空调技术论文范文

时间:2023-03-20 16:27:43

引言:寻求写作上的突破?我们特意为您精选了4篇空调技术论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

空调技术论文

篇1

1)首先根据建筑物的用途、考虑全年的空调负荷变化和制冷机部分负荷的调节特性,并综合考虑初投资和运行费、维护保养、环保、安全等因素,合理的选择制冷机的机型、单机容量、台数和全年的运行方式,提高制冷系统在部分负荷时的运行效率,降低运行费用。选用的制冷机的容量在考虑冷量损失的情况下,要与冷量负荷相适应。在冷量负荷经常变化的情况下,要选用多台制冷机,以便在运行中进行合理调配。

2)用户需要的冷负荷是变化的,在制冷装置的实际运行中,部分负荷运行所占的比较较大,所以要根据用户的需要和外界的环境变化调节制冷机的制冷量。从经济性、调节范围和操作等多个角度来说,一般采用进口导叶调节和改变转速的方法对制冷量进行调节。

3)对冷却水和冷冻水的水质进行管理,避免热交换器结垢影响热传递效率。制冷空调装置常用的是敞开式冷却水循环系统,吸热的冷却水在冷却塔与空气充分接触,逐渐蒸发,二氧化碳大量散失,溶解氧含量升高,水中Ca2+、Mg2+、溶解性固体、悬浮物逐渐增加,使冷却循环水的水质恶化,给系统带来结垢、腐蚀、污泥和菌藻等问题。从而造成系统热阻增大,热交换率降低,设备腐蚀及寿命缩短,能耗加大。故应重视冷却水循环过程中的水处理。所以,需要定期对水质进行加药,投加阻垢剂防止结垢,投加缓蚀剂防止腐蚀,投加杀生剂消灭微生物等等。同时进行排污处理并定期取水样进行化验。冷冻水的水温低,循环流动系统通常为封闭的,不与空气接触,因此冷冻水的水质管理和必要的水处理相对冷却水系统来说要简单得多。其工作目标主要是防止水对金属的腐蚀,可以通过添加合适的缓蚀剂予以解决。

4)定期清洗热交换器。对水质进行处理可以减少结垢、腐蚀的发生,但不能完全杜绝。在运行一段时间后还需要对热交换器定期进行物理清洗和化学清洗,防止或减少结垢、腐蚀,提高换热效率。

二、空气调节系统节能

(一)能量循环利用

新风量少了,室内的卫生条件则变差;新风量大了,又会加大空调负荷,造成能耗过大。所以在关系人体健康的同时,还要考虑到能耗费用。冬、夏季室外的环境温湿度与室内的温湿度标准相差较大,应采用最小新风量,减少新风处理量,降低能耗。在过渡季节,当外界空气的温湿度达到一定的条件时,可以采用全新风的送风方式,在满足室内的温湿度要求的同时,又能减少需要处理的空气量,降低空调系统耗能。可以采用CO2浓度控制器,在保证卫生、保持正压等基本要求下,控制新风量,从大自然中获得冷、热能,对能量进行充分利用,节约空调负荷,节省空调的运行费用。

(二)合理的参数设定

室内空气环境主要涉及的参数有温度、相对湿度等,要使空调系统能节能运行,就要对这些参数进行合理设定。空调房间内空气温度设定值与空调负荷和能耗有着密切关系。供冷时室温设定得越高或者供热时室温设定得越低,可以减小室内、外的温差,降低空调负荷,空调系统越节能。所以,在实际运行中,我们可以根据季节的不同,在设定参数时夏季取高值、冬季取低值,达到节能目的。在设定合理室温的同时,还须设定合理的室内湿度。除了一些工业生产厂房、实验室等需要较严格的工艺要求的建筑外,一般的商场、办公楼等建筑,都是以舒适性空调为主的。为了不浪费能量,室内相对湿度的设定,在夏季可适当降低,冬季可适当提高。所以,在满足室内环境要求的前提下,可适当降低室内的温湿度标准。

