计算机科学论文范文

时间:2023-03-17 18:14:45

引言:寻求写作上的突破?我们特意为您精选了4篇计算机科学论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

计算机科学论文

篇1

通过计算机信息技术能够延伸现代教育的教育空间,计算机信息技术能够使不同地区的人,在任何时间内通过互联网终端了解各所学校的教育信息以及最新的教育成果,并且可以将资料通过互联网终端下载下来。网络课堂的开展,更可以与在线的专业教师与专家进行交流、学习,实现现代教育在空间以及时间上的突破。更使得现代教育更加开放,如电子图书馆可以成为全世界人沟通学习的媒介。

2.在教学活动中的沟通与交流

计算机信息技术在现代教学过程中,能够发挥良好的沟通作用,符合现代教育的发展规律。通过计算机信息技术,能够实现学生与教师之间良好的沟通,无需受到空间与时间的限制,及时处理各种教学内容上的问题,以及灵活选择教学内容。除此之外,计算机信息教育技术以其独特的展现方式在沟通与交流上能够将教训内容变得更加生动、形象,将传统意义上的教学内容变为动态与交互式的教学过程,提高学生的学习兴趣,便被动为主动学习。

3.自由性

计算机科学技术在现代教育中的应用,使得各个教育主体可以通过计算机网络进行自主而不受约束地参与和沟通,让现代教育能够渗透到社会的各个角落,使每个人都能够根据自己的学习需求,进行自主而有针对性的学习活动,实现对学习内容、授课教师、学习时间与空间、学习方式的自由选择,真正体现现代教育自由性的特征,使真正意义上的自由学习和终身学习变为现实。

二、计算机科学技术在现代教育中的应用意义

计算机科学技术在现代教育中的广泛应用改变了传统的教育模式,创新教育方法,扩展教学内容的传递方法,为教育体系增加新的血液。具体体现以下三个方面。

1.优化教育结构,提高教学质量

多媒体教学能够利用生动的图像影音,将教学内容生动且富有趣味地表达出来,将一些枯燥的重点内容勾画以及老师讲解、记笔记等传统教学模式转变为生动的网络教学。如此一来,不仅能够将学生的多种感官调动起来,还能够提高学生的学习效率。远程教育能够在教学中起到平衡教育、不同地区优势互补的作用,还能够提高学生养成良好自主学习能力。

2.实现个性化学习条件下的学教并重

以往的教学手段通常都是注重教师的讲解与课题教学,对学生的自主学能力不够重视。近年来,随着现代教育的进步发展,在教学过程中又出现偏向学生自主学习而忽视教师的作用。增强学生自主学习能力是现代教育的主要发展方向,但是没有教师的经验以及专业素质,学生单纯地自主学习无法达到预期的目的。计算技术的出现便能很好地解决教与学的矛盾,实现学生个性化学习的教学并重局面。

3.实现教育资源优势互补和缩小地区间教育差距

现阶段,由于地区经济的差异性,导致我国地区教育发展不平衡,单单只靠财政拨款的方式已经不能满足现代化教育的需求。计算机信息技术的普及能够缩小地区教育的差距,特别是远程教育还能够实现不同地区之间的资源互补,这对我国当前教育状况起到至关重要的作用。我国一些国内高校或者相关的教育机构都已开通远程教育课程,计算机技术的普及使不同地区的学生都可以通过远程教育的模式来完成相关课程。除此之外,网络教育平台数量的增加以及类型的多样化,为不同学生提供不同的选择和发展机会,更加有利于人才的培养。

篇2

微课程以其时间短、灵活性强、情景模式強、现实性強等特点,满足了不同学生的个性化的差异和需求,使学生能够有选择性的进行学习,调动了学生学习的积极性,有效的促进了计算机学习的顺利进行。

1.2加强了学生自主学习的能力

微课程资源就是学生自主学习的最优资源。微课将现有的课程拆分成一个个的视频片段,学生可以根据自己的学习情况,在资源库中自主搜寻自己需要的视频资源。因为微课的短时间、情景化的特点,学生也可以利用自己的空闲时间来进行知识的复习和预习,在学习的过程中也不乏乐趣,不累身心。让每一个学生跟着自己的心情走,形成自主学习的能力。

