时间:2023-03-20 16:26:57
引言:寻求写作上的突破?我们特意为您精选了12篇概率统计论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
2.极大似然思想是极大似然估计法的应用思想,其基础为如果在一次试验中某个事件出现了,我们就认为发生的概率最大的事件是最容易出现的[4]。总体分布中的参数的取值就取使该事件发生最大的参数作为其估计值。我们可以通过法律事实故事引出《概率统计》中的极大似然思想。法律事实曾在中央二台“今日说法”节目中播出,内容是关于彩票站站长与小学女教师争抢彩票,由法官裁决彩票所属的故事。法官利用法律上的高度盖然性原则,判定小学女教师胜诉这一事实,让学生深刻理解《概率统计》中的极大似然思想。对于极大似然参数估计法,一定要总结求解步骤,这样可以清晰地展示思维的发展过程。
2教学过程中存在的问题
第一,计量经济学是以经济学理论为理论基础,以现实观测数据和实验数据为支撑,利用数学、概率统计等方法,依据计算机技术,来研究分析伴有随机因素效应的现象的定量关系和发展变化的统计规律的一门学科。计量经济学作为西方经济学的新的一个分支,西方经济学为其发展奠定了的理论基础,西方经济学中关于对经济变量之间质的分析是计量经济学进行定量研究的前提。数学与概率统计是计量经济分析、理论研究的主要工具,计量经济学在的建立与选择时,很多地方需要用到数学的方法和技巧。但在实际教学中,仅注重计量经济学模型的求解及检验方法,而忽略模型建立的经济学基础;仅仅强调模型的设定是正确的,但是却没有教会学生如何去检验模型是否正确;同时,也未将经济学基础考虑进来。第二,目前的教学过于强调“重思想、重方法”,把必要的数学过程与技巧只是作为解决计量经济学基本思想的工具,不过分强调,而是着重于基本思想和解决问题思路的分析。第三,在教学时,并没有将计量经济学方法应用到实际问题中进行实践。在上机课上,让学生自己操作Eviews软件对课本习题进行操作练习,并写实验报告,训练了学生的动手能力,但是学生并没有机会将所学到的知识运用到实际的经济问题中,计量经济学的教学理论在一定程度上与实践相脱节,相当一部分学生在使用计量经济学方法处理经济问题时,感到迷茫,也不知运用相关软件来完成计量经济学的运算,即使能够运用软件,却不知该怎样解释与分析模型的结果。
3计量经济学教学措施
通过教学改革提高教学质量,进一步使学生达到掌握经典的计量经济学模型理论和方法,了解计量经济学理论与方法的新发展;要求学生能够应用简单的计量经济学模型和方法,对实现经济数量关系进行实证分析;为继续学习高级计量经济理论、方法打下基础。
3.1理论与实验教学的互动发展
提升教学效果加强理论教学,同时开展创新实验教学,理论教学与实验教学的互动、协调发展。
3.2以"任务"驱动教学
课程理论知识、使用专用软件、提出研究问题、解决研究问题为计量经济学课程教学的四大任务。带动学生的自主创新及动手能力,适时的给学生布置任务,提高学生学习的积极性。
3.3划分和挑选教学内容
对计量经济学教学内容的层次划分进行反复讨论和界定,形成分层次的课程教学体系。
二、概率统计的工具
当今的社会是一个信息化的时代,统计学也不再只是刘乃嘉,吉林工商学院助教,硕士,研究方向:统计学。计算一些基本的加减了,以前用一个计算器就能轻轻松松的解决,而今的统计学面对的大数字时代,需要处理大量的数据。在教学的过程中可以适当添加一些软件,既吸引学生的眼球又能提高效率,节省人力、物力,比如说SPSS、SAS、MATLAB、EXCEL表格等。SPSS的优点很多,它有学生们乐于接受的主界面,最重要的是这个软件特别的容易学,对从来接触过这个软件的同学来说,可也以在很短的时间内轻松的掌握它,非常适合非计算机专业的学生。教学的目标在于运用,SPSS自身带有许多函数计算公式和其他的计算公式,你只需找到你要计算的公式并且在键盘上输入你要计算的内容,就可以计算出概率密度、分布、随机问题等,十分便捷。EXCEL软件是大家最熟知的软件,因为在刚入学的时候就有计算机基础,里面就要求掌握这个软件的运用,是OFFICE的一个分支。在教学中选用这个工具可以降低教学难度,还可以提高学生的积极性,因为他们学的知识终于可以有用武之地了。这个软件最大的优点就是制作统计图像的功能很完善,并且还有非常完美的统计处理能力,它具备了其他软件基本上的功能,可以很好地与其他统计软件相匹配,共同运用。计算机领域还有很多的可以适用于统计学的软件,而且一般这些软件的运用对大多数的老师和学生来说都是不费吹灰之力的,在概率统计的教学中,老师们可以按照教学的需要适当的引入这些优秀而强大的软件,弥补以前教学方式中存在的缺点,增加老师和学生的互动,提高学生的学习兴趣,如果有条件可以让学生到计算机中心去亲自体验一下这些软件,学生一般比较愿意学习动手性比较强的知识,这也是教学中值得思考的问题。
2教学的生活性
课堂教学的生活化,即通过生活中具体的实例讨论概率的应用,建立形象问题和抽象思维之间的联系。概率论与数理统计是一门实用性很强的科学,在具体实际情况和数学概念、定理、公式之间建立正确的联系,成为现在学生面临的主要难题。教师在教学过程中可以分析一些具体的实例,使学生了解怎样应用数学知识解决实际问题。比如分析问题“根据以往的临床记录,某种诊断癌症的试验具有如下的效果:若被诊断者患有癌症,则试验反应为阳性的试验反应为阳性的概率为0.95,若被诊断者没有患有癌症,则试验反应为阴性的概率为0.95,且被试验的人患有癌症的概率为0.005,问如果被试验者反应为阳性,他患有癌症的概率为多大?”这是一个题目很长的实际问题,学生一般无从下手,解决问题的关键在于了解题目中涉及几个条件和几个随机事件,只要准确描述随机事件就可以把实际问题转化为概率问题。实际问题的多次训练有助于培养学生用数学语言描述实际问题的能力。
3教学的启发性
