电路设计论文范文

时间:2023-03-20 16:26:51

引言:寻求写作上的突破?我们特意为您精选了12篇电路设计论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

电路设计论文

篇1

1.2影响振荡器输出频率的因素标签工作的环境温度具有较大的变化范围,可能从负几十摄氏度到近一百摄氏度。根据第2.1节的推导,振荡器输出周期由电容和电阻决定。由于电容和电阻易受温度影响,尤其是CMOS工艺的电阻温度系数一般较大,因此,在设计电路时需考虑电容和电阻随温度的变化。参考文献[9,10]中所提及的温度补偿方法可以在理论上完全消除温度变化对输出的影响,达到由电阻和电容随温度偏移造成的频率温漂为0。但是,通常情况下,MOS管的工作特性会随温度变化,所以,在电路设计时,电阻的选择需综合考虑。标签芯片在向阅读器发送数据进行反向散射调制时,会在一段时间内接收不到电磁能量,时长从1μs到37.5μs。不同的无能量时段长度对芯片造成的影响不同,小到几个微秒的断电不会使电源管理模块提供给振荡器的电压源VDD发生波动。但是,最大37.5μs的断电时长则会造成振荡器工作电压VDD的下降,当标签再次获得能量时,振荡器工作电压恢复正常,造成电源电压抖动。同时,振荡器所用偏置电流也会发生波动。根据ISO/IEC18000-6C协议,通信过程中标签解码以及反向散射编码对时钟精度要求较严格,而RFID系统的基带数字部分可通过采用相对比值解码和区间分段分频控制方法对反向编码的通信速率进行控制,解决对基带时钟精度要求严格的问题。如前文所述,控制好温度等因素对电容值和电阻值的影响,即可解决振荡器输出频率不准的问题。换言之,输出频率可以偏离理想值,且在变化范围较小情况下,数字基带仍然可以正常工作。但是在设计模拟前端时,应当尽量减小振荡器的输出偏差。

2仿真结果及说明

采用SMIC0.18μmCMOS工艺模型,使用Cadence工具对电路进行设计,并采用Spectre仿真器模拟电路性能。仿真中,在理想电压源为1V,理想偏置电流为100nA,室温为25℃时,电源上电时间为5μs,瞬态仿真时长为300μs。振荡器频率为1.925MHz,功耗为0.9μW。图2所示为理想条件下的仿真输出波形和对其进行freq函数处理后的频率曲线,输出是稳定的周期方波,频率为1.925MHz。

2.1输出频率随温度的变化标签芯片需在宽范围环境温度下工作。图3所示为在理想电源电压和电流基准下电路输出频率随温度的变化曲线。

2.2频率随电源电压的变化由于工艺角的影响,电源管理模块输出给振荡器工作的电压源VDD可能会产生一些偏差,不是理想的1V。当标签芯片距离阅读器较远时,芯片获得能量较少,也可能出现VDD偏低的情况。图4给出了在室温下,偏置电流无偏移时,振荡器输出频率随电源电压变化的曲线。可以看出,VDD低于0.95V时,输出频率随VDD降低快速升高,VDD=0.75V时,输出频率为1.978MHz;VDD=0.95V时,输出频率出现最小值,为1.923MHz;VDD超过0.95V时,输出频率呈上升趋势,当VDD到达1.3V时,输出频率达到1.941MHz。该条件下,振荡器在0.75~1.3V电源电压下偏离理想频率小于3%。

2.3频率随输入偏置电流的变化与电压产生偏移的原因一样,偏置电流也会产生一定的偏移而影响振荡器的输出频率。图5给出了输出频率随偏置电流变化的曲线。仿真结果显示,偏置电流减少到90nA时,输出频偏小于目标3%以上;偏置电流增大到110nA时,输出频偏接近3%。

2.4电源电压与偏置电流纹波对输出频率的影响反向调制造成标签芯片接收不到能量的最大时间长度为37.5μs,这会使电源管理模块提供给振荡器的电压源和电流源产生相同频率的纹波,而输出频率的波动对数字基带的影响要大于稳定的频率偏差所带来的影响。当电压源降低100mV,偏置电流降低10nA时,得到了如图6所示的振荡器输出频率波动波形。图6中,输出频率的波谷是在电源电压和偏置电流都降低10%时产生的,最小值是1.864MHz;波形的最大值是1.926MHz,是电源电压和输入电流正常时的输出频率。此时,输出频率的相对误差为1.64%。

篇2

本文实现了将VGA接口信号转换到模拟液晶屏上显示的驱动电路,采用ADI公司的高性能DSP芯片ADSP—21160来实现驱动电路的主要功能。

硬件电路设计

AD9883A是高性能的三通道视频ADC可以同时实现对RGB三色信号的实时采样。系统采用32位浮点芯片ADSP-21160来处理数据,能实时完成伽玛校正、时基校正,图像优化等处理,且满足了系统的各项性能需求。ADSP-21160有6个独立的高速8位并行链路口,分别连接ADSP-21160前端的模数转换芯片AD9883A和后端的数模转换芯片ADV7125。ADSP-21160具有超级哈佛结构,支持单指令多操作数(SIMD)模式,采用高效的汇编语言编程能实现对视频信号的实时处理,不会因为处理数据时间长而出现延迟。