三、冷却水塔节能

冷却水塔工作原理是:空气经过风机抽动后,自进风网处进入冷却塔内。湿热的冷却水自布水盘经过填料流入塔内。当水滴和空气接触时:一方面由于空气与水的直接传热,另一方面由于水蒸汽表面和空气之间存在压力差,在压力的作用下产生蒸发现象,将水中的热量带走即蒸发传热,从而达到降温之目的。

1)冷却塔的位置应设置在通风良好的地方,例如室外绿化地带、室外地面上或在高层建筑主楼的屋顶上,同时远离高温或者有害气体,避免建筑物高温高湿排气或者不洁净的气体对冷却塔进行影响。

2)采用冷却塔变频技术。冷却塔变频技术主要是利用冷却水塔进出水温差对比,通过变频器改变冷却塔风机供电频率,不断改变冷却塔风机的转速,来达到调节风量以及减少风机能耗的效果。

3)对于一塔多风机的冷却塔,在保证冷却水温满足制冷机组正常运行的情况下,可以根据冷却水的回水温度,调整投入运转的风机数量,达到节能目的。而在多台制冷主机并联供冷的系统中,与其匹配的冷却塔也可采用并联形式。在过渡季节或外界温度较低,部分制冷主机运行时,利用并联的冷却塔,可以不开风机采用自然冷却的方法降低能耗。

篇2

在当前,我国部分暖通空调专业设计人员,常常是仅依靠负荷指标的估算值来进行冷热负荷的计算,并没有严格按照要求对室内的负荷进行逐时逐项冷负荷计算和热负荷计算。即使有时对室内冷热负荷进行计算也只是按照设计软件中默认的数值和程序进行,并没有针对工程实际进行相应的调整,往往建筑专业采取的节能后的围护结构传热系数比软件默认的小不少。这样简单的对室内负荷进行估算和不做任何调整的做法,往往导致工程设计的计算冷热负荷偏大,导致过多的能源及资金浪费。还有些工程,设计人员为尽快完成设计任务,在暖通空调的设计中对系统不进行严格的水力计算或者仅按负荷流量大致分配管径,而不控制水力失调度(或者不平衡率),完全依靠平衡阀、调节阀等高阻力阀件实现大致的水力平衡。这样容易导致局部管路由于阻力的损失过大或者过小而产生压力分配不均衡的情况,同时由于高阻阀件的滥用造成循环泵输出功率过大导致较大的输送损耗。由于系统存在水力失调的隐患,各种系统失调问题在各类工程中屡见不鲜,室内冷热不均、实际流量分配不满足设计要求的现象较为突出,系统调节困难重重。

1.2集中空调施工中存在的问题

即使在完成了较为完善的空调设计之后,在施工过程中也难免会出现各种各样的问题。有些施工单位为了降低人员雇用方面的资金支出,聘用一些专业性不强的施工队伍参与系统安装工作。在实际工作中遇到临时变更方案时,这些工作人员就会束手无策,不能及时对突发状况做出正确的处理。如果施工人员将出现的问题按照自己的想法随意加以变动,势必会对系统以后的正常运行带来隐患。

1.3系统运行管理不到位

目前我国对于暖通空调工程在实际运行中的管理还存在着许多问题。对暖通空调系统的实际运行进行操作的工作人员很多不具备应有的专业知识,在暖通空调的整个设计与实施过程完成之后,施工单位并没有对即将实施操作的工作人员开展系统性的培训,便让其正式操作空调系统的运行工作。由于工作人员缺乏暖通空调的相关理论及应对室外气象参数和其他引起负荷变化的能力,很难有针对性的对系统展开应有的调节工作,进而导致室内参数严重偏离设计值而导致能量的较大浪费。在系统运行进程中,往往不会满负荷运行,在此期间应对运行主机的台数加以适当的调整,也就是先台数调节,再部分负荷调节,尽可能的避免能量的较大损失,使冷水机组工作在较高的能效之下。但是在实际工作中工作人员往往忽视对运行台数的优先调整,致使多台机组在较低的负荷下运行,使机组运行的实际能效比较低,既影响机组的寿命,又浪费能源。其次在运行过程中不注重机器的维修和保养,机器的运行状态直接影响整个系统运行工作的顺利实施。同时,对于业主来说,机器属有形资产,对机器的保护实际上是在无形中减轻企业的经济负担。因此应定期对机器进行检查,及时对低效率的设备予以维修和更换,定期清理系统,减少不必要的能量浪费。同时,也应高度重视渗漏等引起的热损失及盘管附着物等。