教学的启发性即给学生思考的时间,等学生无法想明白的时候再去开导。具体来说就是老师对上课提出的问题给出学生思考的时间,在学生主动思考之后,帮助学生开启思路。“填鸭式”,“满堂灌”的教学方法最容易使学生失去学习兴趣。孔子曰“不愤不启,不悱不发”,说的就是要启发学生思维,引导学生思路。比如,讲授全概率公式之前引入实例:有一批同一型号的产品,已知其中由一厂生产的占30%,二厂生产的占50%,三厂生产的占20%,又知这三个厂的产品次品率分别为2%,1%,1%,问从这批产品中任取一件是次品的概率是多少?撇开概率知识不谈,把这个问题纯粹看成一个数学问题,也可以用中学知识解决,给学生几分钟思考的时间并适当引导学生使用数形结合的方法讨论,我们把产品在三个工厂的生产及次品情况转化为产品分布图,学生就很容易地知道从这批产品中任取一件次品的概率就是黑色椭圆区域在整个矩形内所占的比例,经过分析就可以得到全概率公式。该方法不仅能够加深学生对该问题的印象,还有助于学生对复杂全概率公式的理解。
二、《概率统计》交互式网络教学平台的开发
以我校实施完全学分制为契机,基础教学学院依托数字化校园的网络环境,在原有精品课程平台建设的基础上,整合我校现有大学数学课程教学资源,建立了大学数学课程网络教学大平台,为教学双方提供了更好的信息化,网络化教学环境,为更好地提升我校创新型人才培养水平和教学质量奠定了基础。对于《概率统计》课程而言,虽然已经建成了《概率统计》精品课程,但由于课堂教学的课时相对较短,与学生的互动环节较少,因此,概率统计教学团队在对教学资源进行优化整合的基础上,对网络教学平台进行深度开发,改变传统教学过程中“教”与“学”的关系,实现向交互式的双向教学方式的转变。为了更好地适应我校《概率统计》课程的教学要求,我们将整个《概率统计》网络教学平台划分为十个子数据库:教师队伍信息库、教材及教案库、教学软件库、教学课件库、例题及数据库、教学视频库、数学实验库、答疑系统、评价系统及师生互动论坛。
1.教学团队师资力量强,教师结构合理,既有从事多年有教学经验的老教师,也有学有所成的硕士与博士,他们教学效果好,工作效率高。在“教师队伍”中,详细介绍概率统计教学团队教师的具体情况,让学生能够一目了然地弄清楚每一位教师的擅长点,以及教学风格,为更好地在课程教学中开展师生互动提供了有利条件。
2.教学团队经过多年的教学改革,积累了丰富的教学经验和教案,编写了相关教材,辅导书和习题册。在“教材及教案库”中,存储一些电子教材及一些实用的参考书籍,同时将对应课程的教学大纲、教学日历、内容简介,以及各章节的电子教案放入教案库中,方便学生预习、自主学习。
3.在“教学软件库”中,放入概率统计课程的在线备课系统,可以让教师根据教学需要和学生的实际情况,及时对课程教学中的内容进行修正和完善,使得课程教学更具有针对性和实用性。
4.在“教学课件库”中,存放概率统计课程的PPT教案,为教师备好每一堂课提供方便。同时,在进行集体备课时,可以从教学课件库中调出对应的课件,供所有教师参考和探讨,集全体教师之智慧和精华,备出更具有针对性的教案。
5.在“例题及试题库”中,存放概率统计课程的典型例题、同步测试题、综合测试题以及历年考研试题。让学生在学习中及时发现自己存在的不足,及时对相关知识点进行补学和充实,同时也让励志考研的同学及时掌握考研的方向,了解清楚该门课程的考研大纲,为学生的考研打好坚实的基础,吸引更多的学生加人我校的考研队伍。
6.在“教学视频库”中,存放一些与各种概率统计课程相关的教学视频,同时,对于教学团队中讲课水平特别突出的教师,将他们的部分教学过程录制成视频,存放入该视频库中。教师可以在休闲的时候随时点击这些视频,学习这些教师的授课技巧。这样,更有利于加强数学教师的教学素养和提高教学水平,尤其对于刚走上教学岗位的年轻教师,这种视频更具有实用价值。
7.“数学实验库”是一个符合当代教研教改需求的非常具有实用价值的数据库,针对目前比较流行且简明易懂的MATLAB软件,在该数据库中存入概率统计课程中各章节的数学实验,编写部分程序,同时留有实验题目,让学生自主编写。
8.如果学生在自学过程中遇到难题及不懂的知识点,就可以在“答疑系统”中直接询问老师,没有必要为了一个问题而跑到办公室去询问教师,这样节省了很多的时间。
二、巧借实例自然引入新概念
着重培养学生的数学应用意识,教师在教学中的示范作用很重要。概率统计课程的概念是教学的难点,教师上课如果直接写出来,则学生会感到很突兀,很抽象且难于接受。一个教学经验丰富的教师应当重视概念引入的教学设计,从学生的认知规律出发,先使学生对概念形成感性认识,揭示概念产生的实际背景和基础,了解概念形成的必要性和合理性。例如极大似然估计的概念教学,一般引入的第一个例子是有个同学和一个猎人去打猎,一只野兔从前方经过,只听一声枪响,野兔就倒下了,这发命中目标的子弹是谁打的?同学们一定会推断是猎人,你们会说猎人命中目标的概率比同学的大,这个例子说明了你们形成了极大似然估计的初步思想。极大似然估计的思想是在已经得到实验结果的情况下,应该寻找使这个结果出现的可能性最大的那个θ作为θ的估计θ∧。极大似然估计法首先由德国数学家高斯于1821年提出,英国统计学家费歇于1922年重新发现并作了进一步研究。第二个例子是两个射手打靶,甲的命中率为0.9,乙的命中率为0.4,现靶面显示10中6,且是一个人所为,请问是谁打的?一开始学生中会形成不同意见,有的说是甲,有的说是乙,有的不知如何判断。表面看,甲的命中率高,如果说是甲好像低估了甲的水平,乙的命中率低,如果说是乙又高估了乙的水平,但现在要作一个合理推断,我们建立一个统计模型:有一个总体为两点分布,参数为P(0.9或0.4侍定),现有样本X1,X2,…,Xn(n=10),其中有6个观察值为1,4个为0,设事件A={10枪6中靶心}若是甲所射,则A发生的概率为P1(A)=C610(0.8)6(0.2)4=0.088,若是乙所射,则A发生的概率为P2(A)=C610(0.8)6(0.5)4=0.21,显然,P1(A)<P2(A),故可认为乙所射的可能性较大。从这两个实例中教师再引出极大似然估计的原理:在已经得到试验结果的情况下,我们应该寻找使这个结果出现的可能性最大的那个θ作为真θ的估计,显得水到渠成。