系统硬件原理框图如图1所示。系统采用不同的链路口完成输入和输出,可以避免采用总线可能产生的通道冲突。模拟视频信号由AD9883A完成模数转换。AD9883A是个三通道的ADC,因此系统可以完成单色的视频信号处理,也可以完成彩色的视频信号处理。采样所得视频数字信号经链路口输入到ADSP-21160,完成处理后由不同的链路口输出到ADV7125,完成数模转换。ADV7125是三通道的DAC,同样也可以用于处理彩色信号。输出视频信号到灰度电压产生电路,得到驱动液晶屏所需要的驱动电压。ADSP-21160还有通用可编程I/O标志脚,可用于接受外部控制信号,给系统及其模块发送控制信息,以使整个系统稳定有序地工作。例如,ADSP-21160为灰度电压产生电路和液晶屏提供必要的控制信号。另外,系统还设置了一些LED灯,用于直观的指示系统硬件及DSP内部程序各模块的工作状态。

本设计采用从闪存引导的方式加载DSP的程序文件,闪存具有很高的性价比,体积小,功耗低。由于本系统中的闪

存既要存储DSP程序,又要保存对应于不同的伽玛值的查找表数据以及部分预设的显示数据,故选择ST公司的容量较大的M29W641DL,既能保存程序代码,又能保存必要的数据信息。

图2为DSP与闪存的接口电路。因为采用8位闪存引导方式,所以ADSP-21160地址线应使用A20-A0,数据线为D39—32,读、写和片选信号分别接到闪存相应引脚上。

系统功能及实现

本设计采用ADSP-21160完成伽玛校正、时基校正、时钟发生2S、图像优化和控制信号的产生等功能。

1伽玛校正原理

在LCD中,驱动IC/LSI的DAC图像数据信号线性变化,而液晶的电光特性是非线性,所以要调节对液晶所加的外加电压,使其满足液晶显示亮度的线性,即伽玛(Y)校正。Y校正是一个实现图像能够尽可能真实地反映原物体或原图像视觉信息的重要过程。利用查找表来补偿液晶电光特性的Y校正方法能使液晶显示系统具有理想的传输函数。未校正时液晶显示系统的输入输出曲线呈S形。伽玛表的作用就是通过对ADC进来的信号进行反S形的非线性变换,最终使液晶显示系统的输入输出曲线满足实际要求。

LCD的Y校正图形如图3所示,左图是LCD的电光特性曲线图,右图是LCD亮度特性曲线和电压的模数转换图。

2伽玛校正的实现

本文采用较科学的Y校正处理技术,对数字三基信号分别进行数字Y校正(也可以对模拟三基信号分别进行Y校正)。在完成v校正的同时,并不损失灰度层次,使全彩色显示屏图像更鲜艳,更逼真,更清晰。

某单色光Y调整过程如图4所示,其他二色与此相同。以单色光v调整为例:ADSP-21160首先根据外部提供的一组控制信号,进行第一次查表,得到Y调整系数(Y值)。然后根据该Y值和输入的显示数据进行第二次查表,得到经校正后的显示数据。第一次查表的Y值是通过外部的控制信号输入到控制模块进行第一次查表得到的。8位显示数据信号可查表数字0~255种灰度级显示数据(Y校正后)。

3图像优化

为了提高图像质量,ADSP-21160内部还设计了图像效果优化及特技模块,许多在模拟处理中无法进行的工作可以在数字处理中进行,例如,二维数字滤波、轮廓校正,细节补偿频率微调、准确的彩色矩阵(线性矩阵电路),黑斑校正、g校正、孔阑校正、增益调整、黑电平控制及杂散光补偿、对比度调节等,这些处理都提高了图像质量。

数字特技是对视频信号本身进行尺寸、位置变化和亮,色信号变化的数字化处理,它能使图像变成各种形状,在屏幕上任意放缩,旋转等,这些是模拟特技无法实现的。还可以设计滤波器来滤除一些干扰信号和噪声信号等,使图像的清晰度更高,更好地再现原始图像。所有的信号和数据都是存储在DSP内部,由它内部产生的时钟模块和控制模块实现的。

4时基校正及系统控制

由于ADSP-21160内部各个模块的功能和处理时间不同,各模块之间存在一定延时,故需要进行数字时基校正,使存储器最终输出的数据能严格对齐,而不会出现信息的重叠或不连续。数字时基校正主要用于校正视频信号中的行,场同步信号的时基误差。首先,将被校正的信号以它的时基信号为基准写入存储器,然后,以TFT-LCD的时基信号为基准读出,即可得到时基误差较小的视频信号。同时它还附加了其他功能,可以对视频信号的色度、亮度、饱和度进行调节,同时对行、场相位、负载波相位进行调节,并具有时钟台标的功能。

控制模块主要负责控制时序驱动逻辑电路以管理和操作各功能模块,如显示数据存储器的管理和操作,负责将显示数据和指令参数传输到位,负责将参数寄存器的内容转换成相应的显示功能逻辑。内部的信号发生器产生控制信号及地址,根据水平和垂直显示及消隐计数器的值产生控制信号。此外,它还可以接收外部控制信号,以实现人机交互,从而使该电路的功能更加强大,更加灵活。

此外,ADSP21160的内部还设计了I2C总线控制模块,模拟FC总线的工作,为外部的具有I2C接口的器件提供SCLK(串行时钟信号)和SDA(双向串行数据信号)。模拟I2C工作状态如图5和图6所示。

