电路设计论文范文

时间:2023-03-20 16:26:51

引言:寻求写作上的突破?我们特意为您精选了4篇电路设计论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

电路设计论文

篇1

1.2影响振荡器输出频率的因素标签工作的环境温度具有较大的变化范围,可能从负几十摄氏度到近一百摄氏度。根据第2.1节的推导,振荡器输出周期由电容和电阻决定。由于电容和电阻易受温度影响,尤其是CMOS工艺的电阻温度系数一般较大,因此,在设计电路时需考虑电容和电阻随温度的变化。参考文献[9,10]中所提及的温度补偿方法可以在理论上完全消除温度变化对输出的影响,达到由电阻和电容随温度偏移造成的频率温漂为0。但是,通常情况下,MOS管的工作特性会随温度变化,所以,在电路设计时,电阻的选择需综合考虑。标签芯片在向阅读器发送数据进行反向散射调制时,会在一段时间内接收不到电磁能量,时长从1μs到37.5μs。不同的无能量时段长度对芯片造成的影响不同,小到几个微秒的断电不会使电源管理模块提供给振荡器的电压源VDD发生波动。但是,最大37.5μs的断电时长则会造成振荡器工作电压VDD的下降,当标签再次获得能量时,振荡器工作电压恢复正常,造成电源电压抖动。同时,振荡器所用偏置电流也会发生波动。根据ISO/IEC18000-6C协议,通信过程中标签解码以及反向散射编码对时钟精度要求较严格,而RFID系统的基带数字部分可通过采用相对比值解码和区间分段分频控制方法对反向编码的通信速率进行控制,解决对基带时钟精度要求严格的问题。如前文所述,控制好温度等因素对电容值和电阻值的影响,即可解决振荡器输出频率不准的问题。换言之,输出频率可以偏离理想值,且在变化范围较小情况下,数字基带仍然可以正常工作。但是在设计模拟前端时,应当尽量减小振荡器的输出偏差。

2仿真结果及说明

采用SMIC0.18μmCMOS工艺模型,使用Cadence工具对电路进行设计,并采用Spectre仿真器模拟电路性能。仿真中,在理想电压源为1V,理想偏置电流为100nA,室温为25℃时,电源上电时间为5μs,瞬态仿真时长为300μs。振荡器频率为1.925MHz,功耗为0.9μW。图2所示为理想条件下的仿真输出波形和对其进行freq函数处理后的频率曲线,输出是稳定的周期方波,频率为1.925MHz。

2.1输出频率随温度的变化标签芯片需在宽范围环境温度下工作。图3所示为在理想电源电压和电流基准下电路输出频率随温度的变化曲线。

2.2频率随电源电压的变化由于工艺角的影响,电源管理模块输出给振荡器工作的电压源VDD可能会产生一些偏差,不是理想的1V。当标签芯片距离阅读器较远时,芯片获得能量较少,也可能出现VDD偏低的情况。图4给出了在室温下,偏置电流无偏移时,振荡器输出频率随电源电压变化的曲线。可以看出,VDD低于0.95V时,输出频率随VDD降低快速升高,VDD=0.75V时,输出频率为1.978MHz;VDD=0.95V时,输出频率出现最小值,为1.923MHz;VDD超过0.95V时,输出频率呈上升趋势,当VDD到达1.3V时,输出频率达到1.941MHz。该条件下,振荡器在0.75~1.3V电源电压下偏离理想频率小于3%。

2.3频率随输入偏置电流的变化与电压产生偏移的原因一样,偏置电流也会产生一定的偏移而影响振荡器的输出频率。图5给出了输出频率随偏置电流变化的曲线。仿真结果显示,偏置电流减少到90nA时,输出频偏小于目标3%以上;偏置电流增大到110nA时,输出频偏接近3%。

2.4电源电压与偏置电流纹波对输出频率的影响反向调制造成标签芯片接收不到能量的最大时间长度为37.5μs,这会使电源管理模块提供给振荡器的电压源和电流源产生相同频率的纹波,而输出频率的波动对数字基带的影响要大于稳定的频率偏差所带来的影响。当电压源降低100mV,偏置电流降低10nA时,得到了如图6所示的振荡器输出频率波动波形。图6中,输出频率的波谷是在电源电压和偏置电流都降低10%时产生的,最小值是1.864MHz;波形的最大值是1.926MHz,是电源电压和输入电流正常时的输出频率。此时,输出频率的相对误差为1.64%。