三、合理假设形成模型意识
概率统计学科本来就是为了解决实际问题而产生的,它的起源是对赌博问题的研究。要培养学生的应用意识更应加强模型意识。数学模型是指应用数学的方法和语言符号对现实事物进行数学的假设和合理简化,可以理解为现实事物在数学世界的抽象存在,也是人们对实际问题的原型进行的数学抽象,它的目的是便于应用适当的数学工具得到对问题的量化研究。在概率统计教学中建立的数学模型应当选择问题的主要要素,模型相对比较简单并且易于教学推理和分析。
四、循序渐进培养应用能力
数学应用能力是一种综合能力,应循序渐进,慢慢培养。在现实中我们要注意:(1)概率是指某件事情发生的可能性大小。例如在天气预报中会提到晴天与雨天,预报明天下雨,只是说雨天可能性很大,这种概率不可能超过百分之百。(2)有些概率是可以估计的。比如掷骰子,你得5点的概率应该是六分之一,但掷骰子的结果还只可能是六个数目之一。这个已知的规律就反映了规律性,而得到哪个结果则反映了随机性。(3)应当在大量重复试验中出现的频率来估计生活中随机事件出现的概率。(4)多学习一些统计软件,充分利用一些直接的或间接的数据来源。
1.1随机事件的关系运算与集合的关系运算的类比由于事件可以看成由某些样本点构成的集合,因此可将二者类比学习。例如:集合A∪B表示其中任意一个元素x仅属于A或者仅属于B或者属于A和B的公共部分,我们可以形象地用韦氏图来表示。此时若将A和B看作是事件,则事件A∪B表示“事件A和事件B至少有一个发生”,记作A+B,即概率论中事件的和等同于集合论中集合的并集。同样的类比方法,我们可将集合论中集合的交集类比到概率论中事件的积中去。在教学中可引导学生先回顾集合之间的各种关系运算,随之再引出相应的事件间的关系运算,最后归纳总结。此外,事件运算的性质如交换律、结合律、分配律均可对照集合的相应性质进行类比学习。
1.2离散型随机变量与连续型随机变量的类比对于离散型随机变量,学生感觉较容易,但对于连续型随机变量,往往学生感觉抽象难理解。由于分布列在离散型随机变量中的地位与密度函数在连续型随机变量中的地位等同,因此对于离散型随机变量中的边缘分布列与联合分布列的关系可以过渡到连续型随机变量中边缘密度函数与联合密度函数的关系中去,此外诸如随机变量的独立性的充要条件以及期望与方差的计算均可轻松过渡。具体我们可通过“把连续的问题离散化”这种方法,实际是将对离散型随机变量中对分布列的求和变成对连续型随机变量中的密度函数求积分即可。表1我们将对其中的部分性质及计算作一个简要的类比。
1.3一维随机变量与二维随机变量的降维类比任何学习都是循序渐进的,一般来说低维空间的知识相对简单,容易被学生接受,所以最好的方法是从低维空间向高维空间过渡学习。降维类比法是将高维空间中的数学对象降低到低维空间中去观察,利用低维空间中数学对象的性质类比归纳出高维数学对象的性质。我们知道一维离散型和连续型随机变量的分布函数分别为:在研究二维离散型和连续型随机变量时,我们可用降维类比法得到其联合分布函数分别为:通过上面的类比得知抽象的二维随机变量的分布函数与一维随机变量有着一致的表达式,从而大大降低了学习的难度。此外,二维离散型随机变量的联合分布列与连续型随机变量的密度函数的性质与计算均可借助一维随机变量的相关知识引入。
2类比法在习题教学中的应用
类比法是解题的有力工具。在习题教学中,教师若常引导学生用类比思维去寻找解题的方法,会起到事半功倍的效果。我们首先可以利用条件、结论或者结构形式上的类似,联想与之类似的概念性质从中得到启发。例如,在概率统计中有这样一题:已知连续型随机变量X的概率密度函数为f∪x∪=ae-3xx>00x≤≤0,求a。分析:此题若由密度函数的性质,通过积分可求得a=3。但是我们若通过与指数分布的密度函数f≤x∪=λe-λxx>00x≤≤0进行对比,可知a=3。这样在解题中不需要计算便可得到结果。
二、数学建模思想融入课堂教学
教师在讲授概率论与数理统计课程时,面临着非常重要的任务。如何让学生通过学习增强对本课程的理解,并将知识合理地运用到实践中,是摆在教师面前的问题。教师要将数学建模思想合理地融入到课堂。
(一)课堂教学侧重实例
概率论与数理统计课程是运用性很强的一门课程。因此,将教学内容与实例想结合,可以有效提高学生的理解力,加深学生对知识点的印象。例如,在讲授概率加法公式的时候,可以用“三个臭皮匠问题”作为为实例。“三个臭皮匠赛过诸葛亮”是对多人有效合作的一种赞美,我们可以把这个问题引入到数学中来,从概率的计算方面验证它的正确性。首先可以建立起数学模型,三个臭皮匠能否赛过诸葛亮,主要是看他们解决实际问题的能力是否有差距,归结为概率就是解决问题的概率大小比较。不妨用C表示诸葛亮解决某问题,Ai表示第i个臭皮匠单独解决某问题,其中i=1,2,3,每个臭皮匠解决好某问题的概率是P(A1)=0.45,P(A2)=0.55,P(A3)=0.60,而诸葛亮成功解决问题的概率是P(C)=0.90。那么事件B顺利解决对于诸葛亮的概率是P(B)=P(C)=0.90,而三个臭皮匠解决好B问题的概率可以表示成P(B)=P(A1)+P(A2)+P(A3)。解决此问题的过程中,学生既感受到了数学建模的乐趣,也在轻松的氛围中学习到了概率知识。这种贴近实际生活的教学方式,不但可以提高学生学习概率的积极性,也可以增强教师从事素质教育的理念。
(二)开设数学实验课
