时间:2022-05-16 00:31:06
引言:寻求写作上的突破?我们特意为您精选了12篇墩柱施工总结范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
中图分类号U44 文献标识码A 文章编号 1674-6708(2014)108-0085-02
1工程概况
汕头至湛江高速公路揭西大溪至博罗石坝段第8标段起讫里程为K142+000-K151+000,于K146+841处设短链缩短12.938m,线路全长8.987km。线路起点位于五华县华阳镇中心南侧的古塘角村,路线向西经华南村曾岭下、洋飞角、新阳村阳坪岭,再向西经华阳镇坪南村新坑,米潭村万屋场,终点位于紫金县敬梓镇洋高村。全线采用120km/h设计时速的六车道高速公路技术标准,整体式路基路面宽34.5m,车辆设计荷载为公路-Ⅰ级。
为了加强本项目工程建设管理,消除质量通病,确保工程质量和施工安全,根据国务院《建设工程质量管理办法》和交通部颁发的《公路工程质量管理办法》等国家现行法律、法规以及广东省交通运输厅质量管理相关文件精神。并且立足于“预防为主,先试点”的原则,确保我合同段内的墩柱工程质量符合设计要求及技术标准,我标段选定了高楼大桥5#-1墩柱为我标段墩柱的首件开工工程。
2 参加首件墩柱施工主要人员及主要机械
本工程施工专业队伍、施工机械已进入施工现场,人员、机械满足施工需求。
3 墩柱施工过程
1)高楼大桥5-1墩柱首件工程工程于2013年10月15日报批,于2013年10月22日开始施工,钢筋、模板安装前,先对墩柱中心及桩顶高程进行复测并进行找平处理,然后进行墩柱钢筋、模板安装,完成后进行自检,自检合格后报请监理工程师验收,并申请砼浇筑。混泥土浇筑于2013年10月26日完成。
2)施工放样
桩基检测完毕之后,及时清理桩头,对桩顶预留钢筋进行调直,测量班精放墩柱中心点位,并在桩顶面上打点,用红油漆标识。对桩顶混凝土进行凿毛处理,同时保护好已放样出的中心点。
3)支架搭设
在墩柱钢筋、模板安装前,搭设施工支架,提供墩柱施工工作平台。对桩位周边的地面进行清理平整,场地平面平整完后,进行支架的搭设工作。支架搭设采用Φ48*3.5mm钢管扣件脚手架,间距70cm,高度150cm,加设剪刀撑,脚手架的搭设是安全施工重点控制工序,经验算支架稳定性满足施工要求。
4)钢筋制作及安装
钢筋由我标段1#钢筋加工场集中加工,平板车运送至施工点。墩柱纵向钢筋与桩基钢筋连接采用双面焊接,加强箍圈的制作采用双面焊,接头质量要符合设计和规范要求,应避免最大应力处设置接头,,焊缝长度不小于5d,钢筋的焊接接头面积在同焊接长度区段内不大于总面积的50%(焊接区段内是指35d长度范围内),箍筋采用点焊。
确保钢筋安装位置、根数、钢筋型号、连接工艺符合设计和规范要求。每道工序完成后须多次复核及验收,经质检员自检合格后,报现场监理工程师验收,验收合格后方可进入下道工序施工。
钢筋外观表面应洁净,加工前应将钢筋表面漆皮、鳞锈、油渍等清除干净。
安装钢筋时,先确定墩柱中心点位,采用机械、人工配合,将桩基预留钢筋与墩柱钢筋笼纵向钢筋采用双面焊接,通过柱加强筋连接成形。通过吊车调整钢筋笼中心位置。采用吊线锤对墩柱中心进行对中,调整钢筋笼平面位置,焊接保护层定位钢筋头,钢筋头靠近模板一侧须打磨,使其保护层控制在±5mm之内。
钢筋正式焊接时严格按双面搭接焊工艺要求操作,焊工必须持有上岗证,并指定二名焊工负责焊接,按规定频率取样进行接头抗拉性能试验。
5)墩柱模板安装
高楼大桥墩柱模板采用组合钢模板,由专业厂家设计和制作,现场安装。模板主要采用2m高/节的大块模板,配以少量0.5m高、1m高的矮模板用于调节。钢模板的组装采用螺栓连接,可按照施工要求,调节模板高度。为使墩柱模板有足够的刚度,保证墩柱混凝土的外观质量,钢模面板采用6mm厚钢板制作,外壁采用10cm的槽钢加肋。模板使用前须打磨,要求内表面光滑无锈。
5-1墩柱高度为8.450m,采用一次性浇筑,墩柱模板在安装前应由测量班对轴线和墩柱平面位置及标高进行复核,经复核无误后,报现场监理工程师验收,验收合格后方可进行模板安装。
模板安装前应在模板内侧涂一层脱模剂,脱模剂不可混用,以保证墩柱混凝土拆模后表面色泽一致,涂刷时要薄且均匀,避免对混凝土表面的污染。
墩柱模板安装完成后,应保证墩柱的设计尺寸及墩柱的竖向垂直度。为确保模板的竖向稳定性,在钢模外侧拉4根缆风绳将模板固定,以防砼浇筑过程中模板倾斜。墩柱模板与施工脚手架之间应相互独立,以避免在脚手架上人工操作时引起模板局部变形。
6)砼拌合物的控制
(1)混凝土原材料进场的质量控制
挑选生产能力强、质量信誉好、水泥颜泽美观的水泥供应厂家,从而保证水泥质量,对砂、碎石原料进行严格挑选,确保干净、无杂质,砂选用颜色较浅的中砂,含泥量控制在2%以内,同时加强碎石筛分检查,确保良好级配。
(2)严格控制混凝土配合比设计
在中心试验室的具体指导下,由工地试验室按有关技术规范进行计算和试验,完成配合比设计,并在施工过程中经常检查。施工前,拌和站的电子计量装置经过了计量部门的核准和标定,并进行了计量测试(试拌),确保计量精度。拌和前对沙石进行含水量检测,并相应调整配合比。
(3)严格控制混凝土坍落度
混凝土坍落度过大,难以将水分完全排出而产生较多气泡,将坍落度控制在120mm~160mm,在拌合站和浇筑现场均随时进行坍落度检查,不符合要求时,及时优化配合比。
7)混凝土的浇筑与振捣
(1)浇筑前应由质检工程师对支架、模板的稳定性进行检查,模板内应无杂物、积水。
(2)控制混凝土下料方向,使砼堆积在模板中间,避免模板边石子聚集,振捣不足,水泥浆不能很好的包裹石子,造成麻面。
(3)混凝土的振捣采用插入式振捣器振捣,混凝土浇注应连续进行,混凝土振捣依次顺序进行,插入范围不得超过振动范围2/3,同时加强模板周边的振捣,与侧模应保持5cm~10cm的距离,避免漏振。控制浇注分层厚度,保证在30cm一层。振捣遍数为2遍。
(4)插入式振捣器的操作:快插慢拔,并插入下层混凝土10cm,确保上下层混凝土紧密结合;严禁振捣器碰撞钢筋、模板及预埋件;振捣时间为每插点20s左右(混凝土坍落度较小时适当延长),做到不欠振、不过振,对每一振点,必须确保该点混凝土振捣密实。密实的标志是混凝土停止下沉,不再冒出气泡,表面呈现平坦、泛浆;并将混凝土内靠近模板边的气泡振出混凝土外,或引到振动棒周边排出,同时注意不要振动过度,防止混凝土表面出现砂面。振捣器拔出混凝土时速度要慢,保证振动棒周围的空气能够跟随振动棒引出。
8)墩柱模板的拆除
墩柱模板在砼浇筑24小时后拆除,拆模时应防止损坏砼表面及其棱角,卸落支架时应对称均衡有序进行。模板拆除过程中,不能猛烈敲打和强扭,拆模时严禁随意抛掷,模板下落时设置缓冲支垫防止模板碰撞变形。模板拆除下来后,要维修整理,分类妥善存放,模板清洗以及涂刷隔离剂,以备重复利用。
9)混凝土养生
墩柱的养生采用塑料薄膜覆盖,水桶滴水养护,确保砼面经常处于湿润状态,墩柱砼拆模后的养生时间不少于7天。使混凝土在拆模之后保持连续湿润,避免形成干湿循环。
4 分析及结论
通过对高楼大桥5-1墩柱首件工程的施工过程来看,我标段所采用的墩柱施工工艺满足施工的要求。
我部根据《公路工程质量检验评定标准》进行检测,检测结果显示,高楼大桥5#-1墩柱的混凝土28天抗压强度39.1MPa,设计30. MPa,符合设计要求,合格率为100%;模板接缝平整、严密,支撑系统稳定、牢固,符合设计及规范要求;结构尺寸正确,混凝土面平顺、颜色基本一致,符合设计及规范要求。
通过高楼大桥5-1墩柱首件工程施工,加深了全体参建人员对桥梁墩柱施工工艺的理解,增强了其质量意识。同时在施工过程中也存在一些问题,针对问题我们通过讨论,提出了改进措施。在后续桥梁墩柱施工中我们将发扬首件工程中的优点,不断改进和优化施工方案,杜绝在首件工程中的问题再次发生。
同时通过对高楼大桥5-1墩柱混凝土成品进行检测,其各项指标符合设计及《公路桥涵施工技术规范》的各项规定及《公路工程质量检验评定标准》的要求。能够指导后续施工。
参考文献
[1]汕湛高速揭博项目T8标两阶段施工图设计.
[2]广东省高速公路施工标准化管理文件.
[3]《公路桥涵施工技术规范》(JTG/T F50-2011).
