测量技术论文范文

时间:2023-03-20 16:27:36

引言:寻求写作上的突破?我们特意为您精选了12篇测量技术论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

测量技术论文

篇1

(1)箱梁水准点引测从0#、1#块顶板水准点利用钢尺引测到左右箱室人孔旁所做高程点,测算出所布设高程点的高程,用以作为以后底模标高测量的后视水准点。(2)底模标高测量在每个块段底腹板浇筑前,测算出底模最外缘侧的模板高程,按照监控单位发放的施工指令中给出的立模标高进行复核,调整。(3)底模高程点标高测量在每个块段底腹板浇筑前和浇筑完成后,各测出左右箱室焊设的模板高程点的高程,算出其变化量。(4)顶板高程点标高测量在每个块段顶板张拉前和张拉完成后,各测出顶板焊设的模板高程点的高程,算出焊设的测点的挠度变化量。

1.2箱梁合拢控制

(1)在各孔的边跨合拢块施工前,对各悬臂箱梁高程进行联测。(2)合拢段施工的高程观测按以下6个工况实测:①安装模板前;②浇筑混凝土前;③浇筑混凝土后;④张拉部分纵向预应力钢束后;⑤拆除临时支撑后;⑥张拉完所有预应力钢束后。(3)对于连续箱梁的中孔合拢,还应在主墩临时支座拆除的前后对各测控点进行监测。

2对称平衡施工

施工中严格按照平衡施工的要求进行,最大混凝土浇筑重量误差不得大于该梁段自重的30%,并在混凝土浇筑过程中实施监控,确保箱梁自重误差不大于设计要求的3%,控制梁段上的施工堆积物并及时清理箱梁中的施工垃圾,以避免由于施工荷载和桥面杂物的不平衡引起测量数据的不正确。

3质量保证措施

3.1抓好事前控制

3.1.1抓好人的质量施工测量放样工作是靠人干出来的,人是工作质量的决定因素,因此提高自身的思想水平、业务技术,工作能力、工作责任是极其重要的,同时必须了解和管理好所管辖内测量人员,有利于开展工作,必要时做好配合工作。3.1.2抓好测量仪器的质量测量放样必须有符合精度的仪器设备,才能确保精度和速度,除必要按规定进行鉴定,还必须在使用中时刻注意仪器的性能和状态,发现异常及时校正。3.1.3抓好基准点的精度平面高程控制点是实施施工放样的基准点,它的精度优劣直接影响放样精度。因此,施工前必须对控制点进行复测,并根据建筑物的分布,为便于放样,还需进行加密。施工阶段确保控制点的稳定完好,有破坏变动,应及时补埋补测。3.1.4抓好设计图纸的复核按设计图纸的数据进行施工,是我们的职责,设计单位要求对图纸进行复核是我们的义务,也是为了我们确保施工放样数值的准确。在复核发现问题,应及时地向设计单位反映。3.1.5学好规范、掌握规范、执行好规范规范是我们判别测放精度施工质量的标准,要养成严格执行规范的习惯,为此全面地学好规范,深刻地理解规范,认真地执行规范。在保证质量的前提下,把好执行规范,不断地总结提高。

3.2抓好事中控制

在检查时尽可能用自己的仪器自己测,及时发现问题及时解决,有些问题应及时汇报给相关的专业工程师。并有严格报验制度。3.2.1平面位置控制设站检查:全站仪对中整平后设置气象元素棱镜常数,输入站点后视点坐标,后视定向后要测距测坐标,一般误差控制在3mm以内。对每个放样点的检查,一般采用极坐标法,即以方位角定向、距离定点,再测坐标作校对。当检查点较多或时间较长时,要及时地复查后视点。当测放水中桩或不能直接定桩时,可放辅桩,但要标明辅桩与主桩的关系(方向和距离)。检查结束后,应到点位处一看一量,看所放的点组成的线形是否与设计院设计相符,量各桩间距是否与设计值相同。护栏的放样应保证其线形流畅,保证桥面宽度,其线形要确保不出现折角。3.2.2高程检查首先要经常检查水准仪的i角,确保其良好的性能,还需检查脚架及塔尺接头是否完好。检查时须从一个水准点联测到另一个水准点,这样可以:①发现所观测的是否闭合;②水准点是否变动;③水准仪有无问题。当要引测结构物上部或下部时可采用钢尺倒挂法,钢尺必须要垂角,最好用正、倒挂尺校检。

3.3事后总结

(1)平面控制方面目前采用的坐标系:①WGS-84大地坐标系;②1980西安坐标系;③1954北京系。(2)高程控制方面国家规定:采用1985国家高程基准点,它与1956黄海高程系的关系式:1985国家高程基准时1956年黄海高程值0.0286m。苏南地区采用吴淞值高程系,它与1956黄海高程系的关系式:吴淞系1956年黄海高程系值+1.8971.6972.097,根据不同地区而定。(3)加密控制对被破坏的不稳定的点必须重新埋测。桥梁处的点必须稳定可靠,并作为以后联测的起讫点。复测时设计路线不宜太长,尽量控制在2-3km,以减少误差的积累。(4)导线平差中对X、Y的fx、fy分配,可应仅考虑距离而应当按方位角距离的联合影响来分配。(5)采用全站仪用极坐标放样最大距离的控制国家规定最大误差是中误差的2倍,以J2级测一个单角,其精度约在10″左右,而放样桥梁桩、柱的平面位置,则最大要求<5mm。S=ρ″/10″×5mm=103m,最好控制在100m以内。

篇2

2影像测量仪的结构分类与特点

影像测量仪主要由机械主体、标尺系统、影像探测系统、驱动控制系统以及测量软件等组成。影像测量仪的结构型式主要有柱式、固定桥式和移动桥式。柱式一般用于小量程的机器,桥式一般用于中大量程的机器。

2.1柱式影像测量仪

柱式结构底部为基座,二维工作台分别沿X和Y向移动,影像探测系统可在固定立柱上沿Z向运动,结构牢固、精度高,不过工件的重量对工作台运动有影响,不能承载过重工件,适合于中小行程影像测量仪。

2.2固定桥式影像测量仪

固定桥式测量仪的X、Y、Z轴相互正交并沿着各自导轨运动,其中Z轴上安装有影像探头并可以相对Y轴做垂直运动,而Y轴则安装在基座上。Z轴部分和Y轴部分的总成牢固装在机座两侧的桥架上端。每轴都由电机来驱动,可确保位置精度,但不适合手动操作,该结构稳定、整机刚性好。

2.3移动桥式影像测量仪

移动桥式结构是目前大量程影像测量仪中应用最广泛的一种结构形式。其中,工作台固定,其中一个桥框由导轨带动在工作台上沿X轴移动,同时由另一个导轨带动滑板在桥框上沿Y轴移动,主轴则沿Z轴移动。被测工件安放在工作台上,影像探测部件安装在主轴上。这种形式的影像测量仪结构简单、紧凑,刚度好,具有较开阔的空间。

篇3

1.1切削测力仪

1.1.1应变式测力仪

应变式测力仪由弹性元件、电阻应变片及相应的测量转换电路组成,其工作原理如图2所示。把电阻应变片贴在弹性元件表面,并连接成某种形式的电桥电路,当弹性元件受到力的作用而产生变形时,电阻应变片便随之产生变形,从而引起其电阻阻值的变化ΔR,即

应变片电阻值的变化ΔR造成电桥不平衡,使电桥输出发生变化ΔU,通过标定建立输出电压与力之间的关系。使用时根据输出电压反算切削力的大小。

应变式测力具有灵活性大、适应性广、性能稳定等优点,而且配套仪表(如静态应变仪、动态应变仪等已标准化,因而得到广泛应用。但是其测量原理决定了测量精度和动态特性主要取决于弹性元件的结构,如何有效解决灵敏度和刚度之间的矛盾,是提高应变式测力仪测量精度和动态特性的关键。