1.3有助于构建学生的学习支架

微课是以学生自身为中心,学生才是决定着学习的进展的主角。微课能够在学生主导和教师辅导之间找到一个平衡点。微课为学生创建可持续不断发展的学习内容,帮助学生建立自己的兴趣区。学生可以根据自己的需求选择不同的学习内容,构建属于自己的学习支架。

1.4有利于提高教学资源利用率

微课把传统教学和教研方式进行革命,突破教师原始的讲授形式,把教师课前准备的教学资源能够充分的毫无保留的奉献给学生。微课资源全部是教师的最优质教育资源,教师都全部共享,有助于计算机教学资源利用率的提高。

2微课应用存在的问题分析

微课虽然在教学手段和教学效果上取得了不错的成绩,但是微课在现实中还是存在着一定的问题和不足:

(1)微课虽说相对于传统的面授来讲,提高了学生的学习兴趣和积极性,但是这是针对学习自主能力强的学生来说的,对于不爱学习,没有学习自主性的同学就完全没有效果。

(2)计算机知识往往是随着相关内容的发展呈现几何级数的增长,不同需求的学生可能得不到想要的内容,就需要对内容进行专人看管及时更新。

(3)微课进行的是知识点的分解,如果学生没有良好的消化吸收能力,知识点的零散化使得学生很难形成完整的知识构架同样也达不到预期的效果。

3微课在计算机教学中具体应用

计算机课程就是一门直接面对计算的操作性课程,在课堂中学生大部分时间都用来自己练习和研究。微课应用在计算机的教学中,能够很好的提升学生的学习效果,提高学生的计算机的操作能力。为了使师生能够更好的利用微课资源,学校可以在校园网上构建微课公共共享平台,教师在课前讲教学内容制作成一个个微课教学视频上传到微信公共账号上,供广大师生交流学习。为此构建计算机微课教育教学新模式:

3.1微课的制作

进行微课的视频录制首先要选择适合计算机教学的微课类型进行录制。微课可以录制多种类型,多数要录制适合在家学习的类型。从教学的进程来分类,微课可以分为课前复习类、新课导入类、知识理解类、课后巩固类、课后拓展类、知识探究类等。综合起来微课的教学新模式主要分为三大模块:课前、课中、课后。

3.1.1课前。首先,教师要深刻了解课程要求学生掌握的内容和能力,根据实际需要制作微课视频及一些课件。制作完毕后,教师负责将课程内容上传至群共享,供学生结合自己的学习计划和目的自由学习。并且在学习交流群上,师生可以互相联系,互相交流,甚至可以建立语音甚至视频讨论组进行对话或面对面的交流和解惑,从而能够更好的完成课前应该完成的自学的项目。

3.1.2课中。在课堂上是学生直接面对面接触老师的最直接的途径。课堂教学这一过程理所应当得到充分重视和利用。在课前,教师做好充分的教学准备,对课上必须了解学习的内容了如指掌,做好充分的教学设计,及时了解学生的自学情况,并对课前预习存在的问题集中解决,再以微课的形式给予重点分析,进行多层次的深入教学,从而提高学生的掌握程度。

3.1.3课后。教学效果真正的实现主要分为两个过程:一是知识教学,二是知识消化吸收。知识教学已经在前两个阶段得到了实现,但是真正实现学生实际能力的转化,还需要学生在课后的练习,反思以及巩固提高。课后这一过程不认真对待,前面的一切都可能半途而废。课后巩固提高微课视频的制作和共享也需要教师认真对待,不遗余力。

3.2微课的实施

校园微课平台的实施要在校园网上建立监督机制,微课课堂占相应部分学分,要求每一个学生必须完成相当时间的微课教学。校园网维护更新技术人员要时刻准备接受教师的更新课件和微课视频做到及时更新知识点,让学生能够及时接受到最新的观点和方法。每一节微课结束之后还要设置相应知识点的课后思考题和练习题以备教师检查学生的学习效果。微课在计算机教学中的应用实施还需要教师和同学们的共同努力,望大家都能够多多提意见与建议不断完善微课教育新模式。

