移动通信技术论文范文

时间:2023-03-16 17:46:06

引言:寻求写作上的突破?我们特意为您精选了12篇移动通信技术论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

移动通信技术论文

篇1

第一代(即1G,是thefirstgeneration的缩写)移动通信系统的主要特征是采用模拟技术和频分多址(FDMA)技术、有多种制式。我国主要采用TACS,其传输速率为2.4kbps,由于受到传输带宽的限制,不能进行移动通信的长途漫游,只是一种区域性的移动通信系统。第一代移动通信系统在商业上取得了巨大的成功,但是其弊端也日渐显露出来,如频谱利用率低、业务种类有限、无高速数据业务、制式太多且互不兼容、保密性差、易被盗听和盗号、设备成本高、体积大、重量大。所以,第一代移动通信技术作为2O世纪80年代到90年代初的产物已经完成了任务退出了历史舞台。

(二)第二代——数字移动通信系统

第二代(即2G,是thesecondgeneration的缩写)移动通信系统是从20世纪90年代初期到目前广泛使用的数字移动通信系统,采用的技术主要有时分多址(TDMA)和码分多址(CDMA)两种技术,它能够提供9.6-28.8kbps的传输速率。全球主要采用GSM和CDMA两种制式,我国采用主要是GSM这一标准,主要提供数字化的语音业务级低速数据化业务,克服了模拟系统的弱点。和第一代模拟移动蜂窝移动系统相比,第二代移动通信系统具有保密性强,频谱利用率高,能提供丰富的业务,标准化程度高等特点,可以进行省内外漫游。但因为采用的制式不同,移动标准还不统一,用户只能在同一制式覆盖的范围内进行漫游,还无法进行全球漫游,虽然第二代比第一代有更大的带宽,但带宽还是很有限,限制了数据的应用,还无法实现高速率的业务,如移动的多媒体业务。

(三)第三代——多媒体移动通信系统

随着通信业务的迅猛发展和通信量的激增,未来的移动通信系统不仅要有大的系统容量,还要能支持话音、数据、图像、多媒体等多种业务的有效传输。第二代移动通信技术根本不能满足这样的通信要求,在这种情况下出现了第三代

(即3c,是thethirdgeneration的缩写)多媒体移动通信系统。第三代移动通信系统在国际上统称为IMT一2000,是国际电信联盟(1TU)在1985年提出的工作在2000MHz频段的系统。与第一代模拟移动通信和第二代数字移动通信系统相比,第三代的最主要特征是可提供移动多媒体业务。

二、第四代移动通信系统的概念

4G也称为广带接入和分布网络.具有超过2Mb/s的非对称数据传输能力.对高速移动用户能提供150Mb/s的高质量的影像服务.并首次实现三维图像的高质量传输它包括广带无线固定接入、广带无线局域网.移动广带系统和互操作的广播网络(基于地面和卫星系统).是集多种无线技术和无线LAN系统为一体的综合系统.也是宽带lP接入系统.在这个系统上.移动用户可以实现全球无缝漫游.为了进一步提高其利用率.满足高速率、大容量的业务需求.同时克服高速数据在无线信道下的多径衰落和多径干扰等众多优势。

三、4G的关键技术

1.OFDM技术。它实际上是多载波调制MCM的一种.其主要原理是:将待传输的高速串行数据经串/并变换,变成在N个子信道上并行传输的低速数据流,再用N个相互正交的载波进行调制,然后叠加一起发送。接收端用相干载波进行相干接收,再经并/串变换恢复为原高速数据。

2.多输入多输出(MIMO)技术。多输入多输出(MIMO)技术是无线移动通信领域智能天线技术的重大突破。该技术能在不增加带宽的情况下成倍地提高通信系统的容量和频谱利用率,是下一代移动通信系统的核心技术之一。MIMO系统采用空时处理技术进行信号处理,在丰富的散射环境下,空分复用MIMO系统(如BLAST结构)可以获得与天线数成正比的容量增长,从而极大地提高频谱效率,增加系统的数据传输速率。但是当散射程度欠佳时,会引起信道间的空间相关,尤其在室外环境下,由于基站的天线较高,从而角度扩展较小,其空间相关难以避免,在这种情况下MIMO不可能获得所期望的数据传输速率。

3.切换技术。切换技术能够实现移动终端在不同小区之间跨越和在不同频率之间通信以及在信号质量降低时如何选择信道。它是未来移动终端在众多通信系统、移动小区之间建立可靠通信的基础。主要划分为硬切换、软切换和更软切换.硬切换发生在不同频率的基站或不同系统之间。第4代移动通信中的切换技术正朝着软切换和硬切换相结合的方向发展。

4.软件无线电技术。软件无线电是将标准化、模块化的硬件功能单元经过一个通用硬件平台,利用软件加载方式来实现各种类型的无线电通信系统的一种具有开放式结构的新技术。通过下载不同的软件程序,在硬件平台上可实现不同功能,用以实现在不同系统中利用单一的终端进行漫游,它是解决移动终端在不同系统中工作的关键技术。软件无线电技术主要涉及数字信号处理硬(DigitalSignalProcessHardware,DSPH)、现场可编程器件(FieldProgrammableGateArray,FPGA)、数字信号处理(DigitalSignalProcessor,DSP)等。

5.IPv6协议技术。3G网络采用的主要是蜂窝组网,而4G系统将是一个基于全lP的移动通信网络,可以实现不同类型的接入系统和通信网络之间的无缝连。为了给用户提供更为广泛的业务,使运营商管理更加方便、灵活,4G中将取代现有的IPv4协议,采用全分组方式传送数据的IPv6协议。

四、发展趋势

目前,4G移动通信还只处于实验室研究开发阶段。具体的设备和技术还没有完全成型,后续的软件开发还没有启动。这都会给4G的发展带来很多难题,有待人们深入研究。但未来移动通信必将具有文中描述的这些基本特征:高速率、高质量的数据传输,完全集中的服务。无所不在的移动接入,高智能的多样化的用户设备。随着新问题、新要求的不断出现。第四代移动通信技术将会相应地调整、完善和进一步发展。我们相信,不远的将来,人们将会不受时间、地点限制,可以自由自在地利用移动网络获取和传递信息,从而使人们的学习、工作、生活发生更深刻的变化。

参考文献:

[1]张重阳.数字移动通信技术[M].西安:江西科技大学出版社,2006.

[2]唐兴.移动通信技术的历史和发展趋势[J].江西通信科技,2008(2).

篇2

2.1无线数据——生机无限当前移动数据通信发展迅速,被认为是移动通信发展的一个主要方向。近年来出现的移动数据通信主要有两种,一种是电路交换型的移动数据业务,如TACS、AMPS和GSM中的承载数据业务以及GSM系统的HSCSD;另外一种是分组交换型的移动数据业务,如摩托罗拉的DataTAC、爱立信的Mobitex和GSM系统的GPRS。

目前,无线数据业务只占GSM网络全部业务量中的很小一部分,但是在未来的两年中这种状况将开始扭转,并大大改变。1999年以后,随着HSCSD、GPRS等新的高速数据解决方案显露峥嵘,并成为数据应用的新焦点,无线数据将成为运营商经营计划中越来越重要的部分,它预示着未来大量的商业机遇。

(1)应用驱动市场

无线数据业务的主要驱动力在于用户的应用。话音是单一的、易于被大众所接受的业务,然而无线数据则不同,无线数据最初的应用重点放在运输管理这样的专业市场。近期无线数据业务的目标市场是销售人员或现场工程师这样的用户群。从这些先发目标的应用中积累无线数据的经验,并从中受益。

在过去的十年里,传统的生活方式已经在迅速改变,人们更经常性地移动,职业和个人生活之间的分界变得模糊,人们需要不分时间、地点访问很重要的信息。发生在用户身上的这种生活方式的改变将成为驱动无线数据业务发展的重要因素。

(2)因特网的影响

和通信的其他领域一样,无线数据业务的一个最重要的驱动力来自Internet。根据最近的研究,未来两年欧洲的因特网用户数量将翻一番。在我国,因特网用户的年增长率将高达300%,显然用户在运动中接入因特网的需求将会增长。

为了满足接入因特网的需求,一个全球性的开放协议——无线应用协议(WAP)应运而生。WAP为将Internet的信息内容以及增值业务传送到移动终端提供了一种开放的通用标准,实现了IP与GSM网络的桥接,是一个为厂商提供加速市场增长、避免网络割接、保护运营商投资的标准,WAP确保任何与WAP兼容的GSM手机都能工作。

(3)数据速率的发展

GSM承载业务所提供的GSM数据速率最高只能达到9.6kbit/s。国际上1998年引入的高速电路交换数据(HSCSD)技术将实现57kbit/s的数据速率,对要求连续比特率和传输时延小的应用是理想的,如会议电视、电子邮件、远程接入企业的局域网和无线图像。1999年商用化的GPRS是第一个GSM分组数据应用,将实现超过100kbit/s的数据速率。对较短的“突发”类型业务是理想的,如信用卡认证、远程测量和远程事务处理。EDGE(增强数据速率GSM改进模式)使用修改过的GSM调制方式来实现超过300kbit/s的数据速率。EDGE会让GSM运营商特别受益,他们不但可以赢得第三代移动通信的经营执照,还可以提供有竞争力的宽带数据业务。