1.1.2压电式测力仪

压电式测力仪是以压电晶体为力传感元件的切削测力仪,当石英晶体在外力作用下发生变形时,在它的某些表面上出现异号极化电荷。这种没有电场的作用、只是由于应变或应力在晶体内产生电极化的现象称为压电效应。通过测量产生电荷量即可以达到测量切削力的目的。

从动态测力的观点出发,压电式测力仪是一种比较理想的测力传感器,具有灵敏度高、受力变形小等优点。然而压电式测力传感器仍然存在一系列缺点:如由于电荷泄漏而不能测试静态力、固有频率的提高受装配接触刚度的限制、维护极不方便、价格昂贵,因此在使用上受到很大的限制。

1.1.3电流式测力仪

直接使用测力仪测量切削力有其局限性:①安装测力仪时,工艺系统结构遭到破坏从而导致其刚度发生变化,采集不到精确的切削力力信号;②测力仪的安装、调试技术复杂;③测试设备花费较高;④测力仪测试系统可靠性较低。

文献[4]提供了一种间接测量切削力的方法,即电流式测力仪,其测量原理是:切削力的变化会引起主轴电机电流的变化,通过测量主轴电机电流来估计切削力的大小。因机床主轴电机电流的测量比较容易和简单,所以这是一种经济而又简便的方法。

电流式测力仪的局限性体现在两个方面:①把主传动系统的运动学模型看作是一个线性模型,所以加工过程中的非线性因素会在一定程度上降低测量精度;②当切削力发生变化时,相应的主轴电流信号有一定的滞后现象,无法满足对切削力进行实时监测的较高要求。

1.2数据采集系统

如图3所示,数据采集系统通过一定的电子线路,对测力仪的输出信号进行放大、滤波等处理后,将其进行A/D转换,变为计算机的可用信号,再通过接口电路与PC机进行数据传输。

目前大多数切削力数据采集系统由放大器、滤波器、数据采集卡等分立元器件组成,体积较大,系统稳定性不高,测量精度和实时性也渐渐满足不了现代测力系统的要求。

1.3数据显示和分析处理

早期的数据显示和分析处理单元由指示仪表、示波器和记录仪等组成,其数据显示和分析处理功能都是很有限的。随着计算机技术的快速发展,目前数据显示和分析处理单元基本上被计算机终端所代替,显示功能更加丰富和强大,但软件的功能仅局限于数据拟合、图表显示和输出等,对测力仪各向力之间的耦合没有进行有效的处理,从一定程度上影响了测力精度。

2切削力测量技术的发展趋势

现代切削加工正在向高速强力切削、精密超精密加工方向发展,机床的振动频率也会远远高于系统的固有频率,这对切削力测量系统提出了新的要求:①测量范围大、高精度和高分辨率;②实时性好,能够在线实时测量;③数据处理和分析能力强,能够对复杂多变的切削力信号进行各种处理和分析。

针对这些方面的要求,切削力测量技术将朝着以下几方面发展:

(1)开发新型弹性元件,优化弹性元件结构及应变片布片方案,提高应变式测力仪固有频率,有效解决应变式测力仪刚度和灵敏度之间的矛盾问题,降低各向力之间的耦合程度;

(2)应用集成电路和微电子技术,使数据采集系统集成化,提高数据采集的速度与精度;

(3)完善数据处理分析软件的功能,例如通过解耦运算进一步减小测力仪各向力之间的耦合程度,以提高测量精度;将虚拟仪器技术引入切削力测试系统,以便对测量数据进行多种操作和数据库管理;建立专家系统,通过对测试数据的分析处理,对刀具磨损、切削颤振等情况做出预报并提出相应的治理措施。

参考文献

[1]罗学科.动态多维力传感器的理论研究与实践[D].北京航空航天大学博士论文,1995.1.

[2]姜术君.采用虚拟仪器技术构建测力系统的研究[D].北京航空航天大学硕士学位论文,2004.3.

[3]杨兆建,王勤贤.测力传感器研究发展综述[J].山西机械,2003,(1).

[4]周林,殷侠.数据采集与分析技术[M].西安:西安电子科技大学出版社,2005.

[5]张小牛,侯国平,赵伟.虚拟仪器技术回顾与展望[J].测控技术,2000,(9).

篇4

三维可视化技术,是对一种能够形象立体的描述矿山模型的技术手段,利用三维可视化技术可以更加全面的了解矿体的地表形态与矿体空间信息之间的位置关系,为测量人员提供更精准形象的空间分析数据。三维可视化技术是通过三维动画软件来实现的,常用的动画软件是3DMAX,它具有先进的运动匹配以及数字化建模等功能,可以大幅度的提升三维可视化模型的制作品质。

1.2数字化资料处理技术

资料的数字化处理,是矿山测量系统的一项重要工作,矿山测量工作包括数据信息的采集、存储以及处理,数据类型主要是图形、数字以及表格等[2]。进行资料的数字化处理,需要用到计算机的辅助绘图功能和电子图表化功能,许多测量工作者会运用VB、AutoCAD等软件进行实际的数据处理工作。

2数字化测量在地面控制测量中的应用

2.1GPS地面控制网的布设要点

地面控制测量的主要目的是为施工放样、变形观测、地面大比例成图、建立整体的控制奠定基础,建立地面控制网可以对全局有一个整体的把控,限制测量误差的积累和系统之间的错误信息传递,因此,有利于提高测量数据的精准度[3]。GPS与地面控制测量结合,就形成了GPS地面控制网这种先进的地面控制测量方法,在布设地面GPS控制网时,要充分考虑测量范围的大小、精度要求以及点位密度等因素,可以根据工程的需要设定不同的边长。在分布网点时,要遵循统一的测量规则,按照严格的等级标准进行施工作业。

2.2常见的网形

GPS地面控制网对横向误差没有影响作用,但其长度却会对地下贯通的纵向产生误差,因此,两点通视网形和后视同一点网形这两种简便灵活的网形,在城市地铁的地面控制网布设中具有更加明显的优势。针对丘陵隧道情况,采用后视同一点布设网形不能直观的通视两个控制点之间的联系,但可以在丘陵山脊上设置一个新的控制点,实现与两点之间的通视,只要水平角度够精确,就可以显著地减少地面控制网对横向误差的影响[4]。

3数字化测量在井筒深部延伸中的应用

立井井筒深部延伸是矿井测量的一项关键工作,利用激光测距仪、全站仪等进行井筒深部延伸的贯通测量能够有效的降低横向误差,提高贯通测量的精确度,而且与传统的测量方式相比,还能满足井筒深部延伸的精准定位要求[5]。针对地理坐标北纬30°55′,东径117°49′,平均海拔为168.5m的丘陵地带开掘的直径3m,筒深600m的辅助井,可以直接对其改造并延伸成井,一般是先在井筒内预留一段超过5m的岩柱作为井筒隔离层,在180~300m深部采用吊罐反掘的方法刷大成井。为了提高竖井贯通工程的测量精度,采用全站仪和陀螺仪能够定向的反映辅助井的贯通施工,对丘陵地带的辅助井贯通施工具有很强的指导意义和实用性。

3.1贯通测量误差的预计

贯通测量误差,需要从既定的k点开始,沿平巷和下山敷设导线,并测量回到k点所引起的误差,从外部形式上看像一条闭合的导线k-1-2...15-16-k,在实际贯通之前是一条支导线,所以,在水平方向上的重要贯通误差,实质上是支导线终点k在x方向上的误差。

