煤矿技术论文范文

时间:2023-03-17 18:14:17

引言:寻求写作上的突破?我们特意为您精选了4篇煤矿技术论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

煤矿技术论文

篇1

2变频调速技术的应用

使用PID控制器和可编程控制器(PLC)控制技术来控制变频器,反向,速度,加速,减速时间,实现各种复杂的控制,为适应煤矿提升,压风,排水,电牵引采煤机设备的要求。提升机PLC,PID变频控制技术更为复杂,这里不介绍了。压风机为例,对变频调速控制技术和功能的应用,证明变频调速技术的优越性和经济效益的描述。在正常操作压力风机,当罐内压力达到规定的压力,通过压力调节器处于闲置状态,风机的压力,为了降低储罐压力,当气体储罐压力低于规定压力,机器正常使用工作。但空气压缩机输出压力波动较大,不能达到理想的空气压力,直接影响到气动工具的正常运行。在变频技术的使用,确保空气压缩机输出压力保持不变,总是让空气压缩机输出压力保持在正常的工作压力水平,大大提高煤炭生产效率。与传统的PID控制对比,检测信号反馈给变频器控制量,以控制变量的目标信号进行比较,以确定它是否是预定的控制目标,根据二者之间的差异进行调整,达到控制目的。如储气罐压力超过目标值(气舱压力给定值),应调节压缩空气同气舱压力值近视平衡。相反,如储气罐压力低于目标,应调节储气罐压力同目标压力近视平衡。通过对变频调速技术在压风机上的应用,可以达到空气压缩机输出压力基本上保持恒定的生产价值的需要,空气压缩机输出压力始终保持在最佳状态下生产。

篇2

2变频技术

在煤矿机电设备中的应用变频技术的主要应用对象是电动机驱动的各种设备,在煤矿机电设备中主要包括风机系统、提升系统、压缩机系统、采煤机系统、煤炭输送系统、各类泵等。

2.1风机系统的改进

以某矿井主通风机的变频改造为例,在改造之前,风机设计裕量过大,即使通过调节叶片或者改变管网特性依然远远超过所需风量。利用变频器Harvest-A06/120进行改造,主要参数为:输入频率为45~55Hz,额定输入电压6000V±10%,输出频率范围0.5~120Hz。在利用电压源型串联多电平脉宽调制高压变频器进行改造后,风机效率由45%提高到78%以上,年均用电量减少920000kWh,同时该矿井风机系统可实现软启动,大大降低了对电网的冲击以及对设备的损坏,降低了人工成本。

2.2空压机系统的改进变频技术

对于空压机启动方式的变革具有重要的意义。传统的直接启动方式在启动瞬间会产生较大电流,不利于设备的正常使用寿命的保持。采用变频技术可以降低瞬时大电流对于设备的危害,延长使用寿命。空压机中压风系统的调节一般采用的是压力闭环控制的变频系统,主要利用系统压力检测来对空压机负荷进行调整,当系统内部压力发生变化时,变频系统会根据反馈的压力数值进行补偿调整,最终保持系统内部压力的恒定。采用此种方式进行压风系统的调节,与传统方式相比,响应速度更快,同时能够更加精确地控制风力,保持压风系统较高的可靠性。以唐山矿业某井空压机变频改造为例,对泵房进行变频改造,采用三套ACS800变频控制柜,利用一台PLC集控柜进行控制。其主要参数为:三相输入电压U3in=(380~415)V±10%,U5in=(380~500)V±10%,输出频率0~±300Hz,DTC(直接转矩控制)控制。通过该控制系统,可以实现空压机的一拖三变频调速运转,能够保持系统内的恒定压力控制,实现设备安全可靠运行。与改造前相比,年均可节省电费50余万元;可实现设备自0Hz起的软启动,设备检修周期延长,降低了检修成本。同时还实现了对设备保护功能的进一步完善,完善了设备超压保护、防自启动保护等多种功能,改善了设备的工作环境。

