料制造时,首先考虑的应是满足完美定律的技术,如用甲烷电弧法制备纳米金刚石粉技术[1],电化学沉积法制备金属纳米线阵列技术[19],以及电炉烧结法制造氧化物纳米带技术[20]等等。

3涂层纳米材料将给我们带来什么?

涂层纳米材料是纳米科技领域具有代表的材料,或是低维纳米材料的有序堆积结构,或者是低维纳米材料填充的复合结构。两者都比传统材料有惊人的结构和特性。如新型高效光电池[21]、各向异性结构材料[19]、新型面光源材料[22]等,这里举例介绍基于热电效应的新型纳米热电变换材料。

热电效应器件的代表是热电偶,即利用不同导体接触的温差电现象进行温度测量的器件。基于热电效应可以制成两类器件:热产生电和电产生温差。前者可以用于制造焦电器件,即用热直接发电,如将焦电材料涂于内燃机缸表面,利用缸体温度高于环境几百度的温差发电,将余热变作电能回收。后者可以做成电致冷器件。这类的直接热电变换器件具有无污染,没有活动部件,长寿命,高可靠性等优点,但块体材料制成器件的效率低,限制了它的应用。纳米科技兴起以后,人们探索利用纳米晶或纳米线结构能否解决热电效应的效率问题。认为用量子点超晶格材料有希望显著提高热电器件的效率,这是由于纳米材料显著的能级分裂,有利于载流子的共振输运和降低晶格热传导,从而提高了器件的效率。T.C.Harman等人[23]报告了量子点超晶格结构的热-电效应器件,他们制备了PbSeTe/PbTe量子点超晶格(QDSL)结构,用其制造了热电器件(Thermo-electrics,TE),图2(a)是纳米超晶格TE致冷器件的结构和电路图,(b)电流-温度曲线。将TE超晶格材料,其宽11mm,长5mm,厚0.104mm,n-型的TE片,一端置于热槽,另一端置于冷槽,为了减小冷槽热传导而形成这同结接触,用一根细金属线与热槽连接。当如图2(a)所示加电流源时,将致冷降温。对于这种纳米线超晶格结构,由于量子限制效应,发生间隔很大的能级分裂,从而得到很高的热电转换效率。图2(b)是TE器件的电流-温度曲线,实验点标明为热与冷端温差(T)与电流(I)关系,电流坐标表示相应通过器件的电流。■为热端温度Th与电流I的关系,其温度对于流过器件的电流不敏感。为冷端温度Tc与电流I的关系,其温度对于电流是敏感的。图中A是测得的最大温差,43.7K,B是块体(Bi,Sb)2(Se,Te)3固溶合金TE材料最大温差,30.8K。从图中可以看出,在较大电流时,冷端温度趋于饱和。采用这种致冷器件由室温降至一般冰箱的冷冻温度是可能的。

电热效应的逆过程的应用就是焦电器件,即利用热源与环境的温差发电。对于内燃机、锅炉、致冷器高温热端等设备的热壁,涂上超晶格纳米结构涂层,利用剩余热能发电,将是人们利用纳米材料和组装技术研究的重要课题。

类似面致冷、取暖,面光源,面环境监测等涂层功能材料,将给家电产业带来革命性的影响,将会极大地改变人类的生活方式和观念。

4含铁碳纳米管薄膜场发射

碳纳米管阵列或含碳纳米管涂层场发射被广泛研究,以其为场发射阴极做成了平板显示器。研究结果表明碳管的前端有较强的场发射能力,因此碳管涂层膜中多数碳管是平放在基底上的,场电子发射能力很差。我们制备了含有铁(Fe)纳米粒子的碳纳米管,它的侧向有更大的场发射能力,有利于用涂层法制造平板场发射阴极。图3(a)是含铁粒子碳纳米的TEM像,碳管外形发生显著改变。(b)是碳管场发射I-V特性曲线,I是CVD生长的竖直排列碳纳米管的场发射曲线,II是含铁粒子碳纳米管竖直阵列的场发射曲线,III是含粒子碳纳米管躺在基底上的场发射曲线,有最强的场发射能力。根据此结果,将含铁的碳纳米管用作涂层场发射阴极,有利于研制平板显示器。

5电子强关联体系和软凝聚态物质

上面所讲到的涂层纳米功能材料和器件是当今国际上研究的热门课题,会很快取得重要成果,甚至有新产品进入市场。当我们在讨论这个纳米科技中的重要方向时,不能不考虑更深层的理论问题和更长远的发展前景。这就涉及到物理学的重要理论问题,即电子强关联体系(electronstrongcorrelationsystem)与软凝聚态物质(softcondensationmatter)。

在量子力学出现之前,金属材料电导的来源是个谜,20世纪初量子力学诞生后,解决了金属导电问题。基于Bloch假设:晶体中原子的外层电子,适应晶格周期调整它们的波长,在整个晶体中传播;电子-电子间没有相互作用。这是量子力学的简化模型,没有考虑电子间的相互作用,特别是在局域态电子的强相互作用。2003年又有人提出了金属导电问题,Phillips和他的同事以“难以琢磨的Bose金属”为题重新讨论了金属导电问题[24]。当计入电子间的相互作用时,可能产生的多体态,超导和巨磁阻就是这种状态。晶体中的缺陷破坏了完善导体,导致电子局域化。电子与核作用的等效结果表现为电子间的吸引作用,导致电荷载流子为Cooper对。但这个对的形成,不是超导的充分条件。当所有Cooper对都成为单量子态时,才能观察到超导性。这样,对于费米子由于包利(Paulii)不相容原则,不可能产生宏观上的单量子态。Cooper对的旋转半径小于通常两个电子相互作用的空间,成为Bose子。宏观上呈现单量子态,Bose子的相干防止了局域量子化。在局域化电子范围内,超导性可能认为是玻色-爱因斯坦凝聚,这个观点现今被很多人接受。从20世纪初至今,对于基本粒子的量子统计有两种,一是Fermi统计,遵从Paulii不相容原理,即每个能量量子态上只能容纳自旋不同的2个电子,而Bose子则不受这个限制。在凝聚态物质中有两个基态:即共有化Bose子呈现超导态,局域化Bose子呈现绝缘态。然而,在几个薄合金膜的实验中,观察到金属相,破坏了超导体和绝缘体之间直接转换。经分析认为这是玻色金属态,参与导电的是Bose子。推断这个金属相可能是涡流玻璃态,这个现象在铜氧化物超导体中得到了验证。

软凝聚态物质研究的对象是原子、分子间不仅存在短程作用力,而且存在长程作用力,表观上呈现的粘稠物质形态,称为软凝聚态。至今,人类对于晶体和原子存在强相互作用的固体已经知道得相当透彻了,但对软凝聚态的很多科学问题还没有深入研究,21世纪以来,引起了科学家的极大兴趣。软凝聚态物质包括流体、离子液体、复合流体、液晶、固体电解、离子导体、有机粘稠体、有机柔性材料、有机复合体,以及生物活体功能材料等。这其中的液晶由于在显示器件上的很大市场需求,是被研究得相当清楚的一种。其他软凝聚态结构和特性的科学问题和应用前景是目前被关注的研究课题。这其中主要有:微流体阀和泵、纳米模板、纳米阵列透镜、有机半导体、有机陶瓷、流体类导体、表面敏感材料、亲水疏水表面、有机晶体、生物材料(人造骨和牙齿)、柔性集成器件,以及他们的复合,统称为分子调控材料(materialsofmolecularmanipulation)。其主要特征是原子结构的多变性和柔性,研究材料的设计、制造、结构和特性的测量、表征,追求特殊功能;理论上探讨原子结构的稳定体系,光、电、热、机械特性,以及载流子及其输运。关于软凝聚态物质,有些早已为人类所用,电解液、液晶等,但对其理论研究处于初期阶段。科学的发展和应用的需求促进深入的理论研究,判断体系稳定存在的依据是自由能最小,体系自由能可表示为F=E-TS,其中S是熵。对于软凝聚态物质体系,S是重要参量。其中更多的缺陷,原子、分子运动的复杂行为,更多的电子强关联,不再是单粒子统计所能描述,需要研究粒子间存在相互作用的统计理论。多样性是这个体系的突出特征,因此其理论涉及广泛、复杂问题。

物理学是探索物态结构与特性的基础学科,是认识自然和发展科技的基础,其中以原子间有较强作用的稠密物质体系为主要研究对象的凝聚态物理近些年有了迅速进展,研究范围不断扩大,从固体结构、相变、光电磁特性扩展到液晶、复杂流体、聚合物和生物体结构等。几乎每一二十年就有新物质状态被发现,促进了人类对自然的认识和对其规律把握能力,推动了科学和技术的发展。21世纪仍有一些老的科学问题需要深入研究,一些新科学问题已提到人们的面前。特别是低维量子限域体系和极端条件下的基本物理问题。20世纪80年代出现的介观物理,后来发展成为纳米科技所涉及的学科领域。与宏观体系和原子体系相比,低维量子限域体系,还有很多物理问题有待解决,人们熟悉的宏观体系得到的规则和结论有些不再有效,适用于低维量子限域体系的处理方法和理论需要探索,特别是将涉及到多层次多系统问题的描述和表征,将会有更多的新现象、新效应、新规律被发现。在纳米尺度,研究原子、分子组装、测量、表征,涉及有机材料、无机/有机复合材料和生物材料,这将大大的扩展了物理学研究的范围和深度。涉及的重大科学前沿问题和重点发展方向有①强关联和软凝聚态物质,及其他新奇特性凝聚态物质;②低维量子限域体系的结构和量子特性,包括纳米尺度功能材料和器件结构和特性;③粒子物理,描述物质微观结构和基本相互作用的粒子物理标准模型和有关问题,以及复杂系统物理;④极端条件下的物理问题,探索高能过程、核结构、等离子体、新物理现象和核物质新形态等;⑤生命活动中的物理问题,物理学的基本规律、概念、技术引入生命科学中,研究生物大分子体系特征、DNA、蛋白质结构和功能等,其研究关键将在于定量化和系统性,必然是多学科的交叉发展,成为未来科学的重要领域。

6结论

本文讨论了纳米线涂层的结构和特性,重点是纳米线的复合涂层和其电学特性、光电特性。其中包括制造技术新观念,纳米材料的完美定律,纳米涂层的热-电效应,碳纳米管的侧向场发射,以及电子强关联体系和软凝聚态物质,展示了涂层科学与技术的发展前景。

参考文献:

[1]薛增泉,纳米科技探索[M].北京:清华大学出版社,2002.