1.4节能方式的选择使用问题

随着人们认识的提高,人们逐渐意识到现代的发展方式给人类日后的生存带来了一定的危害,逐渐认识到节能环保的重要性。国家相关部门也抓住时机积极引导人们重视节能环保,在众多科研机构和企业的暖通空调专家以及从业人员的共同努力下,产生了许多暖通空调专业的节能和环保新技术、新材料、新设备,以及其他节能新技术。这些新方法和新技术都有其适用场合和使用前提,有些技术由于出现时间短,没有项目经验,还不是很成熟,不是在什么情况下都可采用。因此,在种类繁多的新技术中采用哪种节能技术和新材料、新设备成为摆在设计者面前的十分关键的问题,但是在大多数情况下,由于对这些节能设计方案缺乏深入的理解,在设计中采用了不恰当的设计方案,整个系统的实施和运行便无法取得理想的效果,进而造成投资浪费。因此,在设计之初,对即将采用的新型节能技术进行可靠性评估显得非常必要。

2集中空调系统节能技术的应用

2.1集中空调风系统

集中空调系统设计往往忽视对自然进排风的利用,有的设计完全依赖机械进排风,这对系统节能不利。合理利用自然进排风,能使人们更有融于自然的感觉,通过与建筑专业的配合,设计合理的自然进排风通道,成为节能设计的一个重要方面。当空调运行区域内的温度、湿度及空调的运行时间存在相对较大的差别时,应根据实际情况进行系统划分。当空调供应的建筑物空间较大,需要同时控制温度和湿度时,空调风系统应尽量避免使用风机盘管,采用全空气空调系统。这不但有助于温度和湿度的控制,还有助于降低运行能耗。采用变风量系统可以分区进行温度控制,减小设备容量和维护工作量,节省运行能耗。在总风量的确定过程中还需要考虑同时使用系数,因此在这种情况下风机的运行所产生的能耗及装机容量均有一定程度的降低。温湿度独立控制系统可温度湿度分别独立控制,用户可根据使用需求开闭调节相应设备,有效节能。

2.2集中空调冷热水系统

空调水系统是集中空调运行能够发挥节能潜力的重要部分。空调水系统布置是否合理,直接影响系统的运行和节能效果。当系统较大时,采用变频器控制循环水泵运行,并与冷水机组等联动控制,具有显著的节能效果。循环泵和对应机组(或者锅炉、换热器等)的运行台数控制在设计时应优先考虑。合理划分系统分区,尽量避免阻力差较大的环路布置,进行严格的水力平衡计算,合理减少高阻力阀件的使用,当机组不能在较低水量或者需定水量运行时,需要设置平衡管,环路阻力差较大时考虑设置二级泵系统。合理选择循环泵扬程,减少不必要的能源浪费。

2.3集中空调冷却水系统

空调的冷却水系统是集中空调系统的重要组成部分,除非水资源极为丰沛并且水质好、取水较为容易、代价很小,否则采用直流式的冷却水系统会导致较大的输送能量和水资源浪费,因此多需要对冷却水资源进行循环利用。采用循环式的冷却水系统进行冷却的过程当中,要达到理想的冷却效果,则需要注意与周围环境中的高温区域隔离开,同时充分保障通风顺畅以及周围环境干净。在将多台冷却塔并联进行冷却工作时,为了避免过多浪费且防止冷却塔中补水与溢水的不均衡,各个冷却塔之间用共用连通水槽或者连通管进行连接。在冷却塔的总供水管、回水管之间设置旁通管以及两通或三通调节阀进行适当的调节控制,以满足冷水机组所需要的低温保护。此外,风机的开启与停止可以通过出水的温度加以控制。多塔冷却水系统可将电动阀门、冷却塔风机与冷水机组联动,根据实际需要开启相应的冷却水管路阀门、循环泵(可采用变频技术)以及对应的冷却塔风机,可有效节水、节电(即节能)。