Abstract: introduces ZhuHai, Guangdong LNG a dock project pier construction technology and technical measures, focusing on the template of the large volume pier construction program.Keywords: large volume pier; Anti-hanging system; side mold
中图分类号:TU7文献标识码:A文章编号:2095-2104(2012)
1 工程概况
广东珠海LNG一期工程码头工程共有3个大体积钢管桩支承墩台,4个靠船墩,8个系缆墩及4个钢栈桥支墩。墩台为现浇C40钢筋混凝土结构,钢管桩伸入墩台1倍钢管桩桩径,钢筋在钢管桩处断开与焊接在钢管桩上的钢套环焊接。墩台的尺寸及桩间距如表1所示。
表1 上部现浇墩台及横梁情况一览表
2 施工工艺
2.1墩台底模设计与安装
2.1.1底模设计
本工程墩台桩间距大, 墩台相对施工水位高差大,给施工带来极大难度, 因此考虑墩台分二层浇注, 第一层为80cm, 第二层为120cm。根据混凝土分层厚度, 进行受力计算选用底模系统所用材料, 底模系统计算主要包括以下两点:
①. 选定施工方案
采用反吊系统在钢管桩上搁置横担用拉杆反吊底模。
②. 受力计算
底模系统计算步骤:
混凝土浇筑分层验算主梁强度及刚度、稳定性计算(主梁上的主要荷载有:底模自重、钢筋重量、第一层混凝土重量、倾倒及振捣混凝土产生的垂直力、施工人员及施工机械荷载和侧模板重量)次梁计算扁担梁及吊杆受力计算
经过计算。反吊底模系统材料选用如下:
主梁:双拼Ι40a工字钢(两型钢之间的拼缝根据所选吊底螺栓的大小确定)。
次梁:Ι22a工字钢,间距40cm。
横担:双拼Ι30c工字钢。
2.1.2底模制作与安装
在桩顶挂吊篮作为操作平台,横担梁摆放到位后,用Φ16圆钢 “U”型卡卡住横担梁,并与桩内壁焊接固定,防止一侧主梁固定后横担梁倾斜。用Φ32mm精轧螺纹钢作为吊底螺栓。垫片采用200×200×18mmQ345钢板,每根吊筋两端锁精轧螺纹钢专用螺帽。吊底螺栓外套Φ100mmPVC管(一方面可以将螺栓周转使用,另一方面可以作为拆底预留孔)。
图1 底模反吊系统示意图
图2 桩顶横担梁加固图
主梁采用双拼Ι40a工字钢,缀板为240×120×10mm钢板,间距2m。主梁需要连接时同一根主梁连接处严禁在同一断面。主梁拼缝需坡口满焊,然后双面采用连接板焊接。
图3 主梁连接示意图
吊安主梁时,先将主梁首尾两端吊挂在扁担梁上,安装完两端吊底螺栓后拆除吊挂钢丝绳,测量配合,施工人员用手扳葫芦调整主梁,然后补齐中间吊底螺栓。由于桩基存在平面扭角,与主梁之间不可能紧贴,因此基桩与主梁之间用木楔子垫实。
次梁摆放时应避开主梁缀板,避免次梁高低不平。次梁的长度应根据主梁排架间的跨度选择,保证次梁端部均搁置在主梁上。次梁与主梁点焊连接,点焊时同一根次梁均点焊同一侧下边缘,以利于次梁拆除。
铺底楞为80×80mm方木格栅,用14#铅丝与次梁捆绑固定。上铺钉20mm厚竹胶板,作为底模。
底模与桩、竹胶板之间拼接应紧密,用三层板铺钉在缝隙处。底板四周沿模板边线钉三角木条,三角条下压海绵条止浆,侧面钉Φ25mm塑料软管止浆。
图4 底模四周止浆示意图
底模安装完成后进行标高复测, 对偏差超出允许范围进行调整, 并对底模系统进行检查, 确保底模安全可靠。
2.2侧模设计与安装
2.2.1侧模结构形式
侧模是保证混凝土外观质量的关键,既要满足强度、钢度和平整度,还应便于吊装、拼组重复使用,因此,侧模采用轻型钢模板。
根据墩台结构尺寸确定单片模板尺寸,面板采用5mm 冷轧板,[8@600mm 作为横向加劲肋,∠50×50×5@300mm 作为纵向加劲肋,外侧间距@1000mm 设纵向[8背带。
2.2.2侧模安装
墩台混凝土采用模板一次支立分层浇筑的工艺,根据分层的厚度在模板上焊接限高铁三角,侧模底口利用同一根底层钢筋两端各焊接螺栓对拉固定,且在钢管桩周围的对拉螺栓应与钢管桩焊接牢固,上口与就近钢桩对拉,模板边安装边对正找直,单片模板正位后,内侧用拉杆将模板竖背带与钢桩顶焊接牢固,防止浇筑过程中模板外倾。
图5 侧模板加固示意图
浇筑完第一层混凝土后,即拆除底模,侧模板靠与混凝土之间的磨擦力固定于墩台上,拆底模前必须将侧模底口螺栓重新拧紧。
2.3大墩台钢筋笼安装
墩台的钢筋布置由纵横向整体钢筋箍和侧壁水平箍组成。安装后形成底板双向筋、面层双向筋、侧壁竖向筋和侧壁水平筋。
墩台钢筋分两次绑扎,顺序如下:
底板下层钢筋和错开一定高度的侧壁钢筋底板上层钢筋和错开一定高度的侧壁钢筋桩顶加强筋按混凝土分层高度安装侧壁水平钢筋顶板下层钢筋和对接侧壁钢筋顶板上层钢筋和对接侧壁钢筋安装上部侧壁水平钢筋
2.4混凝土施工缝处理
分层混凝土顶面在混凝土初凝后,采用压力大于2.5mpa高压冲洗泵冲刷混凝土表面,冲开上部浮浆,以露出1/3碎石面为宜。下一次混凝土浇筑前均匀铺同强度水泥砂浆以加强新老混凝土的结合。
2.5墩台底模拆除
底层混凝土浇筑完毕,待强度达到设计强度100%时方可开始底模板拆除。
2.5.1 用钢丝绳一端套入主梁下横担Φ36圆钢(底模支立时钢丝绳一端套入横担圆钢后,将圆钢与主梁底部点焊,另一端通过Φ100mm预留孔外露在外),另一端通过手拉葫芦挂在墩台顶面预埋Φ25拉环上,随后手拉葫芦将钢主梁拉紧。同样方法将每组所有主梁均在基桩处用2个手拉葫芦拉紧。
图6 钢丝绳吊底处详图
预埋拉环随主梁布置,埋入方向与拉索方向基本一致。
2.5.2 专人统一指挥,多人同时缓慢松动手拉葫芦,让底模在重力作用下缓慢平稳下放,下放前在钢丝绳侧混凝土面上做好标尺,确保下放步调一致,当底模下降到距离墩台底1.5m时停止下放同时固定好手拉葫芦。底模下放过程中,下面严禁有任何作业人员或工作船通过。
图7 拆底示意图
2.5.3 工作人员进入下放的底模,底板打捆利用吊机从边缘起吊。用撬棍将次梁上的焊点松动,然后将次梁捆牢由吊机带劲顺底木模滑至墩台边缘,方驳吊机吊起放在运输方驳上。
2.5.4 施工人员将主梁一端连接吊具,由吊机带劲后,工作人员将自制自动脱钩一端与吊底钢丝绳相连,另一端通过钢丝绳与手拉葫芦相连,手拉葫芦挂在预埋拆底拉环上,待此手拉葫芦带劲后,松开原吊底手拉葫芦和钢丝绳。施工人员用小锤将自动脱钩打开,主梁即可落入水中。方驳吊机后移吊起放在运输方驳上。
图8自制自动脱钩图
图9 自动脱钩安装图
3 几点体会
3.1 侧模采用大片钢模板,钢度大,拼组方便,对保证混凝土外观质量起到了很好的作用,同时利用侧模与混凝土之间的摩擦力来支承侧模自重保证后续混凝土浇筑,取得了成功。在选择侧模底口螺栓时除了满足混凝土浇筑过程中侧压力的要求外还应该满足:N模板<αμnT
式中:N模板———单片模板自重;
α———安全系数;
μ———钢与混凝土之间的磨擦系数;
n———单片侧模板底口螺栓个数;
T———单个底口螺栓设计拉力。
3.2 吊底螺栓选用精轧螺纹钢较普通螺栓重量降低,方便安装。
3.3吊底螺栓外套ф100mm 塑料管,浇筑完第一层混凝土即拆除底模,吊底螺栓、吊架、底模均可重复使用,提高了施工材料的周转效率,降低了施工成本。
3.4用手拉葫芦下放底模的施工工艺,既降低了施工材料的损耗,又保证了拆底的安全。
3.5本工程墩台施工投入方驳吊机2艘,运输船2艘,模板配置时充分考虑各墩台的周转使用,减少模板修改量,墩台施工均如期完工。
通过对高桩码头墩台结构几个主要施工控制点的分析论证,并采取了相应的施工技术措施,为类似的工程施工提供参考借鉴。在广东珠海LNG码头墩台的实际施工中,达到了安全、经济、高效、适用的效果,取得了较好的经济效益。
1、高墩柱桥梁滑模施工前的准备工作
(1)施工人员是高墩柱桥梁的主要施工方,施工前,工区应对其进行认真的技术交接,将施工的整个预期操作过程告知施工人员,使施工人员对竖直度的控制及观测有详细的了解,对每个施工环节都应切实掌握。最后由施工人员根据相关技术规范编制科学、合理的施工方案,并交给监理进行审批;
(2)机械设备及原材料的要准备充分。砂、碎石、水泥和钢筋等原材料的选取要符合质量检测标准,进入现场后还要进行相关的检验,合格后方可用于施工建设。大桥2号和3号墩进行施工时要进行如下机械装备:2套模板,2台砼运输罐车,5个振捣棒,1筋机,2台钢筋切割机,电焊机4台及1台塔吊;
(3)施工前要对桥梁墩柱的试验配合比、测量放样和相关施工工作的准备情况做详细地检查和测试。
2、桥梁高墩柱滑模施工时的技术控制措施
(1)滑模施工中要对钢筋的绑扎和加工进行技术控制。施工中对钢筋的下料要根据相关的图纸设计,桥梁混凝土浇筑平行作业及钢筋的安装在很大程度上影响到了滑模的质量,所以滑模施工过程中,应对钢筋的安装进行严格的跟班质量测试,测试模式应按照隐蔽施工工程进行,合格后方可验收。滑模技术具有很高的要求,出现问题后不易修复,因此施工中应设置专人对钢筋的连接质量、间距、保护层及规格型号进行定期的检查,以便及时对可能出现的问题进行修复,从而保证钢筋的安装施工符合相关规范和质量要求;