[2]Pavlova-VerevkinaOB,Kul’kovaNV,PolitovaED,etal.COLLLOIDJ+2003,65(2):226.

[3]DattaMS,TINDIANIMETALS2002,55(6):531.

[4]YamaguchiY,JJPNSOCTRIBOLOGIS2003,48(5):363.

[5]HayashiN,SakamotoI,ToriyamaT,etal.SURFCOATTECH2003,169:540.

[6]PocsikI,VeresM,FuleM,eta1.VACUUM2003,7l(1-2):171.

[7]FanQP,WangX,LiYD,CHINESEJINORGCHEM2003,19(5):521.

[8]ArakiH,FukuokaA,SakamotoY,etal.JMOLCATALA-CHEM2003,199(1-2):95.

[9]BottiS,CiardiR,CHEMPHYSLETT2003,37l(3-4):394.

[10]TianML,WangJU,KurtzJ,etal.NANOLETT2003,3(7):919.

[11]RajeshB,ThampiKR,BonardJM,etal.JPHYSCHEMB2003,107(12):2701.

[12]FuRW,DresselhausMs,DresselhausG,etal.JNONCRYSTSOLIDS2003,318(3):223.

[13]KimTW,KawazoeT,SOLIDSTATECOMMUN2003,127(1):24.

[14]NguyenP,NgHT,KongJ,etal.NANOLETT2003,3(7):925.

[15]LiQ,WangCR,APPLPHYS.LETT2003,83(2):359.

[16]ChenYF,KoHJ,HongSK,YaoT,APPLlEDPHYSICSLETTERS,2000,76(5):559.

[17]JinBJ,BaeSH,LeeSY,ImS,MATERIALSSCIENCEANDENGINEERINGB,2000,(71):301.

[18]T.B.SercombeandG.B.Schaffer,SCIENCE,2003,301:1225.

[19]薛增泉,等.新型纳米功能材料[J].真空,2004,41(1):1-7.

[20]Z.W.Pan,Z.R.Dai,Z.L.Wang,SCIENCE,200l,(291):1947.

[21]W.U.Huynh,J.J.Dittmer,A.P.Alivisatos,SCIENCE,2000,(295):2425.

篇3

仪器:RM2000Raman光谱仪(英国Renishaw公司);DSC1—差示扫描量热仪(瑞士Mettler-To-ledo公司);VarianXL—300核磁谱仪(美国Vari-an);ZSD—2自动水分滴定仪;RE—52AA旋转蒸发仪(上海亚荣生化仪器厂);PZ—D—5液体比重天平(上海良平天平仪器公司);DP—AW型精密数字压力计(南京桑力电子设备仪器厂);2X2—025真空泵(浙江黎明机械厂);79—2型加热磁力搅拌器(常州国华仪器厂);876—2A型真空干燥箱(上海锦屏仪器有限公司);FA2004电子天平(上海天平仪器总厂);控温油浴锅(常州国华仪器厂)。试剂:N-甲基咪唑、钨酸钠、溴丙烷、氯代正丁烷、氯代正戊烷、氯代正己烷、乙腈、乙酸乙酯、二氯甲烷、丙酮等,均为分析纯。

1.2离子液体的制备

1.2.1中间体[Cnmim]Br(n=3~6)的制备合成中间体[Cnmim]Br(n=3~6)的反应方程式如下。在500mL的标准回流装置中加入溴代烷烃和N-甲基咪唑(摩尔比为1.2∶1),进行加热回流,控制油浴温度为90℃,0.5h后出现浑浊,继续搅拌反应48h。将反应液倒入烧杯中,放入冰箱冷却结晶24h。用蒸馏法除去过量的溴代烷烃,真空抽滤,用乙酸乙酯和乙腈(体积比2∶1)混合溶剂重结晶三次,得到不同碳含量的中间体[Cnmim]Br(n=3~6),其中[C3mim]Br、[C4mim]Br、[C5mim]Br在室温下为白色结晶,[C6mim]Br为淡黄色液体,放入真空干燥箱中减压干燥,放保干器中备用[8]。

1.2.2离子液体[Cnmim]2[WO4]的制备将[Cnmim]Br与钨酸钠按摩尔比5∶2加入溶剂丙酮中,常温下搅拌72h,抽滤去掉NH4Br,减压蒸馏除去丙酮,以乙酸乙酯和乙腈(体积比2∶1)的混合溶液重结晶三次,85℃下真空干燥48h,得到四种淡黄色液体,即为[Cnmim]2[WO4](n=3~6)离子液体。

2离子液体的表征

2.1离子液体的1HNMR核磁分析离子液体[Cnmim]2[WO4]的核磁谱图如图1所示,各离子液体的1HNMR核磁谱图分析结果与文献报道一致[8],没有出现杂质的共振峰。

2.2离子液体的拉曼光谱分析拉曼光谱采用共焦显微拉曼光谱仪测定,激光光源为He-Ne激光器,激光通过过滤器和柱面透镜,聚焦在装有样品的毛细管上,照在样品上的激光功率大约为0.90mW,在90°角上收集的散色光通过1800条/mm的光栅后,用半导体制冷的CCD检测器测得拉曼信号。离子液体[Cnmim]2[WO4]的拉曼光谱如图2所示。从该图所示的拉曼光谱可以看出,钨离子液体有频率相同的几处共振峰,如600cm-1、1022cm-1,该类振动峰是W=O键在空间构型比较大的两组咪唑阳离子作用下,产生偏移后的WO2-4的特征峰,由此可确定离子液体的阴离子为WO2-4。

2.3钨离子液体的热分析差式扫描量热(DSC)数据是在温度区间0~100℃获得的,先保持样品在0℃平衡5min,而后以10℃/min的速率升温至100℃。DSC数据显示,钨离子液体[Cnmim]2[WO4](n=3~6)没有熔点,在室温范围内均为液态,符合离子液体的定义,且从DSC曲线可以看出,四种钨离子液体中无有机溶剂杂质。

2.4钨离子液体的含水量测定将使用离子交换法得到的钨离子液体用真空干燥法除水后,用无水甲醇及二氯甲烷进行溶解、共沸,然后蒸发出多余溶剂,再真空干燥48h。采用卡尔-费休(KarlFisher)滴定法进行含水量的测定,测定结果如下:[C3mim]2[WO4]含水量0.034%,[C4mim]2[WO4]含水0.027%,[C5mim]2[WO4]含水量0.041%,[C6mim]2[WO4]含水量0.044%;各含水量均小于0.05%。

篇4

1.1可见光光敏二极管材料富勒烯及其衍生物是研究较早也是目前较为热门的一类n型有机半导体材料。研究者正不断地探索该类材料的潜能,Lee等[6]报道了一种多层结构的并五苯/C60器件,该器件在500~690nm的波长范围内都有良好的吸光效率,而在670nm左右,其EQE甚至可以超过100%。P3HT(聚-3-己基噻吩,图2)和PC61BM([6,6]-苯基-碳六十一-丁酸甲酯,图2)也是一组常见的给体、受体材料组合,有报道显示用P3HT∶PC61BM制备的器件在540nm光照,-5V偏压下光响应度可以达到390mA/W,(图3)[7]。近年来,聚芴衍生物及其共聚物也被证明是一类很有前途的有机半导体材料,目前已经报道的聚芴衍生物F8T2(聚(9,9-二辛基芴-二噻吩),图2)为给体,PC61BM为受体,得到的器件光响应度约为625mA/W(460nm,9mW/cm2光照,-10V偏压)[8]。而Park等[9]报道DMQA(N,N-二甲基喹啉并吖啶)∶DCV3T(二氰乙烯基-三联噻吩,图2)材料用于有机光敏二极管,可以得到光响应度超过250mA/W(5mW/cm2光照,-3V偏压),外量子效率超过64%的器件。本课题组在可见光光敏二极管方面也有着一定的研究基础。2009年,基于C60/NPB(N,N''''-二(1-萘基)-N,N''''-二苯基-1,1''''-联苯-4-4''''-二胺,图6)有机异质结,我们报道了一个蓝光敏感的有机光敏二极管[10]。以蓝色OLED(发光波长为462nm)为光源,我们将此有机光敏二极管应用到有机光电耦合(OOC)器件中,实现了0.17%的电流传输效率,这是当时已报道的有机小分子光电耦合器件中的最高值。同时,其截止频率达到了400kHz,并且在1MHz的输入信号下也能表现出极好的跟随特性(如图4)。在此工作基础上,基于C60/m-MTDATA(4,4'''',4″-三(N-3-甲基苯基-N-苯基氨基)三苯胺,图6)有机异质结,其在462nm的OLED光源下的光响应度达到130mA/W,将有机光耦的电流传输效率提高到了1.3%[3]。同时,我们实现了在柔性基底上制备该有机光耦,可以应用于压力传感中。由于其良好的电隔离性能,可将其应用到低压控制电路中,实现了对处于2000V高电势电路的控制(图5)。随着应用需求的增加,对特定颜色选择性吸收的有机光敏二极管也逐渐地为人们所重视,Burn等[11]合成了一种以氧化花青素为核心的树枝状分子(Dendrimers3,图2),以它和PC61BM组成的体异质结有机光敏二极管可以选择性地吸收460~570nm的绿光,而在500nm光照条件下,该器件在0V时的光暗电流比可以达到2.7×104。Park等[12]报道的DMQA/SubPc(二氯硼酞菁,图2)器件也显示出了对绿光较好的选择性,其在560nm光照条件下的比探测率可以达到2.34×1012Jones。红光选择型器件在这方面报道较少,有课题组利用P6T(α,ω-二苯基六噻吩,图2)和BP3T(α,ω-二(联苯-4-基)三噻吩,图2)作为蓝绿光吸收材料来阻止蓝绿光到达传统的CuPc(铜酞菁)/C60结构的器件光敏层,从而得到较好的红光选择性,该器件的比探测率可以达到4.0×1011Jones,EQE达到51.4%[13]。