数学实验一般要结合数学模型,以数学软件为平台,模拟实验环境进行教学。发展到今天,计算机软件已经很成熟,一般的统计计算都可以由计算机软件来完成。SPSS、SAS、MABTE等软件已经广泛得到了运用,较大数据量的案例,如统计推断、数据模拟技术等方面的问题,都可以用这些软件来处理。通过数学实验,不但可以体现数学建模的全过程,还能增强学生的应用意识,促使他们主动学习概率论与数理统计知识。学生通过软件的学习与运用,增强了动手能力,解决实际问题的能力也会有所增强。
(三)使用新的教学方法
众所周知,传统的填鸭式的教学方法很难取得好的教学效果,已经不适应现代教学的要求。实践证明,结合案例的教学方法可以由浅入深,从直观到抽象,具有一定的启发性。学生可以从中变被动为主动,加深对知识的理解。这种教学方法还能让学生的眼光从课堂上转移到日常生活,进行发散思维,学生会进一步发挥主观能动性,思考如何将实际问题数学化,如何结合概率论与统计知识解决实际问题,等等。在这种情况下,学生的兴趣提高了,教学效率自然也会得到提高。
(四)建立合理的学习方式
概率论与数理统计教学不能一味地照本宣科。数学建模并无固定模式,它需要的更多是技能的综合。教师在实际教学过程中,不应该以课本为标准,而应该多引导学生自主解决实际问题,让学生去查阅相关背景资料,以提高其自学能力。教师可以适当补充一些前言的数学知识,让一些新观念和新方法开阔学生的视野。在处理习题问题上,教师要适当引入一些不充分的问题,而不是仅仅局限于条件比较充分的问题上,要让学生自己动手分析数据、建立模型。教师应该经常开展专题讨论,引导学生勇于提出自己的见解,加强学生间的交流与互助。例如,在讲授二项分布知识时,为了加深学生对知识的领悟,教师可以用“盥洗室问题”为实例来讲授二项式的实际运用。问题:宿舍楼内的盥洗室处于用水高峰时,经常要排队等待,学生对此意见很大。学校领导决定把它当作一道数学题来解答,希望学生能从理论上给出合理的解决方法。分析:首先收集基本的资料,盥洗室有50个水龙头,宿舍楼内有500个学生,用水高峰期为2小时(120分钟),平均每个学生用水时间为12分钟,等待时间一般不超过12分钟,但经常等待会让学生失去耐心。学生希望100次用水中等待的次数不超过10次。解决方法:设X为某时刻用水的学生人数,先找到X服从什么分布。500个学生中,每个学生的用水概率是0.1,现在X人用水,与独立实验序列类似,比较适合用二项分布,因此设X服从二项分布,n=500,p=0.1,用概率公式表示为P(X=K)=CKnPK(1-P)n-K。接下来计算概率,主要关注不需要等待的概率(即X<50),P(X<50)=∑49K=0CKnPK(1-P)n-K,这个二项式分布是一个初步的模型,可按二项分布来计算。由于n较大(n=500),直接用二项分布计算过于复杂,我们可以利用两种简化近似公式来计算(泊松分布和正态分布)。经过查正态分布表,我们可以算出x=58,这说明水龙头的个数在59~62这个范围时,学生等待的时间概率比较合理。
三、课后练习反馈数学建模思想
数学课程离不开课后练习,课后作业是其重要的组成部分,对于巩固课堂知识、进一步理解所学理论具有重要作用。因此,教师要把握好课后练习环节。概率论与数理统计这门课涉及到很多随机试验,一般的统计规律都需要在随机试验中找到结果。例如通过投掷骰子或硬币可以理解频率与概率的关系,通过双色球的抽样可以理解随机事件中的相互独立性,统计一本书上的错别字可以判断其是否符合泊松分布等。通过亲自做实验,学生们不但能探求到随机现象的规律性,还能进一步巩固所学的统计理论。除了一般的练习题以外,教师可以适当增加一些与日常生活密切相关的概率统计题目,这些题目往往趣味性较强。例如,在知道彩票的抽奖方法和中奖规则后,可以明确三个问题:(1)摸彩票的次序与中奖概率是否相关?(2)假如彩票的总量是100万张,则一、二等奖的中奖概率是多少?(3)一个人打算买彩票,在何种情况下中奖概率大一些?这种课后练习对于学生趣味的提高很有帮助。
四、考核方式折射数学建模思想
作为一门课程,肯定需要考核,这是教学过程中的一个必然环节。课程考核是评估教学质量的重要方式。概率论与数理统计课程传统的考试一般采用期末闭卷考试,教师通常按固定的内容出题。这种情况下,学生为了应付考试,会把很多精力都用在背诵公式和概念上面,从而会忽视知识的实际运用。学生的综合成绩虽然也包括平时成绩,但期末闭卷考试往往占据很大比例。就是是平时成绩,其主要还是考核学生课后的习题完成情况。因此,考核实际就成了习题考试。对于学生在课后的实验,考核中往往很少涉及。这会导致学生逐渐脱离日常实际,更注重课堂考勤和作业。要改变这种情况,有必要改变传统的考核方式。灵活多变的考核方式才更有利于调动学生的积极性,激发他们各方面的潜能。考核可以适当增加平时成绩所占的比重,比如,平时成绩可以占总成绩的30%以上。平时成绩主要采用开放性考核,由课后实验或课外实践组成。教师可以提出一些实践问题,让学生自主去解决。学生可以单独完成任务,也可以组队进行,最后提交一份研究报告,教师在此基础上进行评定。
教学研究概率论和数理统计是教育领域中的两个不可或缺的学科,而这两者都有着较为抽象的特征,这就意味着学生在学习时难免会遇到这样或那样的困难。倘若无法正确认识相关概念,那么在今后的深入学习中便会遇到更多的难题。在很多情况下,日常练习与考试中出现的大部分错误主要就是因为学生未对概念有正确的认识,更不用说知识拓展了。这就要求教师在包括课前、课上以及课后的教学过程中考虑怎样设置教学才可以使学生愿学,好学以及学好。笔者将从以下几个方面分析概率论与数理统计教学优化的对策。
1以课程发展历史切入,激发学生兴趣
数学学科中涉及到的理论、思想以及思维等都是社会得以进步的关键,同时还是衡量人类发展水平的标尺。不管是学习个体,还是全人类,其发展均离不开数学的辅助。数学并不单单是一门课程,同时还是一类文化。不仅如此,它还是人们得以进步的重要手段与思想理念。数学中蕴含的意义不受时间和空间的限制,它存在于人们发展的各个时期。西方数学家早已明确提出,多种学科,包括心理学,语言学等,都和数学之间有着千丝万缕的联系。所以,在教学过程中,教师可以向学生讲述概率论与数理统计和其他学科间的关系及其发展历史,以此来激发学生的学习兴趣。只要学生对学习产生了兴趣与热情,那么概率论与数理统计教学质量必将会得到有效提升。