3.2辅助井贯通测量

在辅助井贯通测量的地面控制测量中,可在辅助井、措施井及混合井井口附加埋设3各相似的近井点,并建立以第1个近井点为坐标原点,其余两个为假定方位的坐标系统,将3个近井点之间用1条直线连接,利用全站仪测量6个回数,利用激光测距仪测量往返距离,在闭合的三角形中就可以测定导线边长,同台仪器的往返测距和不同测量方法的测量结果可以多次使用。由测量误差所引起的x、y方向上的误差,采用全站仪导线,全站仪的测角精度为2s,测距精度为2mm+2ppm,由于平均误差小于100m,所以各边的误差均小于2.2mm。利用陀螺仪可以简化深部延伸井筒的定向程序,先在地面上独立测量3个仪器常数,再在井下定向边上独立测量2次陀螺方位,基础定位程序可以在3d之内完成。辅助井井中测量的目的,是为了确定井筒的垂直度,一般是先地表标记出一个以井筒为中心点的十字线,沿井筒十字线放置两根钢丝作为几何投点,通过测量多处井点,利用余角法就可以推算出井中坐标的具置,并进而确定井筒的垂直度[6]。主井与辅助井贯通时的测量误差来自于两工作面上井筒中心的相对偏差,一般是先假定井筒中心线方向为y'方向,与它垂直的方向为x'方向,最后求出井筒中心的平面位置误差。对于两个相向开凿的立井贯通,需要同时进行地面测量、井下测量和定向测量,这些测量误差的所得出的贯通相遇点的误差,需要同时预计x'、y'两个方向上的误差。

篇5

2测量流程

在所需测量的物体上选取A、B两个点位,并将这两点在水平面上的内投影点的连线作为X轴的方向,测量仪器的中心点作为坐标的原点,经过原点在水平方向上垂直X轴方向上建立Y轴,以垂直于X和Y所构成的平面的方向为Z轴,建立右手方向直角坐标系。测量原理:基于全站型的电子速测仪,也可以称之为全站仪,它是具备测距功能和测角功能的高科技仪器,所以说依据极坐标的方法对物点的三维立体坐标实施测量,为全站仪中的三维测量系统提供出有效的理论依据和技术方面的保障。它是P点在水平盘上的真实读数,剩下的符号和之前相同。在工程实际的测量工作当中,空间立体坐标系在选取方面需要依据实际的安装平面设计图来具体确立,因为在场区已有的平面控制网已经不能充分的满足实际安装的精度需求,所以说就必须要建立起一个准确度较高的控制网来实施科学有效的控制。

3测量的精度控制与分析

对全站仪系统中的三维点位的精度测量,大致分为以下三个方面:第一,全站仪中系统自身产生误差,全站仪的突发误差,系统中反射设施或者目标设施的误差这三个方面。其中前面两种是对测量精度产生误差的主要因素。

4测量数据的矫正

在实际的安装和测量的前期,在具体目标的节点位置上,运用LeicaTCA2003专用测量仪器的反射标志,而且要依据实际的测量形状以及方式计算中的三维坐标,在依据全站仪三位测量系统中的原理,利用LeicaTCA2003专业测量程序,对实际测量标记中的三维坐标(X/Y/Z)进行准确的测量,运用实时软件对实测值和预期所设置值的差值进行处理,并且及时对所指挥的目标进行安装和测量。在其内部运用外业工作所收集到的测量数据进行整体,并且在其所编辑完成的程序下实施数据的处理和分析,最后制成相应的图纸。

篇6

2问题来源

像控点测量是航测外业和航测内业工作的基础和前提。大多数测绘单位仍然采用传统的作业模式开展这项工作:作业之前,首先在纸质控制片上进行像控点布设,绘制像控点结合图,套合在小比例尺地形图上,人工选取行车路线,作业时按照既定计划行车进行像控测量。这种作业方式存在较多限制效率的问题:(1)纸质像片冲洗周期时间长,像控点布设花费大量时间。(2)纸质像片不方便携带和使用,小比例尺地形图现势性差、内容较粗略,对于不熟悉航摄区域的作业人员而言无异于雾里看花,经常出现绕圈、走错路的情况,在一定程度上降低了作业效率。(3)作业前作业人员通过人工比对影像,以确定像控点位置需要花费大量的时间,在某些地区,特别是某些农村地区,没有明显特征地物,给人工比对确定像控点位置的工作增加了很多困难。(4)在像控点预选过程中,首先要找到多张航摄影像的重叠区域,然后在重叠区域中寻找影像清晰、易于判刺和立体量测的点位,这个过程也需要花费较长时间。IMU/DGPS和航空影像快速处理技术的应用大大减少了外业像控点的布设密度,节省了人力物力,然而这一革新却带来新的问题[1];像控点布设稀疏之后,点与点之间距离远,连续性和关联性差,导致找点困难,且找准点与点之间最方便、快捷的连通路线也很困难。这两个问题就成为影响外业像控测量生产效率的技术瓶颈。目前,国内的测绘单位对像控点测量面临的问题都有所认识,但是几乎没有一个较为全面、系统的解决方案。

3像控点快速测量技术

像控点快速测量技术以数字影像为基础,按生产流程分为像控点快速布设、像控点导航定位和像控点整饰等几个环节。其基本流程为:首先进行像控点快速布设预选,完成像控点布设后,利用导航定位技术快速到达选定的像控点位置,测量像控点坐标后,在实地完成像控点整饰及检查工作。本文借助重庆市勘测院自主研发的航测外业数字化测量系统实现像控点快速布设和像控点整饰,设计程序实现像控点预选,并借助移动终端为平台实现像控点导航定位。

3.1像控点快速布设技术

根据空三加密的需要,作业人员在基于MicroSta-tion软件的航测外业数字化测量系统上布设像控点。思路为:将像主点坐标及像片编号展绘到矢量图上(如图1所示),按照像控点区域网布设原则及要求进行详细的像控点和检查点点位设计,并生成最终的像控点布设网图(如图2所示)。区域网布设原则为:区域网的布设图形宜呈矩形;区域网大小和像控点的跨度主要依据成图精度、航摄资料参数及对系统误差的处理等因素确定;区域网的划分和布点应以能满足空中三角测量精度要求为原则。重庆市地理国情普查正射影像制作像控点布设按照区域网布设,全部为平高点,每隔6条基线布设一对像控点,并且在像控点控制力最弱位置布设检查点,空三加密成果满足1∶5000航测成图要求,优于地理国情普查项目中正射影像制作的要求,实现一套成果多种利用。具体方法是,在像主点展点时,将对应像主点的影像文件名作为文本一同展入文件,利用程序将像控设计略图自动生成初步的像控布点网图,生成像控点编号。如图2所示,通过布设网图能够很直观地知道与像控点PT826相关的6张影像,通过像控点和像主点之间的连线关联影像和像控点,可自动加载影像文件。如果需要修改像控点的布点点位,可通过操作图形,移动点位,改变连线,即实现该点新的自动加载方案,通常情况下,外业人员根据像控点布设网图进行测量,但当现场判别实地点位不符合要求时,可直接在野外对布设网图进行修改。像控点快速布设另一个关键技术就是像控点的预选。像控点预选功能主要基于像控点关联影像的特征点提取及影像匹配。特征点的提取主要通过改进的SIFT算子实现[2],然后对像控点关联影像进行特征点匹配,找出影像间的公共区域[3](如图3所示),可将3张影像的公共区域从原图上裁剪出来并分别显示保存(如图4所示),供作业员进行像控点预选。图3三片匹配效果及公共区域图4像控点预选功能提取出的三片重叠区域像控点快速布设技术的应用降低了生产成本,大大提高航测外业像控测量的工作效率,主要体现在以下几个方面:(1)降低成本,缩短生产周期像控点快速布设技术的应用实现了像控点布设数字化,省去了控制像片冲印的环节,降低了生产成本的同时,缩短了生产周期。(2)减少了作业员的工作量作业员无需再按照传统的作业方法(在纸质像片上,通过人工比对、拼接的方式得到像控点关联影像的公共区域,浪费大量人力物力),只需通过像控点预选功能就可以自动、快速找到像控点关联影像公共区域,而且获取的影像公共区域范围较人工获取的公共区域范围精确,在减少工作量、降低生产成本的同时,大大提高了生产效率。(3)节约了工作时间以7条航带,共93张航片(0.4m分辨率),覆盖面积约为478km2的区域为例,布设25个像控点,从像控点关联影像的自动预处理到像控点预选指导结果的显示,整个过程只需要20s左右的时间,相比于传统的人工像控点预选方法,极大地减少了像控点预选工作的时间。(4)野外现场快速修改方案当现场判别实地点位不符合要求时,需要重新选择新点。传统的像控测量在现场重新选点时,受携带的纸质像片数量限制(另外的业人员可能正在使用相邻航带的影像),容易导致选点达不到要求而重测。但航测外业数字化测量系统所带资料齐全,可以现场快速调整最优方案。在重庆市第一次地理国情普查项目的像控点测量工作中,以7条航带,共93张航片(0.4m分辨率),覆盖面积约为478km2的区域为例(布设25个像控点),进行对比实验:在不计控制片冲洗环节耗费时间的情况下,采用传统的像控点测量方法,布设选择10个像控点平均需要1h,采用像控点快速布设技术平均需要20min,效率提高了66%。