2.2个人多媒体通信——网络演进的方向

对随时随地话音通信的追求使早期移动通信走向成功。移动通信的商业价值和用户市场得到了证明,全球移动市场以超凡的速度增长。移动通信演进的下一阶段是向无线数据乃至个人移动多媒体转移,这一进展已经开始,并将成为未来重要的增长点。个人移动多媒体将根据地点为人们提供无法想像的、完善的个人业务和无线信息,将对人们工作和生活的各个方面产生影响。在个人多媒体世界里,话音邮件和电子邮件被传送到移动多媒体信箱中;短信将成为带有照片和视频内容的电子明信片;话音呼叫将与实时图像相结合,产生大量的可视移动电话,还将实现移动因特网和万维网浏览。像无线会议电视这样的应用将随处可见,电子商务将蓬勃开展。对于运动中的用户还有随时随地的各种信箱和娱乐服务。

3网络技术的宽带化

在电信业历史上,移动通信可能是技术和市场发展最快的领域。业务、技术、市场三者之间是一种互动的关系,伴随着用户对数据、多媒体业务需求的增加,网络业务向数据化、分组化发展,移动网络必然走向宽带化。

通过使用电话交换技术和蜂窝无线电技术,70年代末诞生了第一代模拟移动电话。AMPS(北美蜂窝系统)、NMT(北欧移动电话)和TACS(全向通信系统)是三种主要的窄带模拟标准。第一代无线网络技术的一大成就就是去掉了将电话连接到网络的用户线。用户第一次能够在他们所在的任何地方无线接收和拨打电话。

第二代系统引入了数字无线电技术,它提供更高的网络容量,改善了话音质量和保密性,并为用户引入了无缝的国际漫游。今天世界市场的第二代数字无线标准,包括GSM、MMPS、PDC(日本数字蜂窝系统)和IS95CDMA等,均仍为窄带系统。

第三代移动系统,即IMT-2000,是一种真正的宽带多媒体系统,它能够提供高质量宽带综合业务并实现全球无缝覆盖。2000年以后,窄带移动电话业务需求将依然很大,但随着Internet等高速数据通信及多媒体通信需求的驱动,宽带多媒体综合业务将逐步增长,而且就未来信息高速公路建设的无缝覆盖而言,宽带移动通信作为整个移动市场份额的子集将显得愈来愈重要。

第三代系统预计在2002年投入商用。

从第二代到第三代系统的变化并不像从第一代模拟网络到第二代数字网络那样存在重大的技术变迁。从目前的技术发展现状和趋势来讲,第二代系统将逐步子滑过渡到第三代系统,在此演进过程中,移动网络所能实现的数据速率逐步升级:GSM承载业务所能提供的数据速率为9.6kbit/s,1998年商用的HSCSD技术实现了57kbit/s的数据速率,1999年引入的GPRS将实现超过100kbit/s的数据速率,将在2000年引入的EDGE技术可实现超过300kbit/s的数据速率。2001年后投入商用的第三代系统将能够在广域网上实现384kbit/s的数据速率,在办公室和家中还可以达到2Mbit/s。

4网络技术的智能化

移动通信需求的不断增长以及新技术在移动通信中的广泛应用,促使移动网络得到了迅速发展。移动网络由单纯地传递和交换信息,逐步向存储和处理信息的智能化发展,移动智能网由此而生。移动智能网是在移动网络中引人智能网功能实体,以完成对移动呼叫的智能控制的一种网络,是一种开放性的智能平台,它使电信业务经营者能够方便、快速、经济、有效地提供客户所需的各类电信新业务,使客户对网络有更强的控制功能,能够方便灵活地获取所需的信息。移动智能网通过把交换与业务分离,建立集中的业务控制点和数据库,进而进一步建立集中的业务管理系统和业务生成环境来达到上述目标。通过智能网,运营公司可以最优地利用其网络,加快新业务的生成;可以根据客户的需要来设计业务,向其他业务提供者开放网络,增加收益。

关于移动智能网的研究,早在1995年就已开始,刚开始并没有具体的标准协议出现,各厂商各自制定了自己的标准,并且据此进行了不少的研究工作,如Alcatel、Nortel、Ericsson等都先后推出了自己的初期产品。这些工作为最终移动智能网标准的形成积累了经验。

1997年末,美国蜂窝电信工业协会(CTIA)制定了移动智能网的第一个标准协议——IS-41D协议。1998年1月,欧洲电信标准研究所(ETSI)在GSMphase2+阶段引入了CAMEL协议(移动通信高级逻辑的客户化应用程序),当时的版本是Phase1。1998年4月,ITU-T在新推出的智能网能力集一2标准中描述了移动接入的功能实体,称为CAMELphase2标准。

伴随着移动网络向第三代系统的演进,网络的智能化程度也在不断地提升。智能网及其智能业务是构成未来个人通信的基本条件。

5更高的频段

从第一代的模拟移动电话,到第二代的数字移动网络,再到将来的第三代移动通信系统,网络使用的无线频段遵循一种由低到高的发展趋势。1981年诞生的第一个具有国际漫游功能的模拟系统NMT的使用频段为450MHz,1986年NMT变迁到900MHz频段。我国目前的模拟TACS系统的使用频段也为900MHz。在第二代网络中,GSM系统的开始使用频段为900MHz,IS-95CDMA系统为800MHz。为了从根本上提高GSM系统的容量,1997年出现了1800MHz系统,GSM900/1800双频网络迅速普及。2002年将投入商用的第三代系统IMT-2000则定位在2GHz频段。

6更有效利用频率

无线电频率是一种宝贵资源。随着移动通信的飞速发展,频谱资源有限和移动用户急剧增加的矛盾越来越尖锐,出现了“频率严重短缺”的现象。解决频率拥挤问题的出路是采用各种频率有效利用技术和开发新频段。

模拟制的早期蜂窝移动通信系统采用频分多址方式,主要通过多信道共用、频率复用和波道窄带化等技术实现频率的有效利用。随着业务的发展,模拟系统已远不能满足用户发展的需求。数字移动通信比模拟移动通信具有更大的容量。同样的频分多址技术,数字系统要求的载干比较小,因而频率复用距离可以小一些,系统的容量可以大一些。而且,数字移动通信还可采用时分多址或码分多址技术,它比模拟的频分多址制在系统容量上大4-20倍。

GSM作为最具代表性和最为成熟的数字移动通信系统,其发展历程就是一部频率有效利用技术的演进史。GSM采用时分多址制式,其对频率的有效利用主要是通过频率复用技术的不断升级实现的。从传统的4×3方式,到3×3、1×3、MRP、2×6等新的复用技术,频率复用的密集度逐步提升,频谱效率快速提高,GSM系统的容量得到逐步释放。1995年开始投入商用的IS-95CDMA(窄带)系统,以无线技术的先进性和大容量等特点著称。它以扩频技术为基础,不同用户的信号靠不同的编码序列来区分,如果从频域或时域来观察,多个CDMA信号是相互重叠的,故理论上CDMA系统的频谱利用率比GSM系统更高,网络容量更大。同时CDMA系统具有一定的过载能力,即系统具备软容量。作为未来第三代移动通信系统主流无线接入技术的WCDMA(宽带码分多址)能够更高效地利用无线电频率。它利用分层小区结构、自适应天线阵和相干解调(双向)等技术,网络容量可得到大幅提高,可以更好地满足未来移动通信的发展要求。

7网络趋于融合,走向统一

7.1第三代移动通信系统的结构

篇3

1.2SA技术SA技术就是智能天线技术,它通过固定的天线单元来将方向性进行获取,然后就能够获取移动台以及基站之间的方向特性。在方向特性获得之后,就可以根据不同的信号传输方向来将相同时间,码道,频率的信号进行区分,通过这种技术也就能够实现将网络覆盖区域改变目的,达到让网络覆盖实现有目的性覆盖的目标。

1.3OFDM技术OFDM技术为正交频分复用技术。这种技术将信道分为了若干个子信道,并且也可以将高速数据信号进行转换为低速子数据流,通过调制的方法到子信道上进行了传输,从而让抗衰落能力得到了巨大的提高,也可以防止各个信道之间的互相干扰,保证了4G移动通信技术的高速以及正常传播。

24G移动通信技术的应用

由于4G移动通信技术高速传输,不易受到干扰等特点,它可以应用在人们生活的各个方面。例如我国人民可以将自己的手机来作为4G移动通信技术的终端。而使用4G移动通信技术的手机外观小巧,用一只手就能够掌握。但是它的功能极其强大,完全可以当做一台小型的电脑来使用。人们可以使用4G移动通信的手机来享受到高质量的移动通信服务。

4G移动通信技术可以为使用者提供大量的数据、影像、视频等等服务,让人们能够随时随地地使用高速网络来观看视频以及图片等,同时也不会像以往的移动通信技术会出现延迟、卡顿等问题。而且用户不仅能够进行即时的观看,也可以将这些视频等信息来推送到自己家中的电视上,等回家后再进行观看,让用户能够得到最佳的服务。