系统软件实现

在软件设计如图7所示,采用Matlab软件计算出校正值,并以查找表的文件形式存储,供时序的调用。系统上电

篇3

恒温电路设计的研究主要用于电力采集产品上,对电力采集产品来讲,安装在PT侧,需要耐受100℃的温度变化,却要求万分之五的精度。除需要从理论上进行最终的计算和分析外,还要考虑各种因素。如其中重要的一个因素高精度器件的温漂,器件稳定性、可靠性受温度变化的影响,是电子器件不可回避的问题。对于电力采集产品中高精度的AD采集模块,温漂的问题更为严重,要保证AD采集模块精度在允许的范围内,恒温电路的设计是很重要的。基于对电力采集产品应用环境的考虑,将高精度的AD采集模块放置在恒温盒中,同时配合加热电阻来稳定恒温盒温度的方法,来保证环境在-20℃~+75℃变化时,恒温盒内的温度变化在±1℃,使电力产品在万分之五的精度范围以内稳定工作。器件主要由分压电阻、热敏电阻、加热电阻、运放、三极管等组成,从设计上看电路设计简单、稳定性好。选择的运放是低价、高性能、低噪声的双运算放大器ne5532,热敏电阻选择低价,对温度反应灵敏的电阻。根据电路,为了保证恒温盒内的器件工作最佳状态,首先确定恒温盒内要保持的恒定温度,通过测试和计算,恒温盒的温度恒定在75℃为最佳,AD采集模块可以稳定的工作,电力产品可以达到万分之五的精度。当温度降低时,通过分压电阻电路、负反馈电路、恒流源控制电路,加热电阻电路使温度稳定在75℃。

1.2电路具体设计

具体分析如:当温度低于75℃时,由于热敏电阻(MF1是负温度系数的热敏电阻)的阻值变大,V0≠V1,V1>V0,根据深度负反馈电路虚短、虚断的特点,R18上有电流,在经过负反馈电路放大,后级运算放大U2B同向输入端和反向输入端形成压差,输出电压放大,三级管基极电压大于发射极电压,三级管导通,有电流流过加热电阻,加热电阻加热,再通过三极管、运算放大U2B、电阻等组成的恒流控制源电路控制流过加热电阻电流,使恒温盒温度保持在75℃左右。在设计过程中,要理论计算配合仿真软件。下面是SaberSketch软件仿真结果,根据热敏电阻负温度系数特性,在仿真过程中给热敏电阻设定不同的参数值,从而达到模拟温度升高和温度降低环境的目的。

2应用

电力采集产品安装在PT侧,需要耐受100℃的温度变化,还要求精度在±0.05%以内。AD转换模块是电力采集产品的重要模块,对温度的变化更加敏感,AD转换模块采用ADS8329IRSARG4芯片,其采样精度16位,零位漂移0.4×10-6/℃,增益漂移0.75×10-6/℃,这款芯片具有高精度和高采样率的优点,但对温度变化敏感。AD转换模块在电路设计和器件选择上,尽量保证采样电压的精度并最大程度减小温漂。但还是要考虑温度在-25℃~+75℃变化时,AD模块精度漂移。温漂造成的输出变化必须通过恒温或者温度补偿来去除。由于温度补偿电路需要在芯片设计之初加入,而且无法做到完全补偿,因此,要得到稳定的输出,则必须稳定系统的工作温度,所以AD转换模块放在恒温盒里,在通过恒温控制电路保证温度的恒定。

3测试

恒温设计电路主要保证D采样模块所处的环境温度变化在±1℃,电力采集产品是三相电压,通过三路选通信号对模拟开关74LVC1G3157的控制使得三项交流(A、B、C)模拟信号能够经过滤波后进入到AD转换芯片中,实现模拟到数字的转换,在通过电力还原产品还原成模拟信号。如果环境温度在-25℃~+75℃变化时,电力采集产品和还原产品通过压降仪测试读出的三相电压的差值的幅值在0%~0.06%,相位在0('''')~3('''')之间变化,说明恒温硬件电路设计合理。

篇4

2主动测量控制仪的工作电路设计

2.1振荡器电路的设计振荡器电路的设计见图6。由于在设计时始终使L0在整个工作区域内大于3.6mH,故实际工作时,选用了右半边曲线,即随着工件内孔的磨削,L0逐渐地增大,而USC则逐渐地减小,至此,被加工工件尺寸的变化就转变为电压的变化而输出了。1.3电信号的处理电信号的处理可用图5所示的框图来表示。振荡器作为LC串联谐振回路的交流电源,产生幅度(有效值)为1.1V,频率为20kHz的正弦波,采用的是LC回路选频振荡。整个振荡器分三级:第一级由晶体管BG101及选频回路(振荡线圈T1的初级及电容C104)构成;第二级由晶体管BG102、BG103构成的复合管所组成的功率放大级组成,这样可以提高振荡器的带负载能力;第三级是由大功率晶体管BG104所组成的输出级。开机后,+12V电压经过电阻R101限流,使稳压管产生6V的稳定电压,流过稳压管D101的电流。这一稳定的6V电压作为振荡管BG101集电极的电源,C101的作用是消除稳压管工作时的噪声。这一6V的电压经过电阻R102的作用使BG101基极电位升高,基极电位的升高使发射极的电位也升高,发射极通过发射极电阻R103使选频回路得电,于是,LC选频回路就开始产生电磁振荡,产生各种高次谐波。而其他频率的振荡则被抑制掉了。由于振荡线圈的初级是在同一个磁芯上相同方向连续绕制而成的,所以任何瞬间点B的电压都比点A的电压高。正反馈电容C103的作用是使BG101的基极电压继续上升,这样就形成了正反馈的作用,故振荡器得以工作。电容C102与电阻R103的作用均是负反馈,用以改善正弦波的波形。正弦波经振荡线圈耦合到次级,送到后级功率放大,电阻R104与电阻R105构成BG102的直流偏置电路,BG102的基极电压:由于BG103发射极电位为5.14V,而正弦波的最大值为槡1.12=1.56V,故二极管D102始终处于导通状态,其作用是隔离,使信号无法倒流,电容C110将输出波形中的直流分量隔去,使送到传感器中去的为不含直流成分的正弦波。另外,电容C108、电位器W102组成基准点取样电路,基准点的大小可调整W102得到,基准点的大小决定了传感器的前行程量(前行程量为控制仪电表示值,为0μm时二测点之间的距离与传感器为自由状态时二测点之间距离差的绝对值)。传感器电压线圈的信号经耦合线圈T2,由信号取样电位器W104的中心抽头输出。输出信号也是纯净的正弦波,其幅度随被加工工件尺寸的变化而变化。