2弥补传统教学中的不足
从整体上看,《概率论与数理统计学》课本本身十分重视与概率论有关的理论知识。相比之下,数理统计的实践知识所占比例则要稍显偏少。笔者通过深入研究分析后发现,教材所关注的更多的是概率论知识理论层面上的传授,而对于数理统计在实践中的应用则涉猎的非常有限,也没有进行具体的分析。例如,数理统计一般都只讲解到区间估计与假设检验两个环节就停止,造成学生无法真正掌握并运用有着良好实用特征的回归与方差分析方法。而在一些其他的部分,也仅仅介绍了概率论,没有突出数理统计,学生尽管掌握了概率论的率计算法则,却并没有真正掌握这一方法的实际运用。通常情况下都是在学习了理论知识后便快速遗忘,其最终结果就是学生虽然拿到了实践数据,但并未掌握具有较强实用性的分析方法。这种现象不利于学生实用能力的有效提升,也背离了应用型本科院校重视提升学生应用型能力的教育思想。
3揉合数学建模实现应用能力的提升
人们都知道,学习数学学科的最有效方法就是“学以致用”。就现阶段的教育现状而言,学生从最初接触数学开始,对数学的认识就仅限于能够解题,获得高分。无可厚非,这是一种衡量学生知识掌握情况的重要标准,但绝不是仅有的标准。尽管学生拥有牢固的理论基础,但如果无法将所学应用到生活实践中,那么整个学习过程将毫无意义。在计算机水平持续提升的阶段,概率统计软件层出不穷,且使用规模也在不断扩大,这为学生的实际应用创造了难得的机遇。数学建模实际上就是以社会生活中的某些生产与生活现象为基础,借助数学方法来获取缓解或解决对策,这需要学生有较强的实践能力。对学生的数学建模思想进行针对性的提升不仅能够提升学生应用概率论与数理统计学理论的实践能力,还可以有效提高学生的问题分析技巧。所以,教师在教学过程中应做好对学生数学建模思想的渗透工作,融入到实践性较强的案例中,从而使学生可以在不断的分析与研究过程中领悟应变能力与问题解决能力的重要性。
4改进教学方法和教学手段
现实案例和学生的生活环境有着密切的联系。学生对所处环境进行评价与研究,从而透彻的理解各个案例,探寻问题的根源,最终联系所学的概率论与数理统计知识来获得问题的解决办法。这一教学方式和生活息息相关,能够在很大程度上刺激学生的主动探索热情,增强他们的实践观念,帮助他们获得学以致用的成就感。就拿二项分布与正态分布而言,它们就能够解释多种生活实践中的现象,包括硬币的抛掷概率等,有着非常强的现实意义。这些案例能够激发学生主动投入到实践探索过程中去,在翻阅资料,搜集信息,并结合概率论与数理统计有关理论的过程中透析案例并寻求解决办法。不仅如此,保险理赔、公交车是否准时以及商业用电等都是学生在生活工作中随处可见的实际案例,学生通过了解、分析这些问题,探析其本质,从而逐渐增强自身的概率论与数理统计应用观念,并提升数学能力。
5完善考核方式
考核在整个教学环节中扮演着不可或缺的角色。它不仅能够用于了解学生学习过程中存在的问题,还能够对教师的教学水平进行一定的评价。概率论与数理统计课程是考试课程,所以不应完全根据期末成绩占总分70%,平时成绩占30%的计算方法得出学生的最终文化分。而是应把考核体制中的成绩评估进行进一步细化,这不仅可以提升学生的学习主动性,还可以突出学生在应用概率论与数理统计知识方面的技能与水平。在这样一种详细的考核机制中,学生的实践能力才可以得到最终的提升。因此,概率论与数理统计教学必须要完善考核方式。
6总结
总而言之,概率论与数理统计教学过程中,教师不应将教学目标定位使学生掌握有限的概率论与数理统计解题方法,而应考虑帮助学生在学习这一学科的各个环节中开拓学生的思考方式与视野。同时,还要使学生感受到这一学科在实践当中的使用价值,从而有效增强学生分析与解决问题的技能。只要教师在教学中实施精心教育,那么学生的自身素质必然会有所提高,也会为学生的就业打下良好的基础。
作者:王晓敏 单位:西安外事学院工学院
中图分类号:G642 文献标识码:A
0 引言
概率论与数理统计是研究随机现象的数量规律的一门数学学科,该课程作为现代数学的重要分支,在自然科学、社会科学和工程技术的各个领域都被广泛地应用,它已成为各类专业大学生的数学必修课之一。
由于概率论的研究对象与一般数学学科不同,因而处理问题的方法也不一样。它除了具有其它数学学科的理论的抽象性和逻辑的严密性外,还具有自己独特的思维方式和计算技巧。它在解决问题时更注重概念与思路,因此学生在学习这门课程时,特别是在前期的学习过程中常常感到困难,不易掌握它的规律。根据这一现象,教师在教学中应采取一些措施,进行一些针对性的处理,以帮助学生克服困难,逐步懂得运用概率论的特点,掌握其规律性。
下面对这门课程的教学中的几个问题进行一些探讨。
1 随机事件的关系及运算
随机事件是概率论与数理统计这门课程的最基本的概念之一。了解事件的关系及运算,把复杂的事件分解成若干个简单事件的和或积,从而利用概率的基本公式计算随机事件的概率,是学生应该掌握的基本方法,也是第一章的重点和难点。
在讲授事件的关系和运算时,可以结合集合的关系及运算,并用文氏图加以说明。例如,列出如下的对照表(表1,表2),就能使问题清楚、直观,便于学生理解和掌握。
同时,在讲课中,应特别注意强调其概率意义的描述,避免学生走入只会从集合的角度理解问题的误区。
2 几个基本概念之间的关系
在课程的第二章引进了随机变量及其分布的概念, 这一部分的特点之一是:基本概念很多,描述这些基本概念之间的关系的定理和公式也很多。因此学生容易将一些概念混淆,搞不清它们之间的关系,记不住相应的公式。针对这些问题,在讲完一部分相关的内容以后,可以进行一次小结,将相关的概念以及它们之间的关系进行梳理。例如,可以用图形来表示各个概念之间的关系,并在图中标出所用的公式。这样做可使各个概念更清楚、直观、容易记忆。