3.2像控点移动终端导航定位技术

能否快速到达像控点实地位置是像控点野外测量的关键,直接决定像控点测量的效率。通过数据转换处理,借助移动终端(手机或平板电脑)进行导航定位,可以实现像控点实时定位。本文中的像控点导航定位技术以谷歌地图为导航平台,通过带有GPS模块的移动终端实现。谷歌地图可以提供含有政区和交通以及商业信息的矢量地图、不同分辨率的卫星照片,在带有GPS模块的移动终端上可轻松实现地图上任意两点间的路线规划和实时定位导航,在PC机和移动终端上均有应用,并可通过谷歌账户进行实现在PC机和移动终端间的同步联系。通过试验研究,利用谷歌地图和移动终端实现像控点导航定位的作业流程如下:(1)在进行像控点预选后,将像控点布设网图从CGCS2000坐标系转换到WGS-84坐标系。(2)利用GlobalMapper和ArcGIS软件对像控点布设网图进行数据格式转换,将像控点布设网图转换为kml或kmz格式。(3)通过谷歌账户将像控点布设网图导入到谷歌地图中,规划到达像控点的路线。(4)在移动终端上下载谷歌离线地图,利用谷歌账户导入像控点布设网图和规划路线,实现像控点快速导航定位,如图5所示。

3.3像控点数字化整饰技术

在外业航测外业数字化测量系统中,影像可以无极放大,不用绘制点位略图。同时提供属性信息输入界面,自动生成像控说明注记的统一格式。刺点信息直接标注于影像之上,通过设置信息显示和隐藏,而不会造成影像遮挡。刺点完成之后,将刺点区域影像和像控信息叠加保存为JPG格式图片,以便后续使用,如图6所示。

篇7

2低空遥感平台摄影测量系统的设计

无人飞艇低空遥感平台摄影测量系统主要是由两个部分组成,一部分是系统硬件,另一部分是系统软件。

2.1系统硬件

该系统的硬件由空中飞艇和地面监控两个部分组成,空中飞艇部分的主要设备包括气囊、吊舱、发动机、GPS陀螺仪、自动驾驶设备、增稳平台、数码相机和摄影机;地面监控部分具体是由以下设备组成:便携式计算机、手控设备、视频终端以及电源。GPS是飞艇的导航装置,在自动驾驶的状态下,飞艇会根据预先设置好的航行线路进行低空飞行,并以一定的距离和间隔时间进行拍照,借此来获取地面的数码影像;飞艇的起落主要是由地面监控部分负责,同时还对飞艇的自动驾驶进行监控。

2.2系统软件

该系统的软件主要由以下几个部分组成:飞艇航行线路规划软件、飞艇飞行监控软件、平差解算软件、正射影像制作与编辑软件。除上述软件之外,系统还包含以下功能模块:工程管理、全自动匹配、影像预处理、控制点量测、DEM生成等等。

3低空遥感平台摄影测量系统的应用实例

所选测量区域的地面高程约为50m左右,该测区内分布有大量的低山,山体的整体高度全部在170m以下,整个测区的范围长度为8000m,成图面积约为60km2。下面运用上文中设计的低空遥感平台摄影测量系统对该测区进行测量。

3.1飞艇航行路线规划

目前,数码相机在测量领域内获得了广泛应用,这使得大重叠度的航摄测量成为主流趋势,为摄影测量自动化目标的实现提供了可能。在本次测量中,决定对所测区域采用大重叠度航行路线设计,航行方向的重叠度设计为80%,旁向的重叠度设计为60%,地面的分辨率为0.2m。为了获得更加清晰的航摄影像,在数码相机上配备了14mm焦距镜头,相对飞行高度控制在350m左右,每张影像的摄影范围为600×900m。该测区的常规航行线路为22条,构架航行线路为4条,飞艇实际飞行的线路为26条,总计获取影像1804张。

3.2选点及量测

为有效提高测量效率,在对飞艇航行线路进行规划的过程中,需要合理选取控制点并进行量测。低空遥感摄影测量技术最为显著的特点之一是分辨率高,为此,可以直接选取影像上较为明显的地物点作为地面控制点,如路叉点、房屋拐角等等。依据我国现行的航摄测量作业规范标准的要求,并结合实际成图需要,决定在该测区的设计航带内每8条基线选取一个控制点,共计选取140个地面控制点,实地采用GPS-RTK测量155控制点。

3.3工程管理与航摄影像预处理

飞艇根据预先规划设计好的航行线路自动飞行,并对相关影像进行拍摄后,需要先对测区内的相关数据进行整理,主要包括数码相机参数、影像数据信息以及工程参数等等。其中数码相机的参数可以通过三维检验校正获得,在数据预处理的过程中,主要是对航空拍摄到的影像进行主点纠偏和畸变纠正。由于实际拍摄中,受角度不同等因素的影响,使得在同一个区域内的相邻影像当中存在色差,为确保测物内正射影像的色调一致,必须进行匀色处理,具体过程如下:从该测区拍摄到的影像当中选择出一张具有代表性的影像,然后借助图像处理软件,对其色调进行调节,并以此作为基准影像,随后,利用匀色模块将基准影像和测区内的其它影像全部载入到软件当中,并进行匀色处理。

3.4加密处理

由艇在低空飞行的过程中,受到风力作用,会对摄影的效果造成一定程度的影响,虽然飞艇的自动驾驶系统能够对其飞行姿态进行实时调节,数码相机的稳定云台也可以确保相机处于相对固定的状态,但飞艇在航线上行进时,其本身的姿态会发生不断地变化,若是遇到强气流,则会导致飞艇出现剧烈的变化,这样很难确保数码相机拍照时保持稳定的姿态,这样一来,造成了获得的影像姿态角超出测量规范标准的角度要求,从而导致匹配难度较大。为了解决该问题,决定在特征点匹配的过程中引入SIFT算子,并将其匹配结果作为初始值,然后利用最小二乘进行精确匹配,以此来确保匹配结果的稳定性和有效性。

3.5平差结算与影像校正

首先,采用光束法将拍摄到的每张影像的外方位元素计算出来,然后再对大量影像点进行密集匹配,并将这些影像点的大地坐标计算出来,经过滤波处理之后,通过地面离散点规则网格化生成DEM;在对拍摄到的影像进行方位元素解算时,由于各种因素的影响,难免会出现偏差,这样一来便会导致所生成的测区DEM出现偏差。因此可以采用系统中的正射纠偏模块进行分块校正,由此便可以获得整个测量区域范围的正射影像。

