防水设计论文范文

时间:2023-03-16 17:45:31

引言:寻求写作上的突破?我们特意为您精选了12篇防水设计论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

防水设计论文

篇1

铺设具有一定防水能力的防水材料,并不等于防水层,它只是防水层组成的部分。防水材料就像做衣服的布或钮扣、拉链,而防水层则是成衣,防水设计及施工则是裁缝了。防水层应该根据防水主体(人体)的特点,满足防水主体提出的各种要求。除满足防水基本功能外,还应具备具备能抵抗各种变形的强度和延伸性能、抗抵高温老化和低温冷脆性能,还要有抵抗穿刺、挤压及抵抗介质侵蚀性能,以及与基层紧密粘结的性能,这么多性能要求单一材料(布或钮扣)往往不可能完全具备,因此防水层需要选择(裁缝)多种材料组成(衣服、服装),以适应主体(人体)防水功能要求,如果将来出现单一材料(布料)完全适应主体设防功能时,那么单一材料铺设也可以是防水层,但防水主体性状很多,某一种材料完全都能适应各种主体要求是极不容易的事,因此就目前讲,要选择多种防水材料配合组成适应主体防水需要的层次成为防水层。单一防水材料(布料)与防水层(成衣)是两个不同的概念,不能混同,现在许多人加以混淆是不对的。

2、屋面防水层设计

屋面防水层是间歇性防水,受自然界多变的环境条件直接影响或损害,所以防水层是动态的,条件多变的,有一定的耐用期。

屋面防水层是依附在找平层上的,目前找平层均以水泥砂浆和细石砼为主。为堵塞找平层上的“孔”和“缝”,解决屋面渗水、窜水、脱层现象,根据多年来实践经验,我们提出防水层应设置有基层封闭层、主防水层和提高加强层三个层次,才能组成一个完善的防水层。

(1)封闭层:封闭层的作用:a、封闭堵塞基面的毛细孔、孔洞和微细裂缝,与基面牢固地粘结,不脱层,即使主防水层被穿刺,也不会沿基面窜水而渗到找平层下。b、封闭层还应具有避拉层(应力缓冲层应变层)的作用,尤其在低温时,基层开裂,封闭层将应力吸收,避免了主防水层受拉伸而破坏,同时也在主防水层后期收缩时,由于有避拉层,它不受基面限制,应力得以缓冲。c、封闭层耐水性好,并具有粘结性能,既是防水层又是主防水层的粘结剂,这样可谓一举数得,目前已有数种材料可适用于封闭层,如反应固化型聚氨酯,反应固化聚合物水泥涂料,双面自粘卷材和改性沥青热熔涂料等,选择适宜的低温柔性,它完全可胜任封闭层工作。

(2)主防水层:主防水层的作用应有较高强度和延伸性,较强的抗渗性和耐水性,较大的耐穿刺、耐外力冲击,良好的耐热性和低温柔性,满足屋面使用功能的要求和耐久性设计的要求,它是屋面防水的主要层次,不同防水等级往往可采取调整厚度来进行。

(3)增强提高层:它的作用分局部增强和全面增强,屋面在使用功能有特别要求时,如种植屋面、运动场所、停车、行车、泳池等,屋面的防水层应增强其耐穿刺、耐腐蚀、耐老化等性能,再增设一道增强防水层或局部设增强防水层。

3、地下工程防水层设计

地下防水层是长期受水的浸泡,处于潮湿和水渗透的环境,而且常常有一定水压力,防水层埋置在地下具有永久性、不可置换性,必须长期耐久。

地下工程均有较厚、坚固的钢筋砼结构,利用结构砼,增加有限成本,就可以获得优良的防水砼。防水砼具有很强的防水能力,可以达到抗渗等级,这是其它任何防水材料所不及的。但是它是多组份现场湿作业施工的产品,因施工需要,必须加入多余的水,当水分蒸发,余留许多毛细孔形成渗水通道。再者现场湿作业的条件,很难做到百分之百的完善,存在局部的孔、洞是现实的,目前尚无能力完全克服。另外由于水分蒸发和温差常常使砼在硬化过程中产生收缩变形,从而形成微细裂缝甚至较大通缝。为了防止防水砼的毛细孔、洞和裂缝渗水,应在结构防水砼的迎水面应设置附加防水层,这种防水层应是柔性或韧性的,来弥补防水砼的缺陷,因此地下工程防水层设计应以防水砼为主,再设置附加防水层的封闭层和主防层。

(1)防水砼:防水砼是普通结构砼通过级配的控制和掺加一定外加剂,如减水剂、微膨胀剂、减缩剂、密实剂、纤维或聚合物等,使结构砼达到抗裂和密实的目的,同时通过施工工艺,如使大体积砼降温(或保温)、速凝、防冻和加强养护等手段减少砼的变形。它根据地下工程埋置深度,决定防水砼的抗渗等级,最低应达S6,即0.6Mpa.

(2)附加防水层的封闭层:

封闭层的作用是封堵防水砼表面的毛细孔、孔洞、微细裂缝,形成很强的致密的防水层,而且要渗入砼毛细孔,牢固地与结构砼粘结,阻止水从结构防水砼的毛细孔和细裂缝中渗透。

(3)附加防水层的主防层

主防层的作用是抵御由于砼后期收缩、温差变形等而产生的裂缝,它应与封闭层紧密结合,并具有一定抵抗变形能力和耐穿刺能力,长期浸水不吸水、不透水的能力。在地下工程中主防层和封闭层常常采用一种材料,但该材料应具有这两种功能。

4、室内工程防水设计

室内防水,主要是避免生活生产用水、污水的渗漏,通过墙体和地面渗到其它房间影响正常生产和生活。室内防水分为地面防水和墙体防水,防水设计首先应考虑充分排水坡度,使水迅速排除,不积水。

(1)地面防水层:室内地面防水一般面积较小,受外界自然条件影响小,主要是防止水或侵蚀介质(酸、碱液等)通过基层毛细孔或细裂缝的渗透对砼结构的侵害以及渗漏到下层房间。因此防水层必须封闭基层、封堵毛细孔和微细裂缝,与基层要粘结牢固不脱开,具有一定韧性,当地面面积较大时,防水层应具一定延伸性,它还应与地面的面层材料粘结良好,不脱层,不松动。

(2)墙体防水层:墙面防水层与墙体材料有关,当墙体材料为砼、粘土砖等,待墙面找平后,应设置具有一定强度和韧性、粘结强度大的防水材料,它要封闭找平层毛细孔和裂纹,更要有很强的粘结力,与基层和墙面的面层应粘结牢固,防止面层脱落。当墙体面积较大、墙体材料为轻质隔墙时,在墙面找平层或防水层中应置网格布(纤维)增强,以克服墙体的开裂。

5、外墙防水层设计

外墙出现渗漏是近两年来的新问题,随着建筑物的形体变化和墙体、墙面材料的改革而出现的,尤其在南方沿海多雨、多台风地区。外墙渗漏严重影响了建筑物的寿命和正常的生产、生活,导致物品的霉变,对装修造成损害。

墙体防水是间歇性,垂直面防水,不积水,排水非常迅速通畅,但是在风力作用下,水随着风压力而渗透力会加大,尤其在墙面砖粘结有空隙时,水进入后缓慢地对墙体进行渗透。

(1)外墙面防水层:

墙面防水层是在受较大剪切力下工作的,而且直接受自然界气候、风雨、冰雪、冰冻、阳光紫外线、温差各种自然现象的影响,因此它必须具有较大的抗压、粘结强度、较好的耐老化性和具有一定的韧性或延伸性。无机材料掺入一定量的聚合物是最理想的材料,如果外墙不做饰面层时,耐老化的有机弹性材料既是防水层,又是装饰涂料层是可取的方案

(2)墙面饰面粘结层:

墙面饰面粘结层采用与防水层合一,当墙体材料刚度、强度高,粘结层采用粘结性和抗渗性优良的砂浆是良好方法,施工时粘结要全面、不留空隙,这里施工质量是保证防水质量的关键。

6、水池、泳池防水层设计

水池、泳池有埋在地下的,也有设在地面上、室内或屋面上的,地面以上的只要防止水向外渗漏,防水层设在迎水面(池内),而设在地下的池子,既要防止水向外渗漏,又要防止地下水浸入池内,所以在池内池外均需设置防水层。

一般水池、泳池为了清洁,避免微生物的侵害,池内均有面砖装饰层,方便使用时清理。

(1)池壁防水砼:

目前池壁大部分采用钢筋砼结构,它坚固可靠,因此将结构砼作成防水砼,它与地下工程的结构防水砼相同。

(2)池内防水层:

池内防水层首先要对基层进行封闭,与基层粘结牢固,同时它适应面层材料粘接牢固、不起鼓、不脱落。面积较大时为了加强整体性,在找平层中加入纤维或网格布予以增强,并在每隔3m设置分格缝填密封胶,避免变形或振动导致面层脱落。

(3)池外防水层:

埋没在地下的水池,不但内部要设防水层,外部也应设防水层,作法和用材同地下防水工程。

7、防水材料选用

(1)满足基层适应性

所有防水层的基层都存在着很多可渗水的毛细孔、洞、裂缝,同时在使用过程中还有新裂缝产生和变大。因此选择的防水层首先要解决对基面的封闭,封闭毛细孔、洞和裂缝,这就要求防水层能堵塞毛细孔、洞和细裂缝,与基面粘结要牢固,杜绝水在防水层底面窜流,同时还应适应基层新裂缝产生和动态变化。另外,由于基面的不平整、多变化的形状,防水材料要与之相适应。满足基层适应性的防水材料可采用一种或多种材料复合,适应基层的材料多数为涂料和压敏型、蠕变型自粘卷材,但由于适应基层抗裂性能的不同,它常采用与其它防水材料如卷材类材料复合的方法。

(2)满足温度适应性:

防水层的工作环境温度与建筑物地区有关,但屋面工程中倒置式的防水层温度则是处于正温度,地下工程在冻土层以下则是负温度,冻土层以上如有保温层,也应处于正温度,室内工程与地区关系不大,而外墙防水层则完全处于地区大气温度作用下。

一般防水层温度高于30℃时会加速柔性防水材料老化,增加收缩,低温时超过防水材料的柔性指标则导致柔性防水材料变脆,失去延伸变形的性能,此时结构收缩变形加大,极易将防水层拉断。因此,防水层所处工作环境最低温度对选择防水材料低温柔性相适应起到决定作用,防水材料在低温时还应具有一定的变形能力,一定的延伸率和韧性,否则防水层就会受到破坏。

(3)满足耐久性要求

防水材料耐久性是防水层质量最主要性能,没有耐久性就没有使用价值,在很短时间内就会失效,要修理或返修重作,这应该是非常严重的质量事故。所以在满足耐用年限内防水层的材料经组合要能抵御自然因素的老化和损害,满足人们正常使用功能的要求,否则防水层的质量是不能保证的。