1.2紫外光光敏二极管材料m-MTDATA是紫外吸收材料里的明星分子,目前报道的基于m-MTDATA∶BPhen(二苯基邻菲咯啉,图6)的器件,在-12V偏压,365nm的光照条件下,其光响应度达到872mA/W[14]。而m-MTDATA搭配Cu(I)配合物CuDD(硼氟酸二[2-(二苯基膦基)苯基]醚•二吡啶并(3,2-a:2'''',3''''-c)吩嗪合铜(Ⅱ),图6)组成的器件在365nm光照条件下,其光响应度可达560mA/W,比探测率达到2.82×1011Jones[15]。NPB也是一种不错的紫外光吸收材料,基于NPB/PBD(2-(4-叔丁基苯基)-5-(4-联苯基)-1,3,4-二唑,图6)的器件光响应度可以达到4.5A/W(3V偏压,350nm,60μW/cm2光照),同时光暗电流比达到了2.4×103[16]。纳米复合材料同样得到了研究者们的青睐,如Huang等将C-TPD(4,4''''-二[(对-三氯代甲硅烷基苯基)苯基氨基]-联苯,图6)和ZnO组成的纳米复合材料与C60用于紫外光敏二极管,得到EQE约400%的高效率器件[17]。然而,以上器件或多或少都会在可见光区有所吸收,这对它们的应用造成了一定的限制,另外,由于ITO对深紫外区光线的吸收也给深紫外区的探测造成了困难,为解决这个问题,有课题组利用在12nm的超薄铝电极上加镀一层TPD(N,N''''-二(3-甲基苯基)-N,N''''-二(苯基)联苯胺,图6)作为可见光吸收材料的方法,得到了紫外区与可见光光响应度比值达到1000左右的器件[18],也有课题组利用PVA(聚乙烯醇)达到了类似的效果。

1.3红外光光敏二极管材料红光-红外区域的探测在光学通信、遥感控制等领域有着无法替代的作用,然而由于有机半导体红外吸收材料较少,使得相关研究目前要落后于紫外和可见光区的研究。Chen等[20]通过在半导体层P3HT和PC61BM间插入Ir-125(4,5-苯并吲哚三碳菁,图7)染料,使得器件的光谱探测上限从650nm提升到1050nm处,在-1.5V偏压下,该器件在800nm处的EQE达到了757%,然而,该器件在可见光区域更加明显的光响应使其并不能被称为一个典型的红外探测器(图8)。Sampietro课题组[21]报道了基于方酸菁类化合物AlkSQ的有机光敏二极管,700nm处的比探测率达到3.41012Jones。此外,基于二硫纶类材料也表现出不错的红外吸收性能,Awaga等[22]报道的以二硫纶类材料BDN(二(4-二甲基氨基二硫代苯偶酰)合镍(Ⅱ),图7)为基础的器件探测范围可以覆盖700~1600nm区域,比探测率达到1.6×1011Jones,带宽约为1.4MHz。曹镛研究组近年来在近红外有机光敏探测器方面做了很好的研究工作,他们报道了两种性能优良的红外光敏材料,即苯并三唑类的高聚物PTZBTTT-BDT(图7)和卟啉类小分子材料DHTBTEZP(图7)[23,24],用它们和PC61BM配合制成的器件在近红外区处的比探测率都可以达到1012Jones以上,是两种很有潜力的红外光敏二极管材料。另外,他们还尝试采用ZnO纳米线作为电子取出层,使得PDDTT(聚(5,7-二(4-癸基-2-噻吩基)-噻吩并(3,4-b)-噻二唑-噻吩-2,5),图7)和PCBM制成的器件可以对400~1450nm的光照产生响应,且在1300~1450nm的红外区比探测率达到109Jones以上[25],这也为提高红外光敏二极管的性能提供了一种有效的方法。

2有机光敏二极管的结构优化与界面修饰

有机光敏二极管依异质结构造方式的不同大致可以分为平面异质结(图9a)、体异质结(图9b)以及混合型(图9c)三类器件。不同结构的器件往往会有很不一样的性能表现。

2.1平面异质结结构平面异质结结构是有机光敏二极管较为常见的结构,其中acceptor和donor分别成层,两者有一个平面界面,形成异质结。如Wang等[27]设计的基于C60/TPBi(1,3,5-(1-苯基-1H-苯并咪唑-2-基)苯,图6)的器件就是基于这一结构,该课题组发现该器件在做成平面异质结结构的时候可以对365和330nm双波长的光线发生响应,而一旦做成体异质结结构则会失去这一特点。在平面异质结的基础上,研究者们也通过不同的优化手段来提高器件的性能,Lee等设计了超薄的并五苯与C60层交替多层的器件(图10a),该器件充分利用了并五苯内单线态激子裂变形成两个三线态激子的特性,将器件EQE提高到了100%以上(670nm光照条件下)[6]。也有一些课题组尝试在给体/受体之间插入一个内联层作为红光吸收材料,有效地提高了红光的利用率,EQE最高超过了7000%[20]。另外,有课题组采用C-TPD等作为阳极缓冲层对平面异质结结构的器件做修饰,C-TPD是一种良好的空穴传输材料,有很低的电子迁移率,另一方面,它较高的LUMO能级也有效地阻挡了C60层电子的注入,因此,它的引入可以使器件的暗电流降低3~4个量级[28]。

2.2体异质结结构体异质结结构的有机光敏二极管近年来发展迅速,有研究人员认为这是比平面异质结更有效率的结构[26]。这主要取决于体异质结结构相比于平面异质结结构具有的更加大的acceptor和donor的接触面积。由于光照产生的空穴电子对的分离主要发生在acceptor和donor界面处,随之迁移到电极中产生光电流,因而体异质结中的空穴电子对能够得到更加有效的分离,进而得到较高的光电转换效率。MEH-PPV(聚[2-甲氧基-5-(2-乙基己氧基)-1,4-亚苯基-亚乙烯基],图2)∶PC61BM组成的体异质结器件暗电流密度可以降到1nA/cm2以下[2]。Gong课题组[29]利用溶液法制备的P3HT∶PCBM体异质结的器件EQE约为80%,比探测率(500nm,0.32mW/cm2光照,-0.5V偏压)超过1×1013Jones,线性动态范围超过120dB,暗电流同样低至nA/cm2量级。研究者也通过表面修饰的方式来提高体异质结结构的器件性能。Leem等[30]以DMQA和DCV3T组成的体异质结为基础,利用TPD/MoOX双层结构作为阳极缓冲层得到的器件在540nm处EQE达到55.2%,而在-3V偏压下的暗电流降低到6.41nA/cm2。其他还有利用PEIE(聚乙烯亚胺)作为PBDTT-C(图2)和PC70BM组成的体异质结结构器件的阳极缓冲层,最终得到的器件在-2V偏压下暗电流为2nA/cm2,比探测率(680nm光照,-2V偏压)可达1013Jones,带宽为12kHz。

2.3其他结构还有一些器件采用给体/体异质结/受体这样的三层混合结构。如Ma等[32]发现他们构建的ITO/红荧烯(Rubrene)/红荧烯∶C60/C60/Al结构的器件的带宽比普通的平面异质结器件有显著的提高,达到15.6MHz,比探测率(405nm光照条件下)在较低的-2V偏压下就高达5×1012Jones,此时暗电流仅为1.5nA/cm2。另外,该器件在同一电压下入射光强改变约5个量级的范围内,光电流都与光强成线性关系。该课题组还采用TAPC(1,1-双[(二-4-甲苯基氨基)苯基]环己烷,图2)和C70这一组材料,器件结构也是平面-体异质结混合的结构(图10b),同样取得了很好的器件性能,其比探测率达到2.5×1013Jones,EQE为62%,在同一电压下,光电流可以和入射光强在6个量级的范围内呈线性关系[33]。近年来也有一些无机纳米棒、纳米等与有机半导体材料相结合的新型异质结组合,Xie等[34]报道的TiO2纳米棒与Spiro-MeOTAD组成的器件即是这样的结构(图11),Ogale研究组[35]报道的ZnO(N)纳米棒-Spiro-MeOTAD杂交光敏二极管也是类似的结构,此类器件往往有自供电的特性,即可以在0V偏压下表现出光响应性,符合未来社会节能环保化的倾向。