篇8

2GPS定位测量技术的优势

GPS定位技术起源于美国,从研发到投入使用,经历了20年的改进,最终成功的为世界的发展做出了贡献。GPS定位技术在我国各个领域内都得到了应用,效果较好。GPS定位测量技术具有精度高且全天候等特点。工程测绘工作通常要求较高,具有专业化与技术性等特点,随着科技的进步,如今也逐渐向信息化与数字化等方向发展,需要运用先进的测量技术来提高工作效率。

2.1测量精度较高

在工程测绘中,运用GPS定位测量技术,就能够通过全球定位系统进行定位,如此便能够保证运动载体实现最佳的路线运行。对于工程测绘工作来说,定位非常重要,按照实际的测绘需求,假如基线没有超过50km,就应当采用载波相位观测量,以此保证静态相对定位。在工程测绘工作中运用GPS定位系统中的测技术,就能够实现1×10-6以及2×10-6的精度,假如基线达到了100km-500km,相对定位的精确标准就能够达到10-6以及10-7的范围内。随着GPS定位测量技术的不断革新,测量的精度也会不断的提升。

2.2操作简便且节省时间

在工程测绘工作中运用GPS定位测量技术,操作简便,且能够节省时间。例如在工程测量中运用经典的静态相对定位模式实现测量时,假如测量的基线在20km内,单频接受的观测时间大约为1小时,而双频接受的观测时间则为15-20分钟,假如采用实时动态定位,初始的观测时间则为1-5分钟,其他不同位置的观测时间为几秒,因此在工程测绘中运用GPS定位测量技术,就能够有效的缩短观测的时间,有效的提升工作效率。目前,GPS定位系统已经分为高度自动化与智能化的系统技术,在工程测绘中运用GPS定位测量技术,就能够通过智能型接收机进行观测,工作人员只需安装一些开关仪器,就能够通过仪器进行实时监控。由于GPS定位测量技术的自动化程度较高,工程的测量与卫星捕捉都能够通过GPS定位测量仪器来实现,操作较为简便。此外,GPS用户接收机体积较小,方便携带,在日常工作中能够节约人力和物力,能够有效的节约工作成本。

2.3应用范围广

GPS定位系统的应用范围一般可从两方面来看,首先是运用于与各个行业中,人们最为熟悉的是车载导航,目前GPS导航系统目前已经成了汽车的基本配置。此外,GPS技术还广泛的应用于地质与矿产等行业中。其次,GPS定位系统还能够运用于环境条件中,GPS定位是借用卫星系统实现定位,一般不会受到天气与温度的影响,在对于工程测绘来说属于一大优势,因为工程测绘通常都是在野外工作,运用GPS定位系统能够克服恶劣的环境条件造成的影响,保证定位的精度。

3GPS定位测量技术在工程测绘中的运用

3.1测量工程变形情况

通常工程建设涉及的范围较广,经常会遇到一些人为因素或是地质运动造成的建筑物变形以及位移,假如出现此种情况,会直接影响工程测绘工作,使经济效益与社会效益受到影响。经过研究发现,造成工程变形的主要类别有大坝变形与建筑物沉降等,假如能够及时的对工程变形进行测量,就能够有效的减少工程变形对于工程测绘工作的影响。目前GPS定位测量技术已经开始广泛的应用与工程变形的监测工作中,例如运用高精度的三维定位技术,就能够对工程建筑出现的微小变化进行分析,提早做好防范准备,减少损失。

3.2大地测量控制网点

在大地测量网点工作中,通常需要花费大量的资源,且精度较低,无法适应当代社会的需求。为了解决这一问题,我国在1991年开始建设大地控制网,目前这一工程已经结束,并且已经开始运用。大地控制网能够测量数千里或者数万里,而城市控制网测量的距离较近,一般在十公里左右,但城市控制网的使用频率更高,对于城市建设来说具有非常重要的作用,因此需要借助GPS定位测量技术进行大范围的测量,为城市的发展做贡献。

3.3测量水下工程

在水下作业一般难度较大,需要考虑到水下压强以及流体力学等方面的问题,但随着资源的开发,这些资源对于国民经济的影响逐渐增加,进行水下工程测绘目前已经是测绘领域中必不可少的环节。GPS定位测量技术包括了三维测量技术,能够从纵向或者横向两个角度进行水下测量,同时还能够将测量的结果通过计算机分析软件与制图软件等直接呈现出来。例如在进行水下作业时,进行横线测量时应当选择差分GPS技术,如此便可有效的减少对于环境的影响,简化操作流程。而进行纵向测量时则应当选用探测仪,运用超声测量的方式得出具体的深度。

3.4测量矿井工程

目前我国已经将GPS定位测量技术运用于矿井工程的测量中,并通过GPS技术进行了测量演练,及时的对测量中存在的问题进行了分析。常规形式的测绘工作通常是由工作人员自行操作,人为操作较容易出现误差影响测绘工作的精准度,此外,在地质条件复杂的地段进行测绘工作,较容易出现安全事故,因此需要在矿井工程中运用GPS定位测量技术。采用GPS定位测量技术就能够高效的实现工程测绘中交互定位,且能够显示出最精确的测绘结果,同时还能够了解工程测绘工作的流程。为了保证测量技术在工程测绘中达到最佳效果,可在测量前运用计算机技术对于需要测定的位置进行分析,及时发现测量中可能会出现的问题,并做好防治措施,以此保证测量人员的安全,提高测量的精确度。

篇9

物理学中的泊松方程的微分形式为2=-ρ/ε,其中ρ代表电荷密度,它在空间上是一个三维方程。若只考虑x方向的泊松方程,则有式(1)。(1)图1为测量装置的物理模型,模型的上、下电极通过侧壁连接,它们之间的距离为d。设装置里面充满了电荷密度为ρ的电荷,同时在它的作用下,在上、下电极上形成电压U0。模型的下电极上装有静电式电场传感器。图1模型中还建立了x轴坐标,其方向以下电极的表面为起点,向上电极方向为正。所建立的物理模型在x方向上的电场只与电荷ρ有关,与外电场无关,即两端电极上只有装置空间的电荷作用,与外电场无关。解方程(1)得式(2)。(/)1duxcdx=?ρε?+(2)式(2)等式的du/dx即为上、下电极间的电场强度。对式(2)求解得式电极间的电压表达式(3)。2u=(?ρ/ε)?x/2+c1?x+c2(3)在边界条件x=0,电压u=U0;x=d,电压u=U0时,求得112dcρε?=×,c2=U0,将112dcρε?=×代入式(2)得两端间的电场强度Ex。()2xdExρε=??(4)当x=0时,012dEρε?=×;当x=d时,12ddEρε?=?×当x=d/2时,Ed/2=0。通过上面分析,在x=0处存在空间电荷密度与电极表面的电场强度有直接的线性关系,即02Edερ?=×所以只要通过传感器测量出E0,就可通过计算求出空间电荷密度ρ。