(4)满足施工性要求

防水材料的施工性包括施工工艺的可靠性和对施工环境的适应性。选用的材料应便于施工,工艺简便可行,机具先进可靠,对施工环境条件适应性宽,对施工条件要求不严格,便于保证施工质量。

篇2

一、七一九层单元住宅应设室内消防给水

《建筑设计防火规范》(GBJ16一87)指出:超过七层的单元式住宅、超过六层的塔式住宅、通廊式住宅,底层设有商业网点的单元式住宅应设室内消防给水。根据规范.七层半以上住宅或底层为商店的六层以上单元住宅,室内需设消防给水。近年来,随着人们生活水平的提高.对住宅室内装修要求也愈来愈高。住户搬进新居前一般要重新装修。吊顶、壁橱、组合家具、地毯及室内各种陈设均为易燃品,家用电器品种也不断增加。显然引起火灾的可能性有所增大。从保护人民财产和人身安全来讲,室内确实需配置消防给水设施。

二、室内消火栓和室内消防箱

单元式住宅,室内消火栓的位置都在楼梯间休息平台处。楼梯间面积狭窄,为了不影响住户搬运物件上下,消防箱应尽吊考虑暗装或半暗装,这得同结构配合。

现行《低规》‘朴定的室内消火栓不利于扑灭初期火灾。因为火灾时,要在短短的儿十秒至数分钟内扣上水龙带、水枪.展开20一25m长的水龙带,打开阀门,举起具有相当压力的水枪进行火火,这对未经过专门消防训练的人有一定困难,对妇女、老人、儿童就更为困难了。所以普通消火栓设备并不适用消防软管卷盘(少「’径灭火‘喉)取用方便·展开容易,·般居民均能使用只是出水鼠较小.但对初期火灾扑火还是很有用的。这总比居民无力或不会使用消火栓而用脸盆、水桶盛水火火有效得多。建议,住宅消防箱内’戊配置一套消防软管卷盘。并预留DN65消火栓l,以供消防队员使用(不宜预留DN50消火栓口,因省内各地消防队均配用DN65水龙带)

三、消防水量和水压

《建筑设计防火规范》指出,消防水箱,卜应储存10分钟消防用水室内消火栓的布置应保证有.两支水枪的允实水栓同时达到室内任何部位。水枪的充实水柱般不应小十7m。《低规》消防给水的设计思想是立足于自救.既要保证水量又要保证水压。由于建筑和结构的要求,水箱不可能抬得很高,所以一般的屋面水箱是难以保证建筑物顶部一、二层消防用水的水压。为达到消防要求,常用的做法有1、设消防水池、水泵、消火栓箱内增设消防水泵启动按钮。2、增设气压消防给水装置。这两种做法理论上是可行的.但在实际中却有困难。1、住宅改造区一般位于城市.黄金地带”,地价昂贵,难以找到适宜设消防水池、水泵地点。2、若采用气压消防给水设施,消防管网中长期承受高压,增加系统渗漏危险。3、与高层建筑和新建住宅区不同,住宅改造区规模不大,无专门管理机构。消防水泵、气压给水装置若长期不用.搁在一边。难以保证在消防时可以Lr:常使用。所以我认为七一九层住宅只要求消防水蛾而不要求其水压值。10分钟消防用水储于屋顶水箱中,初期火灾顶部一、二层消防水压不足,可否采取其它火火器材补救。10分钟后由消防车从室外消火栓取水经消防车水泵加压装置和水泵结合器进入室内消防管道火火。这种做法更适应实际情况。

四、消防水箱

篇3

根据柘溪发电站的4个并联分支的基本情况,本文主要考虑的是12-34、13-24以及14-23这三种分支的组合形式。

1.2横差保护分析

在仿真实验的过程中,我们对各种分支情况下的零序横差、裂相横差以及这两种横差保护相互联合作用时候的保护效果进行了统计整理,在实验的过程中,将零序横差的保护选择为0.04IN,并将其作为动作门槛,裂相横差的保护采用比率的制动特性,,差动的门槛选择为0.2IN,斜率为0.3。根据我们对零序横差以及裂相横差的保护可动作的故障数统计结果分析,我们可以看出柘溪的横差保护具有如下特点:

a.两种横差保护对同相异分支的故障动作的反映灵敏度均不高,个别的分支的动作数目可以达到18种,这主要是由于同相异分支短路的匝差太小,大部分不超过1匝所造成的。

b.同相异分支的短路故障的保护效果显示相隔的分支组合要强于其他的组合情况,而这主要是因为同相异分支的短路现象只能够发生在相邻的分支之间,比如第二分支只能够与第一或者是第三分支发生同相异分支形式的短路故障,所以采用分支相隔的组合方式具有比相邻分支组合更强的保护效果。

c.无论是零序的横差还是裂相的横差对于异相的短路故障均具有较高的反映灵敏度,这也是因为同相同分支之间的短路匝差比较小的缘故。所以柘溪水力发电站在今后的发展过程中需要不断的加强对同相同分支以及同相异分支的短路故障的保护力度。

d.同时,仿真的结果表明,零序横差以及裂相横差保护的故障动作效果之间具有较强的互补性,所以为了提高保护的效果,可以考虑将二者同时装设在同一个系统中。

1.3纵差保护分析

我们对发电机组中的各种不同分支的组合方式条件下的纵差保护的动作效果进行了效果的统计与分析,差动的门槛以及斜率的数值均与以上仿真工作中的条件相同。仿真的结果表明,纵差保护具有如下特点:a.完全的纵差保护不能够实现对于同相同分支以及同相异分支的短路故障的保护作用,但是可以实现对于2832中异相短路故障的完全保护动作;b.不完全的纵差保护对于各种的短路故障形式均具有较高的反映灵敏度,但是对同相同分支或者是同相异分支的故障的动作不够灵敏;c.对相间故障具有较高的灵敏度的保护是单套的不完全的纵差保护,但是能够实现对于异相短路故障100%动作率的只有双不完全纵差保护。

1.4联合保护方案分析

上述的各种保护方案在单独作用的情况下均有着一定的局限性,不能够收到令人满意的效果,所以需要研究横差保护与纵差保护协同作用的保护方案。通过对组合方案条件下可动作故障数的统计分析,我们得出了结论包括:

a.如果选用的是3种中性点侧的分支组合方式,那么最好选择12-34式的分支组合,以便达到最高的故障动作效率;

b.如果裂相横差与零序横差均不对这种匝间的短路进行反映,则不完全的纵差保护方案也不能够起到很好的保护作用或者是具有较高的动作率;

c.这种联合保护的方案对于异相的短路故障具有较高的动作率,几乎可以实现全部类型故障的动作,但是提高零序横差或者是裂相横差的保护门槛的时候,组合的保护方案并不能够显著的提高动作的效率,所以在现场值不确定的条件下为了提高保护的动作率,可以增加一套纵差保护,进而为异相故障提供双重化的保护效果。

篇4

多级水泵房自动化排水控制系统结构如图I所不。该系统采用三层网络结构,即信息层、控制层、设备层川。信息层由监控计算机、Web服务器、防火墙、客户端等组成。控制层由每个水泵房的PLC控制系统、触摸屏、环网交换机等设备组成,通过光纤工业环网进行通信。设备层由水泵开关柜、电动闸阀、电动球阀、压力传感器、水位传感器、温度传感器、电量变送器等组成。

1.2系统主要功能

多级水泵房自动化排水控制系统用于对8个水泵房的水泵及27台多级离心泵进行自动化控制,系统主要包括以下功能。

(1)采集数据。系统口1一采集水仓水位,出日压力,电动机电压、电流、功率,水泵温度,电动机运行状态,故障状态,闸阀位置信号,管道液位等数据。

(2)提高水泵效能。系统自动记录并累计水泵运行时间等参数,按一定规律自动启停水泵,使各水泵及其管路的使用率均匀分布。当水泵在启动或运行过程中出现故障时,系统自动停止故障水泵并投人备用水泵排水,实现水泵自动轮值工作,防止备用水泵长期不用造成损耗。系统还口1根据管路效率、水泵效率、电动机效率、排水系统效率等参数,实现排水系统在效率最高状态下排水。

(3)避峰填谷。系统根据水仓水位以及谷段、峰段供电电价时间段等因索,建立数学模型,根据水位和用电负荷,在用电低峰和电价在谷段时开启水泵,用电高峰和电价在峰段时停止水泵运行,以达到避峰填谷及节能的目的。水仓水位在超高水位时,自动开启水泵,防止水仓溢水。

(4)保护及故障报警。当系统发生故障或传感器监测点报警时,系统自动作出相应的停机处理。监控计算机上发出相应的文字及语音报警信号,并在启停水泵的水位段发出预警信号,在低段、高段水位分段报警。系统还口1一自动显不、记录或打印故障性质、故障地点及故障发生时间。

(5)曲线报表及动态图形显不。系统口1一自动生成电量统计、故障记录、操作记录、运行记录报表及水位曲线、温度曲线、压力曲线,并口1一通过图形动态显不水泵运行状态,显不水仓水位、水泵温度及电动机电流、电压、功率等参数。

(6)系统有无人值守、远程自动、手动检修、井下自动(一键启停))2种工作模式。

(7)每台水泵口1设置运行、备用、检修3种工作方式Al一直接通过监控计算机进行设定。

(8)系统为八级泵房接力式排水,相邻上下级水泵房之间存在联动关系。系统在无人值守模式下口1根据上下级水泵房水仓水位及开泵台数自动决定本水泵房开停水泵台数。

(9)系统通过Web服务器将监控imp面到局域网,用户在客户端登录后口1一对系统进行远程监控。

2系统关键问题及解决方案

2.1水泵引水方式

煤矿水泵房大多采用多级离心泵进行排水,大多数情况下水仓水位低于离心泵轴,因此不能采用自灌方式引水。该情况下一般采用2种引水方式:①在吸人管末端加装底阀,采用排水管路IA!水或地面引人水管直接向水泵注水,该方式需要克服底阀的阻力,水泵工作效率低。②采用抽真空方式。抽真空方式可通过射流泵将泵体的空气排出,该方式要求非常高的水流喷射速度,但多级水泵房进行接力式排水,上下级水泵房之间的落差较小,无法提供快速的喷射水流,如果从地面引高压水进行射流,则实施难度大,投资成本高;也可通过真空泵抽真空,该方式首先需要运行真空泵,将泵体内的空气排出,待负压满足要求后再开启水泵,另外需要安装检测设备,投资较大,控制节点多,加大了系统维护量,同时易导致系统不稳定。本系统采用引水罐的水泵引水方式,如图2所不。引水罐底部与水泵连通,引水罐顶部与吸水管相连,引水罐和水泵提前灌满水。当水泵启动时,泵壳内的水被甩出,引水罐内的水及时补充到泵壳内,使引水罐内出现负压状态。水仓内的水在大气压力作用下,通过吸水管流进引水罐及泵壳内,在离心力作用下完成排水。引水罐在某些情况下会出现水位降低情况,无法满足开泵引水的要求。鉴此,设计了引水罐自动补水功能,在电动闸阀和引水罐罐体之间安装补水电动球阀,在引水罐侧面安装管道液位计,实时检测罐体内的液位高度。开泵前,系统首先检测罐体内水位是否达到开泵水位要求,如果末达到则自动开启补水电动球阀,罐体内的水充满后,自动关闭补水电动球阀,进人自动开泵流程。实践证明,采用引水罐的水泵引水方式较传统的注水和抽真空方式具有更高的稳定性和口1靠性。