篇3

二、充分提高计算机课堂教学效率的措施

(一)积极引导学生主动参与学习,教师做好引导工作

计算机教师在进行课堂教学期间,要积极引导学生进行课堂参与,使每个学生都能参与到课堂教学活动的各个步骤中,学生是课堂教学的主体,教师要充分发挥学生的主观能动性,使学生自己的心理处于主动学习的状态。计算机课堂教学中,教师一定要重视学生主动性的培养,学生主动去学习,有助于课堂教学效果的提高,有助于学生思维能力的提高。培养学生的参与意识,有助于提高学生团结合作的意识。教师要恰当地做好引导工作,从兴趣角度着手,例如,在进行编制计算机VB程序时,教师可以设计课堂游戏进行教学,给学生提供一些较为简单的计算机源代码,给学生提供机会自行修改,同时,让学生体会修改后的快乐。修改的过程,是一个对知识了解的过程,可以激发学生对于编程的兴趣,进而使学生的积极性逐步提高。

(二)培养学生独立思考能力及知识创新能力

在进行计算机教学期间,学生是主体,要让学生“动”与“活”起来。具体提高学生“动”与“活”的方法为:第一,积极引导学生进行独立思考。引导学生遇到问题后,要积极地进行思考,课堂教学中,始终给学生提供一个良好的、宽松的教学环境,教师设置问题,要引起学生的学习兴趣,引导学生进行独立的思考,通过思考使学生对于计算机知识有了全面的了解,从而激发学生可以提出非常有深度的问题出来。第二,引导学生积极进行实践。教师提出问题后,引导学生积极实践,整个实践的过程是学生把所掌握的知识向能力方面过渡的过程。例如,教师进行课堂教学过程中,要设置一些具有创新性的问题,教师要引导学生根据设计好的问题,进行简单程序编程,学生通过动手进行程序编程,使学生将学会的理论知识转化为基本技能。第三,积极鼓励学生进行知识创新。例如,在进行算法设计一节课时,计算机的算法问题可以被设计成多种问题的算法,计算机教师把学生分成几个小组,让学生对于算法问题进行讨论,每一小组都设计一种新的算法,小组讨论之后,再进行班级讨论,进而总结出好的算法来解决实际问题。教师在课堂中起的是抛砖引玉的作用,对于学生较为新颖的设计,要进行鼓励,进而培养学生的创新精神。

篇4

1计算的本质

抽象地说,所谓计算,就是从一个符号串f变换成另一个符号串g。比如说,从符号串12+3变换成15就是一个加法计算。如果符号串f是x2,而符号串g是2x,从f到g的计算就是微分。定理证明也是如此,令f表示一组公理和推导规则,令g是一个定理,那么从f到g的一系列变换就是定理g的证明。从这个角度看,文字翻译也是计算,如f代表一个英文句子,而g为含意相同的中文句子,那么从f到g就是把英文翻译成中文。这些变换间有什么共同点?为什么把它们都叫做计算?因为它们都是从己知符号(串)开始,一步一步地改变符号(串),经过有限步骤,最后得到一个满足预先规定的符号(串)的变换过程。

从类型上讲,计算主要有两大类:数值计算和符号推导。数值计算包括实数和函数的加减乘除、幂运算、开方运算、方程的求解等。符号推导包括代数与各种函数的恒等式、不等式的证明,几何命题的证明等。但无论是数值计算还是符号推导,它们在本质上是等价的、一致的,即二者是密切关联的,可以相互转化,具有共同的计算本质。随着数学的不断发展,还可能出现新的计算类型。

2远古的计算工具

人们从开始产生计算之日,便不断寻求能方便进行和加速计算的工具。因此,计算和计算工具是息息相关的。

早在公元前5世纪,中国人已开始用算筹作为计算工具,并在公元前3世纪得到普遍的采用,一直沿用了二千年。后来,人们发明了算盘,并在15世纪得到普遍采用,取代了算筹。它是在算筹基础上发明的,比算筹更加方便实用,同时还把算法口诀化,从而加快了计算速度。