篇4

用户对互联网的速率要求越来越高,目前韩国达20.4Mbitps,日本达15.8Mbitps,瑞典达成2.8Mbitps。为了适应通信用户日益增长的高速多媒体数据业务需求,4G移动通信系统不管是采用WiMAX技术还是采用LTE技术,与3G相比,4G将是以数字宽带为主的高度自组织、自适应的网络,其特点主要有:高速率、良好的兼营性、多类型用户共存、多种业务的融合、多种先进的技术应用。

4G移动通信系统的关键技术:

(1)OFDM正交频分复用技术

OFDM正交频分复用技术的基本思想是将高速串行的数据码流变换成N(通常取偶数)路并行的低速数据流,再将这N路低速数据流分别调制到等频间隔的一组总数为N的子载波上,并且这组子载波要满足下交的条件。OFDM技术的优点是可以通地添加循环前缀来减小或消除码间干扰,对多径衰落和多普勒频移不敏感,提高了频谱利用率,可实现低成本的单波段接收机。OFDM的主要缺点是功率效率不高,对频偏和相位噪声比较敏感。

(2)MIMO技术

MIMO(多进多出)是未来移动通信的关键技术。MIMO技术主要有两种表现形式,即空间复用和空时编码。这两种形式在WiMAX协议中都得到了应用。WiMAX相关协议还给出了同时使用空间复用和空时编码的形式。支持MIMO是协议中的一种可选方案,结合自适应天线阵(AAS)和MIMO技术,能显著提高系统的容量和频谱利用率,可以大大提高覆盖范围并增强应对快衰落的能力,使得在不同环境下能够获得最佳的传播性能

(3)软件无线电技术

软件无线电是美国MTLTRE公司于1992年明确提出的,其基本思想是将标准化、模块化的硬件功能单元经过一个通用硬件平台,利用软件加载方式来实现各种类型的无线电通信系统,所有体制和标准的更新,以及不同体制之间的兼营,都可以通过适当的软件来完成。软件无线电的核心思想是在尽可能靠近天线的地方使用宽带A/D和D/A变换器,并尽可能多地用软件来定义无线功能,各种功能和信号处理都尽可能用软件实现。其软件系统包括各类无线信令规则与处理软件、信号流变换软件、信源编码软件、信道纠错编码软件、调制解调算法软件等。软件无线电使得系统具有灵活性和适应性,能够适应不同的网络和空中接口。软件无线电技术能支持采用不同空中接口的多模式手机和基站,能实现各种应用的可变QoS。

(4)智能天线技术

智能天线(SA)原名自适应天线阵列,由多个天线单元组成,每个天线后面接一个加权器,经过加权器处理以后的信号,最后用相加器进行合并。智能天线具有抑制信号干扰、自动跟踪以及数字波束调节等智能功能,被认为是未来移动通信的关键技术。智能天线应用数字信号处理技术,产生空间定向波束,使天线主波束对准用户信号到达方向,旁瓣或零陷对准干扰信号到达方向,达到充分利用移动用户信号并消除或抑制干扰信号的目的。这种技术既能改善信号质量又能增加传输容量。

(5)调制与编码技术

4G移动通信系统采用新的调制技术,如多载波正交频分复用调制技术以及单载波自适应均衡技术等调制方式,以保证频谱利用率和延长用户终端电池的寿命。4G移动通信系统采用更高级的信道编码方案(如Turbo码、级连码和LDPC等)、自动重发请求(ARQ)技术和分集接收技术等,从而在低Eb/N0条件下保证系统足够的性能。

(6)高性能的接收机

4G移动通信系统对接收机提出了很高的要求。Shannon定理给出了在带宽为BW的信道中实现容量为C的可靠传输所需要的最小SNR。按照Shannon定理,可以计算出,对于3G系统如果信道带宽为5MHz,数据速率为2Mb/s,所需的SNR为l.2dB;而对于4G系统,要在5MHz的带宽上传输20Mb/s的数据,则所需要的SNR为12dB。可见对于4G系统,由于速率很高,对接收机的性能要求也要高得多。

(7)全IP技术

4G移动通信系统应该是一个全IP的网络,全IP网络节约成本,提高可扩展性,灵活性,并使网络运行更有效率,可支持IPv6,解决IP地址不足并能实现移动IP。同已有的移动网络相比具有根本性的优点,即:可以实现不同网络间的无缝互联。核心网独立于各种具体的无线接入方案,能提供端到端的IP业务,能同已有的核心网和PSTN兼容。核心网具有开放的结构,能允许各种空中接口接入核心网;同时核心网能把业务、控制和传输等分开。采用IP后,所采用的无线接入方式和协议与核心网络(CN)协议、链路层是分离独立的。IP与多种无线接入协议相兼容,因此在设计核心网络时具有很大的灵活性,不需要考虑无线接入究竟采用何种方式和协议。

(8)多用户检测技术

多用户检测是WCDMA通信系统中抗干扰的关键技术。在实际的CDMA通信系统中,各个用户信号之间存在一定的相关性,这就是多址干扰存在的根源。由个别用户产生的多址干扰固然很小,可是随着用户数的增加或信号功率的增大,多址干扰就成为WCDMA通信系统的一个主要干扰。传统的检测技术完全按照经典直接序列扩频理论对每个用户的信号分别进行扩频码匹配处理,因而抗多址干扰能力较差;多用户检测技术在传统检测技术的基础上,充分利用造成多址干扰的所有用户信号信息对单个用户的信号进行检测,从而具有优良的抗干扰性能,解决了远近效应问题,降低了系统对功率控制精度的要求,因此可以更加有效地利用链路频谱资源,显著提高系统容量。随着多用户检测技术的不断发展,各种高性能又不是特别复杂的多用户检测器算法不断提出,在4G实际系统中采用多用户检测技术将是切实可行的。

(9)切换技术

MDHO(宏分集切换)和F基站S(快速基站切换)。移动台可以通过当前的服务基站广播的消息获得相邻小区的信息,或者通过请求分配扫描间隔或者是睡眠间隔来对邻近的基站进行扫描和测距的方式获得相邻小区信息,对其评估,寻找潜在的目标小区。切换既可以由终端决策发起也可以由基站决策发起。在进行快速基站切换(F基站S)时,终端只与Anchor基站进行通信;所谓快速是指不用执行HO过程中的步骤就可以完成从一个Anchor基站到另一个Anchor基站的切换。支持F基站S对于终端和基站来说是可选的。进行宏分集切换(MDHO)时,终端可以同时在多个基站之间发送和接收数据,这样可以获得分集合并增益以改善信号质量。是否支持MDHO对于终端和基站来说是可选的。

篇5

移动通信业务之所以发展迅猛主要是其满足了人们在任何时间。任何地点与任何个人进行通信的愿望。移动通信是实现未来理想的个人通信服务的必由之路。在信息支撑技术、市场竞争和需求的共同作用下,移动通信技术的发展更是突飞猛进,呈现出以下几大趋势:网络业务数据化、分组化,网络技术宽带化,网络技术智能化,更高的频段,更有效利用频率,各种网络趋于融合。了解、掌握这些趋势对移动通信运营商和设备制造商均具有重要的现实意义。

2网络业务数据化、分组化

2.1无线数据——生机无限当前移动数据通信发展迅速,被认为是移动通信发展的一个主要方向。近年来出现的移动数据通信主要有两种,一种是电路交换型的移动数据业务,如TACS、AMPS和GSM中的承载数据业务以及GSM系统的HSCSD;另外一种是分组交换型的移动数据业务,如摩托罗拉的DataTAC、爱立信的Mobitex和GSM系统的GPRS。

目前,无线数据业务只占GSM网络全部业务量中的很小一部分,但是在未来的两年中这种状况将开始扭转,并大大改变。1999年以后,随着HSCSD、GPRS等新的高速数据解决方案显露峥嵘,并成为数据应用的新焦点,无线数据将成为运营商经营计划中越来越重要的部分,它预示着未来大量的商业机遇。

(1)应用驱动市场

无线数据业务的主要驱动力在于用户的应用。话音是单一的、易于被大众所接受的业务,然而无线数据则不同,无线数据最初的应用重点放在运输管理这样的专业市场。近期无线数据业务的目标市场是销售人员或现场工程师这样的用户群。从这些先发目标的应用中积累无线数据的经验,并从中受益。

在过去的十年里,传统的生活方式已经在迅速改变,人们更经常性地移动,职业和个人生活之间的分界变得模糊,人们需要不分时间、地点访问很重要的信息。发生在用户身上的这种生活方式的改变将成为驱动无线数据业务发展的重要因素。

(2)因特网的影响

和通信的其他领域一样,无线数据业务的一个最重要的驱动力来自Internet。根据最近的研究,未来两年欧洲的因特网用户数量将翻一番。在我国,因特网用户的年增长率将高达300%,显然用户在运动中接入因特网的需求将会增长。