2.4集中空调系统冷热源的合理选择

要在空调的实际运行中减少能耗,空调冷热源的选择十分重要。空调冷热源的选择与建筑物的使用功能、规模大小以及空调功能的要求、当地的经济状况、资源的丰富程度、能源的价格政策等息息相关。应结合各方面条件,权衡利弊,经过技术经济比较和能耗分析,综合考虑。假如在工程实施地附近有区域供热或者工厂余热等条件,那么将这些作为空调的热源无疑是最好的选择。假如在施工地附近有热力发电厂,那么可以将热力发电厂的余热供热技术和供冷技术运用到空调系统中。在天然气资源充足的区域内,要想提高暖通空调运行中能源的利用率,可以进行天然气与电力的互补,也就是采用分布式热电冷联供系统。除此之外,如果当地的能源种类比较丰富也可以采用复合式的能源供应方式,亦或是利用较好的地理条件,通过技术分析,进行水地热源泵的建设,为空调的运行供冷或者供热。在机组选择使用上,带有热回收的机组越来越受到青睐。热回收技术将是暖通空调的重要研究方向。

篇3

0引言

近年来,我国大力发展城市轨道交通,尤其鼓励地铁的发展,继北京、上海、广州、深圳多条地铁线开通运营后,很多大型城市正在或即将修建地铁,由于地铁站空调系统需要对冷却水进行降温,因此,在地铁建设中不可避免会涉及冷却塔的设置问题。由于地铁线路所经过的区域多是城市繁华地带,地面上设置冷却塔的空间有限或根本没有,将冷却塔安装在地面上不仅影响城市景观和规划,而且给周围环境带来噪声污染和卫生隐患。因此,研究地铁专用的冷却器替代目前设置在地面的冷却塔,对解决地铁冷却塔设置的问题具有现实意义。

目前地铁空调冷却水系统中所采用的冷却塔是针对设置在室外进行设计制造的,分为横流式和逆流式两种,冷却塔体积巨大,塑料填料间距很小,安装于地铁排风通道中必然影响地铁排风;为避免冷却水被外界空气污染,冷却水不宜与外界空气接触,因此,普通开式冷却塔不宜用于地铁空调系统,而封闭式冷却塔和蒸发式冷凝器由于换热效率等问题而不适合在地铁站中使用,本文提出新型闭式喷雾冷却器和新型喷雾冷凝器两种方案,并对其进行简要分析。