(2)滑模施工中要对模板的安装进行技术控制。模板安装是钢筋绑扎完成后的第二道工序,模板的安装质量对滑模的施工质量具有很大的影响,拼装前,应先采用相应工具将模板表面进行磨光处理,待清除干净后,方可添加脱模剂;模板的安装要达到一定的技术标准,模板的垂直度、各部分尺寸、水平标高以及轴线位置都要经过严格的检查;拼装过程中要对模板的接缝进行控制,接缝过大会影响后续的施工操作,由经验得知,应控制模板接缝小于1毫米;
(3)滑模施工中要对混凝土的分层和振捣进行技术控制。确保桥梁混凝土的浇筑质量关键要保证混凝土的分层和振捣操作质量。桥梁滑模施工时,应对混凝土按照分层形式进行均匀浇筑,确保混凝土的各层面都保持水平,浇筑时应对浇筑方向进行定期变换,并严格控制混凝土分层厚度。对2号及3号桥梁高墩柱进行滑模施工时,应控制其混凝土分层厚度保持在250毫米左右。最后应严格根据相关操作规范和施工技术要求对滑模混凝土进行振捣,并对振捣过程进行严密监控,以保证桥梁混凝土的浇筑质量;
(4)滑模施工中要对滑模的垂直度、水平度及中心线进行技术控制。施工中对滑模的垂直度控制措施:悬挂垂直线于工程关键部位,设置专业的测量人员对其垂直度进行定期观测,通常以每天2次为宜,以保证滑模垂直度符合相关设计规范;施工中对滑模的水平控制措施:千斤顶具有同步器结构,施工中可采用此结构对滑模的水平度进行控制,并用水准管对其进行严格测量,以便检查滑模的水平度是否符合设计要求;施工中对滑模的中线控制措施:悬挂垂线于工程的关键部位,施工中根据垂线位置对滑模进行中线控制,并对模板的边线进行严格的测量和监控,通常以每天2次为宜,及时处理监控中出现的问题,确保工程中心线垂直,不发生倾斜或偏离。
(5)滑模施工中要对混凝土的表面进行休整和养护。施工中混凝土的凝结时间不是固定的,它要受到外加剂及周围环境气温的影响,因此滑模施工中,很难找到滑升速度和混凝土凝结时间的最优结合点。因此应对混凝土的表面施工质量进行严格控制,施工中要根据相关操作规范和施工技术要求对混凝土模板棱角部位进行合理地休整。桥梁高墩柱的截面高度较高,面积较大,砼的质量很难单纯依靠洒水覆盖养生来保证,针对这种情况,可采用对墩柱进行均匀喷洒养护剂的方式来进行养护,墩柱是由滑模施工完成的,均匀喷洒养护剂既能保证混凝土表面不被养护水冲走,又能确保砼的内在施工质量。
3、桥梁高墩柱滑模施工中的技术控制体会
(1)充分做好桥梁高墩柱滑模施工的准备工作,对施工方案的可行性、机械组合方式以及人员配置要进行严格的检验和审核;
(2)钢筋的制作及安装都要进行严密的监控,钢筋的下料要根据图纸的技术要求,严格控制其加工质量;严格控制施工中钢筋保护层的施工厚度,施工中要对其进行适时的定位监测;
(3)施工中要注重对模板进行定期检查,尤其是对模板接缝的检查,尽量避免模板出现漏浆和错台现象,严格控制模板的安装和拼接,以确保砼的外观施工质量;
(4)加强对工程整体垂直度的检查,桥梁高墩柱施工工程一旦出现质量问题,后果不宜处理,因此测量人员应对高墩柱的整个施工过程进行跟踪测量,对出现的问题能够进行及时处理;
(5)对砼的施工管理工作及施工工艺要加强控制,不要随意更改塌落度、施工配合比、质地、品种及材料规格等技术的控制标准;
(6)桥梁高墩柱滑模施工中要高度重视施工安全管理工作,施工对塔吊等高空作业机械要进行定期检修,高空作业人员应佩带必要的安全防护设施,确保施工安全。只有保证了施工安全,才能保证整个施工工程的顺利进行。
总结:
随着桥梁事业的飞速发展,滑模施工工艺在高墩柱施工过程中也得到了广泛应用,滑模施工技术的应用大大提升了桥梁结构的质量,但由于设计及设备上的原因,其工程运用还存在一些缺陷,这就容易导致桥梁质量得不到有效保证。本文简要提出了几点高墩柱滑模施工的技术控制措施,并总结出了几点施工体会,桥梁高墩柱滑模施工中,要严格按照相关技术规范进行操作,才能确保桥梁质量。
一、城际轨道交通工程实例简介
广东珠三角城际轨道交通工程桥梁段的墩柱大部分采用单墩,墩柱以流线”Y”型独立墩为主,分为矩形墩,圆端墩,圆墩三种形式,每种墩均有4米高的“Y”型墩帽;跨越道路地段采用框架墩,以保障道路畅通;矩形单墩,按照墩高分为三种型式:A1、A2、A3,A1型墩墩柱立柱矩形截面为1.8m×3m,墩帽顶截面为2.4m×5.4m,曲线型变化,正面形成“Y”型墩柱。A2型墩墩柱立柱矩形截面为2.4m×3m,墩帽顶截面为2.4m×5.4m,曲线行变化,适用于墩高大于8米,不大于12米的桥墩; A3型墩墩柱立柱矩形截面为3m×3.8m,墩帽顶截面为3m×5.4m,曲线行变化。圆端墩只有一种形式B1,用于标段内过河流段桥墩,墩柱截面形式为2.4m×5.4m,圆端半径1.2m,墩帽顶部截面2.4m×8.7m,圆端半径1.2m。框架墩型为两截面形式为2.2m×2.5m的直壁方墩,上架横梁。
二、“Y”型墩柱设计情况
“Y”型墩柱在高架区间设计最为常见;横桥向直线段宽一般大于2.2m,墩顶即”Y”字最顶宽度一般大于2.8m;顺桥向直线段宽一般大于4m,墩顶即”Y”字最顶宽度一般大于6m;墩柱钢筋保护层一般设计为3.5cm。
三、“Y”型墩柱施工工艺
1. 墩柱施工工艺
在承台施工时,首先测量放样,定位、安装墩柱直线段预埋筋,预埋筋的安装位置与墩柱直线段主筋钢筋位置对应一致,纵横中心轴线也必须与墩柱纵横中心轴线相互对应一致。承台施工完成,墩柱根部范围凿毛,清除灰尘和混凝土浮浆。然后搭设配合墩柱施工的辅助脚手架,绑扎墩柱钢筋骨架和墩帽“Y”型钢筋,安装保护层垫块,安装预埋件,安装模板,浇筑混凝土,混凝土养护。
2.工艺流程图
3.墩台施工容许误差
四、导致墩柱钢筋骨架偏心的主要因素
1.墩柱预埋筋定位控制措施不当,钢筋固定不牢固,在承台浇筑、振捣混凝土时,预埋筋发生移位,连接后续墩柱钢筋骨架出现偏心。
2.墩柱较高,墩柱钢筋骨架竖向主筋垂直度控制难度大,尤其是竖向钢筋接长焊接的位置。
3.“Y”型墩柱墩帽钢筋骨架向外分散,大头朝上,变截面段即顶部钢筋重量占整个钢筋骨架的比重较大,如果墩柱直线段钢筋垂直度控制不好,或钢筋骨架绑扎期间对称两侧受力不均,就会造成整个钢筋骨架偏心,严重时甚至会使钢筋骨架倾斜或倾倒。
五、“Y”型墩柱钢筋骨架偏心控制措施
针对以上分析“Y”型墩柱钢筋骨架产生偏心的原因,制定切实可行、合理有效的控制措施。
1.防止墩柱预埋筋偏心控制
为避免承台混凝土浇筑时使墩柱预埋筋移位或变形,施工时可根据墩柱直线段的主筋设计加工一套闭合的钢构箍圈,每套箍圈可分为内套箍圈和外套箍圈,外套箍圈设计半径和边长等于墩柱平面边缘线减去保护层厚度,内套箍圈半径和边长等于外套箍圈内径减掉墩柱直线段主筋直径或减掉主筋直径+5mm。承台混凝土浇筑前,用内外箍圈将墩柱预埋筋套在中间固定,同时采用钢管配合可调动的顶托,将箍圈的四个边固定支撑与承台钢模板连接在一起,可避免墩柱预埋筋在承台混凝土浇筑振捣过程发生偏心和移位。
2.钢筋骨架垂直度的控制
一般来讲,从两方面进行控制钢筋骨架的垂直度,一是墩身预埋筋定位准确,提供测量放线,精确定位预埋钢筋位置,并且固定牢固,保证在浇筑混凝土时不发生移位。二是在安装上部钢筋时使上下连接筋位于同一条轴线上,这就需要对钢筋搭接部分进行预弯,确保在进行搭接时钢筋同轴,同时做好上部钢筋固定措施,不至于造成搭接后的钢筋骨架发生偏移或倾斜,常规做法是在墩身钢筋骨架范围内搭设支撑脚手架,起到稳定作用。
3.墩柱钢筋骨架整体偏心控制措施
利用辅助施工脚手架增加钢管横撑,固定整体钢筋骨架。采用该方法,首先要保证辅助施工的脚手架的稳定。脚手架按双排搭设,一般按排距0.6m,立杆间距0.9m,横杆间距1.2m搭设成一个围绕墩柱的矩形框架,四面增加剪刀撑增强脚手架的整体性,落地杆落在承台顶面,增大脚手架的受力面积,增强脚手架的整体稳定性。对于较高墩柱,为增强脚手架的稳定性,还可在脚手架的外侧四侧增加缆风绳。脚手架搭设好后,在绑扎墩柱钢筋过程,逐步增加固定横撑,固定墩柱钢筋骨架。墩柱钢筋直线段绑扎高出承台顶面3米时,在3米位置增加一圈钢管横撑,形成“井”字形固定框架,将墩柱钢筋进行固定,钢管横撑与脚手架相连。如此操作,在直线段由承台顶面往上,每隔3米增加一圈钢管横撑。钢筋骨架绑扎完毕,绑扎钢筋保护层垫块,进行模板安装,模板由墩柱底部往顶部一节一节安装,安装过程,遇固定横撑影响模板安装时,拆除影响模板安装的横撑,其它横撑不动。如此往复,逐节安装模板,逐圈拆除固定横撑,切不可在安装模板时一次性拆除固定横撑,一次性拆除横撑后,安装模板时,钢筋骨架如遇碰撞,就会发生偏斜甚至倾倒。
六、总结
在”Y”型墩柱施工质量控制方面,钢筋骨架偏心最难控制。钢筋骨架偏心导致墩柱钢筋一侧露筋而对应另一侧保护层过厚,更甚至一旦偏心超标导致模板安装困难等,如不采取合理控制措施,仅靠保护层垫块调整,在面对钢筋密度大、吨位大的钢筋骨架上,垫块起不到明显的效果。所以通过学习和总结,制定了以上的控制措施,用于施工现场,能够较好的实现控制目标,避免了钢筋骨架偏心问题,确保了整个墩身钢筋骨架的混凝土保护层,试验后采用超声波检测保护层证明了上述措施的科学性和可行性,能有效的避免骨架偏心导致后续隐患。同时对钢筋骨架倾斜和倾倒也起到了有效的控制,避免了施工过程中因钢筋骨架倾斜、倾倒引发的安全事故。