为了满足接入因特网的需求,一个全球性的开放协议——无线应用协议(WAP)应运而生。WAP为将Internet的信息内容以及增值业务传送到移动终端提供了一种开放的通用标准,实现了IP与GSM网络的桥接,是一个为厂商提供加速市场增长、避免网络割接、保护运营商投资的标准,WAP确保任何与WAP兼容的GSM手机都能工作。

(3)数据速率的发展

GSM承载业务所提供的GSM数据速率最高只能达到9.6kbit/s。国际上1998年引入的高速电路交换数据(HSCSD)技术将实现57kbit/s的数据速率,对要求连续比特率和传输时延小的应用是理想的,如会议电视、电子邮件、远程接入企业的局域网和无线图像。1999年商用化的GPRS是第一个GSM分组数据应用,将实现超过100kbit/s的数据速率。对较短的“突发”类型业务是理想的,如信用卡认证、远程测量和远程事务处理。EDGE(增强数据速率GSM改进模式)使用修改过的GSM调制方式来实现超过300kbit/s的数据速率。EDGE会让GSM运营商特别受益,他们不但可以赢得第三代移动通信的经营执照,还可以提供有竞争力的宽带数据业务。

2.2个人多媒体通信——网络演进的方向

对随时随地话音通信的追求使早期移动通信走向成功。移动通信的商业价值和用户市场得到了证明,全球移动市场以超凡的速度增长。移动通信演进的下一阶段是向无线数据乃至个人移动多媒体转移,这一进展已经开始,并将成为未来重要的增长点。个人移动多媒体将根据地点为人们提供无法想像的、完善的个人业务和无线信息,将对人们工作和生活的各个方面产生影响。在个人多媒体世界里,话音邮件和电子邮件被传送到移动多媒体信箱中;短信将成为带有照片和视频内容的电子明信片;话音呼叫将与实时图像相结合,产生大量的可视移动电话,还将实现移动因特网和万维网浏览。像无线会议电视这样的应用将随处可见,电子商务将蓬勃开展。对于运动中的用户还有随时随地的各种信箱和娱乐服务。

3网络技术的宽带化

在电信业历史上,移动通信可能是技术和市场发展最快的领域。业务、技术、市场三者之间是一种互动的关系,伴随着用户对数据、多媒体业务需求的增加,网络业务向数据化、分组化发展,移动网络必然走向宽带化。

通过使用电话交换技术和蜂窝无线电技术,70年代末诞生了第一代模拟移动电话。AMPS(北美蜂窝系统)、NMT(北欧移动电话)和TACS(全向通信系统)是三种主要的窄带模拟标准。第一代无线网络技术的一大成就就是去掉了将电话连接到网络的用户线。用户第一次能够在他们所在的任何地方无线接收和拨打电话。

第二代系统引入了数字无线电技术,它提供更高的网络容量,改善了话音质量和保密性,并为用户引入了无缝的国际漫游。今天世界市场的第二代数字无线标准,包括GSM、MMPS、PDC(日本数字蜂窝系统)和IS95CDMA等,均仍为窄带系统。

第三代移动系统,即IMT-2000,是一种真正的宽带多媒体系统,它能够提供高质量宽带综合业务并实现全球无缝覆盖。2000年以后,窄带移动电话业务需求将依然很大,但随着Internet等高速数据通信及多媒体通信需求的驱动,宽带多媒体综合业务将逐步增长,而且就未来信息高速公路建设的无缝覆盖而言,宽带移动通信作为整个移动市场份额的子集将显得愈来愈重要。

第三代系统预计在2002年投入商用。

从第二代到第三代系统的变化并不像从第一代模拟网络到第二代数字网络那样存在重大的技术变迁。从目前的技术发展现状和趋势来讲,第二代系统将逐步子滑过渡到第三代系统,在此演进过程中,移动网络所能实现的数据速率逐步升级:GSM承载业务所能提供的数据速率为9.6kbit/s,1998年商用的HSCSD技术实现了57kbit/s的数据速率,1999年引入的GPRS将实现超过100kbit/s的数据速率,将在2000年引入的EDGE技术可实现超过300kbit/s的数据速率。2001年后投入商用的第三代系统将能够在广域网上实现384kbit/s的数据速率,在办公室和家中还可以达到2Mbit/s。

4网络技术的智能化

移动通信需求的不断增长以及新技术在移动通信中的广泛应用,促使移动网络得到了迅速发展。移动网络由单纯地传递和交换信息,逐步向存储和处理信息的智能化发展,移动智能网由此而生。移动智能网是在移动网络中引人智能网功能实体,以完成对移动呼叫的智能控制的一种网络,是一种开放性的智能平台,它使电信业务经营者能够方便、快速、经济、有效地提供客户所需的各类电信新业务,使客户对网络有更强的控制功能,能够方便灵活地获取所需的信息。移动智能网通过把交换与业务分离,建立集中的业务控制点和数据库,进而进一步建立集中的业务管理系统和业务生成环境来达到上述目标。通过智能网,运营公司可以最优地利用其网络,加快新业务的生成;可以根据客户的需要来设计业务,向其他业务提供者开放网络,增加收益。

关于移动智能网的研究,早在1995年就已开始,刚开始并没有具体的标准协议出现,各厂商各自制定了自己的标准,并且据此进行了不少的研究工作,如Alcatel、Nortel、Ericsson等都先后推出了自己的初期产品。这些工作为最终移动智能网标准的形成积累了经验。

1997年末,美国蜂窝电信工业协会(CTIA)制定了移动智能网的第一个标准协议——IS-41D协议。1998年1月,欧洲电信标准研究所(ETSI)在GSMphase2+阶段引入了CAMEL协议(移动通信高级逻辑的客户化应用程序),当时的版本是Phase1。1998年4月,ITU-T在新推出的智能网能力集一2标准中描述了移动接入的功能实体,称为CAMELphase2标准。

伴随着移动网络向第三代系统的演进,网络的智能化程度也在不断地提升。智能网及其智能业务是构成未来个人通信的基本条件。

5更高的频段

从第一代的模拟移动电话,到第二代的数字移动网络,再到将来的第三代移动通信系统,网络使用的无线频段遵循一种由低到高的发展趋势。1981年诞生的第一个具有国际漫游功能的模拟系统NMT的使用频段为450MHz,1986年NMT变迁到900MHz频段。我国目前的模拟TACS系统的使用频段也为900MHz。在第二代网络中,GSM系统的开始使用频段为900MHz,IS-95CDMA系统为800MHz。为了从根本上提高GSM系统的容量,1997年出现了1800MHz系统,GSM900/1800双频网络迅速普及。2002年将投入商用的第三代系统IMT-2000则定位在2GHz频段。

6更有效利用频率

无线电频率是一种宝贵资源。随着移动通信的飞速发展,频谱资源有限和移动用户急剧增加的矛盾越来越尖锐,出现了“频率严重短缺”的现象。解决频率拥挤问题的出路是采用各种频率有效利用技术和开发新频段。

模拟制的早期蜂窝移动通信系统采用频分多址方式,主要通过多信道共用、频率复用和波道窄带化等技术实现频率的有效利用。随着业务的发展,模拟系统已远不能满足用户发展的需求。数字移动通信比模拟移动通信具有更大的容量。同样的频分多址技术,数字系统要求的载干比较小,因而频率复用距离可以小一些,系统的容量可以大一些。而且,数字移动通信还可采用时分多址或码分多址技术,它比模拟的频分多址制在系统容量上大4-20倍。

GSM作为最具代表性和最为成熟的数字移动通信系统,其发展历程就是一部频率有效利用技术的演进史。GSM采用时分多址制式,其对频率的有效利用主要是通过频率复用技术的不断升级实现的。从传统的4×3方式,到3×3、1×3、MRP、2×6等新的复用技术,频率复用的密集度逐步提升,频谱效率快速提高,GSM系统的容量得到逐步释放。1995年开始投入商用的IS-95CDMA(窄带)系统,以无线技术的先进性和大容量等特点著称。它以扩频技术为基础,不同用户的信号靠不同的编码序列来区分,如果从频域或时域来观察,多个CDMA信号是相互重叠的,故理论上CDMA系统的频谱利用率比GSM系统更高,网络容量更大。同时CDMA系统具有一定的过载能力,即系统具备软容量。作为未来第三代移动通信系统主流无线接入技术的WCDMA(宽带码分多址)能够更高效地利用无线电频率。它利用分层小区结构、自适应天线阵和相干解调(双向)等技术,网络容量可得到大幅提高,可以更好地满足未来移动通信的发展要求。

7网络趋于融合,走向统一

7.1第三代移动通信系统的结构

篇6

一、引言

移动通信是指移动用户之间,或移动用户与固定用户之间的通信。随着电子技术的发展,特别是半导体、集成电路和计算机技术的发展,移动通信得到了迅速的发展。随着其应用领域的扩大和对性能要求的提高,促使移动通信在技术上和理论上向更高水平发展。20世纪80年代以来,移动通信已成为现代通信网中不可缺少并发展最快的通信方式之一。