2测量技术中传感器设计

静电传感器的设计原理模型是基本上是在静电场中放置一个导体,导体表面就会产生感应电荷,当电场变化时感应电荷也变化,使导体内部电荷的移动形成微弱电流。根据微弱电流的变化或电荷移动所产生的效应,就可知电场的变化。但在实际测量中,传感器所在的静电场中电场基本不变或缓变,不易测量所处在静电场的变化。该传感器的设计方法采用静电式场强测量方式,采用遮挡片遮挡的形式对一个导体的屏蔽和去屏装置,可以周期性地实现屏蔽和去屏的动态效果,产生因动态变化感应到的感生电荷。其设计原理如图2所示。旋转叶片和固定叶片都是由金属制作的扇形叶片,旋转叶片在马达的带动下以屏蔽固定叶片电场的方式达到调制作用。设固定叶片在面积S上的感应电荷q=D?S=ε?E?S,在一定的空间电荷密度ρ作用下,电场E是保持不变的,所以可通过旋转叶片的调制作用改变S,从而有式(5)。dqdsiEdtdt==ε??(5)通过式(5)将电场信号转化为电流信号,且电流值与面积的变化率有关。dsdt可通过图3进行分析。图3为旋转叶片开始遮断电场线示意图,有2122?S=×ω×?t×R×则面积S有式(6)。20tS=∫ωRdt(6)将式(6)式代入(5)式得:20200()2tdRdtiEfERdtω=ε=πε∫(7)式(7)中,f表示电动机的频率。同理,当旋转叶片离开固定叶片区域时,调制出的电流方向相反,如此反复,就可得到周期性的方波电流信号,经采样电阻后又可将电流信号转化为电压信号,最后经抗干扰和放大处理后即可被CPU采样。图4为传感器的调制机理时序图,可见正电荷与负电荷相位相反,通过它即可辨别电荷极性。

篇10

2电子仪表发展现状和趋势

2.1我国电子仪表测量技术发展的现状

国内的电子仪表测量工业和技术在近几年有了长足的进步。随着对国际先进技术的引进和消化,测量仪表的功能和精确性都有了很大的进步,许多设备在功能的全面性上已经接近国际先进水平了。行业的发展受到国家在技术和财政政策的支持,已经步入了发展的快车道。许多国产的仪表已经使用了国际化的设计、生产标准,已从CAMAC、PC总线、STD总线向VXI、PXI总线发展,从堆叠式测试系统向标准化、模块化测试系统发展,并先后研制出国产化VXI模件、VXI测试系统及PXI系统,使我国测试系统技术水平逐步进入国际先进行列。

2.2我国电子仪表测量技术的主要问题

虽然近年来,我国的电子仪表测量技术有了一定发展,但是还有很多技术障碍没有突破,比如:电子仪表的软件系统和集成化不够发达,各模块单元之间没有形成完整的融合,功能集成较为单一。像电子电路、同轴器等核心组件与总线技术、软件系统没有完成结合。此外,自动化与模块结构化程度不够。电子仪器测量的自动化程度是衡量一个国家电子测量的技术时代的重要标准。由于历史原因,我国相关企业在生产过程中,对于世界上最先进的第三代电子仪表测量系统学习程度较浅,对于自动化、智能化的开发速度较慢,距离市场需求还有一段距离。不少企业仍然过分追求高精度或者功能全面型,对于系统化和稳定性的处理不够好,制约了其进一步发展。

2.3电子仪表测量技术的主要发展成果

近年来,世界上先进的电子仪表测量设备不断出现,高精度、智能化、全功能已成为电子仪表设备的发展方向。新开发的各种仪表,都一个突出的特点,就是强大的稳定性,像微波毫米波矢量网络分析仪,它最突出的优势在于:工作频带宽;测量精度高;大动态范围;高速实时测试;再比如可以完成超高速测量的VXI总线技术、可以进行毫米级别波段测量的电子信息测试仪等。

篇11

1.引言

随着Internet技术和网络业务的飞速发展,用户对网络资源的需求空前增长,网络也变得越来越复杂。不断增加的网络用户和应用,导致网络负担沉重,网络设备超负荷运转,从而引起网络性能下降。这就需要对网络的性能指标进行提取与分析,对网络性能进行改善和提高。因此网络性能测量便应运而生。发现网络瓶颈,优化网络配置,并进一步发现网络中可能存在的潜在危险,更加有效地进行网络性能管理,提供网络服务质量的验证和控制,对服务提供商的服务质量指标进行量化、比较和验证,是网络性能测量的主要目的。

2.网络性能测量的概念

2.1网络性能的概念

网络性能可以采用以下方式定义[1]:网络性能是对一系列对于运营商有意义的,并可用于系统设计、配置、操作和维护的参数进行测量所得到的结果。可见,网络性能是与终端性能以及用户的操作无关的,是网络本身特性的体现,可以由一系列的性能参数来测量和描述。

2.2网络性能参数的概念

对网络性能进行度量和描述的工具就是网络性能参数。IETF和ITU-T都各自定义了一套性能参数,并且还在不断的补充和修订之中。

2.2.1性能参数的制定原则

网络性能参数的制定必须遵循如下几个原则:

1)性能参数必须是具体的和有明确定义的;

2)性能参数的测量方法对于同一参数必须具有可重复性,即在相同条件下多次使用该方法所获得的测量结果应该相同;

3)性能参数必须具有公平性,即对同种网络的测量结果不应有差异而对不同网络的测量结果则应出现差异;

4)性能参数必须有助于用户和运营商了解他们所使用或提供的IP网络性能;

5)性能参数必须排除人为因素;

2.2.2ITU-T定义的IP网络性能参数

ITU-T对IP网络性能参数的定义[2]包括:

1)IP包传输延迟(PacketTransferDelay,IPTD)

2)IP包时延变化(IPPacketDelayVariation,IPDV)

3)IP包误差率(IPPacketErrorRateIPER)

4)IP包丢失率(IPPacketLassRate,IPLR)

5)虚假IP包率(SpuriousIPPacketRate)

6)流量参数(Flowrelatedparameters)

7)业务可用性(IPServiceAvailability)

2.2.3IETF定义的IP网络性能参数

IETF将性能参数[3]称为“度量(Metric)。由IPPM(IPPerformanceMetrics)工作组来负责网络性能方面的研究及性能参数的制定。IETF对IP网络性能参数的定义包括:

1)IP连接性

2)IP包传送时延

3)IP包丢失率

4)IP包时延变化

5)流量参数

2.3网络性能结构模型

从空间的角度来看,网络整体性能可以分为两种结构:立体结构模型和水平结构模型。

2.3.1立体结构模型

IP网络就其协议栈来说是一个层次化的网络,因此,对IP网络性能的研究也可以按照一种自上而下的方法进行。可以以IP层的性能为基础,来研究IP层不同性能与上层不同应用性能之间的映射关系。

2.3.2水平结构模型

对于网络的性能,用户主要关心的是端到端的性能,因此从用户的角度来看,可以利用水平结构模型来对IP网络的端到端性能进行分析。

3.网络性能测量的方法

网络性能测量涉及到许多内容,如采用主动方式还是被动方式进行测量;发送测量包的类型;发送与截取测量包的采样方式;所采用的测量体系结构是集中式还是分布式等等。

3.1测量包

网络性能测量中,影响测量结果的一个重要因素就是测量数据包的类型。

3.1.1P类型包

类型P是对IP包类型的一种通用的声明。只要一个性能参数的值取决于对测量中采用的包的类型,那么参数的名称一定要包含一个具体的类型声明。

3.1.2标准形式的测量包

在定义一个网络性能参数时,应默认测量中使用的是标准类型的包。比如可以定义一个IP连通性度量为:“IP某字段为0的标准形式的P类型IP连通性”。在实际测量中,很多情况下包长会影响绝大多数性能参数的测量结果,包长的变化对于不同目的的测量来说影响也会不一样。3.2主动测量与被动测量方式

最常见的IP网络性能测量方法有两类:主动测量和被动测量。这两种方法的作用和特点不同,可以相互作为补充。

3.2.1主动测量

主动测量是在选定的测量点上利用测量工具有目的地主动产生测量流量,注入网络,并根据测量数据流的传送情况来分析网络的性能。主动测量的优点是对测量过程的可控性比较高,灵活、机动,易于进行端到端的性能测量;缺点是注入的测量流量会改变网络本身的运行情况,使得测量的结果与实际情况存在一定的偏差,而且测量流量还会增加网络负担。主动测量在性能参数的测量中应用十分广泛,目前大多数测量系统都涉及到主动测量。