2.3采煤机的改进提高采煤机对工作环境的适应性

是采煤机改进的主要方向。工作环境愈加复杂,使传统采煤机的不适应性更加突出。电牵引采煤机在适应性方面有很好的表现,已在许多矿山中得到应用。采煤机的变频调速能力是其工作性能的一大指标。与传统滑差调速相比,变频调速将采煤机的变速性能实现了质的飞跃。能量回馈型四象限变频器在采煤机中的应用是煤矿机电设备改造的向前迈进一大步的标志,它标志着井下采煤机由“一拖二”向“一拖一”的进步,提高了煤矿开采效率,同时降低了采煤机的故障率以及维修成本。由PLC控制的MG700-WD交流变频调速采煤机,能够将采煤机事故率控制在较低的范围内,同时由于PLC程序的开放性,可以更好地进行人机对话,能够在故障发生时较为准确地定位故障位置。对于采煤机变频调速系统,除去目前市面上已有的成熟产品外,还有很多学者对不同类型的变频调速控制方式进行了研究,目前已有一定的理论基础,有待于在实际生产中进行试验以及普及。以ALPHA6900系列变频器在采煤机中的应用为例,可实现主从控制功能,同时还可以实现四象限运行,通过PLC控制电路,对变频器的输入输出端口进行实时监控,采集包括转速、转矩等在内的多种信息,确保系统运行的稳定性。其中,采用ALPHA6900系列变频器的电气控制系统可以分为一拖一单/双电机控制方式,通过采煤机工作环境的变化,对其牵引电机的转速进行调整,实现对采煤机设备的有效保护。

篇3

2煤矿采煤工艺的主要技术

一般而言,井巷布置、开采的矿压控制、冲击地压防治、瓦斯与火灾防治等是对深矿井进行开采的关键,同时也是煤矿井下开采生产技术所必须克服的技术难点,目前我国的煤矿井下开采技术有了一定的提高但仍有很多不足,这些问题的解决能够促进我国的煤矿井下开采技术有一个新的提高。

2.1巷道布置开采技术

巷道作为煤矿开采过程中的重要通道,它的合理性与安全性直接影响到煤矿井的工程能否顺利进行,也直接影响到煤矿井的开采成本的高低。所以,煤矿公司应该重视巷道的布置,应实地考察矿井,结合自身的井下采煤的方式,做出最合理的矿井巷道布置。在研究巷道布置的时候,应该充分考虑煤矿的开采技术的娴熟程度和该煤矿内的作业环境以及该矿井的地势情况,不仅能节约运输成本和节省工程时间,还有利于提高煤矿的工作效率。

2.2采场围岩控制技术

采场围岩控制技术对于我国的煤矿安全事业具有十分重要的意义,采场围岩的不稳定必然会造成采矿工作人员的安全隐患。在另一方面,结合现代化理论和分析法、计算测量技术,可以得出煤矿的地质结构情况。所以,应进一步完善围岩控制技术理论,这不仅能够保障煤矿开采的安全性,而且能将对煤矿采场的岩层情况置于掌握中,为井下开采提供便利。坚硬岩层顶板和破碎岩层顶板是煤矿井顶板主要的两种类型。深孔预裂爆理技术、高压注水处理技术是最为常见的传统岩层处理方法,但是因为在实际运用中其繁琐的操作程序以及高成本费用的缺陷,与现在高技术、低成本的要求相悖,因此无法满足采矿工程所要求的标准而很少被运用。因此岩层顶板处理技术的革新和进步是十分重要的,是必然的趋势。

2.3“三下”采煤技术

“三下”采煤技术比较适用于保护村庄的情形,其主要是通过模拟数值计算以及模拟相似材料来进行各项填充技术与组合的填充技术,另外还包括村庄的房屋的加固以及重建方面的技术。

篇4

恒压频比控制属于开环调节,通过保持异步电机电压和频率之比近似相同以调节煤矿电机转速的调节方法。V/F控制最大的优点,就是使用简单,没有复杂的算法流程、坐标变换及电机模型辨识过程,用户使用起来十分的容易。而且,由于属于开环控制,即便在负载出现任意扰动的情况下,输出值也保持固定,不会受到什么影响。所以在某些时候,尤其是稳定度要求高的情况下,会采用该种控制方法。但由于其开环控制特性,控制精度低,无法像矢量控制那样实现无偏差控制。这种控制方式主要运用于对精度要求不高的煤矿设备,如风机、水泵等。

1.2转差率控制

根据电机转速计算公式,转差率控制是通过改变电机转差率的大小来实现对电机转速进行改变的控制方法。主要通过改变电机定子电压和转子电阻的方式进行。小功率电机或者电机转速较慢的情况下会采用转差率控制方法。恒压频比控制和转差率控制方式都是基于电机系统的稳态模型和在稳态运行规律下进行控制的。这两种控制方式无法对电机内部磁场的大小和位置进行控制,因而电机只能实现较为精确的转速控制,而转矩控制能力差。要想精确控制转矩,就必须在动态过程中对电动机的磁场大小和位置进行控制。

1.3矢量控制(VC)

矢量控制是目前煤矿自动化领域中比较先进的控制方法。交流异步电机是一个十分复杂的系统。矢量控制的基本控制原理就是通过对异步电机定子电流在不同坐标系下进行矢量变换,最终将电流分解为可以分别控制的用于励磁分量和用于产生电磁转矩分量。矢量控制策略的基本思路就是将交流异步电机的耦合变量解耦,实现各个变量的独立控制,使异步电机和直流电机一样,获得良好的控制性能。