回顾移动通信的发展历程,移动通信的发展大致经历了几个发展阶段:第一代移动通信技术主要指蜂窝式模拟移动通信,技术特征是蜂窝网络结构克服了大区制容量低、活动范围受限的问题。第二代移动通信是蜂窝数字移动通信,使蜂窝系统具有数字传输所能提供的综合业务等种种优点。第三代移动通信的主要特征是除了能提供第二代移动通信系统所拥有的各种优点,克服了其缺点外,还能够提供宽带多媒体业务,能提供高质量的视频宽带多媒体综合业务,并能实现全球漫游。现在用的大多是第二代技术,第三代技术还不太成功,但已有了第四代技术的设想。第四代移动通信系统(4G)标准比第三代具有更多的功能。

二、4G移动通信简介

第四代移动通信技术的概念可称为宽带接入和分布网络,具有非对称的超过2Mbit/s的数据传输能力。它包括宽带无线固定接入、宽带无线局域网、移动宽带系统和交互式广播网络。第四代移动通信标准比第三代标准拥有更多的功能。第四代移动通信可以在不同的固定、无线平台和跨越不同的频带的网络中提供无线服务,可以在任何地方用宽带接入互联网(包括卫星通信和平流层通信),能够提供定位定时、数据采集、远程控制等综合功能。此外,第四代移动通信系统是集成多功能的宽带移动通信系统,是宽带接入IP系统。目前正在开发和研制中的4G通信将具有以下特征:

(一)通信速度更快

由于人们研究4G通信的最初目的就是提高蜂窝电话和其他移动装置无线访问Internet的速率,因此4G通信的特征莫过于它具有更快的无线通信速度。专家预估,第四代移动通信系统的速度可达到10-20Mbit/s,最高可以达到100Mbit/s。

(二)网络频谱更宽

要想使4G通信达到100Mbit/s的传输速度,通信运营商必须在3G通信网络的基础上对其进行大幅度的改造,以便使4G网络在通信带宽上比3G网络的带宽高出许多。据研究,每个4G信道将占有100MHz的频谱,相当于W-CDMA3G网络的20倍。

(三)多种业务的完整融合

个人通信、信息系统、广播、娱乐等业务无缝连接为一个整体,满足用户的各种需求。4G应能集成不同模式的无线通信——从无线局域网和蓝牙等室内网络、蜂窝信号、广播电视到卫星通信,移动用户可以自由地从一个标准漫游到另一个标准。各种业务应用、各种系统平台间的互联更便捷、安全,面向不同用户要求,更富有个性化。而且4G手机从外观和式样上看将有更惊人的突破,可以想象的是,眼镜、手表、化妆盒、旅游鞋都有可能成为4G终端。

(四)智能性能更高

第四代移动通信的智能性更高,不仅表现在4G通信的终端设备的设计和操作具有智能化,更重要的是4G手机可以实现许多难以想象的功能。例如,4G手机将能根据环境、时间以及其他因素来适时提醒手机的主人。

(五)兼容性能更平滑

要使4G通信尽快地被人们接受,还应该考虑到让更多的用户在投资最少的情况下轻易地过渡到4G通信。因此,从这个角度来看,4G通信系统应当具备全球漫游、接口开放、能跟多种网络互联、终端多样化以及能从2G、3G平稳过渡等特点。

(六)实现更高质量的多媒体通信

4G通信提供的无线多媒体通信服务将包括语音、数据、影像等,大量信息透过宽频的信道传送出去,为此4G也称为“多媒体移动通信”。

(七)通信费用更加便宜

由于4G通信不仅解决了与3G的兼容性问题,让更多的现有通信用户能轻易地升级到4G通信,而且4G通信引入了许多尖端通信技术,因此,相对其他技术来说,4G通信部署起来就容易、迅速得多。同时在建设4G通信网络系统时,通信运营商们将考虑直接在3G通信网络的基础设施之上,采用逐步引入的方法,这样就能够有效地降低运营成本。

三、4G移动通信的接入系统

4G移动通信接入系统的显着特点是,智能化多模式终端(multi-modeterminal)基于公共平台,通过各种接技术,在各种网络系统(平台)之间实现无缝连接和协作。在4G移动通信中,各种专门的接入系统都基于一个公共平台,相互协作,以最优化的方式工作,来满足不同用户的通信需求。当多模式终端接入系统时,网络会自适应分配频带、给出最优化路由,以达到最佳通信效果。目前,4G移动通信的主要接入技术有:无线蜂窝移动通信系统(例如2G、3G);无绳系统(如DECT);短距离连接系统(如蓝牙);WLAN系统;固定无线接入系统;卫星系统;平流层通信(STS);广播电视接入系统(如DAB、DVB-T、CATV)。随着技术发展和市场需求变化,新的接入技术将不断出现。

不同类型的接入技术针对不同业务而设计,因此,我们根据接入技术的适用领域、移动小区半径和工作环境,对接入技术进行分层。

分配层:主要由平流层通信、卫星通信和广播电视通信组成,服务范围覆盖面积大。

蜂窝层:主要由2G、3G通信系统组成,服务范围覆盖面积较大。

热点小区层:主要由WLAN网络组成,服务范围集中在校园、社区、会议中心等,移动通信能力很有限。

个人网络层:主要应用于家庭、办公室等场所,服务范围覆盖面积很小。移动通信能力有限,但可通过网络接入系统连接其他网络层。

固定网络层:主要指双绞线、同轴电缆、光纤组成的固定通信系统。

网络接入系统在整个移动网络中处于十分重要的位置。未来的接入系统将主要在以下三个方面进行技术革新和突破:为最大限度开发利用有限的频率资源,在接入系统的物理层,优化调制、信道编码和信号传输技术,提高信号处理算法、信号检测和数据压缩技术,并在频谱共享和新型天线方面做进一步研究。为提高网络性能,在接入系统的高层协议方面,研究网络自我优化和自动重构技术,动态频谱分配和资源分配技术,网络管理和不同接入系统间协作。提高和扩展IP技术在移动网络中的应用;加强软件无线电技术;优化无线电传输技术,如支持实时和非实时业务、无缝连接和网络安全。

四、4G移动通信系统中的关键技术

(一)定位技术

定位是指移动终端位置的测量方法和计算方法。它主要分为基于移动终端定位、基于移动网络定位或者混合定位三种方式。在4G移动通信系统中,移动终端可能在不同系统(平台)间进行移动通信。因此,对移动终端的定位和跟踪,是实现移动终端在不同系统(平台)间无缝连接和系统中高速率和高质量的移动通信的前提和保障。

(二)切换技术

切换技术适用于移动终端在不同移动小区之间、不同频率之间通信或者信号降低信道选择等情况。切换技术是未来移动终端在众多通信系统、移动小区之间建立可靠移动通信的基础和重要技术。它主要有软切换和硬切换。在4G通信系统中,切换技术的适用范围更为广泛,并朝着软切换和硬切换相结合的方向发展。

(三)软件无线电技术

在4G移动通信系统中,软件将会变得非常繁杂。为此,专家们提议引入软件无线电技术,将其作为从第二代移动通信通向第三代和第四代移动通信的桥梁。软件无线电技术能够将模拟信号的数字化过程尽可能地接近天线,即将A/D和D/A转换器尽可能地靠近RF前端,利用DSP进行信道分离、调制解调和信道编译码等工作。它旨在建立一个无线电通信平台,在平台上运行各种软件系统,以实现多通路、多层次和多模式的无线通信。因此,应用软件无线电技术,一个移动终端,就可以实现在不同系统和平台之间,畅通无阻的使用。目前比较成熟的软件无线电技术有参数控制软件无线电系统。

(四)智能天线技术

智能天线具有抑制信号干扰、自动跟踪以及数字波束调节等智能功能,能满足数据中心、移动IP网络的性能要求。智能天线成形波束能在空间域内抑制交互干扰,增强特殊范围内想要的信号,这种技术既能改善信号质量又能增加传输容量。

(五)交互干扰抑制和多用户识别

待开发的交互干扰抑制和多用户识别技术应成为4G的组成部分,它们以交互干扰抑制的方式引入到基站和移动电话系统,消除不必要的邻近和共信道用户的交互干扰,确保接收机的高质量接收信号。这种组合将满足更大用户容量的需求,还能增加覆盖范围。交互干扰抑制和多用户识别两种技术的组合将大大减少网络基础设施的部署,确保业务质量的改善。

(六)新的调制和信号传输技术

在高频段进行高速移动通信,将面临严重的选频衰落(frequency-selectivefading)。为提高信号性能,研究和发展智能调制和解调技术,来有效抑制这种衰落。例如正交频分复用技术(OFDM)、自适应均衡器等。另一方面,采用TPC、Rake扩频接收、跳频、FEC(如AQR和Turbo编码)等技术,来获取更好的信号能量噪声比。

五、OFDM技术在4G中的应用

若以技术层面来看,第三代移动通信系统主要是以CDMA为核心技术,第四代移动通信系统技术则以正交频分复用(OrthogonalFreqencyDivisionMultiplexer,OFDM)最受瞩目,特别是有不少专家学者针对OFDM技术在移动通信技术上的应用,提出相关的理论基础。例如无线区域环路(WLL)、数字音讯广播(DAB)等,都将在未来采用OFDM技术,而第四代移动通信系统则计划以OFDM为核心技术,提供增值服务。