篇2

本文实现了将VGA接口信号转换到模拟液晶屏上显示的驱动电路,采用ADI公司的高性能DSP芯片ADSP—21160来实现驱动电路的主要功能。

硬件电路设计

AD9883A是高性能的三通道视频ADC可以同时实现对RGB三色信号的实时采样。系统采用32位浮点芯片ADSP-21160来处理数据,能实时完成伽玛校正、时基校正,图像优化等处理,且满足了系统的各项性能需求。ADSP-21160有6个独立的高速8位并行链路口,分别连接ADSP-21160前端的模数转换芯片AD9883A和后端的数模转换芯片ADV7125。ADSP-21160具有超级哈佛结构,支持单指令多操作数(SIMD)模式,采用高效的汇编语言编程能实现对视频信号的实时处理,不会因为处理数据时间长而出现延迟。

系统硬件原理框图如图1所示。系统采用不同的链路口完成输入和输出,可以避免采用总线可能产生的通道冲突。模拟视频信号由AD9883A完成模数转换。AD9883A是个三通道的ADC,因此系统可以完成单色的视频信号处理,也可以完成彩色的视频信号处理。采样所得视频数字信号经链路口输入到ADSP-21160,完成处理后由不同的链路口输出到ADV7125,完成数模转换。ADV7125是三通道的DAC,同样也可以用于处理彩色信号。输出视频信号到灰度电压产生电路,得到驱动液晶屏所需要的驱动电压。ADSP-21160还有通用可编程I/O标志脚,可用于接受外部控制信号,给系统及其模块发送控制信息,以使整个系统稳定有序地工作。例如,ADSP-21160为灰度电压产生电路和液晶屏提供必要的控制信号。另外,系统还设置了一些LED灯,用于直观的指示系统硬件及DSP内部程序各模块的工作状态。

本设计采用从闪存引导的方式加载DSP的程序文件,闪存具有很高的性价比,体积小,功耗低。由于本系统中的闪

存既要存储DSP程序,又要保存对应于不同的伽玛值的查找表数据以及部分预设的显示数据,故选择ST公司的容量较大的M29W641DL,既能保存程序代码,又能保存必要的数据信息。

图2为DSP与闪存的接口电路。因为采用8位闪存引导方式,所以ADSP-21160地址线应使用A20-A0,数据线为D39—32,读、写和片选信号分别接到闪存相应引脚上。

系统功能及实现

本设计采用ADSP-21160完成伽玛校正、时基校正、时钟发生2S、图像优化和控制信号的产生等功能。

1伽玛校正原理

在LCD中,驱动IC/LSI的DAC图像数据信号线性变化,而液晶的电光特性是非线性,所以要调节对液晶所加的外加电压,使其满足液晶显示亮度的线性,即伽玛(Y)校正。Y校正是一个实现图像能够尽可能真实地反映原物体或原图像视觉信息的重要过程。利用查找表来补偿液晶电光特性的Y校正方法能使液晶显示系统具有理想的传输函数。未校正时液晶显示系统的输入输出曲线呈S形。伽玛表的作用就是通过对ADC进来的信号进行反S形的非线性变换,最终使液晶显示系统的输入输出曲线满足实际要求。

LCD的Y校正图形如图3所示,左图是LCD的电光特性曲线图,右图是LCD亮度特性曲线和电压的模数转换图。

2伽玛校正的实现

本文采用较科学的Y校正处理技术,对数字三基信号分别进行数字Y校正(也可以对模拟三基信号分别进行Y校正)。在完成v校正的同时,并不损失灰度层次,使全彩色显示屏图像更鲜艳,更逼真,更清晰。

某单色光Y调整过程如图4所示,其他二色与此相同。以单色光v调整为例:ADSP-21160首先根据外部提供的一组控制信号,进行第一次查表,得到Y调整系数(Y值)。然后根据该Y值和输入的显示数据进行第二次查表,得到经校正后的显示数据。第一次查表的Y值是通过外部的控制信号输入到控制模块进行第一次查表得到的。8位显示数据信号可查表数字0~255种灰度级显示数据(Y校正后)。