要对一个网络进行主动测量,需要一个测量系统,这种主动测量系统一般包括以下四个部分:测量节点(探针)、中心服务器、中心数据库和分析服务器。有中心服务器对测量节点进行控制,由测量节点执行测量任务,测量数据由中心数据库保存,数据分析则由分析服务器完成。

3.2.2被动测量

被动测量是指在链路或设备(如路由器,交换机等)上利用测量设备对网络进行监测,而不需要产生多余流量的测量方法。被动测量的优点在于理论上它不产生多余流量,不会增加网络负担;其缺点在于被动测量基本上是基于对单个设备的监测,很难对网络端到端的性能进行分析,并且可能实时采集的数据量过大,另外还存在用户数据泄漏等安全性和隐私问题。

被动测量非常适合用来进行流量测量。

3.2.3主动测量与被动测量的结合

主动测量与被动测量各有其优、缺点,而且对于不同的性能参数来说,主动测量和被动测量也都有其各自的用途。因此,将主动测量与被动测量相结合将会给网络性能测量带来新的发展。

3.3测量中的抽样

3.3.1抽样概念

抽样,也叫采样,抽样的特性是由抽样过程所服从的分布函数所决定的。研究抽样,主要就是研究其分布函数。对于主动测量,其抽样是指发送测量数据包的过程;对于被动测量来说,抽样则是指从业务流量中采集测量数据的过程。

3.3.2抽样方法

依据抽样时间间隔所服从的分布,抽样方法可分为很多种,目前比较常用的抽样方法是周期抽样、随机附加抽样和泊松抽样[4]。周期抽样是一种最简单的抽样方式,每隔固定时间产生一次抽样。因为简单,所以应用的很多。但它存在以下一些缺点:测量容易具有周期性、具有很强的可预测性、会使被测网络陷入一种同步状态。随机附加抽样的抽样间隔的产生是相互独立的,并服从某种分布函数,这种抽样方法的优劣取决于分布函数:当时间间隔以概率1取某个常数,那么该抽样就退化为周期抽样。随机附加抽样的主要优点在于其抽样间隔是随机产生的,因此可以避免对网络产生同步效应,它的主要缺点是由于抽样不是以固定间隔进行,从而导致频域分析复杂化。

在RFC2330中,推荐泊松抽样,它的时间间隔符合泊松分布,它的优点是:能够实现对测量结果的无偏估计、测量结果不可预测、不会产生同步现象。但是,由于指数函数是无界的,因此泊松抽样有可能产生很长的抽样间隔,因此,实际应用中可以限定一个最大间隔值,以加速抽样过程的收敛。

4.性能指标的测量与分析

4.1连接性

连接性[5]也称可用性、连通性或者可达性,严格说应该是网络的基本能力或属性,不能称为性能,但ITU-T建议可以用一些方法进行定量的测量。目前还提出了连通率的概念,根据连通率的分布状况建立拟合模型。

4.2延迟

延迟的定义是[6]:IP包穿越一个或多个网段所经历的时间。延迟由固定延迟和可变延迟两部分组成[7][8]。固定延迟基本不变,由传播延迟和传输延迟构成;可变延迟由中间路由器处理延迟和排队等待延迟两部分构成。对于单向延迟测量要求时钟严格同步,这在实际的测量中很难做到,许多测量方案都采用往返延迟,以避开时钟同步问题。

往返延迟的测量方法是:入口路由器将测量包打上时戳后,发送到出口路由器。出口路由器一接收到测量包便打上时戳,随后立即使该数据包原路返回。入口路由器接收到返回的数据包之后就可以评估路径的端到端时延。4.3丢包率

丢包率的定义是[9]:丢失的IP包与所有的IP包的比值。许多因素会导致数据包在网络上传输时被丢弃,例如数据包的大小以及数据发送时链路的拥塞状况等。

为了评估网络的丢包率,一般采用直接发送测量包来进行测量。对丢包率进行准确的评估与预测则需要一定的数学模型。目前评估网络丢包率的模型主要有贝努利模型、马尔可夫模型和隐马尔可夫模型等等[10]。贝努利模型是基于独立同分布的,即假定每个数据包在网络上传输时被丢弃的概率是不相关的,因此它比较简单但预测的准确度以及可靠性都不太理想。但是,由于先进先出的排队方式的采用,使得包丢失之间有很强的相关性,即在传输过程中,包被丢失受上一个包丢失的影响相当大。假定用随机变量Xi代表包的丢失事件,Xi=0表示包丢失,而Xi=1表

示包未丢失。则第i个包丢失的概率为P[Xi|Xi-1,Xi-2,…Xi-n],Xi-1,Xi-2,...Xi-n取所有的组合情况。当N=2时,该Markov链退化为著名的Gilbert模型。隐马尔可夫模型是对马尔可夫模型的改进。

MayaYajnik等人所作的172小时的测量试验[11]结果表明,在不同的数据采样间隔下(20ms,40ms,80ms,160ms)采用三种不同的丢包率分析模型进行分析得到的结果完全不同,在不同的估计精确度的要求下实验结果也各有不同。因此,目前需要能够精确描述丢包率的数学模型。

4.4带宽

带宽一般分为瓶颈带宽和可用带宽。瓶颈带宽是指当一条路径(通路)中没有其它背景流量时,网络能够提供的最大的吞吐量。对瓶颈带宽的测量一般采用包对(packetpair)技术,但是由于交叉流量的存在会出现“时间压缩”或“时间延伸”现象,从而会引起瓶颈带宽的高估或低估。另外,还有包列等其它测量技术。

可用带宽是指在网络路径(通路)存在背景流量的情况下,能够提供给某个业务的最大吞吐量。因为背景流量的出现与否及其占用的带宽都是随机的,所以可用带宽的测量比较困难。一般采用根据单向延迟变化情况可用带宽进行逼近。其基本思想是:当以大于可用带宽的速率发送测量包时,单向延迟会呈现增大趋势,而以小于可用带宽的速率发送测量包时,单向延迟不会变化。所以,发送端可以根据上一次发送测量包时单向延迟的变化情况动态调整此次发送测量包的速率,直到单向延迟不再发生增大趋势为止,然后用最近两次发送测量包速率的平均值来估计可用带宽

瓶颈带宽反映了路径的静态特征,而可用带宽真正反映了在某一段时间内链路的实际通信能力,所以可用带宽的测量具有更重要的意义。

4.5流量参数

ITU-T提出两种流量参数作为参考:一种是以一段时间间隔内在测量点上观测到的所有传输成功的IP包数量除以时间间隔,即包吞吐量;另一种是基于字节吞吐量:用传输成功的IP包中总字节数除以时间间隔。

Internet业务量的高突发性以及网络的异构性,使得网络呈现复杂的非线性,建立流量模型越发变得重要。早期的网络流量模型,是经典流量模型,也即借鉴PSTN的流量模型,用poisson模型描述数据网络的流量,以及后来的分组火车模型,Markov模型等等。随着网络流量子相似性的发现,基于自相似模型的流量建模研究也取得了不少进展和得到了广泛的应用,譬如分形布朗运动模型和分形高斯噪声模型以及小波理论分析等等。高速网络技术的发展使得对巨大的网络流量进行直接测量几乎不可能,同时,大量的流量日志也使流量分析变得相当困难。为了解决这一问题,近几年,流量抽样测量研究已成为高速网络流量测量的研究重点。