2.2多级联动功能

上下级水泵房之间每台水泵的开停具有复杂的联动关系。在无人值守模式下,系统需要根据每个水仓的水位变化及开泵数量实现水泵联动开停。在西门子S"I}FP7编程软件硬件组态NetPr沙几’中配置本地PLC与上下级PLC的通信协议及地址,在()1335中调用FC5,FC6模块实现相邻2个水泵房PLC之间数据(包括水泵运行状态、水位高低标志、水仓水位等)的发送及接收。多级联动程序流程如图3所不,无人值守模式程序流程如图生所不。

篇5

二、水泵接合器数量的确定

众所周知,水泵接合器的主要用途是当室内消防水泵发生故障或遇大火室内消防用水不足时,供消防车从室外消火栓取水,通过水泵接合器将水送到室内消防给水管网,供灭火使用。

《高规》7.4.5-1规定:“消防水泵接合器的数量应按室内消防用水量经计算确定,每个水泵接合器的流量应按10-15l/s计算:“这里指明水泵接合器的数量是按室内消防用水量经计算确定。笔者认为这一点不好照搬,我们从水泵接合器用途不难知道,水泵接合器是消防车从室外消火栓取水来增补室内消防用水不足的接口。如果室外消防用水量远远小于室内消防用水量时,那水泵接合器设那么多是没有意义的,笔者最近做一个工程--厦门国际会展中心,按一类高层建筑设计,室外消防用水量为30l/s。但其室内大水滴喷淋系统设计用水量为133l/s,室内水幕喷淋系统设计用水量为167l/s,室内消火栓系统设计用水量为30l/s,这些用水量按火灾延续时间计算均储存在地下水池中。按规范7.4.5-1规定,水泵接合器的数量应分别设10个,12个和2个。12个水泵接合器要12辆消防车从12个室外消火栓中取水供给,而室外的供水条件上远远达不到这个要求的,即使考虑到由消防车距离运水,那也不可保证大水滴淋系统和水幕喷淋系统的正常工作。因这两个系统要正常工作时的用水量很大,不可能在短时间内有那么多消防车远距离运水来达到同时供水,如时间过长,那这两个系统也失去作用,最后时间一长就靠消火栓来灭火,因此笔者认为应对一些灭火系统可以适当减少水泵接合器的数量,可以分别设3-5个就足够了;而对消火栓系统应重点保证,故水泵接合器的数量按室内消防用水量计算的同时应考虑室外供水能力综合确定,达到既节省投资的目的,同时又保证消防的安全可靠性。

三、消防水池容积的确定

消防水池是储存消防灭火用水的构筑物,容积的确定关系着灭火的安全性。《高规》7.3.2规定:“市政给水管道和进水管或天然水源不能满足消防用水量;市政给水管道为枝状或只有一条进水(二类居住建筑除外),只要符合上述条件之一时均应设置消防水池。“《高规》7.3.3对水池的容积作了规定:“当室外给水管网能保证室外消防用水量时,消防水池的有效容积应满足在火灾延续时间内室内消防用水量的要求;当室外给水管网不能保证室外消防用水时时,消防水池的有效容量应满足火灾延续时间以内消防用水量和室外消防用水量不足部分之和的要求。“一些地方针对这两条规定,却有不同的设计方法。

在福州地区,室内及室外消防用水量均储存了消防水池中,原因是市自来水公司无法保证市政供水的安全性,这显然会增大消防水池的容积。如每一幢高层建筑均要把室内及室外消防用水量储存在消防水池,那将会造成很大的浪费,笔者认为是不可取的。

厦门地区是当室外给水管网能保证室外消防用水时,消防水池只满足室内消防用水量。一般做法为:从市政引两根进水管构成室外环状供水,以保证室外供水的安全性,消防水池设在地下室,只考虑室内消防用水量,但不允许考虑火灾时水池的补水量(规范没有作明确规定)。故笔者认为这种做法不妥,这样导致一幢高层公共建筑地下室一般都储存了四、五百吨的消防用水,一般占地均有二百多平方米。像厦门国际会展中心,地下室储存了2600吨的消防用水,水池占地890平方米,笔者认为这种做法很不经济,仅工程造价就增上百万元;同时又增大管理的难度,如要清洗,定期换水等,又造成水资源的浪费;如果消防用水和生活用水合建水池,那必然会造成生活二次供水的水质污染。所以笔者认为既要保证消防安全,又要降低工程造价及管理方便,首先要加强自来水公司的责任度,保证城市环状供水的安全可靠性,然后适当加大高层建筑的进水管,使得进水管在保证高层建筑的室外消防用水量的同时能够在火灾时补充消防水池的水量。这样经计算可以适当减少消防水池的容积,达到经济合理。同时笔者建议邻近高层建筑共用消防水池,对这一点希望有关市政部门能够牵头,对共用水池进行合理地管理,这也需要有关部门进行合理公正的规划控制。

香港在这一点上值得我们学习,香港的建的消防水池就很小,相当于一个水泵吸水井,容量一般不超过50吨,他们只保证初期火灾的用水量,中、后期火灾的用水量直接靠市政管道的供给,大厦本身只提供提升设备及市政管道的接口,在高层建筑林立的香港就可节约了很多的建筑面积供各种用途使用,我们应向这一方面学习与借鉴。

四、消防给水系统的形式

对高层建筑消火栓给水系统形式的选择,首先我们应保证系统的安全可靠性,其次我们应尽量选用经济合理的供水形式。

按服务范围分:独立的消防给水系统和区域集中的消防给水系统笔者建议尽量采用区域集中的消防给水系统就如上述所讲:邻近高层建筑共用消防水池,但这往往得不到推广。主要原因是各开发商不能协调好,这就要求有关部门能够牵头,共同解决管理及费用的问题,使几方面都能够接受。

按高度来分:分区水和不分共给水

当消火栓栓口的静水压力不大于0.80MPa时,采用不分区给水形式,当消火栓栓口的静水压力大于0.80MPa时,采用分区给水形式。分区供水方式又包括:并联分区供水方式;串联分区供水方式;减压阀分区供水方式。

关联分区供水方式:各个分区互不干扰,自成体系,对系统更加安全可靠,但造价高,维护管理较困难。

篇6

《高规》规定“同层相邻两个消火栓的水枪的充实水柱达到被保护范围内的任何部位。”在某些条形高层建筑中,其端部是否可以采用双阀双出口消火栓,从而省去1组单阀消火栓的设置呢?虽然在中国建筑工业出版社出版的《给水排水设计手册》(第二版)中提出“在每层楼的端部可采用双阀双出口消火栓”,但是《高规》中明确规定“十八层及十八层以下,每层不超过8户、建筑面积不超过650m2的塔式住宅,当设两根消防竖管有困难时,可设一根竖管,但必须采用双阀双出口消火栓。”,且以强制性条文的形式予以规定。因此,在设计中我们应该力求避免出现这种情况。

2、正确计算消火栓充实水柱长度,合理布置消火栓。

《高规》规定“消火栓的水枪充实水柱应通过水力计算确定,且建筑高度不超过100m的高层建筑不应小于10m;建筑高度超过100m的高层建筑不应小于13m.”对于建筑高度不超过100m的高层建筑,设计中我们可以根据水枪最小流量5L/s,水枪喷嘴口径19mm,查有关设计手册得出水枪充实水柱长度为11.3m;对于建筑高度超过100m的高层建筑,我们可以调整水枪流量以达到满足规范所需要水枪充实水柱长度。而在实际中,高层建筑标准楼层净高考虑经济因素一般控制在4.0m以下,如果根据公式Sk=(H1-H2)/SINα计算水枪充实水柱,当层高取4m,水枪上倾角取45°时,计算Sk为4.24m,远远达不到规范要求,即层高限制了充实水柱的长度。但是,我们可以调整水枪上倾角来达到提高充实水柱长度的目的,因为规范及有关手册提出水枪上倾角不应大于60°,并未规定其下限角度值。笔者通过计算,当层高仍旧取4m,充实水柱取11.3m时,水枪上倾角为14.87°。况且《高规》有关条文说明解释道,口径19mm水枪的充实水柱小于10m时,由于火场烟雾大,辐射热高,扑救火灾有一定困难,所以水枪的充实水柱长度首先应该计算,同时又要满足《高规》规定各种高层建筑水枪的充实水柱下限值。按照水枪充实水柱长度,我们可以确定消火栓保护半径,但是在设计中我们不能简单的用保护半径画圆来布置消火栓。因为高层建筑平面中隔墙、内走道、门的布置会影响消火栓的使用,设计中应该用水龙带长度、充实水柱的水平投影去校核消火栓保护半径最远点。

3、高层建筑消防电梯间前室必须设消火栓。

《高规》规定“高层建筑消防电梯间前室必须设消火栓”,那么设于前室的消火栓可否保护相邻部位呢?《高规》的条文说明对此并没有具体说明,但是《建筑设计防火规范》中对“消防电梯前室应设室内消火栓”的条文说明中明确指出:消防电梯前室内消火栓是为便于消防队员使用消火栓并开辟通路,不能计入总消火栓数内。因此在设计中我们通常将其视为消防电梯间前室专用,而不保护其余部位。而目前如上海等部分地方消防设计规定,高层建筑的防烟楼梯间前室也需设消火栓。

4、正确设置消防水池及保证高层建筑两路供水。

通常在高层建筑中,在市政供水不能满足消防用水量要求或市政为单路进水时,规范都要求设置消防水池。计算消防水池容积时,应将火灾延续时间内室内各消防用水量之和减去市政进水管的补水量。补水时间可按最长的火灾延续时间计。如果要考虑室外消防用水量或是设置生活、消防共用水池,则还需要补充相应的用水量。当设置生活、消防共用水池时,不能利用建筑物的本体结构做水池池壁以及池底,以防止生活水质污染。对此,《强制性条文》中已经明令禁止。同理,如果高层建筑屋顶设有生活、消防共用水箱,也应满足该要求。从消防水池接入水泵间的引入管应该保证不少于2根,如果在接入泵房前就将引入管汇合为一,对消防水池而言,仅为单路供水,存在供水的安全隐患。同时,从消防水泵接入各消防管网的供水管也应保证两路。