2.2振荡器输出信号的整流滤波振荡器输出信号的整流滤波电路见图9。由于输出指示电表采用的是直流电流表,故需把电位器Wl04中心抽头输出的正弦波整流成直流信号,才能去电表指示,二极管D201A与二极管D202A及电容C204、C205就组成了整流滤波电路,三极管BG201、BG202组成的复合管如前所述一样是功率放大器,信号经电容C201耦合至BG201的基极,基极电位。信号由BG202的发射极输出,该点的直流电位为7.2-1.4=5.8V。电容C203为隔直电容,将纯净的正弦波信号电压送到二极管D201A、D202A去整流,电阻R204与R205组成整流二极管D202A的偏置电路,使D202A与D201A始终处于导通状,导通后,D202A的正极电位为1.4V(直流),这样可提高检波的灵敏度。信号电压由电容C204取出后,由电阻R206、R207送到相加器IC201的反相端,振荡板上的基准电压经过另外一路反向极性的整流滤波电路,由电容C210取出后经电阻R216、R208也送到相加放大器的反相端,与信号电压相加后经运算放大器IC201作反相放大后由运算放大器的6脚输出。

2.3直流输出信号的再处理振荡器的输出信号经整流滤波后,由运算放大器IC201的6脚输出,其输出信号分4路,分别为高低精度量程转换电路、指示电路、线性补偿电路及发讯电路。运算放大器IC201的6脚输出的一路进行高低精度量程的电平比较转换,该控制仪采用单电表来代替双电表指示,故电表指针的二次回程中,电表满刻度所代表的量程是不同的(相差10倍),第一次回程时,电表满刻度为500μm(每小格刻度为10μm),第二次回程时,电表满刻度为50μm(每小格刻度为1μm),指针在50μm处实现量程的转换。指示电路用发光二极管指示,指示高低量程挡位,指示磨削尺寸等。线性补偿电路带可调电位器,安装在仪表板上供操作者调节。

发讯电路共有4挡,粗磨、精磨、光磨及到尺寸发讯,由于其发讯电路完全一样,故只需取其中1路发讯为例,其余3路类推。由电阻R301、电位W301及电阻R302组成了发讯点的取样电路,调节W301,可使该路的发讯点随之而变。当调节好W301中心抽头的电位以后,运放IC301的同相输入端3脚的电位也就同时确定了,由于磨削开始时,IC201的输出端6脚的电压总是高于IC301的3脚电平,故IC301的输出端6脚为低电平(-12V),此时三极管BG301的发射结处于反偏,BG301不导通,J1不吸合,随着磨加工的进行,IC201的输出端6脚(即IC301的反相输入端2脚)的电压逐渐下降,当下降至IC301的2脚电压低于3脚电压时,IC301的输出端6脚由原来的-12V变为+12V,此时,一方面使BG301的发射极处于正偏而导通,使继电器J1动作,另一方面使正反馈回路中的二极管D301导通,而使同相输入端3脚的电位高于原设定值约0.23V(可通过计算得到),从而使输出端6脚的电位更加稳定,这样可使机械执行机构的动作稳定。此电路中,二极管D305为保护二极管,当IC301输出端6脚为负时,D305导通,使三极管BG301的发射结的反偏电压箝在0.7V,从而使BG301不至于因反偏电压过大而损坏,二极管D309为泄放二极管,为继电器线圈提供放电回路。

篇5

2改进的并行扰码与解扰电路

前面已经提到,协议规定的扰码与解扰模块位于数据传输层和数据链路层之间,在传输层数据成帧的过程中,发射器为了与接收器之间达到同步会在用户数据前发送编码数据同步序列和初始通道校准序列,协议要求在这两种序列发送的过程中是不能进行扰码的,在此过程中扰码器和解扰器处于非工作状态。另一方面,在用户数据到达后,扰码器和解扰器要开始工作,如果此时扰码器与解扰器中移位寄存器的初始状态值不同,会导致接收端不能正确恢复用户数据前两个字节值[4]。为了避免前两个字节值的丢失,在扰码器与解扰器的移位寄存器同步之前,用户数据前两个字节可以在无扰码操作的情况下传输,两个字节之后,扰码器与解扰器移位寄存器的状态就会由用户数据的前两个字节所确定,这时能够保证达到同步状态。基于以上考虑,提出一种带使能信号的改进扰码与解扰电路结构[4],如图3所示。此时扰码器和解扰器都加入了一个使能控制信号。当en信号为低电平时,输入不经扰码直接输出;同理在接收端也不用解扰。两个字节之后,扰码器和解扰器移位寄存器中的状态都是由输入决定的确定值,此时可将en信号电平拉高,进行正常的扰码与解扰操作。