3图像优化

为了提高图像质量,ADSP-21160内部还设计了图像效果优化及特技模块,许多在模拟处理中无法进行的工作可以在数字处理中进行,例如,二维数字滤波、轮廓校正,细节补偿频率微调、准确的彩色矩阵(线性矩阵电路),黑斑校正、g校正、孔阑校正、增益调整、黑电平控制及杂散光补偿、对比度调节等,这些处理都提高了图像质量。

数字特技是对视频信号本身进行尺寸、位置变化和亮,色信号变化的数字化处理,它能使图像变成各种形状,在屏幕上任意放缩,旋转等,这些是模拟特技无法实现的。还可以设计滤波器来滤除一些干扰信号和噪声信号等,使图像的清晰度更高,更好地再现原始图像。所有的信号和数据都是存储在DSP内部,由它内部产生的时钟模块和控制模块实现的。

4时基校正及系统控制

由于ADSP-21160内部各个模块的功能和处理时间不同,各模块之间存在一定延时,故需要进行数字时基校正,使存储器最终输出的数据能严格对齐,而不会出现信息的重叠或不连续。数字时基校正主要用于校正视频信号中的行,场同步信号的时基误差。首先,将被校正的信号以它的时基信号为基准写入存储器,然后,以TFT-LCD的时基信号为基准读出,即可得到时基误差较小的视频信号。同时它还附加了其他功能,可以对视频信号的色度、亮度、饱和度进行调节,同时对行、场相位、负载波相位进行调节,并具有时钟台标的功能。

控制模块主要负责控制时序驱动逻辑电路以管理和操作各功能模块,如显示数据存储器的管理和操作,负责将显示数据和指令参数传输到位,负责将参数寄存器的内容转换成相应的显示功能逻辑。内部的信号发生器产生控制信号及地址,根据水平和垂直显示及消隐计数器的值产生控制信号。此外,它还可以接收外部控制信号,以实现人机交互,从而使该电路的功能更加强大,更加灵活。

此外,ADSP21160的内部还设计了I2C总线控制模块,模拟FC总线的工作,为外部的具有I2C接口的器件提供SCLK(串行时钟信号)和SDA(双向串行数据信号)。模拟I2C工作状态如图5和图6所示。

系统软件实现

在软件设计如图7所示,采用Matlab软件计算出校正值,并以查找表的文件形式存储,供时序的调用。系统上电

篇3

恒温电路设计的研究主要用于电力采集产品上,对电力采集产品来讲,安装在PT侧,需要耐受100℃的温度变化,却要求万分之五的精度。除需要从理论上进行最终的计算和分析外,还要考虑各种因素。如其中重要的一个因素高精度器件的温漂,器件稳定性、可靠性受温度变化的影响,是电子器件不可回避的问题。对于电力采集产品中高精度的AD采集模块,温漂的问题更为严重,要保证AD采集模块精度在允许的范围内,恒温电路的设计是很重要的。基于对电力采集产品应用环境的考虑,将高精度的AD采集模块放置在恒温盒中,同时配合加热电阻来稳定恒温盒温度的方法,来保证环境在-20℃~+75℃变化时,恒温盒内的温度变化在±1℃,使电力产品在万分之五的精度范围以内稳定工作。器件主要由分压电阻、热敏电阻、加热电阻、运放、三极管等组成,从设计上看电路设计简单、稳定性好。选择的运放是低价、高性能、低噪声的双运算放大器ne5532,热敏电阻选择低价,对温度反应灵敏的电阻。根据电路,为了保证恒温盒内的器件工作最佳状态,首先确定恒温盒内要保持的恒定温度,通过测试和计算,恒温盒的温度恒定在75℃为最佳,AD采集模块可以稳定的工作,电力产品可以达到万分之五的精度。当温度降低时,通过分压电阻电路、负反馈电路、恒流源控制电路,加热电阻电路使温度稳定在75℃。