关键词: 盖梁;施工;支架
Key words: bent cap;construction;scaffold
中图分类号:U445 文献标识码:A 文章编号:1006-4311(2013)12-0115-03
0 引言
公路桥梁盖梁根据墩柱数量可分为独柱盖梁、多柱盖梁,根据墩柱断面形状可分为圆形柱盖梁、矩形柱盖梁;盖梁施工托架可分为落地支架式、托架式两种。工程施工时根据具体墩柱特点、盖梁特点确定适合的盖梁施工方案,既要保证盖梁施工的安全、还要便于施工。笔者施工过的曹娥江大闸闸前大桥引桥盖梁和宁棋高速第七合同段何家坟大桥盖梁、潜溪河大桥盖梁类型丰富,盖梁施工方案多达四种,本文将对具体方案进行分析、比较。
1 工程概况
1.1 曹娥江桥盖梁概况 曹娥江大闸闸前大桥引桥13#墩至26#墩为一联13孔50m先简支后连续T梁桥,下部采用矩形独柱墩,墩顶设预应力盖梁;盖梁长20.94m(两端各悬臂7.47m),厚3.8m,高3.7m,盖梁总重465T;墩柱宽6m,厚1.5m,高6.5m至16.5m不等;13#墩至19#墩位于陆域范围,20#墩至26#墩位于潮汐到达范围。盖梁构造图见图1曹娥江大桥盖梁构造图。
1.2 宁棋高速公路何家坟大桥盖梁概况 何家坟大桥为9*20m空心板简支梁桥,下部结构采用直径1.4m双柱墩,墩顶设盖梁;盖梁长11.6m,高1.3m,厚1.5m,盖梁总重54T;墩柱直径1.4m,墩柱间距6.8m;墩位均位于陆域。盖梁构造图见图2何家坟大桥盖梁构造图。
1.3 宁棋高速公路潜溪河大桥盖梁概况 潜溪河大桥为30m(40m)先简支后连续箱梁桥,下部结构为直径2.6m、3.0m、3.4m独柱薄壁空心墩,墩顶设预应力盖梁;盖梁长11.1m,盖梁厚2.2m,盖梁高度有2.0m、2.2m、2.4m三种;盖梁总重202T(以2.4m高计);墩柱直径有2.6m、3.0m、3.4m三种,为独柱空心墩,壁厚0.5m,墩高23m至42m,全桥该类型盖梁合计64个,墩位沿河道布置(潜溪河水深在0.5至1m之间)。盖梁构造图见图3潜溪河大桥盖梁构造图。
2 盖梁施工方案的选用
2.1 曹娥江大桥盖梁施工方案 曹娥江大桥盖梁两侧悬臂长、自重大,盖梁施工是该项目施工中的高安全危险源之一。
陆域的13#墩至19#墩盖梁,由于墩身较低,采用了满堂支架法施工盖梁。钢管纵向、横向布置间距均为45cm,操作平台按90cm间距布置,具体钢管脚手支架法施工盖梁在此不再赘述。
20#墩至26#墩不仅墩身高度较高,而且位于水中,无法采用满堂支架法施工。公司设计事务所、工程管理部和项目部经过讨论形成了两种方案:方案一、墩柱中设置预埋件,利用预埋件安装牛腿拼装盖梁施工托架;方案二、直接在承台上拼装钢管柱,钢管柱顶为带斜撑和对拉精轧螺纹钢的三角架。经过比选:方案二因不需设置预埋件、不需要现场焊接、支架倒用拆装方便而且现场有可利用型钢和管桩等优势而被采纳。方案二支架具体布置图和实际施工照片如图4盖梁施工支架立面布置图[1]、图5盖梁支架照片。
2.2 宁棋高速公路盖梁施工方案 宁棋高速公路盖梁主要是双柱墩墩顶盖梁和独柱墩墩顶盖梁两种形式。
2.2.1 双柱墩盖梁 双柱墩盖梁大多采用钢棒法或抱箍法进行施工,前者利用穿在墩柱预留孔洞内钢棒的抗剪力将盖梁施工荷载传递给墩柱,后者利用抱箍与墩柱间的摩擦力将盖梁施工荷载传递给墩柱。两种施工方案都较为常见,方案编制时主要控制钢棒计算、抱箍和螺栓计算以及分配梁的计算;何家坟大桥盖梁采用抱箍法施工,本文在此不再赘述。
2.2.2 独柱墩盖梁 独柱墩盖梁数量多,墩柱高,是潜溪河大桥的重点分项工程,也是高安全风险源之一。
参考临近相似工程,结合项目特点,笔者提出了利用上、下两个抱箍做为盖梁支架的支撑点,将盖梁施工荷载传递到墩柱上的盖梁施工方案。经过方案细化和受力简算,最终确定该方案可行。为便于倒用和安拆,支架在详细设计时各杆件间均为螺栓连接或销接;同时为减轻支架重量和保证受力安全,斜撑采用了矩形钢管。
独柱墩双抱箍法盖梁支架布置图[2]及盖梁支架照片如下(以墩柱直径为3.0m的独柱墩盖梁为例):
3 盖梁支架方案比较、分析
本文中涉及到4种盖梁支架方案:满堂支架式、方柱墩的钢管柱对拉式、双柱墩的抱箍式和独柱墩的双抱箍式。
曹娥江大桥盖梁荷载大,墩柱又是薄壁矩形墩,陆域施工的选择余地大,潮汐范围内施工则只能利用承台支承或墩柱预埋件支承,曹娥江大桥盖梁支架则充分利用现场已有钢结构旧料情况,在工厂加工成便于安拆的杆件,即节省了一次性资金投入又减少了支架安装质量的人为因素影响,整套支架(含16.5m管桩)重39T,相对于普通支架方案节省了大量时间。同时支架在三角撑的顶部和底部均设置了精轧螺纹钢对拉筋,通过预加150KN(每根)的力有效地解决了长悬臂对单根管桩的弯矩作用,保证了盖梁施工荷载全部竖向传递给钢管柱。由于是利用旧料加工,盖梁支架杆件截面偏大,分配梁弯曲应力及斜撑杆压应力(已考虑稳定系数)均控制在120MPa以内;盖梁支架设计有优化空间。诚然,如果该类型盖梁的墩柱较高,该方式则不显经济,可以在墩柱内埋设可以用于拼装盖梁支架的预埋件来进行施工;如果承台顶面一直位于水面以下,影响了钢管立柱的安装,也是不能采用该方式的。
潜溪河大桥盖梁施工方案受制于墩柱高度和断面形式,可选择的方案很少,本文采取的方案结构设计轻巧(一套支架重10T),倒用、安拆方便,保证了潜溪河大桥盖梁分项工程顺利按计划结束,是今后圆形独柱高墩盖梁的最佳施工施工方案。但该方案对抱箍设计、加工和安装要求高,建议后续施工时可采用千斤顶检验其城寨能力、并在下层抱箍下增加一个保险抱箍以保证结构安全;同时在抱箍安装时对螺栓的上满拧紧检查要执行严格的检查制度。该类型盖梁墩柱高度若较小,则也可采用成熟的支架法施工。
根据以上分析,将各盖梁支架方案适用情况进行了分类汇总,详见表1(适用√,不适用w)。
4 结束语
盖梁施工是公路工程项目的常规施工项目,但在高墩施工中往往容易成为控制上部结构施工的卡脖子工程,而预埋件方式形成的预埋件坑又会严重影响到墩柱外观,所以希望本文重点论述的抱箍式和管柱对拉式两种盖梁支架施工方案能对今后类似盖梁工程施工有所指导和借鉴。
参考文献:
论文摘要:
本文结合房山五渡桥工程大角度空心薄壁V型墩施工,系统介绍了异型结构墩柱采用自主研发的钢框架进行模板设计的思路和特点。
房山五渡桥主桥为三角刚架悬吊连续梁桥,其主桥主墩采用带水平刚性系梁的V型墩,呈“”。针对该种异型结构墩柱,我们提出采用钢框架组合模板的模板设计方案。
如何合理的利用钢框架组拼成墩柱外形,并保证墩柱外观质量,是模板设计需要解决的关键问题。根据对墩柱结构和钢框架模板特点的分析,提出用钢框架组成矩形闭合框架,将转角设计为内置木桁架模板的方法形成墩身。然后将每面模板进行切割划分,划分为标准板和异形板。虽然四个支点墩外形尺寸不一,但标准钢框架能周转使用,因此仅需要订制四套异形板,避免制作四套钢模板的费用。将以上关键问题解决后,编制模板实施具体方案。
该模板方案在五渡桥工程主墩施工中应用获得成功,最后总结出该法施工的特点,指出其优势与不足。采用钢框架组合模板成形墩柱的方法,技术先进,操作简单、节能环保,节约资源,易于推广。
随着社会发展,科学技术进步,桥梁建设事业也在飞速前进,桥梁设计在满足功能要求的情况下,出现了更为多样的景观设计理念,墩柱作为桥梁不可缺少重要部件,加上其显著位置成了很多桥梁设计师琢磨的焦点,墩柱结构形式的多样,促使施工工艺同样要开拓创新,本文结合房山五渡桥工程大角度空心薄壁V型墩施工,向大家介绍采用钢框架组合模板进行异型结构墩柱模板设计的思路和特点。
1工程概况
房山五渡桥工程位于房山区十渡镇涞宝路西关上,跨越拒马河。工程起点桩号K0+000,终点桩号K0+550,全长550米。主桥设计新颖、外形美观,为三角刚架悬吊连续梁桥,是一种新型的组合结构体系,该桥型在国内外尚属首例,见图1和图2。
主墩全桥合计2座,采用带水平刚性系梁的V型墩,呈“”。墩身为变截面空心薄壁钢筋混凝土结构,其与主墩盖梁为整体式结构。墩柱为单箱双室空腹截面,墩身底宽8.0m,厚度5.0m,高约10m,最大的外倾水平角为37.47°。
图1五渡桥侧面图 图2五渡桥效果图
方案比选
在桥梁工程施工过程中,我们通常使用的结构模板大体可分为木模板、钢模板和钢框架组合模板三种类型,因此我们在进行方案比选时就此三种类型的模板特点进行了分析比较。
木模板:木模板材质轻,施工成本低,但是其强度、刚度低,比较适合现场制作加工,多用于灵活多变的小结构部位,对于大体积结构外观则难以保证质量,且施工损耗大,不利于环保。木模板成型质量还受工人技术影响较大,质量保障不稳定。
订制钢模板:钢模板具有刚度、强度高,外观尺寸易于保证,结构成型质量较高的特点,但由于其一次性投资大,因此成本较高,适合于有一定规模数量的样式相同的结构。此外,钢模板在周转使用和存储时,对钢板面要进行特别维护,才能保证外观质量。
