变频技术论文范文

时间:2023-03-17 18:15:05

引言:寻求写作上的突破?我们特意为您精选了4篇变频技术论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

变频技术论文

篇1

2变频器过热

这几台使用不到一年的变频器,复位开车后还是可以正常的运行,只不过几个小时候又发生同样的故障,检查电动机没有发现问题,但注意到变频器的通风口风量很小,于是把变频器拆开检查,发现这几台变频器有的因为散热风扇烧坏,有的因为风扇保险烧坏,更换风机后,此类情况就没有在出现。4)过压和欠压。一台施耐德的变频器出现过压,总是在停机时跳“OU”,这个时候我们可以重点检查制动回路,测量放电电阻没有问题,测量制动管被击穿,把制动管换掉之后,便没有出现这个问题。出现欠压情况的DANFOSS变频器,在加负载后出现“DCLINKUNDERVOLT”,经过仔细检查问题不是特别的复杂,应该重点检查整流桥,经过检查整流桥发现有一路桥壁开路,更换后问题解决。

3故障出现的原因和应对方法

3.1不能调高频率的变频器

分析原因后得出结论,是因为电动机安装在外面,现场对于电动机保护不当,下雨时不能对电动机及时防雨,造成了电动机受潮,雨后也未能对电动机烘干,造成了电动机内部局部发生短路现象。这样的情况比较容易解决,只要做好对电动机的保护工作,增加电动机防雨系统,及时检查电动机,如有受潮的情况及时烘干。

3.2变频器频率上不去

变频器调频,发现频率调不上去时,首先看各项参数是否正常,如果参数问题排除,可以检查给定方式,如果都排除了,那么就知道是模拟量输出电路出现了问题,仔细检查模拟量输出电路,找出问题所在,排除问题。

3.3变频器过热

这个问题最终很显然是因为变频器的通风排热系统出现问题,散热风扇的质量过于粗制劣造,造成不必要的麻烦。应该选用正规厂家合格的有质量保证的变频器,及时的跟变频器厂家沟通散热排风扇的质量问题。

3.4过压和欠压

变频器过压和欠压是两个不同的故障,所以有不同的原因和应对方法。变频器过压报警,主要原因是因为减速的时间太短,或者制动单元出现了问题。变频器在减速的时候,电动机转子绕组切割旋转磁场的速度加快,转子的电流增大,电机从而处于发电的状态。这个时候,我们就要认真检查制动回路,发现问题,然后换掉出现问题的部分。欠压报警主要原因在于整流桥某一个部位的损坏,刚才也已经举了一个例子,是整流桥有一路桥臂开路。出现变频器欠压的问题,就要仔细检查整流桥,查看问题的部位并撤换掉。

3.5变频器的运行环境

在一些工厂内,空气中的粉尘和蒸汽含量很高,所以变频器一半在现场的控制柜中保护,为了更好的散热,就在控制柜上安装了冷却风扇[3]。变频器的各个部分的电缆都从控制柜的底部连接变频器,导致控制柜封闭不严,粉尘和蒸汽可以通过控制柜的底部进去到控制柜影响变频器。

4针对变频器出现故障的原因提出对策和建议

1)变频器的控制柜。建议把变频器的控制柜移到室内,把变频器的防护等级提高到IP54,防止粉尘和蒸汽进入到变频器内。2)变频器的选择。根据不同的负载选择恰当的变频器,保证变频器的正常运行。3)变频器电源柜的改变。可以把供电给变频器的电源柜改为馈电柜,从而可以避免操作人员对变频器进行多次强制复位,保护变频器不受人为破坏。4)关于长期不用的变频器和变频器电容器。长期用不到的变频器,要定期进行带电运行,这样可以对变频器内件进行充电式的保护。如果有时间和条件,对使用多年的变频器的电容器进行测试。