3 随机变量的数字特征
随机变量的数字特征是用来描述随机变量分布特征的某些数字。其中有数学期望、方差、标准差、原点矩、中心矩、协方差、相关系数等。由于随机变量分为离散型和连续型两类,它们的各种数字特征的计算公式也不相同。在讲授这一部分时可以将离散型和连续型的情形加以对照,这样既能使学生加深对概念的理解,又容易记住公式。例如,在讲授一维随机变量的数字特征时,可以列出下列对照表(表3)。
从表中3可以看出,离散随机变量与连续随机变量的同一数字特征的计算公式的不同之处仅仅在于一个是求级数,另一个是求积分。将离散求和换成连续求和,就可以由离散随机变量的数字特征的公式得到连续随机变量的相应公式。
本章的另一个难点是求各种数字特征的公式太多,学生容易混淆,难以记住。例如对于二维离散随机变量来说,就有数学期望、方差、标准差、各阶原点矩、各阶中心矩、协方差、相关系数等的计算公式。对于连续随机变量也有这些相应的公式。要区分、记住这么多公式是比较困难的。针对这一问题,在讲完相关的内容后,可以将上述所有公式的记忆归结到两个公式:离散型和连续型随机变量4 结束语
概率论与数理统计这门课程的难点主要集中在概率论的部分,教师在教学中应根据每一处难点的具体情况,采取切合实际的、具体的方法来解决问题,帮助学生克服困难。这样才能使学生真正理解和掌握该课程的基本概念、基本理论和基本方法。
中图分类号:G642 文献标志码:A 文章编号:1002-2589(2014)06-0217-02
引言
概率论与数理统计是一门实践应用性很强的数学基础课程,它在经济管理、金融投资、保险精算、企业管理、经济预测等众多经济领域都有着广泛的应用。鉴于这门课程的特点,传统的教学方法注重理论的推导及简单应用,不能很好地将概率统计的知识应用于实际的问题中,使得应用性很强的一门课程与实际存在一定的距离。如何进行教学改革,提高教学质量,使学生更好地掌握处理随机现象的基本理论和方法,培养他们解决具体实际问题的能力,是教师的首要任务。近些年来,有许多学者对概率统计的教学模式及方法进行了研究[1-6],本文根据笔者的教学实践和经验,认为应该从问题驱动的教学方法入手。
一、目前存在的问题分析
目前概率论与数理统计教学存在很多问题,以下两方面较为突出:
(一)大学生学习习惯与学习愿望的矛盾
由于我国教育制度的原因,所面对的学生基本上均是应试教育培养而来。多年的教学实践过程中发现,学生独立思考能力差,依赖老师已经成为习惯。他们仍然延续高中时对老师的评判标准,即注重老师所讲内容能否使其在考试中获得高分。但是,值得乐观的是,现在的大学生是伴着信息技术成长起来的,具有思维活跃、具有广泛的兴趣爱好,渴望学习新事物,渴望跟老师学到更具有实用价值的知识,这便成了当代大学生的优势和特点。
(二)教学知识点增加与学时少之间的矛盾
近些年来,我校提出了大类培养的“精英教育”的教学理念,同时对概率论与数理统计课程有了更高的要求,内容和学时上也有了较大的改变,目前的教学内容是:随机事件及其概率,随机变量及其分布,多维随机变量及其分布,随机变量的数字特征,大数定律和中心极限定理,数理统计的基本概念,点估计,假设检验,方差分析与回归分析和随机过程简介。由于教学内容上的很大变化,而增加的64课时是微不足道的,这就给授课老师出了难题。
这门课程的教学,如果授课老师只是简单地讲授教学内容,将会不可避免地使学生不懂概率论与数理统计等知识的真谛,弄不清课程的精髓,无法理解其抽象的概念,更搞不懂它的推理过程,学生就会对这门课程失去了兴趣。
因为概率论与数理统计采用的是120多人大课堂教学,所以还不能完全放弃传统的教学方法。但课时相对较少,在一定程度上限定了教学方式,这就需要我们在传统教学的基础上寻找新的教学方式,从而提高教学效率。老师如果想吸引学生的眼球,就必须精心准备教学内容。这就需要授课教师依据概念的重点、难点、疑点,设计一系列“问题链”式的问题,用“问题链”驱动课堂教学。问题驱动的课堂教学主要目的是使学生积极融入课堂教学中去,通过“问题链”逐渐引导学生,使其认识到所学内容的本质和核心思想。这样的教学模式有助于推动学生课堂学习,从而加强了课堂教学中授课教师和学生们互动,使教学活动收到了非常好的效果。设计问题应围绕需要学生理解和接受新概念的关键点及学生学习新知识的兴奋点,从而达到促发学生思考,引导学生提出问题,最终达到自然吸收并理解结论的这一目标。
二、问题驱动下的教学模式
(一)引导学生思索问题
我国教育改革的重点是由接受教育转型到创新教育,将教学转变成“知识教育为基础保障,培养学生创新能力为最终目标”的教学模式。这种教学模式就要求学生应是积极主动去学习,而不应该是被动地去学习。只有学生对学概率统计有兴趣、能主动地学习它,那么这才是学好这门课程的基本保证。那如何才能让学生在课堂中占居主要地位呢?最奏效的方法就是让学生在课堂教学中不断地提出问题,积极地探究问题。
那怎样引导学生思考问题就应遵循以下几条原则:
1.突破心理,不怕犯错误
最初,学生还是会不积极思考问题,也不知该怎么解决问题,甚至还害怕出错。问题驱动进行课堂教学的优点是能使学生突破怕出错的心理芥蒂,让他们意识课堂上没有思考是学不好概率统计的。举个实际教学中的例子:
比如,学习了随机事件的相容性、独立性和相关性之后,会知道:①事件A和B互不相容?圳AB=φ;②事件A和B相互独立?圳P(AB)=P(A)P(B);③事件A和B不相关?圳相关系数P=0。这时就会出现:“两个事件互不相容与相互独立是否有一定关系呢?互不相容就一定相互独立吗?相互独立就一定能保证不相关吗?”等问题,我先让学生想,这时,学生就会认为:“如果两个事件互不相容,那么两个事件一定相互独立”。我就会追问:那这个判断正确吗?