在时代交替之际,旧有系统之整合与升级是产业关心的话题,目前大家谈的是GSM如何升级到第三代移动通信系统;而未来则是CDMA如何与OFDM技术相结合。可以预计,CDMA绝对不会在第四代移动通信系统中消失,而是成为其应用技术的一部份,或许未来也会有新的整合技术如OFDM/CDMA产生,前文所提到的数字音讯广播,其实它真正运用的技术是OFDM/FDMA的整合技术,同样是利用两种技术的结合。因此未来以OFDM为核心技术的第四代移动通信系统,也将会结合两项技术的优点,一部份将是以CDMA的延伸技术。

六、结束语

对于现在的人来说,未来的4G通信的确显得很神秘,不少人都认为第四代无线通信网络系统是人类有史以来最复杂的技术系统。总的来说,要顺利、全面地实施4G通信,还将可能遇到一些困难。

首先,人们对未来的4G通信的需求是它的通信传输速度将会得到极大提升,从理论上说最高可达到100Mbit/s,但手机的速度将受到通信系统容量的限制。据有关行家分析,4G手机将很难达到其理论速度。

其次,4G的发展还将面临极大的市场压力。有专家预测,在10年以后,2G的多媒体服务将进入第三个发展阶段,此时覆盖全球的3G网络已经基本建成,全球25%以上的人口使用3G,到那时,整个行业正在消化吸收第三代技术,对于4G技术的接受还需要一个逐步过渡的过程。

因此,在建设4G通信网络系统时,通信运营商们将考虑直接在3G通信网络的基础设施之上,采用逐步引入的方法,使移动通信从3G逐步向4G过渡。

参考文献:

篇7

3G(3rdGeneration),指第三代移动通信技术。2009年1月7日,国家工业和信息化部颁发3G牌照,标志着移动通信市场的3G移动互联网时代正式在中国拉开帷幕。它是将无线通信、互联网等和多媒体通信结合的新一代移动通信技术。这是2009年至今一个炙手可热的话题。一项新的科学技术往往改变一个时代。新技术的出现和应用往往也是媒体产生变革原始的、也是最重要的推动力,几百年来人类传播领域的变化已经充分证明了这一点:印刷术的推广使报纸由少数人的消遣成为大众传媒;电报的出现让通讯社得以产生并发展到今天;无线广播技术的广泛应用让受众由读者变成了听众,广播也因此成为了它那个时代影响力最大的大众传媒;近十多年来,互联网技术的广泛应用,已经而且正在深刻影响和改变着人们的传播方式。而现在3G业务的风靡全球,也迫使我们不得不重新定位人际传播,进一步分析人际传播媒介变化对人际传播造成的影响。

这里将沿着马克·波斯特思考媒介与文化论题的思路,讨论3G技术应用在人际传播方面所带来的信息存储方式、信息传播方式和信息交换构型的改变。对此,一个可行的方式是从过程的角度考察人际传播,并将其拆分为两个部分:认知过程和行动过程。对认知过程的考察有助于理解交流双方如何用3G手机来传输信息,传输了什么样的信息,又对彼此的关系造成了怎样的影响;对认知过程和行动过程的综合考察则有助于理解依靠3G手机所建立的交流构型。第三代移动通信系统是一种能提供多种类型!高质量的多媒体业务,能实现全球无缝覆盖,具有全球漫游能力,与固定网络相容,并以小型便携式终端而闻名于世。在任何时候、任何地点进行任何种类通信的通信系统“由于其诸多优点,第三代移动通信系统对全世界电信行业工作者及信息社会越来越具吸引力”作为第三代移动通信的主导技术,近来发展迅速,在第三代移动通信系统个技术标准中,最具竞争力而迅速的发展。相比于2G、2.5G等通信技术,3G通信的优势主要表现在:

(1)智能化、多媒体化趋势明显

由于3G网络能够提供内容丰富的多媒体业务和下载业务等,因此,对3G终端而言,需要对其配备更大、更清晰和3D显示效果更逼真的显示屏,以便用户更好地欣赏移动多媒体业务要配备像素更高的摄像头以拍摄更清晰的图像,以增强图片的感观效果;要提供更大的存储空间,来储蓄下载而来的更多图片和音视频文件等。总之,以数据业务功能强大为特征的3G业务对其终端的要求将日益苛刻,3G要真正实现所预期的业务发展效果,加强3G终端的研发将一直成为3G发展阶段的重要主题之一。

(2)单模、双模和多模终端共存

多种3G技术体制并存以及第三代移动通信发展初期,第二代移动通信不会在短期内退出市场的现实情况,决定了未来的移动终端必将是单模、双模和多模终端共存的局面。目前市场上已有GSM/WCDMA、GSM/cdma2000、cdma20001X/1XEV-D0双模终端;随着TD——SCDMA标准的正式商用,未来支持TD-SCDMA网络和其他网络的双模手机或多模手机也可能会出现。对3G终端的功能要求不断提高3G的技术特性,决定了3G网络能够提供更为智能化、多样化、个性化的移动业务,这就要求3G移动终端的功能日益增强。不仅要支持现有话音业务、短信业务、窄带数据业务等,同时应支持以多媒体业务和高速数据业务为代表的宽带通信业务等。大致可以分为四类:(1)互式业务,包括网络电话、移动银行、可视电话和可视会议等;(2)点对点业务,包括多媒体短信、电子邮件、WEB、远程医院等;(3)单向信息业务,包括数字报纸、出版、远程教育、视频购物、移动音频播放器、移动视频播放器、视频点播和卡拉OK等;(4)多点广播业务,包括信息递送、GPS汽车导航、移动收音机和手机电视等。从中可以看出,3G不仅给手机带来新的人际传播方式如可视电话、多媒体短信和电子邮件等,还同时使手机拥有了手机电视、数字报纸、出版和信息递送等大众传播媒介的功能。

篇8

二、4G移动通信技术的安全缺陷

1、安装的应用程序存在安全漏洞。

现阶段网络技术还处于不成熟阶段,软件中存在着许多的安全漏洞,网络浏览器和其他应用程序很容易出现故障。很多人对4G网络认识不清,对4G移动通信安全系统不了解,不正常的操作极易出现系统问题和死机现象导致信息的不安全和不完整。

2、病毒的破坏。

4G移动网络通信技术虽然有很多的优势,但它也跟其他网络一样惧怕病毒。病毒是安全系统的蛀虫,当病毒入侵网络系统后后不仅仅会对电脑网络的传输途径造成很大的破坏,而且会导致信号传播中出现乱码,妨碍信息的正确传递。

3、黑客的入侵。

黑客是指拥有高级知识的程序编辑人员,并且通过编程序来操作系统,利用电脑系统存在的漏洞非法的侵入他人系统,盗取他人的信息资料,非法获得自身所需要的东西的人。黑客的入侵通常会导致系统安全的破坏,使他人利益损坏,对他人造成危害。

三、完善4G移动通信技术

4G系统是一个业务多种多样的异构网络,现有的3G安全方案加/解密匙的方法并不适用于4G系统。4G安全系统将是一种轻量的具有复合特点的能够重复配置的系统。仅仅有防范和检查作用的安全系统是不能完全保卫系统的安全的,建立能够对病毒有一定的抵御能力和自动回复能力安全系统是非常必要的。所有的系统都会有一定的缺陷,一旦发生了信息的泄露将产生不可挽回的灾难性的损失。人为的缺失和自然灾害都会对网络系统,造成毁灭性的灾害。要在4G移动通信系统中加入系统容灾技术,一些自然灾害虽然会对通信系统产生危害但是在灾难过后就能快速准确的恢复原有数据,保卫系统安全。作为最后数据屏障的数据备份系统,不能有失误。要想保障数据不出现差错,数据容灾要选用两个存储器,这两个存储器内保存的内容虽然一致,但是他们两个相互独立一个出现问题不会直接影响另外一个,这两个储存器一个放在本地另外一个放在异地。它们通过IP连接在一起,是一个具有完整性、准确性、安全性的容灾系统,二者同时为为本地的服务器服务,同时使用。要不断地完善4G通信系统,无论是系统的硬件还是软件都要全面升级,不断地提升系统的安全性能。

篇9

第一代的移动通信技术最早是在二十世纪八十年代左右出现的,它经历了大概十几年的发展时间,在上世纪九十年展结束。它的技术特点主要有以下几个方面,它的智能化技术很差,业务量较小、没有很好的通信技术、安全性不高、运行起来很慢而且没有设定加密的功能。在这一代移动通信系统中,主要采用的是模拟传输技术,所以传输的效果很差,而且在传输中会被其他因素影响,抗干扰力很差。那个时期,人们的生活水平并不高,生活也不丰富。所以,只有一少部分人能够使用这种移动通信设备,并没有得到广泛的使用。因此,人们并没有十分关注这种通信技术的发展。