3仿真结果

用MODELSIM软件对设计的并行扰码和解扰电路进行了功能仿真。把扰码电路和解扰电路串联起来进行了仿真,仿真结果如图4和图5所示。由仿真结果看出,无论是8位并行扰码还是16位并行扰码,前两个字节都没有被扰码,当然也没有被解扰,此时扰码器的输出和解扰器的输出是相同的。从第3个字节开始,扰码器和解扰器就进行了正常的扰码与解扰。这样的输出结果正是协议的规范和要求。而解扰器的输出与扰码器的输入是完全相同的,从而证明了电路扰码和解扰功能的正确性。用DesignCompiler软件对设计进行综合,得到电路在面积、动态功耗、弛豫时间等方面的结果,如表1所示。由以上综合结果可以看出,该电路功耗很低,至少可以运行于较高频率,满足协议对加扰电路的速度要求。

篇6

2)考虑到开通期间内部MOSFET产生Mill-er效应,要用大电流驱动源对栅极的输入电容进行快速充放电,以保证驱动信号有足够陡峭的上升、下降沿,加快开关速度,从而使IGBT的开关损耗尽量小。

3)选择合适的栅极串联电阻(一般为10Ω左右)和合适的栅射并联电阻(一般为数百欧姆),以保证动态驱动效果和防静电效果。根据以上要求,可设计出如图1所示的半桥LC串联谐振充电电源的IGBT驱动电路原理图。考虑到多数芯片难以承受20V及以上的电源电压,所以驱动电源Vo采用18V。二极管V79将其拆分为+12.9V和-5.1V,前者是维持IGBT导通的电压,后者用于IGBT关断的负电压保护。光耦TLP350将PWM弱电信号传输给驱动电路且实现了电气隔离,而驱动器TC4422A可为IGBT模块提供较高开关频率下的动态大电流开关信号,其输出端口串联的电容C65可以进一步加快开关速度。应注意一个IGBT模块有两个相同单管,所以实际需要两路不共地的18V稳压电源;另外IGBT栅射极之间的510Ω并联电阻应该直接焊装在其管脚上(未在图中画出),而且最好在管脚上并联焊装一个1N4733和1N4744(反向串联)稳压二极管,以保护IGBT的栅极。

2实验结果及分析

在变换器的LC输出端接入两个2W/200Ω的电阻进行静态测试。实验中使用的仪器为:Agi-lent54833A型示波器,10073D低压探头。示波器置于AC档对输出电压纹波进行观测,波形如图5所示。由实验结果看,输出纹波可以基本保持在±10mV以内,满足设计要求。此后对反激变换器电路板与IGBT模块驱动电路板进行对接联调。观察了IGBT栅极的驱动信号波形。由实验结果看,IGBT在开通时驱动电压接近13V,而在其关断时间内电压接近5V。这主要是电路中的光耦和大电流驱动器本身内部的晶体管对驱动电压有所消耗(即管压降)造成的,故不可能完全达到18V供电电源的水平。

篇7

对EHW的研究主要采用了进化理论中的进化计算(EvolutionaryComputing)算法,特别是遗传算法(GA)为设计算法,在数字电路中以现场可编程门阵列(FPGA)为媒介,在模拟电路设计中以现场可编程模拟阵列(FPAA)为媒介来进行的。此外还有建立在晶体管级的现场可编程晶体管阵列(FPTA),它为同时设计数字电路和和模拟电路提供了一个可靠的平台。下面主要介绍一下遗传算法和现场可编程门阵列的相关知识,并以数字电路为例介绍可进化硬件设计方法。

1.1遗传算法

遗传算法是模拟生物在自然环境中的遗传和进化过程的一种自适应全局优化算法,它借鉴了物种进化的思想,将欲求解问题编码,把可行解表示成字符串形式,称为染色体或个体。先通过初始化随机产生一群个体,称为种群,它们都是假设解。然后把这些假设解置于问题的“环境”中,根据适应值或某种竞争机制选择个体(适应值就是解的满意程度),使用各种遗传操作算子(包括选择,变异,交叉等等)产生下一代(下一代可以完全替代原种群,即非重叠种群;也可以部分替代原种群中一些较差的个体,即重叠种群),如此进化下去,直到满足期望的终止条件,得到问题的最优解为止。

1.2现场可编程逻辑阵列(FPGA)

现场可编程逻辑阵列是一种基于查找表(LUT,LookupTable)结构的可在线编程的逻辑电路。它由存放在片内RAM中的程序来设置其工作状态,工作时需要对片内的RAM进行编程。当用户通过原理图或硬件描述语言(HDL)描述了一个逻辑电路以后,FPGA开发软件会把设计方案通过编译形成数据流,并将数据流下载至RAM中。这些RAM中的数据流决定电路的逻辑关系。掉电后,FPGA恢复成白片,内部逻辑关系消失,因此,FPGA能够反复使用,灌入不同的数据流就会获得不同的硬件系统,这就是可编程特性。这一特性是实现EHW的重要特性。目前在可进化电子电路的设计中,用得最多得是Xilinx公司的Virtex系列FPGA芯片。

2进化电子电路设计架构

本节以设计高容错性的数字电路设计为例来阐述EHW的设计架构及主要设计步骤。对于通过进化理论的遗传算法来产生容错性,所设计的电路系统可以看作一个具有持续性地、实时地适应变化的硬件系统。对于电子电路来说,所谓的变化的来源很多,如硬件故障导致的错误,设计要求和规则的改变,环境的改变(各种干扰的出现)等。

从进化论的角度来看,当这些变化发生时,个体的适应度会作相应的改变。当进化进行时,个体会适应这些变化重新获得高的适应度。基于进化论的电子电路设计就是利用这种原理,通过对设计结果进行多次地进化来提高其适应变化的能力。