引导到这里,我将会给学生列举一下例子:
设事件A和B是两个概率不为零的不相容事件,则有P(AB)=P(φ)=00,故事件A和B不相容。
这样学生明白了两个事件不相容不一定是独立的,同时在一定条件的独立情况下确是相容的。虽然学生想错了,但是可以让他们从错误的判断中获知什么是正确的,加深了他们的对知识的认知。
接下来学生会问:“两个事件如果相互独立就一定不相关”是否也不对呢?为了回答这个问题,我也是会再给出相关的例子。设(ζ,η)的密度函数是正态分布N(a1,a2,σ1,σ2,P),可以容易计算出相关系数p=0,而且随机变量ζ,η是独立的。这就说明了对于正态分布而言,ζ,η相互独立?圳ζ,η不相关。而对于更一般的情形下并不能从不相关性推出独立性,但相互独立并且相关系数存在时一定是不相关的。
2.引导学生,实现思维的创新
当学生对于事件的相容性、独立性、相关性之间的关系有了初步的了解后,有的学生便会想在通常情况下三者之间的关系到底是什么样呢?这种创新思考意识是值得我们授课教师去肯定和鼓励的,也是我们需要去引导的。
(二)引导学生提出问题
课堂教学中随着学生思索就必然产生一系列的相关问题。“提出问题”是让学生融入教学中最有效的方法,能非常好地训练学生勤学好问的品质。老师通过提出具有启发性的问题,利用学生刨根问底的好奇心,使学生摆脱不会提问题或不知道提出怎样问题的障碍,引导学生自己提问题,从而使学生知道如何提出问题。通过这种教学模式,帮助学生养成提问题的习惯,培养学生的创新精神和创新能力。近些年来,笔者在船海学院和文管学院的教学中使用过这种方法,文管学院的学生反映出很好的效果。这个专业学生的数学基础相对弱点儿,因此这种教学模式就解决了他们学习概率论抽象概念这一困难。
(三)引导学生自主得出结论
引导学生做结论,实际不是要求学生找到数学某领域的未知结论,而是让他们真正掌握新的知识点,让他们学到老师想要教的一个数学概念。例如,对学生来说,“概率的统计”的定义接受起来总是很困难,这一直是学生学习的难点。怎样克服这个教学难点,“问题引导,让学生自己获得结论,是使学生理解这一抽象的概念”最有效的方法。
例如,在讲解抽象时,我们可以穿一些经典的问题:问题一:有可能出现频率稳定性吗?关于这个问题可以举一些具体有说服的案例,像德・摩根(DeMorgan和Pearson)等人对投掷硬币做过大量的试验,试验结果是正面出现的频率稳定在0.5左右。问题二:能不能观察并统计出婴儿的出生情况?对此问题也可以列举一些有说服的案例,如众多学者通过实验发现男婴出生的频率稳定在0.513左右。18C法国数学家拉普拉斯(Laplace)研究了伦敦、柏林、彼得堡和整个法国的广大人口的资料,计算出这地区的男婴出生频率大概是22/43。这些问题的结论都是学生通过解答自己获得的,所以,当把“概率的统计”的定义给学生讲解时,他们就不会认为这个概念难以理解了,不再觉得概念过于抽象了。
综上所述如何解决课程学时相对较少这一难题,保证并提升教学质量,开拓学生的知识面,增强学生自己解决实际问题的能力,这便成了授课教师追求的目标。引入问题驱动教学法是一个非常有用的途径,会引领学生到一个形象的教学环境中去,使问题思考和基础知识变得有的放矢。问题驱动下的概率统计课程的教学新模式是迎合教学改革的大趋势,符合人才培养模式变革的要求,将会为高等教育的成功转型贡献一分力量。
参考文献:
[1]刘国庆,王勇.改革课堂教学方法,探索概率统计教学的最佳模式[J].大学数学,2003,19(3):27-29.
[2]孙福杰,王亚玲.谈概率统计的启发式教学[J].长春大学学报,2006,16(6):142-144.
[3]凌旭东,陈香,吴晖琴,樊帆.概率统计课程教学方法的探索与思考[J].科技信息,2011(35):280.
ThomsonScientific国家科学指标数据库2004年数据显示,中国数学论文在1999~2003年间篇均引文次数为1.03,同期国际数学论文篇均引文次数是1.3,这表明中国数学研究的影响力正在向世界平均水平靠近。相较于物理学、化学和材料科学等领域,中国数学研究的国际影响力是最高的。
我们以美国《数学评论》(MR)光盘(1993-2005/05严为数据来源,用统计数据揭示国际数学论文的宏观产出结构。通过对《MR》收录中国学者发表数学论文每年的总量及其在63个分支上的分布统计,将中国数学论文的产出置于一个相对明晰的国际背景之下,借以观察中国数学的发展态势。此外,我们还以中国科学院文献情报中心《中国数学文献数据库》(CMDDP为数据来源,统计了中国数学论文在63个分支领域的分布,并对其中获国家自然科学基金资助或国家自然科学基金委员会数学天元基金资助的论文情况进行了定量分析。上述数据库均采用国际同行认可的《数学主题分类表》(MSC),分别在国际、国内数学领域具有一定的影响力和相当规模的用户群。
《MR》光盘收录发表在专业期刊、大学学报及专著上的数学论文,其收录范围非常广泛。1993~2004年共收录论文769680篇,其中有74988篇是由中国学者参与完成的,我们称之为中国论文。这里中国论文是指《MR》的论文作者中至少有一位作者是来自于中国(即《MR》光盘中所标注的“PRC”)。12年中,中国论文数占世界论文总数的9.74%。
《CMDD》收录中国国内出版的约300种数学专业期刊、大学学报及专著上刊登的数学论文,此外,还收录了80种国外出版的专业期刊上中国学者发表的论文,并对那些获国家自然科学基金或国家自然科学基金委员会数学天元基金资助的论文进行了特别标注。
2.1《MR》收录中国论文的统计分析
考虑到二次文献的收录时差,为保证数据的完整性,选取的是1993~2004年的文献数据,检索结果如图1所示。数据显示,《MR》12年来收录的中国论文呈现出稳步增长的势头,中国论文的增长速度要大于《MR》总论文数的增长速度。
2.2《MR》收录论文在数学各分支上的分布
为避免重复计数,在对63个数学分支进行统计时,均按第一分类号统计。按2000年《MSC》提出的修订方案,将1993~1999年的数据进行了合并和调整。图2显示了国际数学论文在63个数学分支上的分布。