2.4界面机理研究对有机光敏二极管器件的电子空穴传输机理的研究有利于人们通过设计器件结构得到最优化的器件性能。目前,有机光敏二极管的机理研究多集中在界面处。Hayden课题组[36]利用TSC(热激发电流分析)研究有机光敏二极管内的界面陷阱状态,他们发现在低光强下,有机光敏二极管的带宽受到界面陷阱的影响,而当光强足够高时,体陷阱的影响居主导地位。Wang等[37]研究了有机光敏二极管在光照下的性能衰退现象,最终他们将引起光电流降低的原因定位在了界面处的光解现象上,并提出合适的缓冲层有利于器件性能的提高。本课题组通过调节C60/NPB异质结中半导体薄膜的厚度,建立了OPD界面中关于耗尽区形成的定量模型,并提供了一个普遍适用的方法来探究有机半导体界面的信息。该模型描述了暗电流和开路电压与C60和NPB薄膜厚度的关系。界面处的相关电子结构信息,如内建电场、电荷密度、耗尽区完全形成的最小厚度和异质结每一侧上的能级弯曲,都可以从这个拟合模型中得到(图12)。该模型的拟合结果显示,有光照和无光照情况下,半导体耗尽区的厚度分别是5nm(C60)/70nm(NPB)和8nm(C60)/60nm(NPB)。器件的性能优化结果验证了拟合模型的合理性。以此为基础,对有机光敏二极管(OPD)进行了结构优化,并与有机发光二极管(OLED)组装成OOC。测试表明该OOC的电流传输比、信噪比、截止频率、跟随频率分别为0.58%、3×104、400kHz、1.25MHz[38]。

2.5光强分布的计算有机薄膜器件中由于光在薄膜内的反射与干涉现象,光场强度在薄膜内层波浪状分布(图13),研究器件内部光强分布对于器件光敏性能的优化有指导性的意义。O''''connor研究组在光伏器件中引进了一个Cap层,通过转移矩阵法计算了不同Cap层厚度下异质结界面处的光强分布,他们发现当器件界面处光强分布达到最大时,器件的光电流也达到最大值[40]。Hung等同样用器件内部光场强度的变化来解释改变器件厚度时,器件光电流的变化[41]。本课题组发展了利用光强分布预测光电流的方法,将器件薄膜厚度对器件内部的光场和电场分布的影响同时列入考虑,提出了一个模型,可以预测mMTDATA/C60器件光电流随厚度变化的趋势,并指导器件结构的优化,使器件光敏性能得到了显著提高。该方法也可用于其他材料体系[42]。

2.6有机光敏二极管的稳定性有机光敏二极管的稳定性也是一个非常重要的性能指标。器件在使用过程中,通常会受到来自环境中水、氧的侵蚀,还会出现由光和电引起的材料老化或降解,这些都会导致器件性能的衰减,影响器件使用寿命。通常情况下,我们可以使用高功函的电极,如Au、Ag等,作为光敏二极管的阴极,这样可以降低电极氧化的几率,在一定程度上对器件起到保护的作用,以提高其稳定性。但这对器件内部的能级匹配提出了较为严格的要求和限制。Wang课题组在电极和有机层界面处引入界面修饰层LiF和Li-acac(乙酰丙酮合锂),通过其和无界面修饰层器件的瞬态光电流谱的对比,得出了电极/有机层界面在光生激子的衰减方面起着十分重要的作用。并且在界面处引入界面修饰层可以有效地降低光生激子的衰减,从而得到较稳定的器件性能。Simonato课题组通过在Ag电极和光敏层之间引入缓冲层聚乙烯亚胺(PEIE),使得该器件在环境条件下放置100天之后,性能仍没有出现明显的衰减,如图14所示。这些研究对制备高稳定、高效率的光敏二极管器件起到十分有效的指导作用。

篇5

一、前言

在建筑施工过程中随着新工艺和新技术的不断发展,保温材料在建筑中的应用也越加的广泛,在建筑施工过程中相变保温材料作为一种新的保温材料正在被广泛的使用。

二、保温材料特点

1、真空隔热板。在以往建筑工程项目的建设过程中,所用的保温材料,其厚度相对比较大,易减少层和层之间的距离,出现窗洞不断加深等各种问题,为有效地解决这些问题,出现了一种新的保温材料,即真空隔热板,该材料自身较薄,同时所排放的CO量也较小,在其外表面裹有相应的纸质与金属外壳,在壳间形成真空,且填充了纤维、压缩硅酸盐与泡沫塑料等,其中所填充的这种纤维为多孔。真空隔热板作为一种高效且新型的材料,其应用前景非常广泛。

2、复合型硅酸岩保温材料。该材料含有硅酸盐、铝以及镁等物质,是一种非金属的矿物基料,通过添加相应的辅助原料与化学添加剂,借助于新技术以及新工艺的应用制造而成。纵观我国当前建筑材料市场,这种材料是当前最为理想的一种保温材料,其导热系数相对较低、用料厚度也比较少且热损也比较小,具有无毒特性,不会对设备造成腐蚀,也不会对环境造成污染,属于一种高效保温且轻质性的材料。除此之外,相对于其他类型的保温材料而言,该材料还具有无粉尘与无刺激等特点,能够对其进行任意地裁剪,便于施工等。

三、外墙保温特点

不同的建筑在节能上的要求不同,根据节能标准在施工时将保温材料同墙体固定复合,通过该种方式降低建筑墙体的导热系数,达到隔热的目的,使得建筑具有更好的保温能力。保温材料大多为导热系数较低的块材或者松散材料,可以通过直接粘附于墙上的办法进行安装,也可以将材料同外装饰一齐挂在墙面上。外墙保温分为三种:外保温、夹心保温以及内保温,就保温效果而言,外保温效果最佳。以下就外保温特点展开叙述:

1、外保温能够消除热桥效应。

2、建筑采用外保温的形式后,能够使得室内贮存更多热量,这是由于保温材料内部实体墙热容较大,因而可以达到保温的目的。

3、对外保温加强后,以室内热环境保持为前提对室温做适当的降低,不但能够保证室内环境温度的适宜,同时还能够降低能耗,以此节约能源减少采暖负荷。

4、由于墙体外添加了外保温材料,因此建筑内部的主体墙温度会相对较高,从而湿度相对较低。由于保温材料的导热系数较小因此主体墙热应力减小,因而裂缝、变形以及破损等主体墙的病害出现几率就会相对降低。

5、外墙保温优点概述:

(1)外墙保温从技术结构上分析能够减少外界环境(降水、紫外线、温度等)对主体结构造成的不良影响。

(2)扩大使用空间。由于外墙保温材料设置在外部,因此会节约内部空间。

(3)在旧房改造中能够发巨大的优势,且不会干扰人们的正常生活。

四、相变保温材料在建筑工程节能技术中的应用

1、相变保温材料在建筑工程中的应用特点

在建筑工程的施工建设中,采用相变保温材料能够大大提升工程的施工效率、促进工作进度和增加工程效益,这也给我国的可持续发展和建设和谐社会提供了新的途径,同时这也是可持续发展观念和建设和谐社会主义目标的主要途径。变形保温材料在建筑工程中的主要特点有如下几点。

(1)新型保温材料

一些性能良好的节能保温材料对于建筑的保温起到了很好的作用,这也让现代建筑实现了大规模的节能目标。且在国外,一些发达国家已经在建筑节能保温材料方面取得了突破性的成果。

(2)红外热反射技术

红外热反射技术是最近新兴保温技术,它的工作原理是通过在建筑物的内部或者外表以及护结构的空气间层中通过采用高纯度的铝箔或者其他的一些高效热反射材料,将绝大部分的红外线反射回去,从而达到隔绝建筑物内部热量的散失、提高居住环境的舒适程度的目的。

2、配制浆料

保温浆料需要专业人员来配制,这样才不会出现搅拌不匀而出现保温效果失常的情况。

3、抹底层相变节能材料

保温层应当分成三次涂抹,且每一次的厚度应当控制在10~12mm左右。每次涂抹的间隔时间也不能太短,这样才能够保证涂抹层的稳定性。

五、相变材料与隔热材料的具体应用

节能环保意识的逐渐增强,促使人们对房屋建筑质量在节能环保方面的要求有所提高,建筑市场对保温隔热型环保材料的应用也变得更加重视。随着深入探索与实践,隔热保温材料在墙体中的应用理论和技术日益完善和成熟。外墙保温材料的应用主要分为三类:内保温、外保温以及空夹心复合型墙体保温。外墙保温材料的应用使得建筑节能环保效果有了大幅度的提高。由于保温隔热材料自身导热系数低、构成材质强,热稳定性极佳,同时耐火、耐气候性强等特点,因此较之一般材料,具有非常显著的优越性。特别是保温隔热材料具备良好的抗压性、耐火性,极其适合现代建筑的实际需求。目前市场中还有一些玻璃材料,具有非常良好的保温效果,而且种类日益繁多,比如吸热玻璃、调光玻璃、热反射玻璃、低辐射玻璃等,在实现环保节能、降低污染的同时,还能充分满足人们的个性化需求,因此在现代建筑中可以广泛利用。

基于标准房间热过程模拟的非稳态传热模型,并采用专用气象数据对相变材料的两种不同应以北京的建筑为例,就外墙的保温节能工程进行阐述。

对于被动式建筑,可充分利用白天太阳能和夜间冷风自然资源,将相变材料应用于被动式建筑中,在夏天材料可吸收室内多余热温,进而降低室内温度波动幅度,可蓄存夜间冷风量,使室内始终保持较好的舒适度。通过对北京地区建筑有外保温和无外保温、内墙为相变墙体和普通墙体的夏季室内温度变化情况进行分析发现,当内墙采用相变墙体且墙体熔点合适时,被动式建筑房间的温度在整个夏季都会满足舒适度要求,而应用隔热材料则不利于夜间散热,其降低室温的效果不明显,在某种情况下甚至会出现室外温度较低但室内温度却较高的情况。通过对冬季有外保温和无外保温、内墙为相变墙体和普通墙体的室内温度逐时变化情况进行分析发现,当被动式建筑采用的内墙为相变墙体时对室内温度的影响较小,只有在室温接近墙体熔点时才会发生相变,相变材料作用无法得到有效发挥,而隔热材料却具有良好的保温效果。综合考虑冬季、夏季外保温和相变墙体对被动式建筑室内温度的影响时,无法选择较为合适熔点的相变墙体同时满足北京地区建筑对冬夏两季舒适度的要求,虽然外保温在夏季无法发挥作用,但是在冬季具有良好的保温效果,所以采用隔热材料来提高被动式建筑舒适度更为合理。