5、消防水泵出口处的放水阀和稳压回流措施。

《高规》规定“消防水泵的供水管上应设置DN65的放水阀门”,目的是便于水泵检查试验时排水。排水量小时,可直接排至泵房集水池;排水量大时,可排回消防水池。同时,消防水泵出口还需要考虑一定的稳压回流措施。因为在实际使用中,会出现消防水量小于水泵选定流量值的情况,此时水泵扬程远大于设计值,在无任何回流措施保护下,消防管网压力过大,容易造成事故。简单的做法是在供水管上装设安全稳压阀,在管网超压时,可以通过回流管泄压,将回流水排至消防水池;在管网压力不稳定时,亦可稳压。

6、消防管网布置成环的问题。

高层建筑中一般要求消火栓系统布置成环状管网,在某些大面积的建筑内,由于各方向均布置了消火栓和消防立管,此时我们可将底层与顶层的消防干管均连成水平环路,立面又形成以立管相连的竖直环路,这种立体管网对消防供水最为安全。可是对于某些条形建筑,设计中我们只要将管网竖向成环即可,不必刻意追求这种立体管网,如果强行将消防干管绕成环路,将人为的使系统复杂化,且无太大意义。

二、高层建筑自动喷水灭火系统设计

1、走道喷头的布置。

在高层建筑中,为了美观往往设有吊顶,隐藏结构梁及各专业管道。而走道通常是各种管道最为集中的地方,特别是设置集中空调的高层建筑,结构梁、空调风管以及分层布置的给排水、电力管线等使设有吊顶的走道净空降低,若其吊顶形式为闷顶,则其闷顶的净空高度极有可能大于800mm.而《自喷规范》规定:“净空高度大于800mm的闷顶和技术夹层内有可燃物时,应设置喷头。”这是我们在设计中容易忽视的地方。由于走道内管道众多,设计中往往会出现直接在自喷配水管上、下接喷头的错误做法。首先这种接法不符合配水支管允许设置喷头数量(≤8个)的规定,其次走道内的自喷配水管往往管径较大,它缺少接小管径喷头的管件,在安装上也有弊病。所以,走道内的喷头应该从配水支管上接出为宜,在管线的布置上应与暖通、电力专业密切配合。

2、高层建筑部分层自喷配水管入口应按要求减压。

新《自喷规范》规定:“管道直径应经水力计算确定。配水管道的布置,应使配水管入口的压力均衡。轻危险级、中危险级场所中各配水管入口的压力均不宜大于0.4MPa.”而老《自喷规范》对此并无具体要求。高层民用建筑火灾危险等级一般为中危险级,自喷水泵是根据最高层最不利喷头工作压力经过计算而选择。笔者在近几次设计中计算的最不利层配水管入口处所需压力均不大于0.3MPa(最不利喷头工作压力按0.05MPa计),由于自喷水泵的扬程还需考虑建筑高度、水力损失等因素,故必使高层建筑的底部几层配水管入口处压力大于0.4MPa.因而在设计时,在自喷水泵扬程的确定上不能一味放大了事,应该在自喷平面布置完毕后通过水力计算校核水泵扬程,并在此基础上校核底部几层配水管入口处压力。

3、正确设置自喷末端试水装置,解决末端试水装置排水问题。

《自喷规范》要求“每个报警阀组控制的最不利点喷头处,应设置末端试水装置,……末端试水装置的出水,应采取孔口出流的方式排入排水管道。”在设计中,我们通常不会忘记末端试水装置中试水阀、压力表的设置,但是往往忽视试水接头的设置,特别是试水接头出水口的口径没有交代。其实目前市场许多消防设备生产厂家,如上海金盾消防安全设备有限公司,可以生产成套的末端试水装置(ZSPP末端试水装置,含试水阀、压力表、试水接头),我们只需要根据设计要求,按照试水接头出水口的流量系数选择定型产品即可。此外,试水接头不能与管道或软管直接连接,影响孔口出流的效果;自喷排水管也应设计成间接排放,以免下水道气体通过排水漏斗散入室内,影响室内空气品质。

4、报警阀的进出口均应设置信号阀。

新《自喷规范》要求“连接报警阀进出口的控制阀,宜采用信号阀。”一般在水流指示器及报警阀进口设置信号阀已经是常规设计,很少遗漏。但规范要求在报警阀出口也要设信号阀或带锁具的阀门,目的是防止误操作。

5、消防增压泵的设置问题。

篇7

随着消防问题越来越受到重视,建筑给排水中的消防问题也同时受到了同行们的关注,消防设计规范作为设计人员必须遵守的法律条文,也让设计人员开始更多的学习和思考,本人最近在网易给排水在线消防板块担任了版主,通过和广大同行网友的交流,发现了很多规范上面的语焉不详之处,通过讨论也难以得出明确的结论,有些问题值得拿出来与各位同行商榷,希望能够和大家交流,得到大家批评和指正,同时能够引起规范编制组各位专家的注意,在以后的规范编制修改中考虑到这些问题。

本人认为,《规范》的编制里面有个平衡性的把握问题,太粗了不易于具体的操作执行中的把握,太细了又难免有些地方不能照顾到方方面面,让一些具体有困难的设计难于真正贯彻。因为规范的条文是用来直接在设计中体现的,所以应该具有可操作性,应该十分明确,如果有些地方不能明确的,如规范修订中各方具有争议的,建议就应该提高到上一层做出上面一层应该保证到的,而不应语焉不详、含糊其辞的列出一条,这样最让设计者和审图、消防审查人员和各方人员难于把握,造成各方理解产生歧义,首先是设计人员在方案阶段就无从把握,举个例子,今天我这样认为,做好方案,消防审查某个人员认为可行,过两天时施工图做好了,审查人员换了个人,对某条规范的理解不一样,施工图的工作变化就大了,这样的事情经常发生,造成很大的浪费,非常不利于大家的工作,造成各方之间的矛盾,同时也给某些腐败环节提供机会。违反了规范编制的初衷。

现打算将平时设计中的一些问题理出,与大家一起分析探讨。限于篇幅,打算分几篇文章逐段论述,本次仅讨论一点,关于屋顶水箱设置的问题:

《建筑设计防火规范》GBJ16-87(2001版),以下简称《建规》“第8.6.3条设置常高压给水系统的建筑物,如能保证最不利点消火栓和自动喷水灭火设备等的水量和水压时,可不设消防水箱。

设置临时高压给水系统的建筑物,应设消防水箱或气压水罐、水塔,应符合下列要求:

一、应在建筑物的最高部位设置重力自流的消防水箱;

二、室内消防水箱(包括气压水罐、水塔、分区给水系统的分区水箱),应储存10min的消防用水量。当室内消防用水量不超过25L/s,经计算水箱消防储水量超过12m3时,仍可采用12m3;当室内消防用水量超过25L/s,经计算水箱消防储水量超过18m3,仍可采用18m3。

1、在以上两条中首先有关于临时高压和常高压的定义问题,临时高压大家都知道,而常高压规范在条文解释中所述的“即设有高位水池或区域高压给水系统”中的区域高压给水系统,由于没有明确的界定,所以在实际设计中难于把握,首先说区域概念的范围难于把握,到底多大才算是区域,是几栋楼还是一个小区还是几个小区抑或是一片厂区,均不得而知,所以在平时的设计中只有高位水池可以得到大家的一致认可,而区域高压的理解有很多异议,窃认为其实在满足了二级负荷的前提下,如果消防设备齐全,有独立的两路水源供水,或是一路水源但是有含室内室外消防水量的消防水池,平时有专人值班的消防泵房或是消防控制中心,即可以认为是常高压系统,因为即使消防作为重中之重,它的可靠性把握,也有一个“度”的问题,因为任何安全保险都不是绝对的,因为即使是规范定义的常高压高位水池,也有检修维护和清洗的时间。

以上是本人粗浅的看法,并不认为一定正确,但是还是认为如果无法明确那么不如不写出,至少不会造成大家在这上面费尽思量,仍然找不出统一的认识。

2、再者就是“室内消防水箱(包括气压水罐、水塔、分区给水系统的分区水箱),应储存10min的消防用水量”,这里十分钟的消防水量我们认为应该包括喷淋等其他消防设备的用水量,然而按照《自动喷水灭火系统设计规范》GB50084-2005(以下简称《喷规》)“10.3.1采用临时高压给水系统的自动喷水灭火系统,应设高位消防水箱,其储水量应符合现行有关国家标准的规定。消防水箱的供水,应满足系统最不利点处喷头的最低工作压力和喷水强度”这里面说的“系统最不利点处喷头的最低工作压力和喷水强度”到底是指最不利点一个喷头的水量还是同10.3.2中“最不利处4只喷头在最低工作压力下的10min用水量”,还是最不利处整个保护面积里面10分钟的用水量,这个问题无论在《建规》还是《喷规》或是即将出版的《建规》送审稿中均没有一个明确的说法。

举个例子,如果一栋带地下停车库的多层综合楼,有喷淋系统,采用中危Ⅱ级的喷淋强度计算,喷淋水量按照最不利点的保护面积来计算,假如水量是30l/s,具体根据喷头布置的疏密及选用管径的大小有些差异,假如室内消火栓系统水量是10ls/,如果喷淋按照整个保护面积30l/s的流量计算10分钟的水量已经是18立方了,那么由于“当室内消防用水量超过25L/s,经计算水箱消防储水量超过18m3,仍可采用18m3”无需再计算其他水量即可选取18m3水箱了,如果按照“最不利处4只喷头在最低工作压力下的10min用水量”计算那么4只喷头的水量应该在5l/s左右,即水箱需要在消火栓用水量10×10×60=6m3和下加上5×10×60=3m3的水量,为9m3,与前面所述18m3有很大的差异。

我们平时设计中认为因为少有水箱能够满足喷淋要求水头的,所以都是需要设增压系统的,所以罐里有十分钟的水量,水箱就不考虑了,但是我们注意到《喷规》10.3.2条说的“不设高位消防水箱的建筑,系统应设气压供水设备。气压供水设备的有效水容积,应按系统最不利处4只喷头在最低工作压力下的10min用水量确定。”那么其中的话严格理解是不设消防水箱时气压供水设备的有效水容积,应按系统最不利处4只喷头在最低工作压力下的10min用水量采用,然而即使采用了气压供水供水设备,在有水箱时水箱是否还应该考虑喷淋储水量,如果我们以规范字面意思理解,还是需要。