数学各分支占论文总产出的百分比在一定程度上反映了该领域的研究规模,而相应分支学科的研究热点变化也是统计中着重揭示的问题。在实际统计中,跟踪热点变化主要是通过这63个数学分支的时间序列分析完成的。统计数据揭示的主要特征和趋势如下:1993〜2004年,国际数学或与数学相关论文产出百分比最高的前10个分支依次是:量子理论(81)、统计学(62)、计算机科学(68)、偏微分方程(35)、数值分析(65)、概率论与随机过程(60)、组合论(05)、运筹学和数学规划(90)、系统论/控制(93)、常微分方程(34),这10个分支的产出占总体产出的42.5%。
隹某些分支领域表现出良好的增长势头,如统计学领域的论文数量近3~4年增长较快,有取代量子力学成为现代数学最大板块的趋势。对统计学进一步按照次级主题分类进行统计,结果表明论文产出主要集中在非参数推断(62G)方向(见图3)。
2.3《MR》〉收录中国论文在数学各分支上的分布
MR收录中国学者的数学论文的主要特点表现在以下几个方面:
參1993~2004年论文产出百分比最髙的前10个分支领域依次是偏微分方程(35)、数值分析(65)、常微分方程(34)、系统论/控制(93),运筹学和数学规划(90)、统计学(62)、组合论(05)、概率论与随机随机过程(60)、动力系统和遍历理论(37)、算子理论(47),这10个分支的产出占总体产出的52.25%。
偏微分方程(35)是中国数学论文产出的最大分支,对偏微分方程的二级分类进行细分,结果见图5。
从图中可以看出数理方程及在其它领域的应用(35Q)所占比重较大。同时,根据对35Q的下一级分类的追踪发现,关于KdV-like方程(35Q53)、NLS-like方程(35Q55)的论文有增加的趋势。
差分方程(39)、Fourier分析(42)、计算机科学(68)、运筹学和数学规划(90)、对策论/经济/社会科学和行为科学(91)、系统论/控制(93)、信息和通讯/电路(94)表现出一定的增长势头。
结合环和结合代数(16)、逼近与展开(41)、一般拓扑学(54)、大范围分析/流形上的分析(58)、概率论与随机过程(60)等表现出下降趋势。
与《MR》收录数据的主题分布所不同的是中国的量子力学和统计学均没有进入前5名,量子力学排到了第12位,且有下降趋势。计算机科学(68)、常微分方程(34)在《MR》中分别排在第3位和第10位,而中国数学论文中,常微分方程位居第3,计算机科学位居第11。
1993~2004年《中国数学文献数据库》收录论文统计分析
1993~2004年《CMDD》收录中国学者发表的论文总数达到93139篇。从这些论文在63个数学分支上的分布中可以看出,这63个数学分支学科的发展是不平衡的。对这63个数学分支的论文产出的时间序列分析发现,有些分支增长较快,如运筹学和数学规划(90),对策论/经济/社会科学和行为科学(91),有的变化不大,如几何学(51-52)。
通过对《CMDD》的数据统计,表明中国数学文献的学科分布有如下特点:
參1993〜2004年论文产出百分比最高的前10个数学分支依次是数值分析(65)、运筹学和数学规划(90)、常微分方程(34)、偏微分方程(35)、统计学(62)、系统论/控制(93)、计算机科学(68)、组合论(05)、概率论与随机过程(60)、对策论/经济/社会科学和行为科学(91),这10个分支的产出占总体产出的56.0%。
一些分支表现出良好的成长性。如数理逻辑与基础(03)、矩阵论(15)、实函数(26)、测度与积分(28)、动力系统和遍历理论(37)、Fourier分析(42)、变分法与最优控制/最优化(49),运筹学和数学规划(90)、对策论/经济/社会科学和行为科学(91)、生物学和其它自然科学(92)、系统论/控制(93)、信息和通讯/电路(94)。
參一些分支所占比重下降。如逼近与展开(41)、一般拓扑学(54)、概率论与随机过程(60)、统计学(62)、数值分析(65)等。
參在排名位于前10位的数学分支中,量子理论(81)在《MR》、PRC(《MR》的中国论文)和《CMDD》中所占比重有较大的差异,其余的9个分支尽管所占比重不同但基本上都能进人分布的前10名,例如,计算机科学(68〉在《MR》数据组的排名是第3位,到PRC和《CMDD》数据组就下降到第11位和第7位,在《MR»数据组的排名分别是第8位和第10位的运筹学和数学规划(90)和常微分方程(34),在PRC数据组中,则上升到第5位和第3位,在《CMDD》数据组则为第2位和第3位。这些排名的变化可以部分地揭示出中国在量子理论、计算机科学的交叉研究等方面稍有欠缺,但在数值分析、运筹学(含数学规划)等方面,中国具有相对的竞争优势。
组合论(05)在《MR》、PRC和((CMDD》中所占比重较为一致,分别位居第7、第7和第8位。数据表明组合论中的二级分类图论(05C)的论文产出比例最高,对图论主题进行进一步分析,发现这几年成长较快的图论领域的研究论文大多集中在图和超图的着色(05C15),其次是因子、匹配、覆盖和填装(05C70)。在图论的这两个三级分类上,中国学者的论文产出与国外非常吻合。
本文中的“基金资助”指的是国家自然科学基金或国家自然科学基金委员会数学天元基金的资助。为统计方便,二者统一按基金资助处理。1993~2004年《CMDD》收录的获基金资助的论文共计27662篇,受资助力度达到30%左右。表8显示,获基金资助的论文近年来有不断上升的趋势。2005年《中国数学文摘)>第6期附表1说明《中国数学文摘》和《CMDD》2005年收录的论文受基金资助的比例达40%以上。《CMDD》收录的获基金资助的中国论文在数学各分支上的分布特点如下:
在数量上,前10个分支领域为:数值分析(65)、系统论/控制(93)、偏微分方程(35)、运筹学和数学规划(90)、计算机科学(68)、常微分方程(34)、统计学(62)、概率论与随机过程(60)、组合学(05)、对策论/经济/社会科学和行为科学(91),这10个分支占总体产出的60.2%。