电子电路进化设计架构如图1所示。图中给出了电子电路的设计的两种进化,分别是内部进化和外部进化。其中内部进化是指硬件内部结构的进化,而外部进化是指软件模拟的电路的进化。这两种进化是相互独立的,当然通过外部进化得到的最终设计结果还是要由硬件结构的变化来实际体现。从图中可以看出,进化过程是一个循环往复的过程,其中是根据进化算法(遗传算法)的计算结果来进行的。整个进化设计包括以下步骤:

(1)根据设计的目的,产生初步的方案,并把初步方案用一组染色体(一组“0”和“1”表示的数据串)来表示,其中每个个体表示的是设计的一部分。染色体转化成控制数据流下载到FPGA上,用来定义FPGA的开关状态,从而确定可重构硬件内部各单元的联结,形成了初步的硬件系统。用来设计进化硬件的FPGA器件可以接受任意组合的数据流下载,而不会导致器件的损害。

(2)将设计结果与目标要求进行比较,并用某种误差表示作为描述系统适应度的衡量准则。这需要一定的检测手段和评估软件的支持。对不同的个体,根据适应度进行排序,下一代的个体将由最优的个体来产生。

(3)根据适应度再对新的个体组进行统计,并根据统计结果挑选一些个体。一

部分被选个体保持原样,另一部分个体根据遗传算法进行修改,如进行交叉和变异,而这种交叉和变异的目的是为了产生更具适应性的下一代。把新一代染色体转化成控制数据流下载到FPGA中对硬件进行进化。

(4)重复上述步骤,产生新的数代个体,直到新的个体表示的设计方案表现出接近要求的适应能力为止。

一般来说通过遗传算法最后会得到一个或数个设计结果,最后设计方案具有对设计要求和系统工作环境的最佳适应性。这一过程又叫内部进化或硬件进化。

图中的右边展示了另一种设计可进化电路的方法,即用模拟软件来代替可重构器件,染色体每一位确定的是软件模拟电路的连接方式,而不是可重构器件各单元的连接方式。这一方法叫外部进化或软件进化。这种方法中进化过程完全模拟进行,只有最后的结果才在器件上实施。

进化电子电路设计中,最关键的是遗传算法的应用。在遗传算法的应用过程中,变异因子的确定是需要慎重考虑的,它的大小既关系到个体变异的程度,也关系到个体对环境变化做出反应的能力,而这两个因素相互抵触。变异因子越大,个体更容易适应环境变化,对系统出现的错误做出快速反应,但个体更容易发生突变。而变异因子较小时,系统的反应力变差,但系统一旦获得高适应度的设计方案时可以保持稳定。

对于可进化数字电路的设计,可以在两个层面上进行。一个是在基本的“与”、“或”、“非”门的基础上进行进化设计,一个是在功能块如触发器、加法器和多路选择器的基础上进行。前一种方法更为灵活,而后一种更适于工业应用。有人提出了一种基于进化细胞机(CellularAutomaton)的神经网络模块设计架构。采用这一结构设计时,只需要定义整个模块的适应度,而对于每一模块如何实现它复杂的功能可以不予理睬,对于超大规模线路的设计可以采用这一方法来将电路进行整体优化设计。

3可进化电路设计环境

上面描述的软硬件进化电子电路设计可在图2所示的设计系统环境下进行。这一设计系统环境对于测试可重构硬件的构架及展示在FPGA可重构硬件上的进化设计很有用处。该设计系统环境包括遗传算法软件包、FPGA开发系统板、数据采集软硬件、适应度评估软件、用户接口程序及电路模拟仿真软件。

遗传算法由计算机上运行的一个程序包实现。由它来实现进化计算并产生染色体组。表示硬件描述的染色体通过通信电缆由计算机下载到有FPGA器件的实验板上。然后通过接口将布线结果传回计算机。适应度评估建立在仪器数据采集硬件及软件上,一个接口码将GA与硬件连接起来,可能的设计方案在此得到评估。同时还有一个图形用户接口以便于设计结果的可视化和将问题形式化。通过执行遗传算法在每一代染色体组都会产生新的染色体群组,并被转化为数据流传入实验板上。至于通过软件进化的电子电路设计,可采用Spice软件作为线路模拟仿真软件,把染色体变成模拟电路并通过仿真软件来仿真电路的运行情况,通过相应软件来评估设计结果。

4结论与展望

篇8

2硬件电路设计

硬件电路设计分为水下和水上两部分。水下和水上都是以STM32F103VE芯片为核心,通过各自电路以实现各自功能。STM32系列是专门为要求高性能、低成本、低功耗的嵌入式应用设计的ARMCortex内核,本设计所用芯片主频为72MHz,从闪存执行代码,功耗27mA,是32位市场上功耗最低的产品之一,相当于0.375mA/MHz。

2.1水下电路设计

水下部分电路主要有主控电路、流速测量电路、姿态解算电路、锂离子电池充放电及其保护电路、数据存储及传输电路,压力、温度采集电路5部分组成。

2.1.1流速测量

流速是本设计最重要数据,因此本设计选用低功耗、高温度稳定性霍尔器件A1220作为机械转子转速测量传感器。A1220内部集成动态补偿电路,低通滤波电路,施密特触发器,电压比较器等,我们可以看到霍尔器件输出为规则方波,因此我们可直接由STM芯片采集这些方波信号就能达到我们的需求。