1喷雾冷却技术研究成果

自Maclaine-cross和Banks建立间接蒸发冷却计算模型以来,国内外专家学者以此为基础对喷雾间接蒸发冷却技术进行了大量的研究。杨强生等人基于Merkel方程,实验研究了喷雾空气冷却器的传热传质过程,通过回归的方法得到容积散质系数的关联式[1]。梅国晖等人研究了高温表面喷雾冷却传热系数、气水雾化喷嘴最佳气水比和喷射方向对喷雾冷却换热的影响,研究表明,喷雾冷却过程存在最佳气水比,但最佳气水比不是固定不变的,它随着水压的增加而减小;在低水流密度下,喷射角90°处喷雾传热系数最大,其他喷射角度的传热系数大致以喷射角90°处对称,在高水流密度下,随喷射角度增加而显著增加[2-4]。刘振华通过数值计算方法讨论了液滴与空气速度比和喷雾条件之间的相互关系,认为在自由射流情况下,速度比的变化使流体形成在喷嘴附近的非稳定区和下游的稳定区,在均一流情况下则不存在非稳定区,在稳定区内速度比与模型类别、喷雾距离和初始速度无关;在喷雾距离大于0.5m后,可认为速度比进入稳定区,其大小取决于液滴直径和空气冲击速度,空气冲击速度越大,速度比越接近1,液滴直径越小;液滴直径小于100μm,可认为速度比等于1,对工程计算没有影响[5]。JunghoKim详尽研究了喷雾冷却的传热机理和目前喷雾冷却模型的优缺点,研究了物体表面形状、喷雾倾斜角度和重力对喷雾冷却的影响[6]。最近,美国国家航空航天局的EricA.Silk等人研究了3种强化表面的喷雾冷却效果和喷射倾斜角度(喷射轴向与物体表面法向夹角)对喷雾冷却的影响,在喷雾温度为20.5℃时,分析了冷却水管采用3种不同肋片表面对冷却效果的影响,研究表明,相对于平表面而言,直肋片表面热流密度最大,且喷射倾斜角度为30°时,热流密度可提高75%[7]。

2喷雾冷却与淋水冷却的比较

2.1能耗比较

开式喷雾通风冷却塔由于采用喷雾装置,改变了机械通风冷却塔的工艺结构,不需要淋水填料,所需的风机功率很小甚至不需要风机,因此,节省设备的初投资和运行维护费用,表1是一种喷雾冷却塔与机械通风冷却塔能耗比较[8]。

2喷雾冷却与淋水冷却的比较

2.1能耗比较

开式喷雾通风冷却塔由于采用喷雾装置,改变了机械通风冷却塔的工艺结构,不需要淋水填料,所需的风机功率很小甚至不需要风机,因此,节省设备的初投资和运行维护费用,表1是一种喷雾冷却塔与机械通风冷却塔能耗比较[8]。

从表1可以看出,当冷却水量从75m3/h增加到700m3/h时,在没有考虑普通冷却塔配套设施能耗和运行费用的基础上,喷雾冷却塔与相应规格的机械通风冷却塔相比,综合节能效率在30%~50%之间,喷雾冷却效益显著。

喷雾冷却器设置在地铁排风通道内,水雾与冷却器表面的换热量最终必须由通道内排风带走,因此,空气的温湿度决定了冷却器的换热效果,而通道内空气的温湿度与室外空气温湿度差别很大,因此,实现相同排热量所需冷却器的体积相对会大一些,相应设备功率会增大,这样,不可避免地要增加部分能耗和初投资及运行费用。

由于冷却塔设置在地铁排风通道内,必然会造成通道的排风断面减小,排风阻力增大,由局部阻力计算公式可知,局部阻力与通道的局部阻力系数和速度的二次幂的乘积成正比,当通道排风断面减小一半时,则局部阻力将为原来的4倍,因此,要实现相同排风量,排风机的功率可能会增大。

2.2费用比较

假定某地铁制冷站冷却塔选用横流式冷却塔,型号为DBHZ2—600,9.6万元/台,设计进、出口水温分别为37℃/32℃,湿球温度为28℃,占地面积43m2,高度为3.61m,风机功率为12kW,风量为351m3/h,A声级噪声为56.6dB;循环水泵选用1台轴流泵,流量为400m3/h,功率为7.5kW,凝结水泵选用1台轴流泵,流量为750m3/h,功率为3kW,水泵费用为0.75万元;循环水泵运行费用为5.58万元/a,凝结水泵运行费用为2.23万元/a(电费为0.85元/(kWh),水费为2.8元/t,水、电价来自于重庆市自来水公司和重庆市电力公司;冷却塔和水泵信息来自阿里巴巴网2007-3-15报价)。

冷却塔的运行费用包括水泵的运行费用和补给水的费用,要维持冷却系统正常运转,需定期补给循环水,年补给水量ΔL为[9]