钢框架组合模板:采用型钢制作钢框架,模板受力有保障,选用酚醛漆复合模板作为面板,且面板可更换,混凝土外观质量易于保证。钢框架组合模板安装工艺简单,支撑便捷,可快速便捷的进行框架临时分割及组拼,以适用于不同形状混凝土结构物的施工,适用范围广阔。其中钢框架标准板还可多次周转使用,摊销成本低,且节能环保,另外,钢框架的维护及保存要求简单,费用较低。(注:模板组合钢框架已申请专利,专利号:ZL2009 2 0314278.0)
针对本工程墩柱结构异型,且体积大、数量较少的特点,为保证墩柱质量,我们选用钢框架组合模板方式进行大角度空心薄壁V型墩施工的模板工程设计。
3方案设计
主墩为带水平刚性系梁的V型墩,呈“”。墩柱为单箱双室截面,纵向壁厚0.6m,横向壁厚1.0m,中腹板厚2.0m。承台顶墩身宽8.0m,厚度方向高为5.0m。2号支点墩盖梁顶,横桥向宽为16.912m,纵向水平宽为4.936m;3号支点墩盖梁顶,横桥向宽为17.53m,纵向水平宽为4.895m;4号支点墩盖梁顶,横桥向宽为17.53m,纵向水平宽为4.895m;5号支点墩盖梁顶,横桥向宽为17.53m纵向水平宽为4.842m;同时,由于纵坡影响,2号支点墩高为9.649m,外倾水平角为37.47°;3号支点墩高为9.742m,内倾水平角为51.34°;4号支点墩高为9.951m,内倾水平角为51.34°;5号支点墩高为10.046m,外倾水平角为38.33°。见下图3墩柱外形设计图。
图3墩柱外形设计图(cm)
3.1模板划分
如何合理的利用钢框架组拼成墩柱外形,并保证墩柱外观质量,是模板设计需要解决的关键问题。为保证钢框架组合模板的整体性,又易于施工操作,我们直接用钢框架组成一个矩形闭合框架,转角设计为内置木桁架模板。根据图纸计算出墩柱每个结构面外形尺寸,我们将钢框架划分为标准板和异形板,在每个结构面上进行模板切割划分,然后绘制出钢框架标准板和异型板板拼接布置图,见下图4。
四个支点墩墩高不一,倾斜角度不一,侧面墩身随着高度收缩,立面墩身随着高度向两侧拓宽,因此四个支点墩外形尺寸不一。对四个支点墩的每个结构面均需进行模板划分,并且需要制作四套异形板。标准板制作数量应根据工程进度来确定合理配置数量和周转使用计划。
注意在划分板块的时候,异形板不宜切割成太小的板块,因为板块过小不易形成平整板面,且安装繁琐,不利于提高施工速度和质量。
注:无标号方块为标准板,带标号方块为异形板
图4钢框架模板拼装图示
3.2钢框架及其配件制作[1]
标准板采用8#槽钢制做钢框架的外肋,40×80×4mm方钢做背肋,相互焊接成一个1200×2400×80mm的钢框架,背肋横向间距(通长长肋)30cm,纵向间距(夹缝短肋)30cm,外肋组合连接孔φ20 mm,间距30cm。将连接胶合板用的三角形钢板进行焊接(4cm×4cm)并在其中心位置钻6mm孔洞,并于平头螺丝栓连接。槽钢、方钢、三角板之间的焊接应满足《钢结构工程施工质量验收规范》GB 50205。其它配套连接件,如阴角、阳角连接件可按实际情况单独定做。异形板依据划分形状,参考标准板要求进行制作。制作好的钢框架模板异形板应进行编号,以利于施工安装。一般钢框架加工在厂家进行。钢框架标准板设计图见图5。
图5模板组合钢框架设计图
3.3芯模设计
墩柱为单箱双室截面,芯模采用泊松板直接拼装成型,在设计时,主要考虑吊装能力和施工便利。在本工程V型墩施工时,芯模加工为一体成型,然后吊装入位,减少了芯模安装时产生的锯末等废料的清洁问题,有利于保证墩柱外观和结构质量。另外,需在芯模上设置人孔,以便进行芯模拆除。
3.4编制模板拆装指导书
1)根据工程经验及施工条件确定钢框架支撑方式和芯模内撑方式,根据受力形式确定框架外纵横背楞规格、排列方式和对拉螺栓或支撑布置情况。
2)根据结构形式和施工条件确定模板荷载,并进行模板和支撑的强度、刚度及稳定性验算[2]。
3)绘制全套模板设计图:标准板、异形板、组装图、角模、节点大样图和零部件加工图,统计模板及配件规格、型号及数量。
4)编写出模板安装及拆卸说明书。
3.5模板技术交底
必须对模板安装人员应进行全面的技术交底,使其了解模板施工流程,并熟练掌握拼接组装、支撑加固和拆除技术。
3.6模板施工的材料及机械设备要求
1)模板钢框架宜工厂制作,到场后应核对验收;循环使用的钢框架应进行检查,经检验或修复后合格的方可使用。模板钢框架应严格按照程序进行堆放和装车倒运。平行叠放时,避免碰撞,底层钢框架应垫离地面不小于10cm,立放时,必须采取防止倾倒措施,保证其稳定性。
2)面板材料应选择刚度、密实度、吸水率指标合格的胶合板。
3)根据施工组织设计和施工现场实际情况配备必要的吊装设备和运输设备。
4总结
采用钢框架组合模板成形墩柱的方法,操作简练、节约资源,还能够在保证安全、质量同时也满足环保的各项要求。该法利用钢框架模板的工厂化制作,框架强度高,确保受力,胶合板面板光亮整洁,且易于拼接,确保外观,现场按步组装,大大减少施工操作难度的特点,除提高墩柱成形质量外,钢框架可循环利用节约了资源,使异型结构墩柱的施工工厂化、机械化、适用范围更广。
1)本次工程采用钢框架组合模板施工,有效解决了大角度空心薄壁V型墩大体积、大倾斜角度和结构复杂的工程施工难题,确保了工程质量。
2)钢框架组合模板施工操作简便,使用周转快,保证了施工工期、没有发生任何安全事故、质量事故。
3)四个主墩尺寸不一,采用钢框架组合模板避免制作四套钢模板的费用,钢框架组合模板在V型墩施工过程中,标准钢框架能周转使用,仅需要订制异形板,就能完成结构模板组型要求,有效降低了材料的浪费,经济环保。此外,该套模板在主墩使用后,其标准板还可应用在过渡墩和其他结构上,其通用性强和利用率高,与订制钢模板方案比较,节省费用40余万元,因此选用钢框架组合模板施工方案是最经济的施工方案。
本法主要适用于桥梁施工中异型结构墩柱,尤其是棱角分明的线形结构,如变截面矩形墩柱、V型墩柱、Y型墩柱等。对于受力较大的结构,可加大胶合板厚度及加密型钢布置;对于边角为弧形的结构,边角处可制作阳角弧形钢模,以保证边角外形。
钢框架组合模板的不足之处在于它难以保证弧形或圆形截面的结构外形,因此如圆墩柱等圆弧形截面结构不适合采用钢框架组合模板方法施工。
Abstract: for hemp Wang Tuo 2 Bridge capping beam construction program analysis, calculation and evaluation of economic effects. Include: hold the hoop construction method improvement program design; analysis of the principle of force, to demonstrate the feasibility of holding the hoop construction method; calculation, checking the status of the hoop and I-beam beam force; on the acquisition, construction effects and economic benefits summary.
Key words: cap beam; program design; stress calculation; effectiveness
中图分类号: TH123+.4文献标识码:A 文章编号:2095-2104(2012)
1 工程概况
项目麻王坨2#大桥下部结构为双排式圆柱形墩柱,桩间系梁联结,墩顶设盖梁联结,墩柱基础采用桩基础,墩柱直径均为1.8m,中心距6.6m;盖梁长10.9m,宽2.0 m,高1.5m,墩中心至盖梁边为2.15m,混凝土量32.7m3,墩柱平均高28m,跨度7×30m,纵坡0.4%。大桥共28个墩柱,14片盖梁。河道段盖梁离地较高,一般为16—34m,桥墩在两侧山坡上,跨越2条乡村小路,地形较复杂,施工难度较大,在盖梁实际施工中采用抱箍法无支架施工。
2 抱箍法施工盖梁的介绍
2.1 抱箍法的力学原理
抱箍法的力学原理是利用在墩柱上的适当部位安装抱箍并使之与墩柱夹紧产生静摩擦力,来支撑抱箍以上施工支架、盖梁自重以及其他荷载的重量。抱箍的形式必须根据墩柱的大小、间距、盖梁的大小确定。
⑴箍身的结构形式。抱箍安装在墩柱上时必须与墩柱密贴。由于墩柱截面不可能绝对圆,各墩柱的不圆度是不同的,即使同一墩柱的不同截面其不圆度也千差万别。因此,为适应各种不圆度的墩身,抱箍的箍身宜采用不设环向加劲的柔性箍身,即用不设加劲板的钢板作箍身。这样,在施加预拉力时,由于箍身是柔性的,容易与墩柱密贴。在施工当中,为保证密贴的效果更佳明显,一般在抱箍与柱子之间垫以橡胶带。
⑵连接板上螺栓的排列。抱箍上的连接螺栓,其预拉力必须能够保证抱箍与墩柱间的摩擦力能可靠的传递荷载。因此,要有足够数量的螺栓来保证预拉力。如果单从连接板和箍身受力来考虑,连接板上的螺栓在竖向上最好布置成一排。但这样一来,箍身高度势必较大,尤其是盖梁荷载很大时,需要的螺栓较多,抱箍的高度将很大,将加大抱箍的投入,且过高的抱箍也会给施工带来不便。因此,只要采用厚度足够的连接板并为其设置必要的加劲板,一般均将连接板上的螺栓在竖向上布置成两排。这样做在技术上是可行的,实践也证明是成功的。