对于相变材料与隔热材料在主动式建筑中的应用则可通过空调、采暖运行过程中的耗电量来对两者应用效果进行比较分析。主动式建筑在冬季采暖期间,采用相变蓄能式电加热地板采暖系统,白天耗电量较低,只是普通房间的20%左右,这有利于缓解白天供电紧张的情况,同时也可大大节约采暖费,而采用隔热材料时不仅耗电量低,采暖费的节约率也更高。在夏季,主动式建筑北墙采用相变墙体时,其单位面积空调冷耗量最小,相较于普通房间要低约16%,而在墙体内设置保温层或是添加相变材料空调降耗效果并不明显。虽然夏季使用相变墙体能够降低冷耗量,但是针对北京地区气象条件,其冬季采暖比重更高,由此可以推断,若综合考虑全年空调采暖耗量,选择外保温比较合适。

六、结束语

在建筑设计施工过程中我们要不断的提高节能意识,在建筑施工中应用新工艺和新技术来提高节能效果。

篇6

主管单位:重庆仪表材料研究所

主办单位:国家仪表功能材料工程技术研究中心;重庆仪表材料研究所;中国仪器仪表学会仪表材料学会

出版周期:月刊

出版地址:重庆市

种:中文

本:大16开

国际刊号:1001-9731

国内刊号:50-1099/TH

邮发代号:78-6

发行范围:国内外统一发行

创刊时间:1970

期刊收录:

CA 化学文摘(美)(2009)

CBST 科学技术文献速报(日)(2009)

EI 工程索引(美)(2009)

中国科学引文数据库(CSCD―2008)

核心期刊:

中文核心期刊(2008)

中文核心期刊(2004)

中文核心期刊(2000)

中文核心期刊(1996)

期刊荣誉:

中科双效期刊

联系方式

篇7

[中图分类号] G643 [文献标识码] A [文章编号] 1674-893X(2012)03?0073?02

创新有三层含义:一是更新;二是创造新事物;三是改变。创新性人才指掌握一定专业知识技能,在社会实践中能推陈出新,以自己的创新性意识和行动,在利用自然改造自然,推动社会进步中做出贡献的人。随着知识经济时代的到来,在世界各国的综合国力竞争中,创新人才被越来越多的国家视为战略性资源和决定性因素。培养具有创新能力的高素质人才,顺应了时代的呼唤和国家发展的要求。研究生教育是培养高层次专业人才的主要途径。我国的研究生数量已跨入世界大国行列,研究生成为目前参与和推动我国科学技术发展的重要力量,其知识创新能力与科研实践能力的培养对于提高我国的科技竞争力至关重要。而大量研究表明,当前我国研究生的创新实践能力严重不足,主要表现在科研实践参与度低、国际性的学术论文数量偏少、学术成果质量不高、原创性成果稀少等等。

北京航空航天大学作为我们国家自己创建的第一所航空航天大学,学校面向国家重大战略需求、面向世界航空航天发展的前沿,为国家经济事业的发展、特别是为航空航天事业做出了不可替代的贡献。北京航空航天大学培养了11万学生,这些高素质人才大部分在我国的航空航天领域担当重任,为我国的航空航天事业提供了人才支持。北京航空航天大学多年来服务大局、特色兴校、培育人才、不断创新,突出航空航天特色和工程技术优势,形成了独具特色的高水平研究型大学建设模式。

北京航空航天大学提出了新时期“重基础、强交叉、拓视野、推创新”的研究生教育思路,对调整研究生教育结构,提高生源质量,改革招生指标分配办法,修订培养方案,促进研究生课程国际化,推广试点班教育模式,建设专业学位研究生实践基地,创新学科交叉机制体制等,提出了明确要求。

一、研究生培养模式和实验教学体系

北京航空航天大学在研究生培养模式上分为理论教学、实验教学和学位论文研究三个阶段。在强化研究生理论教学和学位论文研究的同时,采取了重大举措来培养研究生的实践能力:针对不同学科专业的特点增加了研究生教学的实验环节;通过“211”和“985”条件建设逐步构建了开放适用的研究生实验教学设备条件,并构筑人性化的实验环境;打破了传统实验教学模式,确立了开放式的多元化的研究生公共实验和研究生专业实验课体系;最大限度地挖掘出研究生的知识潜能,养成创造性品格,掌握创造性技能,最后在研究生学位论文的写作中得到深入和升华,使得研究生培养的三个阶段构成了一个由浅入深、循序渐进、具有内在联系的有机体。

在实验教学体系的构建方面,在一级学科层面,将关联密切的研究生理论课程的实验整合成数门独立设置的综合性实验课。结合专业培养目标和其他相关课程,建立一个包括基础验证实验、综合设计实验和创新型实验3个层次的课程体系。

北京航空航天大学还构建了整体性的开放式创新实践基地。例如自2004年以来,先后建设了“先进计算机网络技术研究生创新基地”“复杂产品现代设计与先进制造技术研究生创新基地”和“先进航空航天飞行器创新基地” 等开放性的创新实践基地。基地以航空航天与信息类优势学科群为中心,以重点实验室为依托,在创新人才培养和研究生教育改革的创新方面进行了积极的探索。

二、材料专业研究生特种功能材料特色试验课程设计

北京航空航天大学材料学院多年来一直非常重视研究生教育,研究生的课程设置及内容为研究生从事科学研究打下了坚实的理论基础。但材料学院研究生的实验设备主要来自各科研课题组,设备种类、台套数、完好率受限制,特别是使用时间无法保证,影响研究生试验运行。课时数虚,授课内容待充实。

随着多年来对实验室建设的不断投入,北京航空航天大学材料学院实验室建设遵循“以软带硬”的原则,即以教学改革为前提,投入的实验设备要服务于所开设的实验项目,硬件建设服从软件建设。目前材料学院用于研究生实验教学的设备已经初具规模,拥有多套透射电子显微镜、扫描电子显微镜、电子探针显微镜、原子力显微镜、磁力显微镜、X射线衍射仪、ICP分析仪、拉曼光谱分析仪等先进的分析检测设备,并对各学科实验室进行了优化整合和重组资源配置,发挥了实验室的复合功能和规模效益。材料学院还承担着大量国家级和省部级的重大科研项目,取得了一系列令人瞩目的研究成果,具有良好的培养研究生的客观条件。材料学院将逐步彻底改造研究生实验课内容和实验条件,建立具有航空航天特色、涵盖材料学科重要研究方向的材料制备、测试及评价方法的研究生公共实验平台,以国家建设和经济发展对材料科学与工程学科复合型人才的重大需求为导向,确定材料科学与工程学科实验课程的具体设置方案。

北京航空航天大学材料学院以教育部“空天材料及其服役性能实验室”为依托,开设了“先进结构材料”和“特种功能材料”研究生创新型实验课。该实验室多年来立足于航空航天材料前沿研究,旨在将先进的和学科交叉性强的科研成果高质量地融入到研究生实验教学上,取得了多项重大科研成果。下面以“特种功能材料”的设置为例,从创新型实验课和综合实验课的区别、创新型实验课和研究生毕业论文研究实践的区别、创新型实验课与研究生创新基地三个方面来进行分析。

1. 创新型实验课和综合实验课的区别

创新型实验课和综合实验课在内容上都涉及到培养学生多学科知识综合应用的能力。差别在于综合实验课相对而言内容更为固定,比如“材料电镜分析实验”是侧重于使学生理解各种电子显微分析方法的基本概念和原理,熟悉仪器结构,掌握样品制备方法及实验参数选择,并学会对各种电镜图像及信息进行识别、计算和分析处理等。而创新型实验课是在课程内容、形式和目的上存在更多的创新元素。这类实验是学生在教师的指导下独立自主完成 ,或者在指导教师的研究领域和学科方向上进行有目的有意识的探索研究,其教学目的在于激发学生的创新意识,培养学生的科研兴趣和研究创新能力。培养学生的创新精神和创新能力,关键在于教师是否有创造性的实践活动的经验和体会,如大的创新团队(课题组)和实验室就是培育创新精神的沃土。以“特种功能材料”为例,北京航空航天大学“空天材料及其服役性能实验室” 针对智能机翼、机载设备和航空发动机等的应用,在航空航天特种功能材料上积累了大量研究成果。其科研设备齐全,在“特种功能材料”实验课中设立了相变材料、磁性材料等相对宽的方向,在实验中指导教师演示其中课题组“成熟”材料从设计-制备-功能特性研究的完整的实践过程,然后在大方向内自由选题,运用理论课程中的基础知识,综合设计实验方案和内容,在任课教师的指导下自主探索研究。如果说综合实验课是学生从理论到实践的第一步,那么创新型实验则是学生开展创新科研工作的第一步。

2. 创新型实验课和研究生毕业论文研究实践的区别

这两者同为科研训练。创新型实验课是“常做常新”的实验课,指导教师要不断开发新的实验方法,搭建不同的新架构。学生则应该不断丰富自主实验的新内容,成为填充架构的新单元。从时间尺度上来说,创新型实验课比研究生毕业论文研究短的多,创新型实验课会对科研的过程有完整的体验,为了保障进度,增强协作沟通能力,学生可以自由结合成小项目组,分工共同完成实验内容。实验课的考核以小组答辩的形式,根据选题的创新性、综合性、协作情况等打分。研究生毕业论文研究一般都是学生在其导师的指导下单独完成的。限于不同实验条件、经费保障条件、课题组的创新实践成果积累等的不同,毕业论文研究的创新实践程度会有很大差异,研究生也往往得不到自主选题和自主研究的机会。