篇8

Abstract: This article mainly discuss the difference between the stabilized high

pressure fire water system and the temporary high pressure fire water

system, it also gives some opinions about the setting of fire water tank。

Key words: Stabilized high pressure fire water system Temporary high pressure

fire water systemPressure maintainess pumpFire water tank

中图分类号:TU991 文献标识码:A文章编号:

一、引言

随着近年来我国建筑行业的迅速发展,新建、改建、扩建建筑增涨速度很快,这些建筑的室外消防给水系统设计上一般采用低压给水系统,而室内消防给水系统设计上因为无条件设置常高压消防给水系统或是设置常高压消防给水系统成本过高而临时高压消防给水系统安全可靠性相对较低等问题而大部分采用了稳高压消防给水系统。但是现行主要国家消防规范没有明确稳高压消防给水系统这个概念,使得设计师在设计时缺少相关的依据。

二、我国建筑消防给水系统分类

按现行《高层民用建筑设计防火规范》GB 50045-95(2005年版)[1](以下简称高规)规定,我国建筑消防给水系统按压力分类有:常高压、临时高压、低压三种系统。高规对消防给水系统分类作了解释同时将稳高压系统划为了临时高压系统,详见条文解释7.1.3 条“还有一种情况,目前较广泛应用于消防给水系统,即管网内经常保持足够的压力,压力由稳压泵或气压给水设备等增压设施来保证。在水泵房(站)内设有消防水泵,在火灾时启动消防水泵,使管网的压力满足消防水压的要求,此情况也叫临时高压消防给水系统”。《建筑设计防火规范》GB50016-2006(以下简称低规)[2]《自动喷水灭火系统设计规范》GB 50084—2001(2005 年版)[3](以下简称喷规)虽未对系统分类作规定,但三本规范均为国家公安部主编建设部批准的,对其中的系统分类规定应该是相同的,即稳高压消防给水系统属于临时高压消防给水系统的一种。

三、稳高压与临时高压消防给水系统区别

笔者对高、低、喷规将稳高压消防给水系统划为临时高压消防给水系统存在异议,因为两系统之间存在如下主要区别:

临时高压消防给水系统管网内最不利点平时水压和流量不满足灭火的需要,在水泵房(站)内设有消防水泵,在火灾时启动消防水泵,使管网内的压力和流量达到灭火时的要求的系统;而稳高压消防给水系统的管网内平时是充满有压水的,当系统管网压力由于漏水及其它原因下降至设定的低压启泵值后稳压泵就会启动开始向管网内注入压力水直到管网压力上升到设定的高压停泵值后停泵,此时到稳压泵下一次启动期间管网的压力将由气压罐维持,在消防主泵启动前完全能满足管网内最不利点消防压力需要。

临时高压消防给水系统有3种启动水泵方式:泵房手动启动、由消防控制中心发出信号启泵、由消火栓箱处的启泵按钮启动(消火栓系统)以及压力开关等信号启动(自动喷水灭火系统)。而稳高压消防给水系统除以上3种启泵方式外还可由压力联动装置来启动消防主泵,因此更能可靠地保证火灾发生后消防系统能立即进入到工作状态。

由此可见在消防主泵启动前稳高压消防给水系统与临时高压消防给水系统是有本质上的区别的,其可靠性远远大于后者,所以应跟临时高压消防给水系统区分开来独立分为一种系统,即消防给水系统应分为常高压、稳高压、临时高压、低压四种系统。实际上国外工程公司经常按照稳高压或常高压消防给水系统设计工程[4], 同时国内也有地方和行业开始将稳高压消防给水系统概念列入消防设计规范中,其中有上海市建交委批准的上海市《民用建筑水灭火系统设计规程》DGJ08-94-2007[5](以下简称上民规)以及住房与城乡建筑批准的《石油化工企业设计防火规范》GB50160-2008[6](以下简称石防规)都对稳高压系统的“身份” 予以了确认,其中上明规定义“消防给水管网中平时由稳压设施保持系统中最不利点的水压以满足灭火时的需要,系统中设有消防泵的消防给水系统。在灭火时,由压力联动装置启动消防泵,使管网中最不利点的水压和流量达到灭火的要求”; 石防规定义为“采用稳压泵维持管网的消防水压力大于或等于0.7Mpa的消防给水系统”。两规范对稳高压消防给水系统定义基本相同,只是石防规定义没上民规详细,同时由于行业的需要规定了系统的压力不小0.7Mpa。

四、稳高压消防给水系统高位消防水箱的设置

对于稳高压消防给水系统高位消防水箱的设置问题,上明规(6.5.2条)规定设稳高压消防给水系统的多层建筑可不设置高位消防水箱,而石防规未对稳高压消防给水系统的高位消防水箱设置作规定并指出未作规定部分见国家规范要求(即按临时高压系统要求设置)。而低规第8.44条、高规第7.4.7 条及喷规第10.3.1条都规定采用临时高压给水系统时应设高位消防水箱,储存火灾前期10min 的消防用水量,由此可见对于高位消防水箱的设置各规范规定都不一样。

由于稳压系统的存在,消防给水系统管网平时都充满有压水,且压力一般都高过高位水箱水重力产生的静压力,所以高位水箱的水无法通过重力自行进入消防给水系统管网中,而只为稳压系统(稳压设备设置在高位)提供用水,这跟稳压系统(稳压设备设置在低位)由消防水池提供用水作用一样,从这点来看稳高压消防给水系统的高位消防水箱可以不应设置。只有当稳压系统失效(实际上此时系统变为了临时高压系统)系统管网压力低于高位水箱水重力产生的静压力时高位消防水箱的水才能通过重力作用自行进入到消防给水系统管网中。由此可见在稳高压消防给水系统中,高位消防水箱的作用被大大削弱了,且在实际工程设计中经常会遇到一些特殊建筑,如笔者之前设计的一些厂房、物流仓库、高架地铁站等建筑,其屋面多为钢结构屋面,结构承重较小且为斜屋面或是弧形屋面,导致高位消防水箱设置非常困难。综合以上各点,笔者认为稳高压消防给水系统宜结合工程具体情况设置高位消防水箱,即在受条件限制时可以不设,但在有条件的情况下还是应该设置,毕竟高位消防水箱重力供水可靠性是很高的。

五、结束语

稳高压消防给水系统因其较低的造价(与高压消防给水系统比)和高度的可靠性(与临时高压消防给水系统比)在工程消防设计中获得广泛的应用。但其概念一直没被国家规范所认可,虽然在一些地方和行业规范里面得到了认可,但地方和行业规范都有其地域或是行业的限制而适应范围很有限,而国内工程消防设计的主要依据还是高、低、喷规等国家消防规范。因此笔者希望国家消防规范在后续的修订过程中能将稳高压消防给水系统从临时高压消防给水系统中独立出来成为单独的一种消防给水系统,同时增加稳高压消防给水系统宜设置高位消防水箱以及其它一些相关的规定。

参考文献:

[1]:《高层民用建筑设计防火规范》GB 50045-95(2005年版)

[2]:《建筑设计防火规范》GB50016-2006

[3]:《自动喷水灭火系统设计规范》GB 50084—2001(2005 年版)

篇9

一.引言:

水利工程仿真模拟设计设计软件采用多专业协同设计软件,在同一数据库平台下,能解决三维地址地形建模(DTM)与地质建模(DGM)、大坝选址、水工设计、土建施工、机电安装等一系列关键问题,在很大程度上提高仿真精度和时间的要求,完成覆盖软件生命周期的全过程,达到减少设计周期、加深设计深度、提高设计质量、控制成本及提高企业革新等目的。

二.理论分析与设计:

(一)目前水利工程仿真模拟设计软件发展状况:

1.自20世纪80年代以来,已经出现了图形级的标准,如PHIGS,GKS;图形交换级的标准,CGI,IGES以及近年来正在不断完善的STEP等。STEP标准覆盖了整个软件生命周期的数据交换标准,对协同设计,并行施工,集成制造等具有重要意义。

2.智能化是又一特点,它首先体现在把设计领域的专家知识和工程技术人员的经验融入到CAD系统中,使之成为可以继承的知识库;其次是其本身的智能化,如人机接口,数据采集,自动精模,方案选优,仿真模拟以及多媒体技术应用等等。

3.集成化是一大发展趋势,一方面CAD技术与CAPP(计算机辅助工艺流程规划),CAM(计算机辅助制造)以及MIS(管理信息系统),PDM(产品数据管理),MRP(制造资源管理)等系统相集成。另一方面随着当前全球化发展,使得人们在internet上构造CAD/CAM集成化成为可能。

4.科学计算可视化,虚拟设计,虚拟制造技术是设计人员进行对产品的时间操作,以及进行各种模拟实验分析,可以及早看见产品外型,从而可以帮助设计多方位地观察与平审设计成果。

(二)水利工程仿真模拟设计软件概念:

就是利用计算机强有力的计算功能与高效的图形处理能力,来直观,智能的辅助过程设计人员进行过程设计与分析的一种技术。它同时实现过程的可视化与智能化。它包括工程设计条件可视化(地质,水文,地形,枢纽布置及施工条件等可视化),设计建模可视化,计算分析过程可视化与成果设计可视化(三维真实感图形显示及空间数据的图表,文挡输出)。

(三)水利工程仿真模拟设计软件目标:

力求把水利工程的设计、管理主要涉及到的水文泥沙、地质、地表(含规划、环保)、水工、施工、机电等专业的设计工作的过程、相互之间的关系和结果通过先进的计算机平台及辅助设备以可视化的形式展现出来,达到虚拟设计/虚拟制造的目的。协同设计的基础是建立一个统一的数据库,包括地质地形的空间数据、水工建筑物(大坝、厂房等)的三维实体数据、施工计划组织的实时数据以及真实条件下的计算机仿真和实时渲染数据等。与以前的技术不同,由于建立在统一的数据库平台之上,任何修改都将及时地反馈给整个工程的相关部门和人员(权限许可),并及时地通过三维图形的方式展现出来。虚拟设计/虚拟制造技术的应用和实时仿真完全不同于以前的动画渲染,它是满足设计详细要求的具体施工计划的真实三维显示。

(四).水利工程仿真模拟设计软件需要解决的问题:

1.地质、地形勘测

2.环境及水库分析

3.水工建筑物及枢纽设计

4.施工组织设计

5.机电设计

6.工程概预算

7.工程监测

(五).水利工程仿真模拟设计软件解决方案:

1.在地质勘探方面:可以利用航拍、钻探、"3S"技术(即GISGPSRS)得到的地形数据,直接生成地形的三维模型包括地下三维地质情况的分布,便于直接了解复杂的地质构造情况,方便地进行地形模型的建立,作为坝体、地下厂房、导流洞等建筑物设计的原始依据。

2.在三维地形表述的基础上,建立水利水电工程的全三维模型,包括坝体、导流洞、泄洪洞、地下厂房等建筑以及与此相关联的设备、管线的布置等仿真模型。这些设备与地形数据完全相关,从而构成一个复杂的水利水电系统,真实反映工程建成以后的面貌。