篇2

1.1对机械设备的危害与干扰

从机器自身结构来看,大部分空压机生产简单有明显的技术缺陷:输入的压力数大于一定值时,变频空压机会自动打开导致电动机空转,严重浪费电力资源并且损害机器本身,继而导致异步电动机的频繁启动和频繁暂停,降低电动机的使用寿命。变频空压机启动时需要很大的电流,对电网冲击较大,而且严重磨损了电器本身的转动轴承设备。电动机在运作的时候会产生很严重的噪音污染,电动机周围的工作环境比较恶劣,也对工作人员的健康产生不利影响,且以人为调节法来调节电动机的输出压力,运转效率低,严重浪费人力资源。

1.2对机械设备相关电器的危害

对变压器的危害表现在:加大铜损和铁损,使得变压器的温度升高,影响绝缘;引起电动机附加零件的发热,引发机器本身温度的额外升高;导致电容器组温度过热,增加中介电质的感应能力,严重的情况下可以损坏电力电容器组;对开关设备的危害,启动瞬间开关将会产生较大的电流变化,达到电压保险值直至绝缘体的破坏;在保护电气的时候,改变电器固有属性,引发电器动作紊乱;引发测量仪表的数据显示误差,降低数据精确度。

2变频技术在机电控制方面的策略

2.1基本思路

在世纪工业过程中对变频技术进行较为尖端的的软件和硬件设计,先根据传统空压机电动机的特点,全方位分析其耗能原因和工作特性,从而设计出变频技术调速、空气技术压缩、压力传感技术提升等控制方式,根据控制电路进行变频器的确定以及电器初始化的设计,控制方式要用矢量控制,详细分析矢量控制原理,对变频矢量进行仿真检查,科学地改变变频器的运行参数。另一方面,变换变频器的控斜参数。通过复合信号控制变频器的输入与输出,可以在容器的进口处增加电器使用流量信号记录,容器上增加电器压力信号,这样可以减少对机械设备的危害。

2.2具体策略

首先在系统线路中建立安装滤波器,过滤掉高次谐波的干扰信号。其次是屏蔽干扰源,这是抵御干扰行之有效的方法之一,具体做法是用钢管来屏蔽输出线路。再次是将电机正确接地,接地时要与其他的动力电器设备接地点分开。然后是对线路进行合理布局,电动机设备的信号线和电源线应该尽量避开变频器的输入和输出线,而其他设备的电源线和信号线也同样要避开变频器的输入和输出线,进行平行铺设。最后是合理使用电抗器,交流电抗器中的串联电路减弱了输入电路中电流对变频器的打击,而直流电抗器减弱了输入电流中的高次谐波。在设置之前,电动机电网中的高次谐波含量已达到40%,而安装了滤波器之后,高次谐波的含量降到了20.6%,特别是三到八次过后,已经低于标准含量值了。在变频器选择方面,需要学会优先考虑谐波含量低且携带滤波器和电抗器的变频工具。变压机电动机安装时,控制信号电缆和本身的动力电缆要有属于各自的架构线路的电缆结构,做好及屏蔽措施,禁止线路交叉或者架构紊乱,安装时两者要保持距离以及设立必要的防护措施,综合达到既发展工业经济又节能减耗的“双赢”效果。值得我们借鉴的是,国际上针对变频空压机电动机重新设计了空压机,将电机由传统意义上的单相电改为三相交流电,并且具有良好的调速性能。我国目前大量生产和应用的空压机电动机,如果要持续发展就必须要开发出单相电机的变频器。最后对改造之后的空压机电动机进行相关的数据计算,并进行成本分析,验证是否能够让改造后的空压机更加有效地节省能源。

篇3

在《SPWM变频调速应用技术》中第226页中7.1.2关于恒压供水主方案的讨论一节中原文摘录如下:

7.1.2关于恒压供水主体方案的讨论

通常,在同一路供水系统中,设置两台常用泵,供水量大时开2台,供水量少时开1台。在采用变频调速进行恒压供水时,存在着一个用1台变频器还是2台变频器的问题,讨论如下:

1.1台泵的变频调速方案这也是应用得较为普遍的方案。其控制过程是:用水少时,由变频器控制1号泵,进行恒压供水控制。当用水量逐渐增加,1号泵的工作频率达到50Hz时,将其电动机切换成由工频电源供电。同时,将变频器切换到2号泵上,由2号泵进行补充供水。反之,当用水量逐渐减少,即使2号泵的工作频率已降到0Hz,而供水压力仍偏大时,则关掉1号泵,同时迅速升高2号泵的工作频率,并进行恒压控制。

此方案的主要特点是:

(1)只用1台变频器,故设备投资少。

(2)如果用水量恰巧在1台泵全速供水量的上下变动时,将会出现供水系统来回切换的状态。为了避免这种现象的发生,可设置压力控制的“切换死区”。举例说明如下:

设所需供水压力为200Pa,则可设定切换死区范围为200Pa~250Pa,控制的方式是,当1号泵的工作频率上升至50Hz时,如压力低于200Pa,则进行切换,使1号泵全速运行,2号泵进行补充。当用水量减少,2号泵已完全停止,但压力仍超过200Pa时,先暂不切换,直至压力超过250Pa时,再行切换。

(3)本方案取用电功率的计算举例如下:

设每台泵的拖动电动机容量为PMN=100KW,全速时的供水流量为QN。泵的空载损耗为P0=0.1×100KW=10KW,且设在调速过程中,P0≈Const,则全速时实际用于泵水的功率为Pp=(100-110)KW=90KW。

又设每天的平均总供水流量为140%QN,则1号泵为全速,其平均取用功率为

PM1=PMN=100KW

2号泵的平均转速为额定转速的40%,其平均取用功率为

PM2=(10+0.43×90)KW=15.8KW

两台泵取用的总平均功率P∑为

P∑=(100+15.8)KW=115.8KW

2.2台泵的变频调速方案2台水泵的电动机都由变频器控制,或用2台变频器分别控制2台电动机,或用1台容量较大的变频器同时控制2台电动机。后者控制较为简单,但前者的机动性较强,即使一台变频器出了故障,另一台仍可使用,转为1台泵的变频调速方案。

采用2台泵的变频调速方案的设备费用较高,但运行时的节能效果却要好得多。仍以上面的例子为例,计算如下。

采用2台泵的变频调速方案时,供水流量可由2台水泵平均分担,则每台的平均供水流量为70%QN,每台电动机的取用电功率为

PM1=(10+0.73×90)KW=40.9KW

2台水泵共用功率为

P∑=40.9×2KW=81.8KW

2商榷分析

2.1基本相似关系

当一台泵抽同一种液体仅转速不同时,可得出所谓“比例律”公式,即

Q1/Q2=n1/n2---------------------------------------------1

H1/H2=(n1/n2)2----------------------------------------2

N1/N2=(n1/n2)3----------------------------------------3

式中N1、N2指水泵轴功率,此功率已包含了水泵的容积损失功率、机械效率损失功率、水力损失功率等。

当水泵的转速改变后,水泵的其它工作参数也随着改变,一般来讲,水泵不允许在额定转速的基础上作升速运行,但降速运行是可以的,但也不应在临界转速之下长期运行。一般来讲降速范围在(60%--100%)额定转速范围内运行是安全稳定的,“比例律”也是准确的。

已知转速为n的某泵Q—H性能曲线,如果把水泵的转速降至n1时,按比例律公式1与2可绘出Q1—H1曲线,但在运用比例律公式时应注意,它们仅适用于同一条相似工况抛物线上的不同点。所以,当已知A1点(Q1H1)及n时,首先要求出通过A1点(Q1H1)工况的相似抛物线,此抛物线也通过转速为n1的A2点(Q2H2),按比例律公式进行计算求相似工况点的方法如下:

根据比例律公式可得出

H1/Q12=H/Q2=K

H=KQ2

若已知A1点(Q1H1),则可求出K值,在Q--H曲线图上假定几个流量,就可作出H=KQ2的相似工况抛物线,此曲线不但通过A1点(Q1H1),而且与水泵转速为n1的性能曲线相交于A2点(Q2H2)。但管道特性曲线与相似工况抛物线不是一回事,两者重合的可能性很小,故在实际应用时一定要注意概念的区分,以免发生错误。