2.2 抱箍的结构设计
⑴侧模与端模支撑。侧模为特制大钢模,面模厚度为δ6mm,肋板高为10cm,在肋板外设2[12背带。在侧模外侧采用间距1.2m的2[12作竖带,竖带高1.8m,在竖带上下各设一条Ф20的栓杆作拉杆,上下拉杆间间距1.7m;端模为特制钢模,面模厚度为δ6mm,肋板高为10cm。在端模外侧采用间距1.2m的2[12作竖带,竖带高1.6m;在竖带外设Φ48的钢管斜撑,支撑在横梁上。
⑵底模支撑。底模为特制拼装钢模,面模厚度为δ6mm,肋板高为10cm。在底模下部采用间距0.4m的[16型钢作横梁,横梁长4.0m。盖梁悬出端底模下设三角支架支撑,三角架放在横梁上。横梁底下设纵梁。横梁上设钢垫块以调整盖梁底的安装误差。
⑶纵梁。在横梁底部采用I40a工字钢连接形成纵梁,长14m,一边一根位于墩柱两侧,中心间距200㎝,纵梁下为抱箍。
⑷抱箍。本工程采用20mm厚的A3钢板制作抱箍,抱箍高度为50cm,每个抱箍由两个半圆弧形钢板组成,采用M28的高强螺栓连接,每半个抱箍连接处,上、下各焊一块350×150×20mm的水平钢板,作为承重牛腿,在上、下水平板之间设置四道竖向加劲板,以增强承重牛腿的刚度。抱箍紧箍在墩柱上产生摩擦力提供上部结构的支承反力,是主要的支承受力结构。为了提高墩柱与抱箍之间的摩擦力,同时对墩柱砼面保护,在墩柱与抱箍之间设一层2—3mm的橡胶垫,纵梁与抱箍之间采用U型螺栓连接。
3应力验算
3.1荷载计算
a)混凝土荷载:钢筋砼重力密度取26kN/m3,本工程盖梁砼均为32.7m3,墩顶混凝计7.6 m3,则由工字钢承担的砼总重力为:G1=(32.7-7.6)*25=652.6kN;
b)模板荷载:G2=59 kN,(根据模板设计资料);
c)施工荷载与其他荷载:G3=25kN;
d)工字钢荷载:G4=73.84×14×2×9.8/1000=20.3kN;
e)抱箍荷载:G5=1.2kN(根据模板设计资料);
盖梁长L为10.9m,宽b为2.0m,两条工字钢共同承受荷载,对其中一条工字钢进行验算即可,取1.2的安全系数。
因此纵梁荷载集度为Gz=1.2(G1+G2+G3+G4)/L/2
=41.7kN/m。
单个抱箍上荷载Qb=1.2(G1+G2+G3+G4+G5)/2
=454.86kN
3.2工字钢梁应力验算
取140a工字钢,则E=2.1×105MPa,Ix=21714㎝4,w=1085.7㎝3,施工过程中最不利荷载时假设,立柱间距为6.6m。
⑴工字钢应力验算
δ=M/w≤[δ]
式中:M——受力弯矩,取最大弯矩Mmax;
w——截面抵抗矩;
[δ]——允许应力,查规范得210MPa。
经计算得
Mmax=130.68MPa≤[δ]=210MPa,满足要求。
⑵挠度验算
施工过程中,挠度最大发生在跨中,
1 引言
近年来,随着我国高速公路建设的迅猛发展以及施工技术水平的提高,混凝土外观质量越来越受到人们的关注和重视,特别是桥梁墩柱作为首个处于地面以上的分项工程,并且处于人们的最佳视线范围之中,因此桥梁墩柱的外观是桥梁结构中质量要求最高的部分之一。本文结合桥梁墩柱施工,对其外观质量问题进行一些有益的探索, 以提高墩柱外观质量的施工控制水平。
2 立柱外观质量存在的主要问题
通过对立柱施工的分析, 笔者总结出墩柱的外观质量主要有以下几个问题:
其一, 表面蜂窝、麻面、气泡多; 其二, 构件边线不整齐, 表面不平整, 其三,表面的明显水印, 颜色不一致。
3 墩柱外观质量控制
3.1 原材料
砂、碎石、水泥和外加剂的货源、质量是影响墩柱外观的内在因素。首先货源要统一, 同一项目工程施工过程中不要任意更换砼原材料的产地, 以避免造成混凝土颜色不一致。水泥用量是影响墩柱混凝土外观质量的重要因素之一, 墩柱的混凝土标号一般较低( C25 或C30) 水泥用量较少( 定额水泥用365kg/m3) , 混凝土表面较粗糙, 无光泽。为此, 可以加大水泥用量( 380kg/m3) , 确保混凝土表面光滑, 有光泽。
目前工程使用的外加剂一般为缓凝减水剂和高效减水剂, 但由于减水剂一般有保塑和引气作用, 使混凝土中气泡增多且难以引出, 造成混凝土表面气泡多、粗糙。同时外加剂的掺入增加了混凝土搅拌的难度, 不易搅匀。为了尽可能地引出气泡和使混凝土振捣均匀, 振捣时间一般较长, 但是增加了振捣时间后, 掺了减水剂的混凝土极易泌水, 在混凝土表面形成花带或花斑或沙线, 因此如无特殊要求一般不掺外加剂。
3.2 模板
大部分立柱的外观质量问题主要是因为混凝土模板结构引起的, 特别是在模板的连接部位, 是混凝土外观质量出现问题关键部位。此外, 模板结构的强度及刚度问题、模板的清理及脱模剂的选用等对混凝土表观质量也有很大影响。模板的连接不合理、拼合不严密是产生漏浆的直接原因。如果漏浆严重, 甚至会造成裸筋空洞, 蜂窝麻面。
对桥梁墩柱施工最好采用钢模, 模板运至施工现场后, 在现场先进行试拼, 检查规格尺寸、平整度、加工质量,符合要求后现场又对面板进行了精加工处理, 先用电动砂轮打磨,然后有油石打磨, 最后再用刨光机进行刨光。主要是增加模板的光洁度, 从而确保墩柱混凝土外观光滑一致。
为了防止混凝土表面留下红印, 要注意将模板表面清理干净, 尤其是铁锈和防锈漆都用砂纸擦干净。周转的模板一般用砂纸打磨或砂轮清理的办法, 也可结合使用专用的模板清理剂, 保证模板面的光滑平整。模板清理完后, 用抹布揩脱模剂, 均匀涂于模板表面, 用油量控制在现油光程度即可。现在市场上有许多脱模剂选用, 但是其效果往往并不理想, 所以选用脱模剂一定事先进行实验性的应用, 然后再推广。在工程实践中, 还是觉得选用优质机油作为脱模剂较为合适。做好模板的清理工作, 正确使用脱模剂对保证混凝土表面光滑, 防止粘皮、控制表面的层印、斑纹, 保持颜色一致, 有很好效果。脱模剂涂抹均匀后模板安装之前立即将模板覆盖起来, 以免尘埃污染, 影响外观光洁。
3.3 混凝土
混凝土在拌和站集中搅拌, 罐车统一运输。严格控制混凝土的投料顺序和拌和时间, 定期校定拌和站的自动计量仪, 否则前后两车混凝土在同一墩柱上颜色会不一样, 产生明显色差。
混凝土的坍落度是现场检查混凝土和易性的主要指标。实践发现坍落度较大的混凝土表面会有大量的水泡或水线, 坍落度较小的混凝土振捣困难,并且混凝土中的气泡难以排出, 混凝土表面气泡多, 粗糙无光泽。由于墩柱的钢筋仅布置于外圆周面, 振捣方便, 因此塌落度一般宜控制在5~7cm, 因为较低水灰比的混凝土不易产生泌水现象, 就不易形成砂线等影响外观的线条。施工中应安排专人专门检测混凝土, 根据情况及时通知拌和站进行调整, 但调整不易过于频繁或幅度过大, 否则同样影响混凝土的表面色差。
3.4 振捣工艺
墩柱砼一般分层浇筑, 层厚一般控制在50cm 左右。分层太厚,混凝土中的气泡难以排出, 混凝土表面气泡多; 分层太薄, 容易过振, 混凝土表面泛沙, 不光滑。
混凝土不宜过振也不宜漏振, 如果振捣时间不够, 混凝土表面气泡多、粗糙, 如果过振、混凝土表面泛沙。因此应安排专人负责振捣, 通过多试验多观察, 确定最佳振捣时间, 以不过振为原则, 尽量延长振捣时间, 以充分排出气泡。
振捣顺序宣从中间向周围进行。而对于高度大于6m 的立柱, 应搭设平台, 平台上应挂减速串筒, 以避免混凝土由于位置过高落下后造成砂石分离, 过于分离的混凝土其外观颜色肯定不均匀, 大石渣堆砌过多还容易造成孔洞。
3.5 养护
当混凝土强度满足拆模要求后, 需立即安排拆模养护, 长时间不拆模, 砼表面颜色偏黑, 也会出现花斑。养护时最好采用比较洁净的水, 并且包裹塑料薄膜( 或彩条布) 保湿。
4 结语
墩柱外观质量的要求越来越高, 如何改进模板的制作工艺、加工精度以及提高施工工艺是提高墩柱外观质量的关键因素, 墩柱外观质量的控制办法很多, 只有结合现场条件, 适时控制, 不断总结,方可浇筑出外观光滑无色差的混凝土成品。
参考文献
[1] 公路工程水泥混凝土试验规程JTJ053 - 94[ S] . 北京:人民交通出版社,1994.
[2] 公路工程质量检验评定标准JTG F80― 2004[ S] . 北京:人民交通出版社,2004.
Abstract: In this paper, through specific project example, reinforcement technology was introduced on the pier in vitro, summing up the successful experience in application, discusses the application of the pier in vitro reinforcement technology in bridge reinforcement engineering.