2.1.2姿态解算电路

本设计采用InvenSense公司的整合性6轴(3轴陀螺仪、3轴加速度计)运动处理组件MPU-6050和Honeywell公司的3轴数字罗盘HMC5883L来采集探测器角加速度W、线加速度A、磁场强度Η,用四元数的方法进行数据融合,计算探测器姿态角。

2.1.3电源电路

电源作为海流计运行的动力,其电路设计的优劣不仅决定设备能否正常运行而且还决定了设备是否安全运行。本设计采用摩米士三星GalaxyNote3高容量锂离子电池作为电源,采用LINEAR公司的可编程充电电流的单节锂离子充电管理芯片LTC4054,自动检测锂离子电池电压及充电电流变化使锂离子电池充电过程自动在涓流充电、恒流充电、恒压充电、充电终止这四个充电过程切换,避免了处理器的参与,减少处理器的负担;采用TexasInstruments公司的单节锂离子电池电量检测和保护芯片BQ28Z560-R1,该芯片使用德州仪器ImpedanceTrackTM精确电量计算算法来报告电池状态,同时提供续航时间(分钟),充电所需时间(分钟)、电池电压和电池温度等信息,此外该芯片还提供短路、过流充电和放电、过度充电和放电保护功能;采用LINEAR公司的宽输入电压同步降压-升压DC/DC转换器,该芯片可由动态输入电压(1.8~5.5V)获得稳压输出,特别适合于锂离子电池放电特点,改变了传统先升压再降压的电路设计,降低了功耗。

2.1.4压力、温度采集电路设计

探测器所处的深度及该深度下的温度同样是海流计所需的数据,本设计采用MeasurementSpeclalties公司的工作深度0~3000m,高精度压力传感器89-03KA-4R,为了降低功耗每隔一段时间T单片机置位一次,BOOST管脚STM32采集Li_PRESSURE管脚上电压,经转化得到深度H。温度传感器采用pt100经24位模数转换芯片AD7714转换成数字信号,STM32采集数字信号,再转化为温度数据。为了提高精度,本设计采用高性能稳压芯片压力提供参考电压,采用耦合电路避免处理器数字信号干扰。压力采集电路如图7所示。

2.2水上电路设计

水上电路主要有主控电路、无线数据传输电路、无线充电电路、显示触摸电路4部分组成。无线数据传输电路采用GFSK单片式收发芯片NRF24L01。水上和水下电路各连接一块NRF24L01模块,将水下探测器数据传输给水上接收电路。

3软件设计

本设计软件以Keil4为编译平台,采用模块化编程思想,分别为水下探测部分和水上数据接收部分编写了代码,增加了代码的可读性,使设备易于升级维护。

3.1水下探测电路软件设计

水下探测电路主要任务是采集机械转子转速、探测器姿态、压力、温度等信息,并将数据增加时间戳后存储到SD卡中,其程序图如图9所示。

3.2水上接收电路软件设计

水上接收电路主要功能是接收水下探测器测量的数据,此外还有控制锂离子电池充电,控制数据传输,设置水下探测器采样间隔,指示充电状态,数据传输状态的功能。

篇9

2硬件电路设计

2.1动力电池电压信号检测电路设计

动力电池组是由众多单体电池串联而成。本设计中,选取12个单体电池串联而成的动力电池组,相应的就有12个电压模拟量信号。图2所示为电压采集电路设计。动力电池组中,各个动力电池串联而成。在地参考点的作用下,各个电池正负极对地参考电压近似比例增大,为实现输出的是电池电压,最有效的实现途径是借助由运算放大器“虚短”与“虚断”原理构成的减法电路。图2中,由双运放运算放大器LM358构建2级网络:第1级即为由R1~R4组建的差分放大电路形成减法电路,第2级构成电压跟随器,起到缓冲及隔离的作用。LM358使用单5V电源供电。

2.2动力电池双向电流检测电路设计

电池组在充放电过程中,由于只有一个充放电通道,理论上而言电流检测通道只有一个。根据电路理论电流在其参考方向下存在正负之分,因此必须单独设计充电电流、放电电流各自的检测信号。图3所示为集成的双向电流检测硬件电路设计。从电路中可以看出,该电路的设计非常类似于电气中的互锁电路。从采样电阻中采集的电阻两端电压在电阻分压网络下,产生不同的电压。结合运放的差分放大功能,分别引入LM358运算放大器的2组不同的运放输入端,由于引入同相输入端和反相输入端的电压不同,使得2组运放各自工作在线性工作区与非线性工作区中。当电池组中有任意方向的电流时,均会产生一组运放工作在线性放大区域产生对应的模拟电压信号同时另外一组运放工作在非线性区域而作为电子开关输出供电电源的参考地电压。在实际的电动汽车中,通常选用100AH的动力电池组为电动汽车提供动力源,这样,采样电阻的选择就有了依据。本设计中,选用0.05R/2W的采样电阻多个并联成0.01R的功率电阻作为充放电电流检测元件。

2.3动力电池组温度检测电路设计

温度检测保证电池组工作在可靠温度范围内而不引起电池故障,是电池管理系统中必不可少的有效组成部分。温度检测传感器选用PT100系列温度传感器。最新制造工艺出产的PT100体积小,精度高,比较适合应用在电池管理系统温度检测单元中。本设计中,选用三线式桥式测温电路,其最大优点在于将地线单独引出,参考电阻网络的地线电阻可以与PT100的地线电阻匹配,减小电阻差异带来的偏差问题,提高温度测量精度。其设计原理同电压采集电路基本相同。