建立的三维模型还能够输出到有限元分析软件中,进行结构强度的预测。三维模型不仅可以与地形模型很好地关联,而且工程模型也还是参数化的,一旦设计有新的更改,只需要修改相应部分的三维模型,与此相关的设备、管线布置以及由三维模型自动投影生成的二维工程图(符合目前图纸标准)都会得到相应的修改,从而保证了设计的唯一性和相关性,快速地完成多个设计方案的对比和选择。

3.工程概预算方面:通过建立大坝真实全三维实体数值仿真模型,能够完全精确模拟大坝形体的各个细节,包括孔口部位、进水口、闸门槽等。水利工程计算机辅助设计能够精确计算各坝段各截面的面积、各点的坐标以及体积,其精度满足大坝混凝土工程量计量要求。将坝体内部各种材料的配合比及使用范围输入到坝体三维数值仿真模型中,从而使精确计量程序不仅能够计算坝体的工程量,而且还能够计算不同材料的用量,并进一步为概预算及施工期业主的材料供应计划提供科学的依据。

4.施工方案动态仿真结果分析及查询通过建立的三维实体数字模型,计算出开挖方量及填筑方量,对工程进行预测和模拟,动态展示山体开挖和大坝浇注的全过程,得出详细的施工强度和施工顺序等重要指标。使工程的项目管理和进度分析达到实时控制与动态管理,以便科学指导工程施工,辅助业主和监理工程师进行有效的决策。

计算机模拟系统模拟混凝土施工过程,不仅可全面、周密地反映各种影响混凝土施工的因素,而且改变施工参数、修改方案比较及敏感性分析均比较容易,可完全弥补传统工程类比法的缺点。采用计算机模拟施工方案成功解决了过去依靠人工手段无法解决的许多难题,能大大提高了设计人员和项目管理人员的效率,取得巨大的技术经济效益。

根据数字化工程施工过程中的一般规律、施工工艺和流程、合同文件、技术规范以及实体特定的结构形式、施工条件的特定要求,利用本模块建立系统分析模型和模拟计算数学模型。设计相应的数据库管理、数据录入及编辑、大坝模拟施工过程计算、图形处理、报表自动生成及分析、查询以及菜单控制等系统,集成在统一界面下完成所有的功能。

(六).水利工程施工模拟界面设计:

主界面由部分组成,分别是溢洪道土石方开挖、溢洪道土石方开挖进度合计、大坝混凝土浇筑进度、大坝混凝土浇筑进度合计。这四部分从数据库中读取数据并动态的显示出来。包括一些重要的施工数据如:层号、厚度、体积、高程、开挖(浇)时间、结束时间等。点击“显示设置”来设置需要显示或者隐藏的对象,达到最好的视觉效果。这些表既可以用于显示,也可用于查询。

(七).水利工程仿真模拟设计软件开发环境:

1.软件环境:系统采用Windowsxp/2000/98作为工作平台,开发应用软件有VisualC++6.0,AutoCAD2000以上均可,ArcViewGIS,MSExcel,MSAccess,3dMAX,GIS与GPS的系列软件等等。

2.硬件环境:考虑到系统功能中图形数据处理量大,与三维图形处理分析操作需要,推荐配置:PentiumIV1.4G+512MB内存+真彩色显示卡(3D加速功能)+10G硬盘,或者更高配置为好。.实例应用与总结展望:

水利工程仿真模拟设计软件采用专业协同设计软件水利工程计算机辅助设计软件,在同一数据库平台下,能解决三维地址地形建模、大坝选址、水工设计、土建施工、机电安装等一系列关键问题,在很大程度上提高仿真精度和时间的要求,完成覆盖软件生命周期的全过程,达到减少设计周期、加深设计深度、提高设计质量、控制成本及提高企业'''');">企业革新等目的。

用水利工程仿真模拟设计软件建立真实三维地形地貌模型(DTM)及三维地质模型(DGM)并行三维水工设计(大坝模型、强度计算等)建立整个水利水电系统模型(包括坝体、导流洞、泄洪洞、地下厂房等建筑以及与此相关联的设备、管线的布置)工程概预算三维工程施工仿真及工程监控在统一的数据库平台上完成以上功能,涵盖从草图设计到工程完工全过程,满足虚拟设计/虚拟制造的要求。

水利工程仿真模拟设计软件在水电工程设计过程中,从地质--坝工--厂房--枢纽及施工组织设计模拟都能系统准确地反映实际设计中的一般规律和特点。因而,采用本系统进行多专业协同可视化设计与指导施工,使各工种各工序的衔接、资源的分配、材料的供应都是均衡地有节奏地进行,从而使水电工程的勘测、设计与施工管理达到国际一流水平。相信未来的水利建设将是计算机设计的新领域,而不是象传统的水利设计那样耗时耗力耗资耗人。未来的水利规划设计管理完全实现自动化。计算机在水利上的利用有着广阔的发展前境需要我们一代代水利人的共同努力。

以下是三峡水电站设计应用实例:

参考文献:

1.黄健全,罗明高,胡雪涛.实用计算机地质在制图.北京:地质出版社,1998

2.张菊明.三维地质模型的设计与显示.中国数学地质进展,1995,7

3.康凤举.现代仿真技术及其应用.北京:国防工业出版社,2001

4.水利概论河海大学出版社

篇10

该工程位于贡水左岸支流桃江下游赣县大田乡夏湖村境内,距赣县县城约28Km。桃江流域属副热带季风气候区,流域内各地多年平均气温19.4℃,极端最高气温41.2℃,极端最低气温-6℃,多年平均蒸发量1576.2mm。

工程是由挡水坝、溢流坝、河床式发电厂房、船筏道及升压开关站等建筑物组成。

本工程的主要消防对象是水电站建筑物及其机电设备。其中水电站建筑物的消防设计含主厂房、副厂房、主变压器场(开关站)、高压开关室、厂用屏配电室、油库、机修车间和坝区等。除检修期外,水电站及其机电设备一般都处于生产运行状态。

1.2消防设计依据和设计原则。

本工程消防设计依据国家、行业颁布的下列现行规程规范进行:

(1)水利水电工程设计防火规范(SDJ278-90)

(2)火灾自动报警系统设计规范(GB50116-98)

(3)建筑设计防火规范(GB50016-2006)

(4)自动喷水灭火系统设计规范(GB50084-2005)

(5)建筑灭火器配置设计规范(GB50140-2005)

(6)二氧化碳灭火系统设计规范(GB50193-93)(99年版)

(7)电力系统设备典型消防规程(GB5027-93)

(8)采暖通风与空气调节设计规范(GB50019-2003)

(9)水力发电厂机电设计技术规范(DL/T5186-2004)

(10)中华人民共和国消防法(1998-04-29)

(11)火灾报警控制器通用技术条件(GB4717-93)

(12)水库工程管理设计规范(SL106-96)

为贯彻“预防为主,防消结合”和确保重点、兼顾一般、便于管理、经济实用的方针,并结合居龙滩水利枢纽工程的具体情况,确定了如下基本设计原则:

在消防区内,按规范要求统一规划畅通的安全通道,设置安全出口及其标志;

以生产重要性和火灾危险性设置消防设施和器材,特殊部位按防火规范采取其它消防措施;

在电站设置消防控制中心(计算机房旁)和火灾报警系统,消防电源采用双可靠独立电源;

采取消防车、消火栓、CO2灭火和干粉灭火器四种灭火方式,消防用水取自可靠而充足的水源;

设置通风排烟系统;

选用阻燃、难燃或非燃性材料为绝缘介质的电气设备或采取其它保护措施以防止或减少火灾发生;

有火灾危险性设备之间,采用耐火材料制成的墙或门隔离,孔洞用耐火材料封堵以防止火灾的漫延与扩散。

1.3消防总体设计方案。枢纽总体配备一辆消防水车,若遇重大火灾时,则由县消防部门支援扑救。工程消防系统按其生产及防火功能要求分为主厂房、副厂房、开关站、高压开关室、油库、机修间及大坝(含启闭机室、坝区用电变房)七个区,其中主厂房、副厂房采用自动灭火与灭火器具结合的灭火方式,开关站、高压开关室、油库、机修间、大坝则采用灭火器具灭火。

为确保消防区灭火要求,本工程消防水源及电源均按双水源、双电源设置,互为备用。当其中之一停止工作时,备用水源及备用电源均能自动切换投入。二台消防水泵从上游水库取水或下游取水,水泵扬程为52m,作为消火栓消防备用水源,两台消防水泵布置在技术供水设备室;另外,由两台深井泵从水井取水给高位水池(V=100m3)供水,作为消防水源及生活用水,为保证消防水源的可靠性,应经常检查消防水泵是否能正常运转。

在主、副厂房等建筑物设计中,防火设计要求:

(1)建筑物的耐火等级为二级。

(2)重点火警防护区,按消防要求设置防火隔墙、防火门或防爆门。

(3)建筑物层间不少于两座楼梯(含爬梯)。每片消防分区不少于两个安全疏散出口通道。

(4)开关站及绝缘油库设车道,供消防车通行的消防车道宽度为5m。

2.工程消防设计

2.1生产厂房火灾危险性分类及耐火等级。厂房各主要生产场所火灾危险性分类及耐火等级要求见表1。

2.2主要场所和主要机电设备的消防设计

2.2.1主、副厂房消防。居龙滩水利枢纽工程采用灯泡贯流式机组,厂区主要由主厂房和安装间、电气副厂房、中控室、机修间和室外绝缘油库等部分组成,厂区机修门外、绝缘油库门外设室外SS100-1.6型消火栓2个、开关站设SS100-1.6型室外消火栓2个。

电站主厂房长66.70m,宽19m,高约50.0m,共分运行层(高程112.20m)、中间层(高程103.20m)、水轮机层(高程84.70m)。

运行层主要布置有调速器和油压装置等设备,在每个机组段(运行层、中间层)上游侧各设1个SN65(带报警)型消火栓箱和2个MT3型手提式CO2灭火器。

考虑发电机水喷雾灭火装置的要求,在运行层每个机组段上游侧各设一个发电机消火栓箱为发电机内部消火提供水源,手动报警装置1个,发电机内部灭火及火警装置由制造厂家设计提供。

建筑物危险性分类及耐火等级表生产场所名称火灾危险性类别耐火等级类别主厂房丁类二级透平油库丙类二级绝缘油库丙类二级户外开关站丙类二级中央控制室、微机房丙类二级坝区用电变室、厂用变室丁类二级高压开关室丁类二级电缆、电缆道丙类二级发电机设备小间、资料室丙类二级空压机及贮气罐室丁类二级水清测报站丁类二级载波通信室丁类二级大坝监测室丁类二级高压试验室丁类三级机修车间丁类三级其它戊类三级水轮廊道层主要布置有轴承回油箱,调速系统漏油箱等,每机组段拟设MT3型CO2灭火器2个,另在与该层相通的渗漏排水泵房设MT3型CO2灭火器2个,手动报警装置1个。