5.网络性能测量的展望

网络性能测量中还有许多关键技术值得研究。例如:单向测量中的时钟同步问题;主动测量与被动测量的抽样算法研究;多种测量工具之间的协同工作;网络测量体系结构的搭建;性能指标的量化问题;性能指标的模型化分析[12]~[16];对网络未来状况进行趋势预测;对海量测量数据进行数据挖掘或者利用已有的模型(Petri网、自相似性、排队论)研究其自相似性特征[17]~[19];测量与分析结果的可视化,以及由测量所引起的安全性问题等等都是目前和今后所要研究的重要内容。随着网络性能相关理论、测量方法、分析模型研究的逐渐深入、各种测量工具的不断出现以及大型测量项目的不断开展,人们对网络的认识会越来越深刻,从而不断地推动网络技术向前发展。6.结束语:

本文对目前网络性能测量技术的主要方面进行了介绍和分析并对未来网络性能测量的研究重点进行了展望。

参考文献

[1]ITU-T建议1.350

[2]ITU-T,建议Y1540

[3]IETF,RFC2330,"FrameworkforIPPerformanceMetrics"TableofContents6

[4]IETF,RFC2330,"FrameworkforIPPerformanceMetrics"TableofContents11

[5]IETF,RFC2678,"IPPMMetricsMeasuringConnectivity"

[5]IETF,RFC2679,"AOne-wayDelayMetricforIPPM"

[6]IETF,RFC2681,"ARound-tripDelayMetricforIPPM"

[7]IETF.RFC3393,"IPPacketDelayVariationMetricforIPPM"

PDF文件使用"pdfFactoryPro"试用版本创建

[8]IETF,RFC2680,"AOne-wayPacketLossMetricforIPPM"

[9]H.SanneckandG.CarleGMDFokus,Kaiserin-Augusta-Allee31,D-10589Berlin,Germany,"AFramework

ModelforPacketLossMetricsBasedonLossRunlengths"

[10]MayaYajnik,SueMoon,JimKuroseandDonTowsley,"MeasurementandModellingoftheTemporal

DependenceinPacketLoss",DepartmentofComputerScienceUniversityofMassachusettsAmherst,MA01003

USA

[11]JacobsonV,"PathcharATooltoInferCharacteristicsofInternetPaths."

[12]LOPRESTIF,DUFFIELDNG,HOROWITZJ,etal.“Multicast-basedInferenceofNetworkInternet-Delay

Distributions”.UniversityofMassachusetts,Amherst,ComputerScience,TechnicalReportUM-CS-1999-055,

1999.

[13]DUFFIELDNG,LOPRESTIF.“Multicastinferenceofpacketdelayvarianceatinteriornetworklinks”.

IEEEINFOCOM2000[C].TelAvivIsrael,2000.

[14]HUANGL,SEZAKIK.“End-to-endInternetDelayDynamics”.IEICETechnicalReportofCQWG,May

2000.

[15]OHSAKIH,MURATAM,MIYAHARAH,“Modelingend-to-endpacketdelaydynamicsoftheInternet”

usingsystemidentification[A].InternationalTeletrafficCongress17[C].SalvadordaBahia,Brazil,2001.

[16]SueB.Moon,"MeasurementandAnalysisofEnd-to-EndDelayandLossinTheInternet"

[17]J.-C.Bolot.“End-to-endpacketdelayandlossbehaviorintheInternet”.InProceedingsofACMSIGCOMM,

SanFrancisco,August1993.

篇12

引言

在机械基础系列课程设置中,《互换性与技术测量》是一门重要的技术基础课,它是由基础课过渡到专业的重要桥梁,起着承上启下的作用。同时,对机电类专业的学生来讲,无论在后续专业课程学习过程中还是在今后实际工作中;无论从事专业技术工作还是从事管理工作,都会接触到公差配合、互换性与检测方面的知识。这就要求该课程在整个教学过程中不仅要强调理论知识点的重要性,而且还要注重实际工程能力和综合能力的培养。据此,笔者将从本课程实践性、工程性强的特点出发,对本课程的教学改革提出几点设想。

一、优化课程体系

《互换性与技术测量》课程主要分为公差配合与技术测量两大部分,涉及内容主要有极限与配合、形位公差、表面粗糙度、齿轮传动的公差及测量、尺寸链等内容,课程讲授内容与工程实际密切相关,具有很强的实践性。如何在保证教学质量的前提下,在有限的30学时内既完成理论教学又完成实验教学,是当前本课程存在的难题。为解决该难题,根据我校机电专业的特点,对课程的内容重新进行了调整:即对经典内容进行重点讲解,例如公差与配合的选用、形位公差的选择、尺寸链等内容进行精讲,授课时注重理论知识点与工程实际的联系,尤其是教材中与实际生产有关的重点内容加以强调,以此来培养学生的工程意识;与其他课程重复的内容略讲,例如在机械制图中已讲过形位公差的标注和表面粗糙度的符号及标注,对这两部分内容略讲,授课时选择几张具有代表性的带有形位公差和表面粗糙度的实际工程图纸进行讲解,以此来激发学生的学习热情和培养学生的工程实践能力。

二、提高授课效果

本课程的名词术语多、抽象概念多、符号代号多、涉及的知识面广(如机械制图、机械设计基础、机械制造基础等),在有限的30学时内,若采用黑板加粉笔的授课方式要使授课内容覆盖整本教材的知识点,不但教师的工作难度很大,学生对一些难点问题和抽象问题的理解也不透彻例如:公差原则中的最大实体要求、最小实体要求、可逆要求等,这些课程中的难点,包含了被测要素、基准要素遵循的理想边界以及形位公差获得补偿值的问题,不易理解。如果采用传统的教学方式授课,尤其在这些抽象、难点问题上花费的课时不仅多,而且收到的效果不好。借助多媒体教学表现形式多样性、交互性及可重复性的特点,既能提高讲课效率,又能收到很好的教学效果。

据调查,国内高校应用《互换性与技术测量》教学的多媒体软件较少,目前市面上只有一套面向中等职业教育的《极限配合与技术测量》教学课件,并不适于高等院校本科的教学要求,为了提升该课程的教学质量,迫切需要开发一套操作性强、界面友好、人机交互功能强的“互换性与技术测量多媒体教学软件”。

三、培养工程实践能力

《互换性与技术测量》课程与实际生产密切相关,其实践性较强。所以在实验课设置上,依据中国高等教育改革的核心思想(即培养具有创新能力、工程实践能力以及社会实践能力的复合型人才),结合学校机电专业的培养计划,以培养学生的工程实践能力为重点,详细制定本课程的实验内容和学时分配,增强实验教学环节。目的是通过该课程的学习,使学生了解几何量测量的基本知识和方法,初步具备使用和调整常用测量仪器的能力冈。目前本课程的实验室设施还不能完全满足大纲要求,实验室的建设还有待于加强。

四、提高综合素质

随着中国对外交流的项目不断增多,企业对技术人员的外语水平和工程能力的要求越来越高。作为培养工程师毛坯的高等院校,培养计划不但应满足教育部对本科生培养目标的要求,同时还应当随着市场对人才的需求指标而不断调整。因此,对《互换性与技术测量》课程来讲,在传授知识过程中,不仅应传授基础理论知识,还应添加与本课程相关的外语知识,为学生介绍国际标准与国际规则。目前所用的教材仅介绍了中国标准化的基本内容,并且有些标准已经过时却一直沿用,而介绍国际标准的内容几乎没有。为弥补教材缺少国际标准的不足,课堂中可适当引人国际标准(dimensioningandtolerancing)的双语教学,这不仅使学生通过双语教学了解国际标准,从中比较国标与国际标准的异同,而且还能提高学生的专业外语水平,扩展其知识面。在课堂教学中适当讲解带有各种标注公差的实际工程外文图纸,以强调基本概念及标准的实际应用,引导学生正确掌握和运用有关标准。提高学生读取、应用各种图纸(包括外文图纸)的能力,提高学生工程实践能力,为学生毕业后很快进人工作状态打下很好的基础。

五、改革传统考核

友情链接