3近代计算系统

近代的科学发展促进了计算工具的发展:在1614年,对数被发明以后,乘除运算可以化为加减运算,对数计算尺便是依据这一特点来设计。1620年,冈特最先利用对数计算尺来计算乘除。1850年,曼南在计算尺上装上光标,因此而受到当时科学工作者,特别是工程技术人员广泛采用。机械式计算器是与计算尺同时出现的,是计算工具上的一大发明。帕斯卡于1642年发明了帕斯卡加法器。在1671年,莱布尼茨发明了一种能作四则运算的手摇计算器,是长1米的大盒子。自此以后,经过人们在这方面多年的研究,特别是经过托马斯、奥德内尔等人的改良后,出现了多种多样的手摇计算器,并风行全世界。

4电动计算机

英国的巴贝奇于1834年,设计了一部完全程序控制的分析机,可惜碍于当时的机械技术限制而没有制成,但已包含了现代计算的基本思想和主要的组成部分了。此后,由于电力技术有了很大的发展,电动式计算器便慢慢取代以人工为动力的计算器。1941年,德国的楚泽采用了继电器,制成了第一部过程控制计算器,实现了100多年前巴贝奇的理想。

5电子计算机

20世纪初,电子管的出现,使计算器的改革有了新的发展,美国宾夕法尼亚大学和有关单位在1946年制成了第一台电子计算机。电子计算机的出现和发展,使人类进入了一个全新的时代。它是20世纪最伟大的发明之一,也当之无愧地被认为是迄今为止由科学和技术所创造的最具影响力的现代工具。

在电子计算机和信息技术高速发展过程中,因特尔公司的创始人之一戈登·摩尔(GodonMoore)对电子计算机产业所依赖的半导体技术的发展作出预言:半导体芯片的集成度将每两年翻一番。事实证明,自20世纪60年代以后的数十年内,芯片的集成度和电子计算机的计算速度实际是每十八个月就翻一番,而价格却随之降低一倍。这种奇迹般的发展速度被公认为“摩尔定律”。

6“摩尔定律”与“计算的极限”

人类是否可以将电子计算机的运算速度永无止境地提升?传统计算机计算能力的提高有没有极限?对此问题,学者们在进行严密论证后给出了否定的答案。如果电子计算机的计算能力无限提高,最终地球上所有的能量将转换为计算的结果——造成熵的降低,这种向低熵方向无限发展的运动被哲学界认为是禁止的,因此,传统电子计算机的计算能力必有上限。

而以IBM研究中心朗道(R.Landauer)为代表的理论科学家认为到21世纪30年代,芯片内导线的宽度将窄到纳米尺度(1纳米=10-9米),此时,导线内运动的电子将不再遵循经典物理规律——牛顿力学沿导线运行,而是按照量子力学的规律表现出奇特的“电子乱窜”的现象,从而导致芯片无法正常工作;同样,芯片中晶体管的体积小到一定临界尺寸(约5纳米)后,晶体管也将受到量子效应干扰而呈现出奇特的反常效应。

哲学家和科学家对此问题的看法十分一致:摩尔定律不久将不再适用。也就是说,电子计算机计算能力飞速发展的可喜景象很可能在21世纪前30年内终止。著名科学家,哈佛大学终身教授威尔逊(EdwardO.Wilson)指出:“科学代表着一个时代最为大胆的猜想(形而上学)。它纯粹是人为的。但我们相信,通过追寻“梦想—发现—解释—梦想”的不断循环,我们可以开拓一个个新领域,世界最终会变得越来越清晰,我们最终会了解宇宙的奥妙。所有的美妙都是彼此联系和有意义的。”

7量子计算系统

量子计算最初思想的提出可以追溯到20世纪80年代。物理学家费曼RichardP.Feynman曾试图用传统的电子计算机模拟量子力学对象的行为。他遇到一个问题:量子力学系统的行为通常是难以理解同时也是难以求解的。以光的干涉现象为例,在干涉过程中,相互作用的光子每增加一个,有可能发生的情况就会多出一倍,也就是问题的规模呈指数级增加。模拟这样的实验所需的计算量实在太大了,不过,在费曼眼里,这却恰恰提供一个契机。因为另一方面,量子力学系统的行为也具有良好的可预测性:在干涉实验中,只要给定初始条件,就可以推测出屏幕上影子的形状。费曼推断认为如果算出干涉实验中发生的现象需要大量的计算,那么搭建这样一个实验,测量其结果,就恰好相当于完成了一个复杂的计算。因此,只要在计算机运行的过程中,允许它在真实的量子力学对象上完成实验,并把实验结果整合到计算中去,就可以获得远远超出传统计算机的运算速度。