3. 创新型实验课与研究生创新基地的区别

两者的教学资源开放程度和范围不同。研究生创新实践基地是一个面向全校开放的,融教学、科研为一体的实践活动平台。研究生创新基地在学科综合性和交叉性上,可以面向更大范围的不同学科、不同年级的研究生,实现教育资源的整体优化。学科的集中交叉得资源能更集中整合,如“复杂产品现代设计与先进制造技术研究生创新基地”和“先进航空航天飞行器创新基地”等开放性的创新实践基地就是如此。目前,“特种功能材料”研究生创新型实验课还是材料学院研究生实验课程体系的一部分,“特种功能材料”与物理、化学、航空、航天、电子、机械等领域有广泛的学科交叉,可以成为培养研究生的综合设计和研究探索创新能力的有效平台。随着教学实践成果的积累、教学改革的深化和实践教学条件建设的增强,材料学院可以向学校申报加入研究生创新基地的实践活动内容,最大限度地为学生提供更多的科技创新实践机会。

三、结语

北京航空航天大学材料学院“特种功能材料”研究生创新型实验课的教学实践才刚刚起步,深厚的科研成果积累和良好实验课程的资源配置,以及是否能高质量地转化到研究生实验教学上,这些都还需要在实践中不断探索。指导教师团队成员如何利用崭新的实验内容引导学生主动参与科研训练,培养学生的创新思维和探索未知的能力,还需要不断创新教学,与时俱进地转变教育思想,更新教育观念,才能真正在教学改革中收到实效。

参考文献:

[1] 郑冬梅,王悦.构建研究生实验教学体系,培养研究生创新能力[J].实验技术与管理,2010,27(5):146-148.

[2] 王悦,冯秀娟.高水平研究生创新实践基地的建设与探索[J].北京航空航天大学学报(社会科学版),2011,24(3):113-115.

篇8

中图分类号:G642.0 文献标识码:A 文章编号:1671-0568(2011)35-0090-02

一、引言

我国传统的通识教育过于强调基础科学理论,弱化专业内容和工程实践,企业普遍反映毕业生缺乏创新精神和创新能力。而西方国家针对这一问题开展了大量的研究实践,成果丰富,其中尤以工程教育模式更为突出。它是以工程项目为载体,以从科研到运行为生命周期,让学生主动参与实践,以课程之间有机联系的方式学习工程。“做中学”是工程教育改革的战略之一,中国教育部于2008年开始组织课题组进行试点。

《功能材料》是一门既有一定的理论基础知识,又与实际应用密切相关的多学科交叉的课程。以教师讲解为主的传统教学方式无法充分调动学生的参与积极性,解决实际问题的能力得不到体现。本文就是根据这一实际需要,适应北京石油化工学院(以下简称“我院”)素质教育,满足培养综合性、创新性、应用型人才的要求,就工程教育模式下《功能材料》课程在教学方法、教学手段等方面的教学实践进行探究。

二、工程教育模式应用到《功能材料》课程的依据

将工程教育模式应用到《功能材料》课程,符合高等院校工程教育培养的目标要求。工程教育模式突破了传统教学模式,通过选取项目创设情景,协作学生学习开展教学,通过完成项目达到意义建构,通过解决问题实现学生对知识的掌握,充分体现我院以研究型和应用型人培养为目标的教育特点。

功能材料作为能源、计算机、通讯、电子等现代科学技术研究的基础,近年来已成为材料科学领域中的研究热点之一。种类繁多、功能各异的新型功能材料正在众多不同领域对科技的进步、社会的发展产生了越来越大的影响。目前根据我院2009版新大纲要求,《功能材料》课程涉及面广、头绪多、内容繁杂、系统性不强,而且课程的理论教学时数相对较少。如果还像以前一样照本宣科,在课堂上根本不能吸引学生的注意力,激发学生的学习兴趣,教学效果不理想。而且,事实也证明,按照传统方式培养出来的毕业生在今后的工作中的应用能力也比较差,不能达到用人单位对人才的要求标准。

三、工程教育模式应用于《功能材料》教学的实践

以真实项目为载体开展项目式教学,能使学生亲身经历产品构思、设计、实现、运作的项目开发生命周期,在与课程紧密联系的项目实践中积极主动地学习专业知识,提高学生对理论知识的应用能力和实践动手能力,增强学生的成就感,充分挖掘学生的创造潜能。

1.构思

根据课程教学内容选取研究项目。课程研究项目是《功能材料》课程学习的一个重要组成部分。通过实施课程研究项目,学生可以深入掌握课程的理论知识体系,提高综合应用已有知识解决问题的能力,更好地培养材料科学与工程专业学生的专业技术能力和综合素质。

2.课程研究项目设计

为了实现项目教学目标,我院设计了《功能材料》课程研究项目指导书,主要内容包括:①项目的题目;②项目组成员;③项目的研究背景及意义;④项目拟开展的主要研究内容;⑤拟采用的主要研究方法或研究工具等;⑥项目主要的日程安排或时间节点;⑦主要参考文献。让学生在完成研究项目指导计划书的过程中掌握项目所包含的理论知识,真正实现“做中学”。

3.任务实现

教师经过简单的理论介绍和导入之后,带领学生实施项目,鼓励学生自己选取感兴趣的项目。把学生分成小组(每组最多3个学生),每一小组选出一个组长,全面负责该组的任务。所有环节任务的实现都靠小组成员的共同努力。

研究项目选取的难易程度,研究内容的多少,都会影响到每组的最终成绩。每个小组要在项目报告中标明每个人在总体工作中的贡献和工作比例,或者每个人负责的内容。

4.成果展示

所有的项目都要按照规定的时间对教师和全体学生进行演示汇报。演示汇报的主要目的是让教师和其他学生了解各组的工作和研究成果。小组的学生都要在台前汇报,汇报前由教师指定主汇报人。每个项目演示汇报时间不超过10分钟,另外有5分钟的提问时间。每个组必须严格控制演示时间,超过时间1分钟以上要扣分。

不同项目的设定有利于满足不同层次学习者的学习需求,便于开展个性化、差异化教学。通过个体和合作的形式进行项目学习和实训,学生不仅能培养自主学习的能力,而且能培养合作、沟通和组织能力。项目完成后的及时反馈,又有利于学生间经验的分享。该模式构建出一个开放性、研究性的学习环境,充分体现了以学生为中心、以学生的全面发展为中心的教育思想。

四、在工程教育模式下教师的角色

将工程教育模式应用到“功能材料”课程,有利于教师教学科研水平的提高。要将工程教育模式应用到课程教学,教师必须结合院校教学实际,以及本校学生的知识层次、结构能力,合理制定教学大纲,优选教学内容,加强教材建设,不断改进教学方法、教学手段,理论结合实践,设计工程项目,体现以能力培养为主的原则。这个过程本身就是一个学习知识、提高理论层次和教学水平的过程,也是工程教育的具体体现。这个过程有利于进行多种资源的有效整合,不仅要求教师具有良好的专业设计经验和教学组织能力,而且利于发挥学生的主体地位和教师的主导地位,培养学生的综合应用能力,能极大地提高教师的业务能力和教学科研水平。

五、结语

《功能材料》课程结合工程教育理念的教学模式,加强学生对课程内容本质性理解,促使学生结合课程主动考虑并构思满足要求的设计,设计的任务紧扣《功能材料》课程的核心内容,并具有丰富的题材和多样的结果。注重培养学生的自学能力、团队协作能力以及系统调控能力。使学生养成主动查找书籍资料的良好习惯,让学生学会关注科技发展,极大地提高学生的系统调控能力。

参考文献:

[1]殷景华等.功能材料概论[M].哈尔滨:哈尔滨工业出版社,2002.

[2]郑昌琼,冉均国.新型无机材料[M].北京:科学出版社,2003.

[3]田莳.功能材料[M].北京:北京航空航天大学出版社,1995.

[4]马如璋.功能材料学导论[M].北京:冶金工业出版社,1999.

[5]李玲,向航.功能材料与纳米技术[M].北京:化学工业出版社,2003.

[6]贡长生,张克立.新型功能材料[M].北京:化学工业出版社,2001.

[7]李俊寿.新材料概论[M].北京:国防工业出版社,2004.

[8]宋英等.《功能陶瓷材料导论》课程教学改革初探[J].中国科教创新导刊,2009,(19).

[9]查建中.论“做中学”战略下的CDIO模式[J].高等工程教育研究,2008,(3).