3调试数据与分析

设计完毕后,对该套电池管理系统的硬件电路进行了制版调试。在解决了焊接遗留的硬件问题后,通过MCU的监测获取了大量数据。调试过程中某一时刻点的状态量。从测试数据可以看出,无论是电压、电流、还是温度,其相对误差都控制在1%以内,特别是电压检测数据,精度更是达到了3‰,这样的误差在电池管理系统误差允许范围之内,达到了电池管理系统数据采集前端模块硬件电路设计的目的。

篇10

2中规模集成电路实现三人表决

2.1用译码器实现译码器是一类多输入、多输出组合逻辑器件,n变量二进制译码器具有2n个输出变量,恰为n变量的最小项。任何组合逻辑电路都可用最小项之和的标准形式表示,因此,可用n变量二进制译码器和必要的门电路实现n输入变量逻辑电路。3~8线译码器74HC138输出低电平有效[8],用译码器74HC138和“与非”门可以实现三人表决电路。74HC138译码器输出的逻辑表达式为.

2.2用数据选择器实现数据选择器的输出端具有标准“与或”的形式。n选1数据选择器在选择输入控制下,从n个数据中选择某个数据送到输出端。采用n选1数据选择器可以实现任何输入变量数不大于n+1的组合逻辑电路。三人表决电路可选用4选1或者8选1数据选择器实现。

2.3用加法器实现加法器是产生数和的装置,分为半加器和全加器。若加数、被加数与低位的进位为输入,和数与进位为输出则为全加器。74LS283是超前进位四位二进制全加器[8],即所有各位的进位直接从最低位进位CIN产生。

3ROM和PLA实现三人表决

只读存储器ROM和可编程逻辑阵列PLA都属于组合逻辑电路,都有一个与阵列和一个或阵列,但PLA的与阵列和或阵列都是可编程的,而ROM中与阵列是固定连接,只有或阵列可编程。ROM中的与阵列是一个产生2n个输出的译码器,即产生2n个最小项(与阵列的输出mi)。用ROM实现组合逻辑电路时,首先,将逻辑表达式表示成最小项之和的形式;然后,把逻辑表达式的输入作为ROM的输入;最后,根据要实现的逻辑表达式对ROM的或阵列进行编程,画出相应的阵列图。用ROM实现三人表决的阵列图如图5(a)所示。用PLA实现组合逻辑电路的方法与用ROM实现非常相似。两者的区别在于,用ROM实现是基于最小项表达式,而用PLA实现是基于最简与或表达式,所以用PLA实现组合逻辑比用ROM实现更简单、灵活、经济。首先,将逻辑表达式化简为最简与或表达式;然后,根据最简表达式中的不同与项以及各与项之和分别对PLA的与阵列和或阵列进行编程,画出阵列图。用PLA实现三人表决如图5(b)所示。

4结束语

篇11

    2实践活动

    2.1电路原理分析

    基于EPROM2764设计定时控制电路如图2所示。以半自动加工与装配工作为例,通常由几个工步组成,每个工步完成一定的动作,需要一定的时间,两个工步之间要有一个间歇时间(如刀架的退回,钻头的退出),各工步可以由不同的执行机构(比如电机拖动)完成,需要用多路定时控制电路来控制。(1)工作原理比如:加工一个零件需要三个工步一次完成,第一工步需要10s,间隔2s,第二工步需要4s,间隔4s,第三工步需要2s,间隔2s,然后停止。时间流程表如表1所示。如图2所示,使用EPROM芯片2764实现这一加工过程,此系统供电电压为±12.5V,使用L7805稳压芯片产生5V电压给存储芯片供电,用LED指示灯来指示加工动作(执行工步、间歇、停止),各工步操作时间的最大公约数为2s,以2s为步长设计,用555产生2s的时钟脉冲送入到计数器74HC161,输出的时间代码送入到EPROM地址输入端,输出D6控制第一工步用红灯LED1指示,D5控制第一工步间歇用黄灯LED2指示,D4控制第二工步用红灯LED3指示,D3控制第二工步间歇用黄灯LED4指示,D2控制第三工步用红灯LED5指示,D1控制第三工步间歇用黄灯LED6指示,D0为总控制使机器停止运作用绿灯LED7指示,将74HC161的CET端0,使74HC161的输出的数据保持不再进行计数操作。2764是8K*8字节的紫外线擦除、电可编程只读存储器,单一的+5V供电,工作电流为75mA,维持电流为35mA,读出时间最大为250ns,28脚双列直插式封装。各引脚的含义为:A0-A12为13根地址线,可寻址8K字节;D0-D7为数据输出线;-E为片选线;-G为数据输出选通线;PGM为编程脉冲输入端;Vpp是编程电源;Vcc是主电源。存储器2764的操作方式如下表2所示。(2)编程操作Vpp接+12.5V,-E接低电平,-G接高电平,输入一定频率的脉冲(如70Hz,不超过1KHz),该脉冲由uA741产生,D0-D7为数据输入。使用拨码开关对每个用到的地址进行编码。(3)读操作Vpp和接+5V,-E接低电平,-G接高电平,D0-D7为数据输出。(4)EPROM2764的输入输出真值表如表3所示。

    2.2PCB设计

篇12

2胎儿心电信号调理电路设计

为了进一步的提高胎儿心电图仪系统数据采集的精度,又设计了右腿驱动电路,这样就可以保证利用相关的激励降低相关的交流干扰,比如说人体本身的内阻、皮肤的电阻等各种各样可能产生的干扰,对医护人员的要求也降低了许多,至少在操作上要简单了很多。

3右腿驱动电路

友情链接