当Q—H需不变时,即某工程系统净扬程为H净,管道已确定时,见图一所示,其在不同转速下的运行工况点应为点A3(对应转速为n1)、点A1(对应转速为n),但点A1与A3由于工况不相似,故不能用相似律公式计算。点A3(对应转速为n1)与点A4(对应转速为n)才是相似的工况点,如果水泵在转速为n1下运行时,A3点是否在稳定运行区,要看对应的相似点A4是否在稳定运行区,如果A4点是水泵的稳定运行区,则A3点就是稳定运行区,否则就不是,在工程中选择设备时一定要注意运行工况范围,所选水泵的工况范围区间应包含A1和A4点,这样系统运行是稳定的、安全的和可靠的。不然就会使工程不能充分发挥效益,甚至造成不必要的浪费。

图一水泵及管道性能曲线

2.2边界条件分析

在《SPWM变频调速应用技术》中的恒压供水主方案的讨论,对设置一台变频器与二台变频器系统所需的轴功率计算,忽略了边界条件,其边界条件是管道特性与工况相似抛物线完全重合的特殊情况,且系统不是恒压供水系统,应是图二所示的水平供水系统,当管道末端所需流量小时系统压力也小,管道末端所需流量大时系统压力也大的输水系统,且系统的净水位差为零,即管道特性曲线必须经过零流量点。在这样的前提下,书中的计算结果才是正确的,但书中的结论还不确切。

2.3书中计算误区

书中例子假如每天平均总供水流量为140%QN,则1号泵为全速,其平均取用功率为PM1=PMN=100KW,此刻的100KW为拖动电动机的容量,而不是水泵运行所消耗的轴功率,不能以此进行相似律的计算。参见图一,2号泵的平均转速为额定转速的40%,其所需功率不是15.8KW,因为消耗15.8KW功率所对应的工况点为水泵全速运行的工况点A1(Q1H1)的相似抛物线上对应的40%运行工况点A2(Q2H2),而对应40%额定流量下恒压运行的工况点应该是工况点A5(Q2H1),此点消耗的功率要比15.8KW大。恒压运行各转速下的工况点是压力为某一给定的数值,即水泵运行的点为一平行于Q轴的过A1(Q1H1)线上的点,而不能用管道特性曲线上的点或相似抛物线上的点来对应关系。

同样采用2台变频调速的方案,则平均每台供水流量为70%Qr,则每台水泵所需功率

图二输水系统示意图

不是40.9KW,2台水泵共用功率也不是81.8KW了。

2.4列例说明

我们讨论问题的前提是恒压供水系统,在此前提下必须是恒压控制,那么在这种条件下选择一台变频还是两台变频,其节能效果确如书上所计算的那样吗?其经济技术的合理性到底怎样呢?同样我们以例子进行计算分析。系统各流量下水泵所需轴功率进行了计算,见表一。

Q总(m3/s)

1.1Qr

1.2Qr

1.3Qr

1.4Qr

1.5Qr

1.6Qr

1.7Qr

1.8Qr

1.9Qr

一一

台台

变工

频频

Q

0.023

0.046

0.069

0.092

0.115

0.138

0.161

0.184

0.207

H

45

45

45

45

45

45

45

45

45

η

20%

42%

58%

71%

76%

81%

83%

83%

82%

P

50.8

48.3

52.5

57.7

66.8

75.2

85.6

97.9

111.4

二台泵P轴(KW)

176.2

173.7

177.9

182.6

192.2

200.6

211

223.3

236.8

Q

0.1265

0.138

0.1495

0.161

0.1725

0.184

0.1955

0.207

0.2185

H

45

45

45

45

45

45

45

45

45

η

79%

81%

82%

83%

83%

83%

82%

82%

82%

P

55.8

75.2

80.5

85.6

91.7

97.9

105.2

111.4

117.6

二台泵P轴(KW)