1.4直接转矩控制(DTC)

直接转矩控制技术是基于矢量控制理论而建立的一种新型交流异步电机控制技术,直接转矩控制将不会像矢量控制那样考虑变量解耦的问题,而是直接控制电磁转矩。直接转矩控制不需要将交流异步电机转化为直流电机的数学模型,而只关注电磁转矩的变化。因此,和矢量控制不同,直接转矩控制无需进行复杂的坐标变换和电机数学模型。但是,直接转矩控制也有其缺点,例如低速情况下转矩脉动大,启动电流冲击大等。目前,兆瓦级的大功率电牵采煤设备中直接转矩控制方法运用的较为广泛。

2自动化系统在煤矿采煤中的应用

2.1试验台机械结构及总体布置

变速器试验台是一个综合了机械、电气、液压原理的机电系统。其具体工作原理是驱动电机连续输入额定转速和扭矩,以模拟变速器在煤矿采煤工作中的输入工况。由于驱动电机最高转速的限制,往往无法达到发动机最高转速的要求,因此,在驱动电机后加入一个升速齿轮箱,以满足采煤系统的试验能力要求。为了更接近矿区采煤的真实工况,在变速器输入端增加一个惯量盘,其旋转时的转动惯量与在离合器飞轮和传动轴旋转时产生的转动惯量相同。试验台的末端是加载装置及其匹配的冷却系统,它能给变速器施加阻力矩,以模拟设备采煤时的负载和道路阻尼。

2.2驱动设备的选择

驱动设备需要给试验变速器输入试验所要求的转速和扭矩,驱动设备可以采用内燃机,也可以采用电动机作为输入动力源。两种不同的动力源均有其各自不同的优缺点。采用内燃机作为采煤系统驱动端,使得试验更加接近变速器在采煤应用中的实际工况。但是内燃机也有较多缺点,比如噪声大,产生的废气污染环境,而且内燃机转速和扭矩不易控制,会导致试验结果产生较大的误差。采用电动机作为试验台动力源有噪音小、占地面积小、启停方便、无污染、易于控制等优点。正是因为采用电动机作为试验台动力源具有较多的优点,目前电动机已经广泛应用在各种煤矿传动系统试验设备上。

2.3加载装置的选择

加载装置在整个采煤系统中为被测变速器施加负载转矩,目前主流的工业设备一般采用测功机作为加载装置。测功机一般用于测试发动机的功率,也可作为齿轮箱、减速机、变速箱试验设备的负载装置。测功机主要由功率吸收、负载调速、转矩调节和冷却部分组成。根据负载转矩输出方式的不同,一般可以将测功机分为水力测功机、电力测功机和电涡流测功机三种。自动化采煤系统一般采用开式布局,在保证试验需求的情况下,基于上表的三种测功机的性能对比,采用电涡流测功机较适合于基础的自动化采煤系统。该文采用一台长沙湘仪动力测试仪器有限公司生产的CW-150系列电涡流测功机作为研究对象,其额定吸收功率为150kW,额定扭矩为520N•m,额定转速为2500rpm。

2.4发动机速度特性分析

该文所建立的自动化采煤系统模型,选用交流异步电机作为试验台架的驱动系统,驱动试验变速器及负载机构的运转。这里所选用的驱动电机应能完全覆盖被测变速器所匹配采煤设备发动机的全部性能和运行工况,同时还应具备转速和转矩的调节能力。为了使试验结果更加准确,这里我们先要对发动机的速度特性进行简要分析,从而为异步电机参数的确定提供理论依据。

2.5驱动电机主要参数的确定

在确定了采用交流异步电机作为驱动电机之后,就必须确定驱动电机的各种参数,从而完成异步电机驱动的变速器试验台动力学仿真。而部分电动机参数的确定必须参照发动机相关参数的确定原则,这样才能提高驱动电机模拟发动机驱动的精确度。对于任意的一台异步电机,它的参数例如定子电阻、转子电阻、定子漏感、转子漏感、定转子互感、电机极对数以及转子的转动惯量等是异步电机所固有的参数,需要通过电动机试验进行选定。而对于额定功率、额定转速和额定转矩等动力学参数,需要根据电动机所使用的特定场合进行选定。由于这里是用异步电机模拟汽车发动机作为驱动源,则其动力学参数参照发动机的参数确定则。

免责声明:以上文章内容均来源于本站老师原创或网友上传,不代表本站观点,与本站立场无关,仅供学习和参考。本站不是任何杂志的官方网站,直投稿件和出版请联系出版社。
友情链接
发表咨询 加急咨询 范文咨询 杂志订阅 返回首页