在费曼设想的启发下,1985年英国牛津大学教授多伊奇DavidDeutsch提出是否可以用物理学定律推导出一种超越传统的计算概念的方法即推导出更强的丘奇——图灵论题。费曼指出使用量子计算机时,不需要考虑计算是如何实现的,即把计算看作由“神谕”来实现的:这类计算在量子计算中被称为“神谕”(Oracle)。种种迹象表明:量子计算在一些特定的计算领域内确实比传统计算更强,例如,现代信息安全技术的安全性在很大程度上依赖于把一个大整数(如1024位的十进制数)分解为两个质数的乘积的难度。这个问题是一个典型的“困难问题”,困难的原因是目前在传统电子计算机上还没有找到一种有效的办法将这种计算快速地进行。目前,就是将全世界的所有大大小小的电子计算机全部利用起来来计算上面的这个1024位整数的质因子分解问题,大约需要28万年,这已经远远超过了人类所能够等待的时间。而且,分解的难度随着整数位数的增多指数级增大,也就是说如果要分解2046位的整数,所需要的时间已经远远超过宇宙现有的年龄。而利用一台量子计算机,我们只需要大约40分钟的时间就可以分解1024位的整数了。

8量子计算中的神谕

人类的计算工具,从木棍、石头到算盘,经过电子管计算机,晶体管计算机,到现在的电子计算机,再到量子计算。笔者发现这其中的过程让人思考:首先是人们发现用石头或者棍棒可以帮助人们进行计算,随后,人们发明了算盘,来帮助人们进行计算。当人们发现不仅人手可以搬动“算珠”,机器也可以用来搬动“算珠”,而且效率更高,速度更快。随后,人们用继电器替代了纯机械,最后人们用电子代替了继电器。就在人们改进计算工具的同时,数学家们开始对计算的本质展开了研究,图灵机模型告诉了人们答案。

量子计算的出现,则彻底打破了这种认识与创新规律。它建立在对量子力学实验的在现实世界的不可计算性。试图利用一个实验来代替一系列复杂的大量运算。可以说。这是一种革命性的思考与解决问题的方式。

因为在此之前,所有计算均是模拟一个快速的“算盘”,即使是最先进的电子计算机的CPU内部,64位的寄存器(register),也是等价于一个有着64根轴的二进制算盘。量子计算则完全不同,对于量子计算的核心部件,类似于古代希腊中的“神谕”,没有人弄清楚神谕内部的机理,却对“神谕”内部产生的结果深信不疑。人们可以把它当作一个黑盒子,人们通过输入,可以得到输出,但是对于黑盒子内部发生了什么和为什么这样发生确并不知道。

9“神谕”的挑战与人类自身的回应人类的思考能力,随着计算工具的不断进化而不断加强。电子计算机和互联网的出现,大大加强了人类整体的科研能力,那么,量子计算系统的产生,会给人类整体带来更加强大的科研能力和思考能力,并最终解决困扰当今时代的量子“神谕”。不仅如此,量子计算系统会更加深刻的揭示计算的本质,把人类对计算本质的认识从牛顿世界中扩充到量子世界中。

如果观察历史,会发现人类文明不断增多的“发现”已经构成了我们理解世界的“公理”,人们的公理系统在不断的增大,随着该系统的不断增大,人们认清并解决了许多问题。人类的认识模式似乎符合下面的规律:

“计算工具不断发展—整体思维能力的不断增强—公理系统的不断扩大—旧的神谕被解决—新的神谕不断产生”不断循环。

无论量子计算的本质是否被发现,也不会妨碍量子计算时代的到来。量子计算是计算科学本身的一次新的革命,也许许多困扰人类的问题,将会随着量子计算机工具的发展而得到解决,它将“计算科学”从牛顿时代引向量子时代,并会给人类文明带来更加深刻的影响。

参考文献

友情链接