第二代移动通信技术的特征

第二代的移动通信系统即2G技术,最开始是从二十世纪九十年代初期出现的,这种技术的出现主要是为了弥补第一代移动通信系统中存在的缺陷,并且扩展相应的功能。第二代移动通信系统的主要内容是网络应用逻辑更强,采用立即计费的方式,支持最佳路由,00/1800双频段,话语编解码等是完全兼容的而且速率更强,频率结构使用的是更高的加密技术,并且在这一代的通信技术中还应用了智能天线技术和双频段技术等。这样就满足了人们日益增长的需求,使业务数量持续的增长。移动通信技术所存在的GSM系统容量不足的缺陷,使GSM功能不断地得到改善和增强,具备了初步支持多媒体业务的能力。虽然第二代移动通信技术,在发展的过程中不断地得到较好的完善,但是2G的移动通信系统,随着用户和网络规模的不断扩大,频率资源也己经适应不了,移动通信业务发展的需求,呈现供不应求的趋式,频率资源也占有率也接近于枯竭,移动通信的语音质量,也不能达到用户所要求的高质量的标准,对于数据通信速率太低,这个2G无法在真正意义上满足移动多媒体业务的需求。

第三代移动通信技术

第三代移动通信系统技术,主要是在话音和数据通信速率等方面得到有效的改进,通信码率能够达到384kb/s,第三代移动通信系统,也就是通常所说的3G,是现阶段正在全力开发的移动通信的系统,这一代移动通信的系统,已经具备了最基本智能特征,应用了智能信号处理技术,智能信号处理单元,多媒体数据通信和话音支持的技术,能够提供跟前两代产品相比,所不能提供的多种宽带信息业务,第三代移动通信技术具备慢速图像、高速数据、电视图像等功能。传输速率也比前两代,移动通信技术有高质量的提高,传输速率在用户静止时,移动通信速率最大为2Mbps,在用户高速移动时,移动通信速率最大支持144Kbps,所占频带宽度为5MHz左右。但是,就目前的第三代3G移动通信系统,通信标准总共有三大类CDMA2000、WCDMA、TD-SCDMA,共同组成3G移动通信IMT2000的体系,它们彼此之间存在相互兼容的问题,这就意味着从根本上来说,当前已有的移动通信系统,并不是真正的个人通信和全球通信系统。再进一步地说,目前的3G移动通信系统的频谱利用率还相当地低,并没有充分地利用频谱资源,达到普及和推广3G移动通信的业务,留下了很大的发展智能移动通信技术的空间。根据移动通信市场发展的需要,和3G移动通信所存在的一些欠缺,目前国际上有不少国家,已经开始研究第四代移动通信系统。也就是我们将要面对的4G移动通信智能系统,这一代移动通信技术,将从根本上弥补前三代移动通信所存在的不足,成为移动通信系统又一个闪光的亮点,在不断地研究和发展中,让更多的用户认识和接受。

篇10

2移动通讯中移动IP节点技术的实现

2.1移动IP节点的关键技术

在移动通讯中,移动IP节点技术实现的需要依靠的技术有很多,其中关键的技术就是隧道技术(Tunneling)。隧道技术的种类包括IP的IP封装、IP的最小封装和通用路由封装。RFC2004是这样定义IP的最小封装的:IP的最小封装是一种可以选择的隧道,其主要目的是为了能够减少实现隧道所需要的额外字节数,这个过程需要去掉IP的IP封装中的内层IP报头和外层IP的报头的冗余部分才能实现。

2.2移动IP节点的工作过程

通常情况下,移动IP的工作过程分为三个阶段:发现、注册和数据包传送。在发现阶段主要是由本地和外地进行周期性地广播消息,这样链路上的所有节点才能够接收到这个消息,并对其进行检查且决定它的连接方式是本地链路还是漫游链路。一般情况下,如果是漫游链路,移动节点就可以从广播消息中得到需要转交的地址。与此同时,移动节点依据IP报头来由此判断自己所处的位置,如果原IP地址的网络前缀和移动节点的本地地址的网络前缀相同,那么就可以确定移动节点处于本地链路上。由此,移动节点可以根据从广播消息中得到ICMP路由器广播部分的生存区域,并由这个阶段去通知移动节点从同一个处接收到一个广播的平均时间。

2.3移动IP节点的工作方式

移动IP节点主要有5个方面的基本工作方式,包括搜索、注册、注销、接受和发送数据包,接下来将对这五个方面进行详细的分析。

2.2.1搜索

搜索是指在保证移动节点能够正常运作的前提下,采用搜索的方式进行移动节点的寻找,从而能够得出自己所在的位置。移动IP节点在这个过程中完成三个功能:首先是分析出自己当前的位置是位于本地链路上还是外地链路上;其次,检查自己是否已经切换到了链路上;最后,如果自己已经位于外地链路上了,就可以获取外地链路上的转交地址。一般来说,在这个过程中需要由搜索完成两条简单的消息,分别是广播消息和请求消息。通常,本地会通过广播消息来进行移动节点功能的宣布,即当节点处于链路上时,才能够成为本地的服务器,从而广播消息,确定链路是否存在。这时就会出现两种结果,当存在,移动节点就可以在广播消息时获得本地服务器的地址,相反的,当移动节点不能够广播消息时,才可以发送请求消息。由于请求消息希望能够发送广播消息,在一定的时间内,移动节点就会通过转换链路来发送广播。由此,这种请求消息的选择是十分必要的。

2.2.2注册、注销制度

当完成搜索过程之后,才可以进行移动IP的注册。这时,虽然移动节点已经明确了自己的位置,但是注册是一个必不可少的环节。一般来说,注册的时间比较长,移动节点却不能移动自己的位置,而且当注册过期时,移动节点需要重新进行注册。注册的过程是要先将从外地链路上获得的转交地址移交给归属,使得过期的注册重新生效,然后等到重新回到本地链路上时,就可以进行注销操作了。

篇11

1、4G移动通信系统的特点

4G移动通信技术在很多国家和地区已经投入商用,其高速数据传输速率、高抗干扰能力和更好的兼容性,将使用户拥有更好的移动通信体验。不同的文献对于4G移动通信的特点有不同的侧重,但目前已有如下共识:

(1)高数据传输速率

4G技术比3G技术的数据传输速率有了大幅度提高,最低可达2Mb/s(高速移动物体),最高可达100Mb/s(低速运动,如步行.

(2)系统频谱更宽

要想实现上述高数据传输速率,4G移动通信的系统带宽应达到100MHz,是3G标准WCDMA的20倍.

(3)系统容量更大

在蜂窝系统中,4G信号传输波段集中在毫米波,这会缩小蜂窝小区从而提高系统容量,但也是4G技术的一个挑战.

(4)良好的兼容性

4G克服了3G标准不一的缺点,拥有全球统一的标准,实现了无缝漫游,使得同一部移动通信终端在不同运营商、不同通信主机、不同网络之间实现畅游.

(5)高度智能化

4G移动通信网络采用智能技术,能够根据时变的业务流大小、系统容量和信道条件,进行动态的自适应的信道分配与管理,在应用上具有较强的灵活性、自适应性和智能性.

(6)融合多种数据业务

4G移动通信系统提供形式多样、种类丰富的数据业务,比如视频业务、移动互联网业务和智能化业务。依托4G数据业务,个人通信、服务及娱乐得以整合,为用户提供前所未有的体验.

2、4G移动通信系统的网络体系结构

在4G移动通信系统中,能够实现不同业务需要的接入系统,通过多媒体接入系统与IP核心网进行连接,该结构可以实现2G,3G,4G,WLAN和固网2间的平滑切换、如图1所示、

4G移动通信系统网络体系结构由三部分组成:物理网络层、中间环境层和应用网络层。物理网络层为系统提供接入和路由选择功能;中间环境层作为桥接层,为系统提供地址转换、服务质量(QoS)映射以及完全性管理。上述三层结构之间的接口是开放式的,易于开发新的模块和服务。开放式接口支持高速率无缝无线服务,该服务能在多标准和多模终端上自适应调整,屏蔽不同运营商和服务商之间的差别,服务范围更广.

3、4G移动通信的优点

(1)正交频分复用(OFDM)技术

3G移动通信核心调制技术是CDMA,而4G则以OFDM技术为主、OFDM是一种多载波数字调制技术,适用于无线信道下的高速数据传输、其主要思想是:将数据传输信道分解为N个正交子信道,通过串并转换,将高速数据信号流转化成N路低速数据流,调制到子信道上进行传输。这样一来,调制信号的延续时间远大于信道的最大时延扩展,使得信号对信道时延的敏感程度大大降低,有效消除符号间干扰(ISI)、循环前缀技术又使得OFDM技术可以有效抑制信道间干扰(ICI)、因此,OFDM技术具有很好的抗击频率选择性衰落和多径干扰能力。此外,OFDM技术还具有频谱利用率高、容易实现调制解调、易与其他多址技术结合使用等优点,适合高速数据传输.