111.6

150.4

161

171.2

183.4

195.8

210.4

222.8

235.2

二台变频较一台变频对比节能(KW)

64.6

23.3

11.9

11.4

8.8

4.8

0.6

0.5

1.6

每天运行10小时计消耗电能(KWh)

646

233

119

114

88

48

6

5

16

每度电按0.8元计每年耗电费(万元)

18.86

6.8

3.47

3.33

2.57

1.4

0.18

0.15

0.47

一台变频控制装置设备价格(万元)

20

20

20

20

20

20

20

20

20

预计收回成本年限

1

3

6

6

8

14

111

133

43

表一设置一台和二台变频器的技术经济比较表

假设系统设二台12sh-9A泵,以此为例对恒压供水主体方案进行计算分析讨论,以更为直观地使大家判断出选择几台变频控制设备更为合理。设每台水泵在额定工况下Hr=45m

Qr=0.23m3/sη水=81%P轴=125.4KW配套电动机P电动机=160KWn=1470r/min恒压变频控制压力整定为H=45m,分别对系统所需流量为1.1Qr、1.2Qr、1.3Qr、1.4Qr、1.5Qr、1.6Qr、1.7Qr、1.8Qr、1.9Qr进行计算水泵所需轴功率。

当系统所需流量为1.1Qr即0.253m3/s时,分别对设置一台变频器、二台变频器方案进行计算。

i)当设置一台变频器时,即一台工频运行,一台变频运行。变频运行的泵的流量为0.023m3/s,此时水泵扬程为Hr=45mη水=20%P轴=50.8KW,二台泵的轴功率为176.2KW。

ii)当设置二台变频器时,则二台泵同时进行变频运行。每台变频运行的泵的流量为0.1265m3/s,此时水泵扬程为Hr=45mη水=73%P轴=76.5KW,二台泵的轴功率为153KW。其节能23.2KW。

篇4

二、变频技术的应用

(一)变频技术的具体方法

科学家在实践中总结,变频技术有利于充分利用资源,与传统的技术相比,变频技术在实践中取得重大效果,不但有效减少资源的浪费,而且利于我国科学研究。变频技术在人们日常生活中非常常见,变频技术广泛应用于电力行业、机械行业和其他多个行业。在生产中,变频技术有显著的节能效果,因此受到各个业界的广泛应用。变频技术在矿产开发的过程中,节能效果更为显著。在矿产开发过程中良好利用变频技术,利于资源合理开发,从而为资源的可持续利用做出贡献。

(二)变频技术应用的必要性

我国矿产资源在世界排名居先,但人口压力过大,人均矿产资源占有量排名落后,因此只有合理的矿产资源才能适应我国国情。近年来,矿产资源过度开采,致使矿产资源的总量飞速减少[2]。我国经济飞速发展,使用矿产资源的公司日益加大,企业间的竞争激烈,对矿产资源的开发力度加大,但企业在开发过程中忽视资源的合理开发,造成资源浪费。变频技术能实现节能,在矿产资源开发过程中使用变频技术,从而实现对矿产资源有效节约。变频技术还可以降低矿产开采时造成的污染,这不但为我国环保事业做出贡献,更利于企业可持续发展。

(三)变频技术的使用意义

矿产资源在开发过程中的资源浪费是最严重的开采问题之一,资源浪费影响矿业发展,对能源可持续利用和企业发展造成严重危害,威胁国民经济发展,矿产资源开采主要问题是资源浪费,通过变频技术降低矿产开发时造成的矿产资源浪费,保证开发生产的顺利进行,提高了矿业生产效率,促进国民经济增长,合理的矿业开发也有效提高开发质量,避免资源浪费。我国作为人口大国,资源的合理利用非常关键。人是推动社会发展的核心,在生产和生活中只有提高人的主观能动性,才能为企业带来利润。科学的变频技术增强员工对矿产资源开发的热情,员工对工作的内容有认同感,提高员工工作积极性,有效提高生产力。矿产资源的是我国经济发展命脉,只有良好合理的矿产开发才能推动经济发展[3]。

友情链接