1.2电路具体设计

具体分析如:当温度低于75℃时,由于热敏电阻(MF1是负温度系数的热敏电阻)的阻值变大,V0≠V1,V1>V0,根据深度负反馈电路虚短、虚断的特点,R18上有电流,在经过负反馈电路放大,后级运算放大U2B同向输入端和反向输入端形成压差,输出电压放大,三级管基极电压大于发射极电压,三级管导通,有电流流过加热电阻,加热电阻加热,再通过三极管、运算放大U2B、电阻等组成的恒流控制源电路控制流过加热电阻电流,使恒温盒温度保持在75℃左右。在设计过程中,要理论计算配合仿真软件。下面是SaberSketch软件仿真结果,根据热敏电阻负温度系数特性,在仿真过程中给热敏电阻设定不同的参数值,从而达到模拟温度升高和温度降低环境的目的。

2应用

电力采集产品安装在PT侧,需要耐受100℃的温度变化,还要求精度在±0.05%以内。AD转换模块是电力采集产品的重要模块,对温度的变化更加敏感,AD转换模块采用ADS8329IRSARG4芯片,其采样精度16位,零位漂移0.4×10-6/℃,增益漂移0.75×10-6/℃,这款芯片具有高精度和高采样率的优点,但对温度变化敏感。AD转换模块在电路设计和器件选择上,尽量保证采样电压的精度并最大程度减小温漂。但还是要考虑温度在-25℃~+75℃变化时,AD模块精度漂移。温漂造成的输出变化必须通过恒温或者温度补偿来去除。由于温度补偿电路需要在芯片设计之初加入,而且无法做到完全补偿,因此,要得到稳定的输出,则必须稳定系统的工作温度,所以AD转换模块放在恒温盒里,在通过恒温控制电路保证温度的恒定。

3测试

恒温设计电路主要保证D采样模块所处的环境温度变化在±1℃,电力采集产品是三相电压,通过三路选通信号对模拟开关74LVC1G3157的控制使得三项交流(A、B、C)模拟信号能够经过滤波后进入到AD转换芯片中,实现模拟到数字的转换,在通过电力还原产品还原成模拟信号。如果环境温度在-25℃~+75℃变化时,电力采集产品和还原产品通过压降仪测试读出的三相电压的差值的幅值在0%~0.06%,相位在0('''')~3('''')之间变化,说明恒温硬件电路设计合理。

篇4

2主动测量控制仪的工作电路设计

2.1振荡器电路的设计振荡器电路的设计见图6。由于在设计时始终使L0在整个工作区域内大于3.6mH,故实际工作时,选用了右半边曲线,即随着工件内孔的磨削,L0逐渐地增大,而USC则逐渐地减小,至此,被加工工件尺寸的变化就转变为电压的变化而输出了。1.3电信号的处理电信号的处理可用图5所示的框图来表示。振荡器作为LC串联谐振回路的交流电源,产生幅度(有效值)为1.1V,频率为20kHz的正弦波,采用的是LC回路选频振荡。整个振荡器分三级:第一级由晶体管BG101及选频回路(振荡线圈T1的初级及电容C104)构成;第二级由晶体管BG102、BG103构成的复合管所组成的功率放大级组成,这样可以提高振荡器的带负载能力;第三级是由大功率晶体管BG104所组成的输出级。开机后,+12V电压经过电阻R101限流,使稳压管产生6V的稳定电压,流过稳压管D101的电流。这一稳定的6V电压作为振荡管BG101集电极的电源,C101的作用是消除稳压管工作时的噪声。这一6V的电压经过电阻R102的作用使BG101基极电位升高,基极电位的升高使发射极的电位也升高,发射极通过发射极电阻R103使选频回路得电,于是,LC选频回路就开始产生电磁振荡,产生各种高次谐波。而其他频率的振荡则被抑制掉了。由于振荡线圈的初级是在同一个磁芯上相同方向连续绕制而成的,所以任何瞬间点B的电压都比点A的电压高。正反馈电容C103的作用是使BG101的基极电压继续上升,这样就形成了正反馈的作用,故振荡器得以工作。电容C102与电阻R103的作用均是负反馈,用以改善正弦波的波形。正弦波经振荡线圈耦合到次级,送到后级功率放大,电阻R104与电阻R105构成BG102的直流偏置电路,BG102的基极电压:由于BG103发射极电位为5.14V,而正弦波的最大值为槡1.12=1.56V,故二极管D102始终处于导通状态,其作用是隔离,使信号无法倒流,电容C110将输出波形中的直流分量隔去,使送到传感器中去的为不含直流成分的正弦波。另外,电容C108、电位器W102组成基准点取样电路,基准点的大小可调整W102得到,基准点的大小决定了传感器的前行程量(前行程量为控制仪电表示值,为0μm时二测点之间的距离与传感器为自由状态时二测点之间距离差的绝对值)。传感器电压线圈的信号经耦合线圈T2,由信号取样电位器W104的中心抽头输出。输出信号也是纯净的正弦波,其幅度随被加工工件尺寸的变化而变化。