篇9

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2015)51-0083-02

研究生教育是我国高等教育的重要组成部分,创新能力培养是研究生教育的核心。教育部早在2003年就开始制定实施“研究生教育创新计划”,加强研究生培养体系、课程教学和教材等建设工作,逐步建立有利于培养研究生创新精神、研究能力的机制,提高研究生培养质量[1]。近年来,高校也在深入开展以提高研究生创新能力为核心的研究生教育教学改革。

课程学习是我国研究生培养过程的重要环节。教育部的《关于改进和加强研究生课程建设的意见》,强调要更好地发挥课程学习在研究生培养中的作用,研究生课程体系应以能力培养为核心,以创新能力培养为重点。因此,从培养研究生的创新能力出发,课程教学必须注重研究生创新能力的培养[2]。作为一名研究生课程授课教师,应更新教育观念和教学内容,开展教学方法改革,探索研究生课程教学的新思路[3]。本文基于研究生专业课程《功能材料》的教学实践,分别从教学内容、教学模式及考核方式等方面进行探索。

一、优化教学内容,注重创新能力培养

《功能材料》是材料科学与工程专业研究生的专业必修课之一。《功能材料》内容涵盖面广,多学科交叉融合,包括电子材料、磁性材料、声学材料、光学材料、生物材料及各种功能转换材料。高校材料类本科专业基本上会开设功能材料及相关专业课程,教学内容包括各类功能材料的组成、结构、性能及应用这条主线,但以掌握基本知识、基本理论为教学目标。目前,很多高校开设的研究生《功能材料》课程的教学大纲及教学内容,绝大部分是按照金属功能材料、无机功能材料和功能高分子材料三大类,来讲授各类功能材料的组成、结构、性能及应用等内容,只是应用部分的比重略有增加,这在教学内容上容易与本科教学内容造成重复,缺乏研究生创新能力的培养。因此,优化教学内容,讲授近年来迅速发展的新型功能材料,结合科研成果案例教学,将有助于研究生创新能力的培养。

1.由于本课程的学生是材料专业的硕士研究生,在前期已经学过如《材料科学基础》、《现代材料分析方法》、《材料结构与性能》等专业基础课程,了解和掌握有关功能材料的组成、结构、性能等基本知识。因此,研究生《功能材料》课程的教学内容应将金属功能材料、无机功能材料和功能高分子材料中的经典功能材料与当前研究热点的功能材料相结合,在简要介绍组成、结构、性能方面的基本知识的基础上,重点介绍材料选择与设计、制备技术与功能材料的性能及应用间的相互关系,强调材料的选择、设计和制备技术对功能材料实际应用的重要性。这样,课程教学内容既可引导学生把握功能材料领域的学术研究前沿,提高创新意识,同时也会兼顾功能材料的基本知识的巩固。

2.由于本课程教学课时只有32学时,在教学内容的安排上,针对当前研究热点,结合本校材料专业的研究方向,主要聚焦在新能源材料、环境材料、生物医用材料等,所以重点把新能源材料、环境材料、生物医用材料等专题分别设章进行介绍,将各专题的最新科研成果和最新进展充实到教学内容中,使学生了解科技前沿,激发学生科研创新兴趣。例如,石墨烯,由于独特的高导电、高导热、高强度、轻质等特性,在新能源、环境、生物医学等领域,有重要的应用潜力。此外,功能材料的3D打印,也是目前的研究热点。因此,在讲授石墨烯材料时,结合3D打印技术,对最新发表的关于3D打印石墨烯及器件制备的文献进行介绍,引导学生讨论石墨烯3D打印技术在电池、电容器等储能器件制造上的前景及研究思路,有助于培养学生的科研兴趣和创新能力。

二、融合多元化教学模式,启发创新思维

教学方法和手段的改革,是研究生创新能力培养的关键。良好的教学效果,不仅与教师的讲授技巧有关,更重要的是需要在教学方法和手段上进行多元化融合,激发学生学习兴趣。通过讲授功能材料领域的最新科技前沿,将学生学习功能材料的思维推向应用,把新方法、新技术、新热点、新问题等加入课程教学中,引导学生积极思考和探讨,以启发思维、训练能力。因此,为了有效达到教学目的,本课程将多种教学方法和手段进行融合探索。

1.通过科研与教学的有机结合,培养学生的创新思维和科研能力。本课程的教学团队都是科研第一线的教师,从事功能材料领域的不同研究方向的科研工作。因此,每位教师分别讲授各自擅长领域的教学内容,将各自的最新研究成果作为科研案例,穿插在教学中,丰富教学内容。而且,本校每个学期都设有材料创新讲坛,邀请国内外在功能材料领域的知名学者来校讲座。根据讲座内容,将1~2场材料创新讲座纳入本课程的教学内容,鼓励学生积极交流与讨论。将科研与教学实现有机结合,通过展示教师的科研创新成果,交流如何提出科研创新课题等,不仅会使学生接触到功能材料领域的研究前沿和热点,而且也会激发学生的科研兴趣,引导他们在学习过程中勤于思考,启发科研创新思维,为创新能力和科研能力的培养创造良好氛围。

2.开展以研究热点为主题的课堂讨论。通常,学生对热点问题和最新研究成果比较关注和感兴趣。教师在讲授每个专题时,都要适当引入本专题方向的研究热点和最新研究成果,进行课堂讨论。教师在上一堂课结束时,将讨论主题布置给学生,让学生对讨论主题提前搜寻资料,有所准备,训练学生的自主学习能力。通过专题的课堂讨论,培养学生独立思考、分析问题及交流、表达等能力。

3.培养学生自学能力及文献综述能力。自学能力的培养,对提高学生独立思考和创新能力非常重要。研究生可以通过课程学习、导师指导等环节提高分析、解决问题的能力,但在独立开展科研及学习新知识时,往往需要自学。由于本课程的教学内容安排是在课堂教学过程中,重点讲授材料选择与设计、制备技术与应用的相互关系及最新科研成果,其他关于材料结构和性能等知识需要通过自学完成。此外,类似专题的课堂讨论等教学互动环节,需要学生通过课后进行文献检索和自学文献、资料等来完成。文献综述能力是研究生创新思维和科研能力培养的重要方面。通过文献综述,学生可以全面了解和掌握某个研究领域或研究方向的现状,思考发展趋势,是开展科学研究最为重要的一步。因此,本课程在学期末设置文献综述环节,布置文献综述任务,要求学生通过文献查找、阅读、总结、撰写等完成综述小论文,培养自学与文献综述能力。

4.全英语教学,培养学生外语学术交流能力。目前,教育部积极鼓励教师开展双语和全英语教学活动,培养学生运用外语的能力,提高国际化教学质量[4]。研究生是开展创新研究的主体之一,了解与把握研究领域的发展,需要通过阅读大量外文文献和资料,而且,国际学术交流也是提高科研创新能力的途径之一。

在国内研究生的培养过程中,学生在外语读写方面的训练较多,而听说能力相对较弱。因此,为培养学生的全英语学术交流与表达能力,本课程采用全英语教学。全部制作英语PPT课件,讲授过程中采取预先发给学生课件和外文资料,让学生能够课前预习,熟悉课堂教学内容及生疏的专业词汇,避免学生在课堂上跟不上教师全英语讲授的节奏。但对比较难理解的知识点,适当辅以中文讲解。在课堂提问及课堂讨论环节,鼓励学生采用英语回答和讨论,训练英语表达能力,培养学生的英语学术交流能力。

三、完善课程教学考核方式,引导学生创新能力的培养

本课程比较注重学生创新思维和创新能力的培养,传统的闭卷考核方式显然不适合研究生的培养。为此,课程教学考核方式应将教学过程中的提问、专题讨论等过程性评价与期末文献综述评价相结合,把撰写文献综述、汇报答辩与交流讨论作为考核的重要形式。特别是期末文献综述评价,在教学过程中,列出若干热点问题,由学生自主进行文献检索、阅读资料,撰写综述。期末采用英语多媒体答辩方式对文献综述进行汇报,全面训练文献查阅、归纳总结、文字与口头表达及英语学术交流能力,加强学生的创新能力培养。

忽视课程教学环节中研究生创新意识与创新能力的训练,是导致研究生创新能力不足的一个重要原因。专业课教学是创新人才培养的主渠道之一,对创新能力的培养至关重要。因此,本课程在教学内容、教学模式和教学评价方式等方面进行探索,以引导学生自主学习,加强创新意识和创新能力的培养。同时,提高课程教学质量,教师要不断学习,提高自身创新能力,在科研第一线开展创新科学研究,让科研反哺教学。

参考文献:

[1]张来斌.认清形势,把握关键,大力推进研究生教育改革创新[J].学位与研究生教育,2010,(1):58-60.

篇10

顾名思义,高分子就是相对分子质量很高的分子,它是高分子化合物的简称。高分子化合物,又称聚合物或高聚物,是结构上由重复单元(低分子化合物—单体)连接而成的高相对分子质量化合物。高分子的相对分子质量非常的大,小到几千,大到几百万、上千万的都有。我们有时将相对分子质量较低的高分子化合物叫低聚物。高分子化学作为化学的一个分支,同样也是从事制造和研究分子的科学,但其制造和研究的对象都是大分子,即由若干个原子按一定规律重复地连接成具有成千上万甚至上百万质量的、最大伸直长度可达毫米量级的长链分子,称为高分子、大分子或聚合物。

2.高相对分子质量与高强度

相对分子质量和物质的性质是密切相关的,是决定物质性质的一个重要因素。只有相对分子质量高的化合物才有一定的机械力学性能,才能作为材料使用。例如乙烷、辛烷、廿烷、聚乙烯、超高分子量聚乙烯,都是直链的烷烃化合物,但是分子量变化很大,其机械力学性能因而也有极大的区别。

3.高分子科学的主要内容

既然高分子化学是制造和研究大分子的科学,对大分子的反应和方法的研究,显然是高分子化学最基本的研究内容。高分子科学不仅是研究化学问题,也是一门系统的科学。高分子科学的主要内容有:如何将低分子化合物连

接成高分子化合物,即聚合反应的研究。高分子化合物的结构与性质关系。不同性质的高分子,其结构必然是不同的。为了得到不同性质的高分子,就要去合成具有特殊结构的高分子。

二、高分子材料化学的应用

材料是人类社会文明发展阶段的标志,是人类赖以生存和发展的物质基础。它是指经过某种加工,具有一定结构、组分和性能,并可应用于一定用途的物质。上世纪半导体硅、高集成芯片、高分子材料的出现和广泛应用,把人类由工业社会推向信息和知识经济社会。可以说某一种新材料的问世及其应用,往往会引起人类社会的重大变革,材料是人类文明的重要标志。如果说现在人人离不开高分子材料,家家离不开高分子材料,处处离不开高分子材料,是一点也不过分的。高分子化合物的最主要的应用是以高分子材料的形式出现的,高分子材料包括了塑料、纤维、橡胶三大传统合成材料,另外许多精细化工材料也都是高分子材料。