为扑灭厂内桥机电器设备引起的火灾,在桥机上设置MT3型CO2型灭火器2个。

电站安装间位于厂房右侧(从上游往下游看),长28m,宽19m,安装间上、下游侧各设SN65型消火栓1个和MT3型CO2灭火器4个。

空压机室设在安装间的下层,在该室油处理室上游侧设SN65消火栓1个及MT3型CO2灭火器4个,空压机室布置两个灭火器设置点。布置两个离子型感烟探测器,手动报警装置1个。

在副厂房的电缆层(高程107.70m)入口处设MT3型CO2灭火器4个,即每个进人门布置一个灭火器安置点(各2个MT3型CO2灭火器);每个入口门设自动控制防火门,手动报警装置1个;此外还配置若干个防毒面具、呼吸器,电缆穿过楼板或进入各屏柜的孔洞均须用耐火材料封堵以防止火灾漫延,耐火极限不小于1小时。结合设备与电缆布置情况,每隔一定距离集中布置MT3型CO2灭火器2个,在电缆桥架每层均敷设缆式线型感温探测器。

技术供水层位于副厂房的100.40m高程处。其门外布置MT3型CO2灭火器4个。

在高程112.20的微机房及中控室拟设置固定CO2灭火系统,采用固定管网消防,即组合分配系统,共用一套CO2储藏装置,保护这两个防护区的消防灭火系统,其设计用量按其中最大的中控室需要量设置,不考虑备用,经计算选用20个70L储存钢瓶,同时在每个地方均设置有烟温复合探测器,当感温感烟探测器同时报警时,控制器将立即停断该区风机与空调,声光报警器鸣响,提醒人员迅速撤离,延时30秒(可调)后,关闭防火门,启动灭火装置灭火,30秒全部喷完,另外门口设手动报警装置1个,进人门口设气体放气信号灯,声光报警器,布置MT3型CO2灭火器4个。

固定CO2自动灭火系统,既可在现地手动操作,也可与火灾自动报警系统相连。

2.2.2水轮发电机组消防。水轮发电机组安装在密闭的灯泡体内,其消防措施由制造厂解决,电站提供水源,相应在机组段布置发电机消火栓箱,采用固定式水喷雾灭火装置。灯泡体内同时设置感温、感烟探测装置及其控制装置,发电机内部管路设备均有机组制造商按规程规范配套供应。

2.2.3油库和机修间消防

2.2.3.1油库消防。居龙滩水利枢纽油库分为厂内透平油库和厂外绝缘油库,油库采用防火墙与其他房间分隔,油罐室设有两扇门与外界相通,出口门为向外开启的甲级防火门,油库内设有可靠的防雷接地装置和挡油槛,室内立式油罐之间间距大于2.0m。油罐与墙之间的距离大于油罐半径,油处理室与油罐室相接部位用防火墙隔开,烘箱电源开关和插座设在小间外,油库内灯具和电器设备均采用防爆的灯具和电器设备。透平油库设在安装间下面(高程103.20m),内有20m3的立式油罐2个,并设油处理室等,采用消火栓灭火,设置感烟探测器,油处理室设置手动报警装置1个。

绝缘油库布置在室外,靠近厂房公路边,发生火灾时,消防车能顺利抵达现场救火。绝缘油库内布置有15m3立式油罐2个,30m3立式油罐1个,油库设有油处理室、滤纸烘箱室。

根据有关规范,在绝缘油罐和透平油罐室各设置2台MFT35型推车式磷酸铵盐干粉灭火器和1个100×100×60cm3砂箱,每个砂箱配2把铁锹;两个油处理室各设3个MF3型磷酸铵盐干粉灭火器,同时在透平油处理室与空压机室联接处设SN65型消火栓1个,在绝缘油库室外设SS100-1.6型地面消火栓1个。

油库内防火门自动关闭,风机停止排风并可自动启动消防泵,为了预防和控制火灾,火灾报警后,并确认火灾位置后,在中控室手动关闭厂房内相应部位的排风机,此时防火阀连动关闭。火灾结束后,重新开启排风机进行排烟,然后通风系统恢复正常。

2.2.3.2机修间消防。机修间靠近安装场布置,面积为15×20m2,内设小型机修设备,机修间除设置1个SN65型消火栓外,另配MF3型磷酸铵盐干粉灭火器8个,分二个设置点,每个设置点配置4个。在机修间外设SS100-1.6型地面消火栓1个。

设置感温、感烟探测装置及手动报警装置1个,自动向消防控制中心报警。

2.2.4高压开关柜室和厂用电变消防,坝用电变消防。两个高压开关柜室共设置开关柜16面,低压开关柜室设置低压柜10面,以上两个高压开关柜室内均设置1台MTT35型推车式CO2灭火器和4只MT3型CO2灭火器并设置向外开启的防火门。

坝用电配电室、厂用变室、柴油发电机房,布置在独立的小间内,小间配置3只MT3型CO2灭火器,并配置1台MFT35推车式磷酸铵盐干粉灭火器。

同时在每个地方均设置有烟温复合探测器,另外口门设手动报警装置1个,进人门口设气体放气信号灯,声光报警器。

2.2.5主变和户外开关站消防。主变露天布置,2台主变间距离大于10米,与建筑物距离大于12米以满足防火要求,每台主变均设置可储存一台变压器油量和20min消防水量之和的事故储存坑,坑内装设金属栅格(其净距不大于40mm)并铺设粒径50~80mm,厚度为250mm的卵石层。事故时,变压器油可迅速由排油管排至设置在厂房右侧的事故集油池内。另外,每台主变附近均设置2台MFT35推车式磷酸铵盐干粉灭火器和2个砂箱(100×100×100cm3)。另设置专门房间放置灭火器具。户外开关站附近设SS100-1.6型地面消火栓2个。户外110kV开关站,设置4只MT3型CO2灭火器。

2.2.6坝区消防。坝区内溢洪道8座液压泵房,每座配置2个MF3型磷酸铵盐干粉灭火器,坝顶每50米设置SS100-1.6型地面消火栓1个,计3个。每座液压泵房设置1个感烟探测装置。

2.3消防给水设计。居龙滩水利枢纽水库水质清晰、泥沙含量较少,可以作为消防水源。设四个消防取水口,为防止取水口堵塞可以用吹扫气管供气对水泵取水口进行吹扫;根据电站所配置的消防设备供水压力及消防用水量的要求,选用二台XBD5.2/30-125-200型水泵,扬程为52m,流量为108m3/h,两台水泵互为备用;消防水泵可与火灾自动报警系统相连,以便及时发现并经确认后能尽快消灭火灾。消防水泵及附属设施均布置在技术供水设备室(高程100.40m)。另外,由两台深井泵从水井取水给高位水池(底部高程160.00米,V=100m3)供水,作为消防主水源及生活用水,消防水泵供水作为备用水源。

2.4消防电气和监测报警系统

2.4.1消防电气。本电站设专用消防动力盘,并标有明显消防标志,由双电源供电,以保证消防设备由2个可靠的电源。消防用电设备采用单独的供电回路并穿管敷设,当发生火灾时,仍能保证消防用电。

厂房内主要疏散通道、楼梯间及安全出口处,均设置火灾事故照明及疏散指示标志。正常时,事故照明由交流电源供电,交流电源失去时,通过交直流切换装置自动切换为蓄电池直流供电。疏散用的事故照明其最低照度不低于0.5lx,疏散指示灯正常时由交流电源供电,交流电源失去时,通过其自配的备用电源供电,其连续供电时间不少于20分钟。

事故照明灯和疏散指示标志灯,均设置非燃烧材料制作的保护罩。

2.4.2火灾自动报警及灭火控制系统。本电站的火灾自动报警及灭火控制系统采用控制中心报警系统的形式,电站的消防控制中心设于消防控制房。

消防控制中心内设有火灾自动报警及联动控制屏,对厂内的火灾报警设备及消防灭火设备进行集中控制,并对发电机组设备火灾报警及联动控制器进行重复显示及控制。火灾自动报警控制系统选用总线编码智能型。火灾自动报警控制屏接收来自设备火灾报警控制器、厂内各部位安装的点式感烟、感温探测器、缆式定温探测器、手动报警按钮及输入模块传送来的信号,自动或手动发出灭火指令;向控制模块发出控制信号,控制风机、防火阀、固定式CO2灭火系统等消防灭火设备的运行;同时经通信接口自动启动工业电视监控系统进行跟踪及录像,并显示、记录、打印产生报警或故障信号的时间、地点及有关火灾信息,发出声光报警。并将所有火警或故障信息经通信接口送给全厂计算机监控系统。

主要设备布置区如中控室、计算机室、1G10.5kV开关柜室、2G10.5kV开关柜室、400V厂用配电屏室、透平油库、油处理室、空压机室、高压试验室、柴油发电机房、400V大坝用电配电室、电缆层、技术、消防供水泵层等地均设置有点式感烟探测器;在主厂房运行层及安装场和中间层设置有红外光束感烟探测器;在安装有固定式CO2灭火系统的设备区(即中控室、计算机室),电缆层及电缆廊道均另外设置有点式感温探测器或缆式定温探测器。在厂内各重要通道、走廊均安装手动报警按钮及声光报警器。

上述区域,按其重要性和所配置的消防灭火设备的要求选择报警、报警及手动灭火、报警及自动灭火等不同的处理方式。

一旦发生火灾,任何一个探测器探测到火警信号,控制器发出火灾报警声光信号,通知运行值班人员,值班人员根据火灾自动报警控制屏显示的报警地址到现场证实或经工业电视监控系统证实后,即可采用干粉灭火器或手动启动消火栓、固定式CO2系统,指挥救火。固定式CO2系统的远方手动操作在火灾自动报警控制屏上进行。火灾自动报警控制屏也可以设定为自动灭火方式,如果CO2灭火保护区域内同时有感温、感烟两种类型的探测器报警或手动报警按钮按下后,经控制器分析判断后自动停断对应区域内的风机、关闭对应区域内的防火阀、投入灭火装置。无论是在手动方式还是在自动方式下,控制器在发出火警信号的同时都自动启动工业电视监控系统对相关部位进行跟踪、显示及录像,以备日后事故分析。