2.2振荡器输出信号的整流滤波振荡器输出信号的整流滤波电路见图9。由于输出指示电表采用的是直流电流表,故需把电位器Wl04中心抽头输出的正弦波整流成直流信号,才能去电表指示,二极管D201A与二极管D202A及电容C204、C205就组成了整流滤波电路,三极管BG201、BG202组成的复合管如前所述一样是功率放大器,信号经电容C201耦合至BG201的基极,基极电位。信号由BG202的发射极输出,该点的直流电位为7.2-1.4=5.8V。电容C203为隔直电容,将纯净的正弦波信号电压送到二极管D201A、D202A去整流,电阻R204与R205组成整流二极管D202A的偏置电路,使D202A与D201A始终处于导通状,导通后,D202A的正极电位为1.4V(直流),这样可提高检波的灵敏度。信号电压由电容C204取出后,由电阻R206、R207送到相加器IC201的反相端,振荡板上的基准电压经过另外一路反向极性的整流滤波电路,由电容C210取出后经电阻R216、R208也送到相加放大器的反相端,与信号电压相加后经运算放大器IC201作反相放大后由运算放大器的6脚输出。

2.3直流输出信号的再处理振荡器的输出信号经整流滤波后,由运算放大器IC201的6脚输出,其输出信号分4路,分别为高低精度量程转换电路、指示电路、线性补偿电路及发讯电路。运算放大器IC201的6脚输出的一路进行高低精度量程的电平比较转换,该控制仪采用单电表来代替双电表指示,故电表指针的二次回程中,电表满刻度所代表的量程是不同的(相差10倍),第一次回程时,电表满刻度为500μm(每小格刻度为10μm),第二次回程时,电表满刻度为50μm(每小格刻度为1μm),指针在50μm处实现量程的转换。指示电路用发光二极管指示,指示高低量程挡位,指示磨削尺寸等。线性补偿电路带可调电位器,安装在仪表板上供操作者调节。

发讯电路共有4挡,粗磨、精磨、光磨及到尺寸发讯,由于其发讯电路完全一样,故只需取其中1路发讯为例,其余3路类推。由电阻R301、电位W301及电阻R302组成了发讯点的取样电路,调节W301,可使该路的发讯点随之而变。当调节好W301中心抽头的电位以后,运放IC301的同相输入端3脚的电位也就同时确定了,由于磨削开始时,IC201的输出端6脚的电压总是高于IC301的3脚电平,故IC301的输出端6脚为低电平(-12V),此时三极管BG301的发射结处于反偏,BG301不导通,J1不吸合,随着磨加工的进行,IC201的输出端6脚(即IC301的反相输入端2脚)的电压逐渐下降,当下降至IC301的2脚电压低于3脚电压时,IC301的输出端6脚由原来的-12V变为+12V,此时,一方面使BG301的发射极处于正偏而导通,使继电器J1动作,另一方面使正反馈回路中的二极管D301导通,而使同相输入端3脚的电位高于原设定值约0.23V(可通过计算得到),从而使输出端6脚的电位更加稳定,这样可使机械执行机构的动作稳定。此电路中,二极管D305为保护二极管,当IC301输出端6脚为负时,D305导通,使三极管BG301的发射结的反偏电压箝在0.7V,从而使BG301不至于因反偏电压过大而损坏,二极管D309为泄放二极管,为继电器线圈提供放电回路。

免责声明:以上文章内容均来源于本站老师原创或网友上传,不代表本站观点,与本站立场无关,仅供学习和参考。本站不是任何杂志的官方网站,直投稿件和出版请联系出版社。
友情链接
发表咨询 加急咨询 范文咨询 杂志订阅 返回首页