Key words: in vitro; reinforcement; prestressed pier;
中图分类号:U443.22文献标识码:A文章编码:
引言
目前,我国公路、铁路交通事业蒸蒸日上,不少高速公路已建成投入运营中。在上世纪70年代末至90年代初,我国修建的大跨梁式桥中,带挂梁的预应力T型刚构桥是主要的桥型之一。由于各种原因,使用多年后,或多或少都出现一些病害,其中,桥梁出现的病害较多,相当一部分桥梁已到了不得不加固或者是不加固不让人放心的地步。为了适应道路运输载重量不断发展的要求,人们发现桥梁的混凝土开裂、剥落、衰变及钢筋的锈蚀(管道灌浆不饱满普遍存在)对桥梁的损害问题非常严重,需要大量的资金来维护或改建。
通过加固桥梁,可以预防和避免桥梁的坍塌造成物资和人身的伤亡,桥梁加固后,可以延长桥梁的使用寿命,用少量的资金投入,使桥梁能满通量的需求,还可以缓和桥梁投资的集中性。
基于此,我们在优化常规加固方法的基础上,提出了增大截面、植筋、施加竖向体外预应力的综合加固方法,并成功应用到了广州市华南路三期永泰立交主跨T构墩柱加固工程。
该技术相比于拆除重建,通过简单、实用而又有效的方法,同样解决了不用拆除重建又能达到设计的要求的目的,还大大节约了工期和成本;相比于传统的加固方法,施工简便,占用场地极小,整个实施过程只需要简单的围蔽即可,对周边交通影响很小,而且不需投入更大的资金。对于目前经济迅猛发展的都市,交通量日益变大,桥梁受破坏的现象非常突出,该施工技术可以为以后的同类施工提供很好的参考。
1.工艺原理
“桥梁墩柱体外加固技术”的基本原理为:对于墩顶开裂,先对墩顶及梁体裂缝进行封闭。处理完后,在墩顶边跨侧加厚截面并施加竖向可更换体外预应力,有以下几点作用:
1、利用竖向预应力偏心产生的弯矩,可以减少桥墩恒载下的固有弯矩;
2、由于桥墩与梁体固结,在桥墩边跨侧施加偏心竖向预应力后,可以使梁体上缘受压,减少梁上缘拉应力,增加梁体上缘承载力安全储备;
3、桥墩边跨侧施加偏心竖向预应力,使桥墩产生与恒载作用相反的转角,可减少恒载作用下牛腿的挠度;
4、施加可更换体外预应力,可方便拆除更换,不影响日后的维修加固。
2.施工工艺流程及操作要点
2.1施工工艺流程
开挖墩柱位置填土――搭设脚手架――墩柱凿毛,凿剪力槽、开工作孔――砼表面清理――桥墩、墩顶附近梁体裂缝封闭――1#块梁底开体外预应力穿束孔及体外预应力管安装――桥墩、1#块植筋、布筋、钢筋安装――新旧砼接触处涂刷E200界面剂――浇筑无收缩C40砼(UEA)――张拉体外预应力――注浆――封闭体外预应力张拉孔
3.分析计算书
通过建立模型,运用midas-GTS软件进行应力分析,计算结果如下:
图1组合P1(=50kN)预应力荷载作用下墩柱应力分布(右侧为旧桥墩,左侧为新桥墩)
图2组合P3(=150kN)预应力荷载作用下墩柱压应力分布(右侧为旧桥墩,左侧为新桥墩)
图3荷载作用下竖向位移分布(右侧为旧桥墩,左侧为新桥墩)
结果分析:由图1可知,在组合P1预应力荷载作用下,墩柱顶最大压应力为1813.23kN/m2(旧墩柱)和1330.8kN/m2(新墩柱);由图2可知,在组合P3预应力荷载作用下,墩柱底最大压应力为5864.67kN/m2(旧墩柱)和4427.95kN/m2(新墩柱),施加体外预应力作用明显,而C40无收缩混凝土的标准抗压强度为40MPa,且在施工中,我们采用了低松弛高强度预应力钢绞线,其抗拉强度标准值Ry=1860MPa,很大程度上满足了抗压的要求。
此外,由图3可知,墩柱加固处理前后的竖向位移都很小,且原设计墩柱的基础为嵌岩桩基础,满足规范和设计的要求。
1. 工程概况
杭瑞高速贵州境思遵六标天池特大桥起点桩号为K180+481.25,终点桩号为K181+620.75,桥跨全长1139.5m,跨径组合为(12×40+65+120+65+12×40)m,主桥上部结构为65+120+65m三跨预应力混凝土变截面连续刚构,左右幅分离布置。
主墩采用双墙式+单薄壁组合墩,13、14号主墩墩高分别为88m和94m。刚构组合墩的单、双高度基本按黄金分割线比例进行分隔,双墙式高度分别为28m和34m,单肢高度为60m。双墙式采用实心矩形截面,横桥向宽6.5m,纵桥向宽1.5m;单肢采用等截面矩形空心墩,墩身横桥向宽6.5m,顺桥向宽6.5m,标准段壁厚为0.8m;主墩墩身采用C50混凝土。
2.滑翻结合施工原理及优缺点
2.1滑翻结合方案的选用
本工程中,原来选用的是滑模施工方案,在13#墩左幅实心段的浇筑中,使用的即是滑模施工。本滑模的平台系统的主要分组成部分为:
模板、桁架和提升牛腿。模板通过连接件固定在桁架上再和提升牛腿连结起来。
滑模施工有以下几个要求:
①有健全的生产组织机构,紧凑的施工组织安排。
②混凝土有较好的工作性能。
③混凝土施工必须连续作业。
④各千斤顶的行程必须一致,以免造成墩柱倾斜,扭转。
在13#左幅墩柱3米实心段浇筑完毕后,经理部召开了总结大会,在会上提出了以下几点:
①本工地紧挨湘西,地形高低起伏不平,密布崇山峻岭,因此大电经常有故障,很多时候在毫无通知的情况下就停电了,而且一旦有故障维修不方便。因此本条无法解决。
②现场的拌合站为旧拌合站,故障比较多,一旦故障维修耗费时间,而备用拌合站生产能力有限,平均每10分钟才能生产1方混凝土。而由于地形限制,本标纵向便道未能完全贯通,无法从别的拌合站调运混凝土,因此只要拌合站一出故障即无法正常供混凝土,造成混凝土施工突然停顿。
③由于混凝土所用得细骨料是机制砂,初凝时间极短,经过多次调整依然没有改观。混凝土工作性能差,导致模板所受侧压力相差大,同时模板与混凝土凝结力相差大,因此造成工作平台偏向模板侧压力大的一侧,同时在油压相同的情况下,千斤顶的行程不一致。
为保证工期和提高墩柱内在及外在质量和控制成本,在总结了13#左幅墩柱3米实心段施工过程后,结合滑模施工特点和现场的实际情况,得出结论滑模施工工艺在本工程中无法继续实施下去,因此决定改为滑翻结合的施工工艺。
2.2 滑翻结合体系组成及特点
2.2.1滑翻结合体系组成
由于本工程的滑翻结合体系是在滑模体系的基础上改进而来,内模依然采用滑模,只是外模采用翻模。因此,本滑模体系的组成基本和滑模体系组成差不了多少,爬升系统和桁架的连接方式并无变化,只不过外模没有固定在桁架上,外模采用花篮螺丝及吊杆吊在提升牛腿上,通过轴承活动可调节模板的水平移动,再通过调节螺杆顶在桁架上以保证模板尺寸。示意图如下:
2.2.2滑翻结合工艺中模板施工步骤
① 外模:混凝土达到拆模强度后,松开滑竿螺丝,使外模悬吊体系松弛;反向拧调节螺母,使调节螺杆松开没有顶住桁架。将模板往外拉,使之离开混凝土之后,模板就只用花篮螺丝吊着,将四面模板拆完后。提升桁架及外模,提到一定高度后将外模往里推,再调整花篮螺丝,使模板水平;再正向拧调节螺母,使调节螺杆与桁架顶住后,再微调花篮螺丝,将外模水平调精确后,再正向拧调节螺母,使调节螺杆与桁架顶紧。保证模板垂直而且模板与混凝土搭接部位不漏浆。
②内模:由于内模依然采用滑模施工,因此内模滑升需在混凝土刚初凝的时候,内模滑升不宜太快,严格控制滑升速度。每滑升20cm左右需用限位环调整一次千斤顶的行程,以消除千斤顶行程差,保证模板的垂直度,防止内模倾斜或扭转,保证墩柱的壁厚和内腔的外形误差在规范允许范围内。
2.2.3滑翻结合施工工艺优缺点
由于本方案是在滑模施工工艺的基础上改进而来,因此本方案在继承了滑模施工工艺的一些优点的同时克服了滑模施工工艺的一些缺点,这些上文已有叙述,因此在这就不赘述了,下面就列一下鄙人愚见的几个缺点。
①内模提升时间有一定的限制,不宜在混凝土凝固后提升。由于内模依然使用的是滑模,因此要求内模在混凝土初凝前提升完,这就要求有一个人专门控制内模的提升、同时对施工用电的要求比较高,要求内模提升前不能断电,而现场发生过好几次突然断电现象,造成内模无法正常提升,只得重新割开内模,拆完内模之后又重新拼装;对液压管路维护要求也比较高,出现过提升内模过程中千斤顶压力上不去从而耽误了内模正常提升,只得将内模重新割开,拆完内模之后又重新拼装,即耗费人工,又延误了工期,从而增加了施工成本。
②由于内模需在混凝土初凝之前提升,扰动混凝土,在结构内部产生较多的微裂缝,使结构耐久性降低。
③对内模提升千斤顶行程差要求严格,因为内模千斤顶行程差一旦偏大的话,将造成内模倾斜、扭转从而影响内腔几何尺寸和墩柱壁厚,在本方案施工过程中一直在不停解决的就是内腔的扭转和墩柱的壁厚问题,也就是内模的扭转和倾斜问题。
④由于牛腿太宽,造成牛腿和主筋冲突,因此有牛腿的地方主筋垂直度一直无法保证而且主筋间距误很不均匀,牛腿外侧位置主筋密集,牛腿位置没有主筋。
⑤模板太低,每次浇筑的高度有限,同时施工循环次数太多,即造成施工缝多,影响混凝土外观,又影响进度。
⑥由于爬管预埋进混凝土内,因此增加了施工成本。
综上所述,由于滑翻结合方案有以上缺点,滑翻结合方案要是可以改进一下,即可以克服以上缺点。而鄙人通过观察请教其他工地的施工经验和翻阅各类资料,发现以上问题完全可以克服。
3.滑翻结合施工工艺的改进
愚意以为,滑翻结合可做如下改进:将内外模均加高到2.5m。将内模固定桁架减小,内模不固定在桁架上,而是做成可收放式内模,内模也悬吊在牛腿上;内模通过几排对拉杆配撑管(撑管长度等于壁厚)和外模对拉在一起,这样外模的调节螺杆即可取消,支模板比较方便,可以杜绝内模倾斜和扭转,保证了墩柱的壁厚和内腔的外形,同时减少了施工循环次数,减少了工作缝。将爬杆围绕墩柱布设在混凝土外面,如此爬管可回收、牛腿可缩短,这样既节约了成本,又方便施工。
3.1滑翻结合施工工艺改进的可行性
本改进方案的可行性主要取决于爬管体外布设的可行性,只要爬管体外布设可行则整个方案就可行。
一、工程概况
乌贼沟特大桥是厦蓉高速公路的关键性控制工程项目之一,该桥全长913.6m,3X30+79+150+79+5X30+79+150+79+3X30桥梁结构形式为:3×30m(预应力连续箱梁)+79m(边跨)+150m(中跨)+79m(边跨)+5×30m(预应力连续箱梁)+79m(边跨)+150m(中跨)+79m(边跨)+3×30m(预应力连续箱梁)的预应力混凝土T形刚构桥。最大墩身高度在4号主墩,高为105米,墩身结构为空心薄壁墩,截面尺寸为7×3m。