(2)多输入与多输出(MIMO)技术

MIMO技术通过多个发射天线和接收天线对信号实现多发多收,能高效利用空间资源,在不增大发射功率、不增加频谱资源的条件下,可大规模提高系统信道容量,优势显著,是4G移动通信系统的核心技术之一根据空时映射方式,MIMO技术分为空间复用和空间分集、空间复用是指无需额外时间和频谱资源,在发射端将信号分成多个子信号,通过多个发射天线在相同频段上发射出去,接收机接收在空域维度能够被区分的各发射子信号,能够获得较大的空间复用增益,从而提高信道的容量、空间分集技术是指多个发射天线发送具有相同信息的多个信号,接收端能够获得同一信息具有独立衰落的多径信号,获得空间分集增益,提高信道可靠性。在频谱资源日益紧张的现在,MIMO技术以其独特的优势,在4G移动通信技术中获得了广泛的应用.

(3)软件无线电(SDR)技术

软件无线电技术以数字处理(DSP)技术为核心,以微电子技术为支撑,其基本思想是构造一个具有模块化、标准化的通用硬件平台,在这个平台上尽量用软件来完成信号处理、调制解调方式、保密结构、工作频段、网络协议和控制终端等各种功能,并使模数转换器(S/D)和数模转换器(D/S)尽可能靠近天线、SDR技术是实现产品多样化的基础,因此能够减少4G技术的开发风险。此外,在网络支持方面,SDR可以支持不同类型的链路互联。因此,4G移动通信系统利用SDR技术实现各种终端的互联互通和无缝链接,效益客观.

(4)智能天线(SA)技术

智能天线技术即自适应天线阵列,依靠多个天线阵列,根据需求和环境的不同,动态调整发射和接收方向,优化无线通信性能、其基本思想是,将同时隙或同频率的信号导向一定的方向,使天线主波束对准信号目的方向,零陷或旁瓣对准干扰信号方向,以最大程度利用所需信号并抑制干扰信号、此外,智能天线技术根据信号空间特征的不同,利用天线阵列技术可以无干扰在同一信道发射和接收多个信号,有效提高频谱利用率。智能天线技术提高了系统容量,改善了信号质量,满足了4G移动系统对上述两方面的需求,因此成为其关键技术.

(5)基于IP的核心网

4G移动通信系统的核心网是基于全IP,并与各种无线接入方式相独立,与现有公共电话交换网络(PSTN)和核心网(CN)兼容,能提供端到端的IP业务。基于IP的核心网结构开放,允许各种空中接口接入,且分开了传输、控制和业务。在基于IP的核心网中,核心网协议、链路层与分离切独立于无线接入方式。此外,由于IP协议与多种无线接入协议兼容,设计核心网时无需考虑无线接入方式与协议,因此十分灵活4G核心网主要采用的是全分组式IPv6技术,因而大大拓展了地址空间,支持有/无状态自动地址配置,切更具移动性.

篇12

3G是国际电信联盟(ITU)在1985年提出的工作在2000MHz频段的系统。与第一代模拟移动通信和第二代数字移动通信系统相比,第三代的最主要特征是可提供移动多媒体业务。

13G技术概述

3G是“3rdGeneration”(第三代)的缩写,即第三代移动通信系统(IMT-2000),它是高速移动数据网络通信领域的行业术语。狭义地讲,3G就是指国际电信联盟(ITU)确定的三大主流无线接口标准:W-CDMA(宽频分码多重存取)、CDMA2000(多载波分复用扩频调制)和TDS-CDMA(时分同步码分多址接入)。纵观移动通讯系统的发展历史,模拟移动手机被称作“第一代”;数字移动手机被列入“第二代”;而其后的发展技术被称作“第三代”。当前全球还存在多种第一代和第二代通讯系统,它们成为全球范围内普及单一通讯终端设备的一个阻力。另外,3G技术面临的最大挑战是系统的标准化,如何能够支持单一通讯终端设备可以在全球范围内得到通用。3G技术的设计基础是支持全系列的移动多媒体系统,其对多种数据速率提供灵活的支持,不仅可以传送语音数据,还可以根据需要传送视频数据。使用3G网络,我们可以传输需要高带宽的应用数据,它能够处理图像、音乐、视频流等多种媒体形式,提供包括网页浏览、电话会议、电子商务等多种信息服务。为了提供这种服务,无线网络必须能够支持不同的数据传输速度,也就是说在室内、室外和行车的环境中能够分别支持至少2Mbps(兆字节/每秒)、384kbps(千字节/每秒)以及144kbps的传输速度。

23G发展的必然性

由于第二代(2G)系统频谱资源的有限性、频谱利用率的较低性、支持移动多媒体业务的局限性,以及2G系统之间的不兼容性,因而导致了系统的容量较小、难以满足高速宽带业务的需求和不能实现用户全球漫游等不足,发展3G移动通信将是第二代移动通信前进的必然结果。

发展3G的原动力有市场驱动和技术驱动两方面原因。从市场驱动方面看,发展3G可以满足未来移动用户容量的需求,并且可以提供移动数据和多媒体通信业务。从技术驱动上看,发展3G是更高频谱效率的要求,是各大网络兼容性的要求,是全球统一频段、统一标准,全球无缝覆盖,全球漫游的要求所决定的。

3G可使人们享受到更多的通信乐趣,除了获得更清晰的话音业务外,还可以随时随地通过个人移动终端进行多媒体通信,比如上网浏览、多媒体数据库访问、实时股市行情查询、可视电话、移动电子商务、交互游戏,无线个人随身听和视频传送等。3G移动电话将成为人们生活和工作的好帮手。33G的主要技术标准

在ITU确认的无线接口标准的基础上,目前己经形成主要技术标准:有基于FDD方式的WCDMA和CD-MA2000、基于TDD方式的TD-SCDMA。

3.1WCDMA

由3GPP1的WCDMA方案与3GPP2的CDMA2000方案的直接扩频(DS)部分融合而来,主要源于欧洲的ETSI和日本的ARIB标准化组织,主要倡导者有爱立信和诺基亚等公司。它的核心网基于GSM-MAP,通过网络扩展方式提供基于ANSI-41的运行能力。WCDMA系统能同时支持电路交换业务(如PSTN.ISDN)和分组交换业务(如IP网)。该系统使用灵活的无线协议,可在一个载波内同时支持话音、数据和多媒体业务,并通过透明或非透明传输支持实时、非实时业务。

3.2CDMA2000

即3GPP2提交方案中的多载波(MC)方案,源于美国TIA(电话工业协会)的TR45.5标准,由美国高盛公司提出。CDMA2000是从CDMAOne发展而来,目的是为已有的CDMA运营商平滑升级到3G提供途径,核心是Lucent,Motorola,Nortel和Qualcomm联合提出的宽带CDMAOne技术。主要特点是与现有的TIA/EIA-95-B标准向后兼容,并与IS-95B系统的频段实现共享或重叠,使运营商可在IS-95B系统的基础上平滑地过渡,保护已有投资。CDMA2000的核心网基于ANSI-41,但经网络扩展方式;也可提供基于GSM-MAP核心网上的运行能力。

3.3TD-SCDMA

它是一种高性能和低成本的系统,是在TDD模式下,采用在周期重复的时间帧里传输基本的TDMA突发脉冲的工作模式(和GSM相同),通过周期性地切换传输方向,在同一载波上交替地进行上下行链路传输。可以控制上下行的发送时间,发送时间段内不接受,接受时间段内不发送,且可灵活控制和改变发送和接受的时段长短比例。其优势是上下行链路间的转折点可因业务的不同而认识调整。对于因特网等非对等业务的数据传输,下行数据量远大于上行数据量,可增加下行的时段时间,缩短上行的时段时间,以达到高效传送非对等数据业务的目的,从而实现3G所要求的两类业务(对称的电路交换业务和非对称的分组交换业务)。

43G系统面临的主要问题

4.1多径衰落

这存在于所有的移动通信系统中。无线电波在传播过程中将发生折射、反射和散射,从而产生多条传播路径。不同路径的信号到达接收机时,由于天线的位置、方向和极化不同,使接收信号的幅度、相位起伏变化,产生严重的衰落现象。为了保证通信质量,不得不增加信号功率,这就直接影响了系统的容量。

4.2时延扩展

不同路径的信号有不同的传播时延,当时延超过检测脉冲宽度的10%时,脉冲间的干扰就明显存在,从而限制了移动通信的数据速率。

4.3多址干扰

由于3G系统采用CDMA技术,即采用不同的扩频码字来区分用户,这就要求各用户的扩频码具有强自相关性和弱互相关性。但实际上各用户间的互干扰不可能完全消失,所以CDMA系统是干扰受限系统,就是说来自本小区和邻近小区用户的干扰成了决定系统容量和性能的主要因素。多址干扰是3G系统所特有的一种干扰。

4.4远近效应

在各移动台均以相同功率发射信号时,基站接收到的近处移动台发射的信号功率将远大于远处移动台发射的信号功率。远近效应就是指近处大功率信号对远处小功率信号产生的很强的干扰。它也是一类多址干扰,不过在3G系统中这种多址干扰表现十分突出。

友情链接