第一,塑料:一类是通用塑料,如容器、管道、家具、薄膜、鞋底与泡沫塑料等等;另一类叫工程塑料,其强度大,如汽车零部件、保险杠、洗衣机内的滚筒、电器的外壳等。

第二,纤维:人们开发出聚酯、尼龙、腈纶、维尼纶等高分子化合物,通过不同的加工,生产出了各种纤维制品,极大地满足着人类的需要。

第三,橡胶:天然橡胶的种类和品质都受到很大的限制,于是科学家们不断开发出了各种人造橡胶,如丁苯橡胶、丁腈橡胶、乙丙橡胶、氟橡胶、硅橡胶等。

第四,精细化工:比如使得我们的世界变得丰富多彩的各种涂料产品,如家具漆、内外墙乳胶漆、汽车漆、飞机漆等。女孩子用的指甲油,使牙齿变白的增白剂也都是涂料。还有万能胶、建筑用胶、医用胶、结构胶等黏合剂,以及各种吸水树脂等都是高分子产品。

三、高分子化学与高科技的结合

当今社会,人们将能源、信息和材料并列为新科技革命的三大支柱,而材料又是能源和信息发展的物质基础。自从合成有机高分子材料的那一天起,人们始终在不断地研究、开发性能更优异、应用更广泛的新型材料,来满足计算机、光导纤维、激光、生物工程、海洋工程、空间工程和机械工业等尖端技术发展的需要。高分子材料向高性能化、功能化和生物化方向发展,出现了许多产量低、价格高、性能优异的新型高分子材料。

随着生产和科学技术的发展,许多具有特殊功能的高分子材料也不断涌现出来,如分离材料、光电材料、磁性材料、生物医用材料、光敏材料、非线性光学材料等等。功能高分子材料是高分子材料中最活跃的领域,下面简单介绍特种高分子材料:功能高分子是指当有外部刺激时,能通过化学或物理的方法做出相应反应的高分子材料;高性能高分子则是对外力有特别强的抵抗能力的高分子材料。它们都属于特种高分子材料的范畴;特种高分子材料是指带有特殊物理、力学、化学性质和功能的高分子材料,其性能和特征都大大超出了原有通用高分子材料(化学纤维、塑料、橡胶、油漆涂料、粘合剂)的范畴。

第一,力学功能材料:强化功能材料,如超高强材料、高结晶材料等;)弹材料,如热塑性弹性体等。

第二,化学功能材料:分离功能材料,如分离膜、离子交换树脂、高分子络合物等;反应功能材料,如高分子催化剂、高分子试剂;生物功能材料,如固定化酶、生物反应器等。

第三,生物化学功能材料:人工脏器用材料,如人工肾、人工心肺等;高分子药物,如药物活性高分子、缓释性高分子药物、高分子农药等;生物分解材料,如可降解性高分子材料等。

可以预计,在今后很长的历史时期中,特种与功能高分子材料研究将代表了高分子材料发展的主要方向。

四、高分子化学的可持续发展

研究高分子合成材料的环境同化,增加循环使用和再生使用,减少对环境的污染乃至用高分子合成材料治理环境污染,也是21世纪中高分子材料能否得到长足发展的关键问题之一。比如利用植物或微生物进行有实用价值的高分子的合成,在环境友好的水或二氧化碳等化学介质中进行化学合成,探索用前面提到的化学或物理合成的方法合成新概念上的可生物降解高分子,以及用合成高分子来处理污水和毒物,研究合成高分子与生态的相互作用,达到高分子材料与生态环境的和谐等。显然这些都是属于21世纪应当开展的绿色化学过程和材料的研究范畴。

参考文献:

[1]冯新德.展望21世纪的高分子化学与工业[J].科学中国人,1997,(11)

篇11

主管单位:中国航空工业第一集团公司

主办单位:中国航空工业第一集团公司北京航空材料研究院

出版周期:月刊

出版地址:北京市

种:中文

本:大16开

国际刊号:1001-4381

国内刊号:11-1800/TB

邮发代号:

发行范围:国内外统一发行

创刊时间:1956

期刊收录:

CA 化学文摘(美)(2009)

CBST 科学技术文献速报(日)(2009)

EI 工程索引(美)(2009)

中国科学引文数据库(CSCD―2008)

核心期刊:

中文核心期刊(2008)

中文核心期刊(2004)

中文核心期刊(2000)

中文核心期刊(1996)

中文核心期刊(1992)

期刊荣誉:

Caj-cd规范获奖期刊

篇12

关键词: “产学研”结合;毕业设计(论文) ;选题;质量控制

Key words: "Industry-university-institute" combined ;graduation design (paper); topic; quality control

中图分类号:G642.477 文献标识码:A文章编号:1006-4311(2010)20-0165-01

0引言

毕业设计(论文)是高校人才培养的重要环节,对学生的创新精神和实践能力的培养具有重要作用,是检验学生掌握知识程度、分析问题和解决问题基本能力的综合性训练,是理论联系实际的重要体现,在培养大学生探求真理、锻炼学生社会适应能力、增强社会责任感、进行科学研究基本训练、提高综合实践能力与素质等方面,具有不可替代的作用[1]。

1选题体系的建立

根据我院稀土工程专业毕业生就业情况,并考虑到本专业学生的未来就业情况,本校具有的教学优势,合理的设置符合实际的选题,将毕业设计(论文)的选题偏向于能力训练和培养目标,充分体现教学计划中对能力、知识结构的要求,在选题方面要从以下几方面入手:

1.1 根据学生择业方向、特长,考虑充分发挥学生的主观能动性,在四年级上学期末,由学院教学主管部门汇集全院教师申报的毕业设计(论文)题目,初审通过后,下达给每位毕业生,学生依据自己实际兴趣、特长自由选择,下学期始上交所选题目,学院要协调好研究型、设计型、工程应用型、调研综述型四个方向选题比例。

1.2 在满足教学要求的前提下,积极联系签约、实习单位,由单位人力资源部委派中高级职称技术人员结合本单位生产实际,为学生提供毕业设计(论文)题目,边实践边做毕业设计(论文),经过这一特殊的教学模式,实现了毕业生“上手快,动手强”,提高了解决实际问题的能力。

1.3 选题要与科研相结合,该模式是培养学生创造能力的最佳模式。具有科研项目的指导教师,要结合该项目研究内容,为学生提供可行的研究内容,这一模式既能提高教师的综合素质,又能培养学生的创造能力,形成师生的创新意识和能力的良性互动。特别考虑到稀土功能材料开发与应用,与科研相结合能激发学生的创新精神,真正培养学生的科研创造能力。

1.4 难易程度要适当。根据本专业的具体教学要求,题目的难度与工作量应以保证一般学生能在规定时间内完成为宜。同时,对于不同层次的学生,还要有不同的要求,为每位学生提供可行的研究和创新空间,另外,要考虑课题所需的客观条件,包括可查资料库、试验设施和足够的经费等。

2设计(论文)质量控制

毕业生确定题目后,是完成了毕业设计(论文)的第一步,实践证明,在完成毕业设计(论文)的过程中,学院、指导教师和实习、签约单位的过程管理尤为重要。下面针对“产学研”培养模式过程中提出几点措施,希望能对毕业设计(论文)教学有所帮助。

2.1 指导老师的正确定位在毕业设计(论文)过程中指导老师的角色重要而特殊,他对该工作的顺利开展、顺利完成和设计(论文)深度的把握至关重要。在此过程中老师的任务和责任随着设计(论文)的不断开展而变化,指导老师要严格把握每一个环节。在校指导教师每周必须至少一次不定时的进行过程管理。在初始阶段,由于学生是首次进行整体性、综合性的实际开展工作,常常有一个不适应期,在这一阶段老师应着重引导学生制定计划、如何根据任务要求顺利开展设计(论文),如专著选用、文献调研、实验方案等。随着学生对过程逐渐了解和熟悉,老师的作用应转入鼓励学生发挥主观能动性方面,发挥学生的创造力,如对稀土湿法、火法工艺系统设计,稀土功能材料开发等。而到了设计的后期,指导老师要着重把握设计(论文)的进度和质量,防止“临时抱佛脚”。

2.2 毕业设计过程中有效监督和师生互动毕业设计(论文)是在指导老师指导下、学生独立完成设计(论文)的过程,在这一长时间(一般为15周左右)过程中,指导老师如何有效地对设计(论文)有效监督、如何针对过程中出现的问题进行双向交流是关系到设计(论文)成败的关键。根据我们的经验,在学生完成选题后,指导老师和学生一起确定设计的整体安排。每一个阶段,指导老师要密切跟踪,确保完成了上一个阶段的任务,才能进入下一个阶段的任务。在学生开展毕业设计(论文)的过程中,老师都要对学生工作进度进行监督,适当安排和控制学生参加考研复试、招聘会等,保证设计(论文)所需要的时间。

毕业设计(论文)过程是老师、工程师和学生密切联系和交流的过程,与以往的课程学习不同,学生的主观能动性和创造性更能发挥和体现,在这一过程中良好的交流和互动非常重要,特别是在中后期。

2.3 建立公正的评价与考核机制评价和考核是毕业设计(论文)的最后阶段,公正的评价与考核机制是促进学生发挥能动性和创造性的保障,也是对学生劳动成果的认可。毕业设计(论文)的成绩包括平时表现、开题报告、毕业设计(论文)指导手册和审阅教师、答辩和外文翻译几个部分,为避免指导老师一个人决定学生的成绩,还有评阅教师成绩和答辩成绩。

友情链接