两桥的引桥均为现浇箱梁桥,箱梁宽度13m,单箱双室断面, 其中箱宽9m,两侧缘各宽2m,箱梁高度1.7m,箱梁采用逐孔推进施工,施工缝设在距桥墩中心6m处。支撑方案的确定时间紧,任务重,创精品是本工程的特点。由于梁体为全预应力结构,支架周转受预应力束张拉影响,浇筑连续箱梁时采用何种支撑制约着本工程的工期。最后对比采用移动支架法施工。
二、 箱梁施工方法与移动平台支架
1. 施工方法
由于引桥均为陡坡上的高墩桥梁,难以搭设满堂支架或落地支架,箱梁采用移动支承平台支架架空现浇施工。
2. 施工工艺
1)施工工艺流程
主梁移动架空平台逐跨推进施工的工艺流程是:①、在起始跨的桥墩柱上安装斜撑支架(牛腿);②、在牛腿和墩柱系梁上安装移动架空平台;③、在平台上铺模板系统;④、在模板上安装主梁钢筋与预应力钢束;⑤、用输送泵浇筑主梁砼;⑥、浇水养生砼;⑦、张拉预应力钢束;⑧、落架(砂筒卸落);⑨、预应力钢束灌浆;⑩、平台推进行走(施工下一跨),详见图1。
2)转跨行走流程
主梁移动架空平台转跨行走流程:①、主梁施工完毕后,横向桁片转动收折,并附于各组桁梁上;②、桁梁承重杆系向上收折;③、桁梁推进行走;④、桁梁全部行走到位后,打开承重杆系;⑤、打开横向转动桁片,连接成整体平台,进入下一跨箱梁施工。
2、固定于桥墩上部用来支承桁梁平台的支承体系;3、平台转跨推进行走系统。
(1)收折式桁梁平台
收折式桁梁平台工作及行走见方案布置图,其由水平纵桁梁,承重杆 系及横向联系桁片组成,下面分别予以介绍。
①水平纵桁梁
水平纵桁梁由长3m的贝雷桁片及改制贝雷桁片、平联桁片、立联桁片、前后导梁拼装而成。本桥施工平台的水平纵桁梁分为4组,墩柱内侧2组,外侧2组。
② 承重杆系
承重杆系安装于平台水平纵桁梁的下方,是各组水平纵桁梁的主要受力杆系,其结构形式为倒斜拉桁架结构。承重杆系由竖向压杆和斜拉杆组成。承重杆系在平台工作状态时打开;行走前,将其收折于水平纵桁梁内。
③ 横向联系桁片
横向联系桁片分为支撑立桁片、支撑平桁片和可水平转向收折的转 动立桁片。支撑立桁片安装于每组水平纵桁梁中,支撑平桁片安装于水平纵桁梁上面,两者一并将贝雷桁片连接成稳定的整体空间桁架;在平台下部承重杆系之间亦安装横向联系桁片,将每组承重杆系联系成整体。可水平转向收折的转动立桁片安装于水平纵桁梁侧面并与支撑立桁片栓接,工作时将每组水平纵桁梁横向联系成整体平台共同参与工作;行走时将其转动到水平纵桁梁侧面,便于平台行走,每3m设置一道转动桁片,且沿横向连通布置。
3.移动平台
引桥主梁架空施工的主要施工设备是“移动架空支承平台”,本桥跨度均为30m,采用GL-30型收折式架空支承平台。收折式架空现浇支承平台由三部分组成。
(1)收折式桁梁平台;
(2)支承体系
本桥墩柱设有横系梁,顶横系梁可作为支承体系的一部分,支承墩柱内侧的两组桁梁,另在墩柱外侧设置斜腿(牛腿),支承墩柱外侧的两组桁梁。牛腿插入桥墩柱的预埋键盒内,每个牛腿在其两个平梁外各穿3根Ф32精轧螺纹钢筋并张拉预应力将其固定在墩柱上。
(3)平台转跨推进行走系统
平台转跨推进行走系统由行走车与牵引装置两部分组成。行走车置于牛腿和墩柱系梁顶部,其纵向滚轮支承纵桁梁,使纵桁 梁可纵向行走,行走车自身可横向行走,从而实现平台双向行走,满足平台曲线行走需要。牵引装置既可用慢速卷扬机,亦可用链滑车,本桥拟采用卷扬机牵引。平台行走前先将墩柱两侧桁梁间的横向联系桁片(亦称“转 动桁片”)水平转动收折,此时平台分开,再将各组纵桁梁的承重杆系向上收折,平台即可行走。
三、其他
1. 设计调整
为满足平台的支承体系布置,桥墩柱需进行一定的设计调整,
具体为:
(1)各墩顶系梁顶面标高H系顶由纵桥向墩中心处箱梁横断面底面最低点(箱边缘角点)的标高H箱底控制。H系顶= H箱底-2485mm
(2)过渡墩(矩形扁墩)的槽口槽底标高H槽底由纵桥向墩中心处箱梁横断面底面最低点(箱边缘角点)的标高H箱底控制。
H槽底= H箱底-2507mm
(3)过渡墩背墙分两步施工,先施工两个2.25m宽的矮柱支承引桥箱梁(矮柱的横桥向钢筋伸出柱面30cm),待平台拆除后再施工背墙的其余部分,其余部分施工时,将背墙横筋与矮墙伸出钢筋焊接,然后浇筑砼。
(4)1.7m双圆柱墩顶系梁高度由1.6m调为2.3m并增设斜筋与顶层短横筋,每侧各增加两道箍筋,详见钢筋布置图与钢筋构造图。
2. 预埋件
为固定支撑体系的牛腿,需在墩柱施工时埋设预埋件,预埋件的布置与构造分别见方案布置图预埋件部分及预埋件构造图,预埋件由上预埋盒、下预埋盒、上、下螺旋筋及钢管组成,上预埋盒与下预埋盒通过连接钢筋连接,每个上预埋盒旁设有3根Ф56×3mm用于穿Ф32精轧螺纹钢筋的钢管,预埋件的安装与定位工装以及公差要求详见安装图与组装图。
为满足牛腿吊装要求,各墩顶设置了预埋精轧螺纹钢筋,在过渡墩顶面为锚固支承体系亦设置了预埋钢筋,详见方案布置图。
3. 施工周期
1 高速公路桥梁施工中质量控制要点
1.1 基础施工
无论基础还是扩大基础,在整个施工过程中都需要进行桩位的多次定位与复测,桩位必须经监理确认无误后方可开钻或开挖。在正式开钻或开挖前,领工员、工班长、机械司机等所有参与施工的人员都必须得到关于每项工序详细明确的技术交底。钻进过程中,维持水头高度,泥浆稠度等主要技术指标满足质量规范要求,并根据钻进中的不同地质情况及时调整。待成孔或基坑成型后,及时测量高程并进行必要的现场试验。混凝土配合比要经过多次计算验证,并满足设计及规范要求。浇筑工作必须紧凑,确保一气呵成。
1.2 墩柱施工
由于山区地形复杂,沟壑纵横,高墩柱施工便不可避免,而且是重中之重。
1.2.1 高墩柱施工难点一般高速公路中高墩柱施工时,具有以下几个施工难点:
①施工周期长。对于高墩施工,模板的受力自成体系,从模板的受力性能考虑,高墩施工一般要分节进行,墩柱的施工周期相当长。
②模板和机械设备的投入大。由于单根高墩柱的施工周期长,一般采取平行作业的施工方法,因此模板投入相当大。而且受起吊能力和地形限制,机械设备的投入也会增大。
③高墩柱施工定位控制难度大。对于高墩柱来说,截面积小、墩身高、重心高、墩身柔度大、施工精度要求高,因此施工时轴线很难准确控制。
④高墩柱施工接缝的处理要求高。高墩柱不是一个简单的受压构件,它还受到弯矩扭矩作用,因此,高墩柱的接缝容易成为施工的薄弱之处。另外,高速公路桥梁中高墩施工还具有高空作业,施工安全度低的特点。
1.2.2 高墩柱施工质量控制
笔者以为,在施工前,应根据工程量和有效施工工期,科学编整个工程和针对桥梁的施工组织设计。做到先地下后地上,先三通平后正式施工。进行工程排队,突出重点,攻克难关。
①结合设计,并根据具体施工制定确切可行的施工方案;②采用科学的网络计划方法,以便工序之间相互创造有利条件缩短模板和设备的闲置时间,减少无谓投入,扩大工作面,加快施进度;③配备先进、精度高的测量仪器,并组建经验丰富的专业测量伍,严格规范测量作业,实行测量双检制度;④配备专人负责接缝处理,严格执行一刷二吹三冲洗,接缝处毛满足要求,确保接缝质量;⑤落实季节性施工措施,确保夏季不缺水,冬季不受冻;⑥充分考虑高速公路桥梁施工环境的不可遇见性,制定保证施工质量的有效防范措施。高墩柱施工时,由于模板周转次数多,因此易产生模板变形,应在2.8m 宽模板的加强肋中间设1 道横穿墩身的对拉螺杆,高度方向每隔1m 设1 道与加强箍固定联结。其次,应尽量保证墩柱施工的连续性,减少中间停顿时间,以加快分项工程的完工时间,提高设备利用率。要经常对施工操作人员进行质量教育,强化质量意识,各工序应按操作规程办事。
1.3 支架设计施工
就高速公路桥梁墩柱顶盖梁现浇施工的支架型式而言,支架型式的选用,应结合现场设备及施工条件与盖梁的高度而定,还应考虑经济成本尽量能就地取材,并应保证施工质量和操作安全。自落地支柱可采用钢管、型钢或门式架等,根据施工设备状况及荷载经计算,确认无误后择优选用;无论采用何种支架,施工时都应按计算挠度值严格设置预拱度,并应搭设足够宽度的操作面和周边护栏;各种支架的护栏边,都应满挂密目安全网,以防止高空坠落。
2 高速公路桥梁施工中质量控制措施
对于高速公路桥梁施工质量控制方面,笔者以为可以根据桥梁分项工程做出明确分工,通过对每道工序进行全方位、全过程的控制和管理,避免因工作混乱、职责不清而影响工作质量。
2.1 严格执行质量责任制
为保证桥梁质量,要加强对施工桥梁的定期、不定期检查,每月对桥梁以及与之相关的测量、试验、等进行检查和重点抽查,对项目实行每月考核。强化质量意识,服从质量监督,确保桥梁质量整体上档次、上水平、上台阶。
2.2 严格控制原材料进场质量
原材料是影响桥梁质量的根本所在,因此,要加强对所用原材料的检验和检测。原材料进场前和进场后要不间断地进行抽样和检测,一旦发现不合格,就要拒绝进场和使用,将影响质量的隐患扼杀在萌芽状态。
2.3 质量控制须全程监理
质量无小事,安全大于天,桥梁施工容不得半点懈怠和马虎。因此,在桥梁施工的整个过程中,必须对桥梁质量实施事前控制、事中控制和事后控制,而且必须做到节节相扣,步步为营。
2.4 明确工程质量管理与进度的关系
在效率第一的时代,很多施工单位往往过度重视速度和效率,而忽视了质量。他们常常认为只要强调工程质量,过程的进度和综合效益就会大大受影响。其实,注重质量和注重进度、效益是相辅相成、相互制约、相互发展的矛盾结合体。要看到,如果工程质量搞不上去,就会存在隐患,必定需要返工,反复的投入只会增加成本,更会影响到单位的声誉。因此,确保质量,维持进度,才能减少了人力、物力的投入,最终提高经济效益。
2.5 关注设计质量
目前,施工单位、监理单位都强烈要求提高设计质量。设计质量的优劣与施工质量的好坏是息息相关。很多桥梁的施工由于设计文件中地质资料与实际地质情况不相吻合,致使某些桩基础的桩长与设计桩长不相同,原定工期内可施工完的项目,都必须延时才能结束。这不仅给施工带来许多麻烦,影响了施工进度,还浪费了大量的人力、物力和财力。
总结
在实际中,大量的高速公路桥梁在未达到预期服役年限时,出现了影响正常使用的病害与隐患,有些桥梁可能在只使用了几年、甚至刚建成不久就出现严重的耐久性不足的问题,这也与施工质量有重要关系。这些缺陷虽然短期不会对桥梁的正常使用产生明显的影响,但却会对结构的长期耐久性和通行车辆产生很大的危害。因此,笔者就自己的经验在这里就高速公路桥梁施工中相关施工技术进行研究,提出了施工质量控制措施,望与同行一起切磋。