根据规范及电站的实际布置进行探测器、手动报警按钮的配置;根据灭火设备的自动控制要求配置联动模块。

篇11

1)实时控制专网:包括工程安全监测系统和调度监控系统。实时控制专网结构主要是基于TCP/IP的生产控制类数据业务,数据流基本恒定,速率要求不高,业务实时性较强,其中遥控遥调更与安全直接相关,可靠性要求较高;对安全性有较特殊要求,不仅要求可靠,原始数据还要求保密。从应用范围来看,属于较特殊的一类窄带业务。本工程控制专网的站点有:调度中心、头水电站枢管理站、9座泵站、13座调节阀室(分水口)、36座检修阀室以及3处隧洞安全监测站点。

2)非控制生产和生产管理网络(业务内网):主要是工程所涉及到的日常办公所需系统,包括行政管理系统、办公自动化系统、设备管理系统等。非控制生产区的所涉系统速率要求较高,业务实时性不强但突发性很强,且要求有较高的安全保密性。本工程非控制生产区的站点有:调度中心、头水电站枢管理站、9座泵站、天脊分水口调节阀室、潞城分水口调节阀室、漳泽分水口调节阀室、店上调节阀室、小山头调节阀室、翟店分水口调节阀、集店调节阀室(共两座)、上庄调节阀室及天河调节阀室。生产管理区定义为应用网。要求有较高的实时性高,对安全可靠性无特殊要求。本工程安全Ⅲ区的站点有:调度中心、9座泵站、13个调节阀室(分水口)、36座检修阀室。

3)管理信息网络(业务外网):主要是各级管理人员访问Internet,查询、有关工程信息,同外部进行交流沟通的主要渠道。

2通信方式

目前,现代通信网的三大支柱是光纤通信、卫星通信和无线电通信。对于三种通信方式针对本工程做以下比较。

1)卫星通信。相比地面通信,卫星通信具有通信距离远,通信费用与通信距离无关,不受地理位置偏僻、人烟稀少和高山沙漠等恶劣环境影响,覆盖面积大,能进行多址通信,广播分发,通信线路稳定可靠,通信质量高,组网灵活简单,适应性强,机动性好等特点。

2)无线移动通信。利用公用移动通信网络无需自建,只要申请为用户即可;GPRS通信网络覆盖面广,扩容无限制,接入地点无限制,具有极强的可扩充性;按照用户接收和发送数据包的数量来收取费用,费用低廉;传输容量大,理论最高数据速率可达170kb/s,完全能满足监控数据传输速率的需求;良好的实时响应与处理能力,与短消息服务比较,由于GPRS具有实时在线特性,系统无时延,可以很好地满足系统对数据采集和传输实时性的要求;安装在室内,没有引雷部件,不需要作防雷处理。缺点是网络覆盖可能存在信号盲区。

3)光纤通信。光纤通信本身具有许多突出的优点:a)频带宽,通信容量大。b)损耗低,中继距离长。c)抗电磁干扰。d)无串音干扰,保密性好。虽然,光纤通信具有初期投资较高的缺点,结合工程实际情况及全线自动化的任务的特点,本工程推荐选择光纤通讯系统。

3网络结构

1)网络结构的选择本工程网络结构主要采用星形,树状结构进行比较。树形网络是由多个层次的星型结构纵向连接而成,树的每个节点都是计算机或转接设备。与星型网络相比,树形网络总长度短,成本较低,节点易于扩充,但是树形网络复杂,与节点相连的链路有故障时,对整个网络的影响较大。针对本工程输水线路特点及全线信息化的要求,通过沿供水线路敷设的光纤连接的方式,形成大环网带小环网的树状网络结构。合理选择关键线路上的主通信汇集站点,并与调度中心组成工程通信主干网。各个主站点分别与所辖分支站点构成小环网。这样小环网发生故障时,不影响主环网的正常运行。

2)网络结构设计根据本工程的输水线路特点、调度要求及三类网络环境的划分情况,拟建立2条主干通信线路形成大环网,以主干线路的主要站点为汇集点的9个小环网。主干通信线路1:头水电站枢纽管理站北耽车泵站辛安泵站庄头泵站韩家园泵站北甘泉泵站潞城分水阀室官庄泵站店上调节阀室。主干通信线路2:官庄泵站漳泽调节阀室长治市漳河管理局。9条小环网根据主干通信线路9个主要站点分为枢纽支线;总线1#、2#支线;平顺支线;长治支线;黎城支线;店上支线及屯留1#、2#支线。

4备用通信

本工程监控体系覆盖范围广,监控对象种类多,传输数据对通信要求各不相同,对通信网络有极高的可靠性要求,同时还需要兼有经济性,这些特点决定了本工程监控系统的通信网络不能采用单一的通信方式,需设备用通道。备用通信在工程的典型站点租用公网专用通道与调度中心之间通信,作为数据传输的通道。工程站点有:头水电站枢纽管理站、北耽车泵站、辛安泵站、庄头泵站、韩家园泵站、北甘泉泵站、潞城分水阀室、店上调节阀室、漳泽调节阀室、官庄泵站、长治市漳河管理局。

5通讯传输方式

1)“三网合一”。方式采用三网合一光纤以太网交换机接入设备,以光纤传输技术进行高速数据交换,实现数据、视频、语音等业务的灵活接入,通过一对光纤完成整个工程信息化的传输。

2)“三网分离”方式。采用工业以太网交换机组成通信系统的内网部分。交换机提供多个以太网接口,用于传输内网的调度监测系统和安全监测的内容。各个站点视频监控系统采用视频服务器的方式接入站点工业以太网交换机中,由调度中心统一解码管理。电话调度系统在调度中心通信机房设置一套驻地话音网关设备,该设备与调度中心的程控调度交换机相连;在各个控制站点设置接入语音网关及普通电话机,语音网关直接接入站点的100M工业网络交换机。根据工程特点,本工程网络传输采用“三网合一”的方式,在2个大环网及9条小环网中各采用一对光纤,共计22芯,另考虑10%的备用,故采用24芯光纤。

篇12

水利水电工程在消防设计中应遵循国家基本建设方针、政策,消防设施的投入既要满足有关规程规范的要求,又要与我国当前的财力相适应,贯彻“预防为主、防消结合”的消防工作方针。多数水利水电工程处于远离城市的偏僻地区,工程自身的火灾发生几率及危险程度相对较低,而火灾可能造成的财产损失较大。为此,在消防设计时应按照“自防自救为主,外援为辅”的原则,针对工程各消防对象从防火、监测、报警、控制、灭火、排烟、救生等几个方面进行设计,采取积极可靠的措施预防火灾的发生,一旦发生火灾则尽量限制火灾的范围,尽快扑灭,减少人员伤亡和财产损失。

水利水电工程防火设计主要遵循《水利水电工程设计防火规范》(SDJ278-90)(以下简称《规范》),在执行过程中感觉到有不少具体问题尚待探讨,本文就消防电气设计相关问题提出建议,与同行交流。

1《规范》缺乏针对性

水利水电工程消防设计政策性强,政府主管部门把关严,但相对而言,设计规范要求不完善,现有《规范》仅用很小的篇幅对消防电气设计提出要求,共含3节9条,过于笼统,缺乏针对性,在水利水电工程设计、施工、安装和验收工作中缺乏指导意义。由于水利水电工程具体情况千差万别,一个规范不可能包含全部要求,故在实际工程消防设计中还需参照其他相应规范,如《建筑设计防火规范》、《建筑内部装修设计防火规范》、《自动喷水灭火系统施工及验收规范》、《火灾自动报警设计规范》、《水喷雾灭火系统设计规范》、《气体灭火系统施工及验收规范》、《建筑灭火器配置设计规范》、《电力设备典型消防规程》、《水力发电厂采暖通风和空气调节设计规范》等,以力求做到安全、可靠、实用。

2《规范》个别条文待商榷

《规范》第11.3.2条规定:火灾自动报警系统的电气连线,应选用屏蔽型电缆。其条文说明解释为:“火灾报警电气连接线在与其它电气线路一起架设时,为避免电磁干扰,应采取屏蔽防护措施”。条文说明与正文要求的程度不一致,容易造成设计或验收对此要求把握上的差异。对此项要求,我国其他防火规范均未明确提出。就目前火灾自动报警系统设计中的电气控制线路选用屏蔽型电缆应没有问题,主要问题在于回路总线。现多数产品为智能型,回路总线就

是计算机网络通信线,对于通信线路的要求欧美标准略有不同,美国标准倾向非屏蔽双绞线,欧洲标准倾向屏蔽通信线。如美国霍尼维尔XLS1000系统要求:“回路总线可选非屏蔽双绞线(AADC卡),非屏蔽非双绞线(DSDC卡),穿金属管布线或封闭式线槽保护方式布线”。在实际工程设计中,是采用屏蔽型电缆还是非屏蔽双绞线,应该根据产品要求确定。

《规范》第11.3.2条还规定:对油浸式主变压器和水轮发电机,应选用抗工频电磁场的探测器。目前火灾报警装置制造商生产的火灾探测器基本上以适应民用建筑为主,很少见门为某特殊需要开发的定型火灾探测器,还没有专用抗工频电磁场的探测器。在水利水电工程设计中只能选用通常的探测器,实际运行中并未发生因工频电磁场干扰造成的误报。

3关于疏散指示标志

《规范》第11.1.3条规定:火灾事故照明、疏散指示标志,可采用蓄电池、应急灯作备用电源,但连续供电时间不应少于20min。第11.2.2条规定:疏散用的事故照明其最低照度,不应低于0.5Lux。这些规定对于民用建筑适用,而对于水利水电工程尤其是大型水利水电工程来说就未必可行了。近几年来建设的水利水电工程大都按“无人值班(少

人值守)”的模式设计,工程范围大,建筑物体积大,而运行人员很少。如果按《规范》要求设置疏散指示标志,一是很难布置,二是设备投资过大,三是难以真正起到作用。

疏散指示标志的合理设置,对人员安全疏散具有重要作用,国内外实际应用表明,在疏散走道和主要疏散线路的地面上或靠近地面的墙上设置发光疏散指示标志,对安全疏散起到很好的作用,可以更有效地帮助人们在浓烟弥漫的情况下,及时识别疏散位置和方向,迅速沿发光疏散指示标志顺利疏散,有效降低伤亡事故的发生。发达国家对于重要的场所,特别是大型公共场所、地下建筑物,一般设有在黑暗环境中能够自发光的疏散指示,即采用蓄光型消防安全逃生指示线加上必要的逃生工具组成的紧急逃生系统。在水利水电工程中可推广应用类似紧急逃生系统,当常规的安全标志不能工作时,蓄光型消防逃生指示线和蓄光型消防安全标志牌仍可工作,以保证人身安全。超级秘书网

4关于火灾报警电话

《规范》中没有火灾报警电话的相应规定,在工程验收中,消防主管部门往往按照其他防火规范对水利水电工程提出同样的要求。与疏散指示标志的设置一样,按照一般民用建筑火警电话设置要求,水利水电工程难以起到应有的作用。大多数水利水电工程,尤其是水力发电厂,值班人员集

友情链接