式中Q为冷却水的循环量,t/h;K为系数,取0.14;h为冷却塔全年运行时间,h;m为冷却倍率,取60。

假定系统全天运行24h,一年按365d计算,求得年补给水量应为66225.6t,年补水费为18.54万元,冷却塔风机年运行费用为8.94万元,则冷却塔年运行费用为35.29万元。假设采用喷雾冷却的设备费用与采用机械通风冷却塔的设备费用相同,但由于喷雾所需水量为机械通风的补水量的5%,因此,在不考虑冷却塔运行费用的基础上,仅系统补水水费一项就可节约17万元左右。

2.3耗水量比较

如上所述,假定某地铁制冷站采用机械通风冷却塔时需要冷却水量为600m3/h,配套冷却塔进、出口水温为37℃/32℃。假定喷雾温度为34℃,含湿量为34.94g/kg,蒸发率为0.6~0.8,那么喷雾速率1.8~2.4kg/s就可实现冷却水降温,全年所需水量为1763~2645t。若采用机械通风冷却塔,如上述计算可知,年补水量为66225.6t,同样,采用喷淋水冷却时,按相关规范,最小喷淋水量为100kg/(m3·h),远远大于喷雾冷却所需水量[10],因此,单从耗水量而言,冷却方式宜采取喷雾冷却。

3喷雾间接蒸发冷却器与喷雾间接蒸发冷却冷凝器

3.1喷雾间接蒸发冷却器

喷雾冷却塔与普通机械通风冷却塔不同之处在于喷雾装置的应用,喷雾装置是一种射流元件,是喷雾冷却塔的核心部件,它取代了传统冷却塔的填料和风机,通过喷嘴产生的内旋流作用,有效地保证了低压状态的雾化度,利用低压液流通过旋流雾化喷头形成雾化,喷雾流的反作用力推动它作反向旋转,产生由下部吹向雾流的风力,雾化水滴与进塔空气在雾化状态条件下进行换热,达到预期的降温效果[8]。

喷雾冷却塔结构简单,质量轻,噪声低,耐腐蚀,不易堵塞,使用寿命长,除了省却风机、填料,降低成本费用外,还降低了塔体的自重,减少由填料阻塞引起的冷却塔维修,冷却效果稳定,但是由于它和普通开式冷却塔一样与外界空气直接接触,不能保证冷却水水质,而且冷却效果易受空气参数影响。

封闭式冷却塔由于冷却水在处理过程中不与外界空气接触,冷却水质不会受到外界的污染,但地铁空调系统中如果采用喷淋水来冷却封闭式冷却塔内的冷却水,不仅冷却效果劣于普通开式冷却塔,冷却塔的体积非常大,而且由于存在大量的飘逸损失,喷淋水用水量大,与将冷却塔设置在地面相比得不偿失,因此,综合喷雾冷却塔和封闭式冷却塔的优点,本文提出了一种新型的封闭式喷雾冷却器。

喷雾间接蒸发冷却器利用气水雾化喷嘴将经过处理的少量水雾化,喷到冷却器表面,形成一层均匀水膜,通过水膜蒸发实现冷却器内部冷却水降温。它既能保证冷却水不受污染,又能达到冷却效果,而且由于喷雾所用的水经过适当的处理,不会堵塞喷雾装置,能缓解冷却盘表面结垢问题。喷雾间接蒸发冷却器研究的核心问题是雾化效果和水膜的完整性、均匀性和厚度。

3.2喷雾间接蒸发冷却冷凝器

蒸发式冷凝器是目前制冷系统中常用的一种间接蒸发冷却设备,主要特点是耗水量少,节电和结构紧凑,占地面积小,热效率高。一般水冷式冷凝器每kg冷却水能带走4~6kJ的热量,而蒸发式冷凝器每kg水蒸发能带走约580kJ的热量,所以蒸发式冷凝器的理论耗水量只有一般水冷式冷凝器的1%。考虑冷却水的飞溅以及蒸发、溢水等损失,实际耗水量约为一般水冷式冷凝器循环水量的5%~10%。

由于喷雾冷却能在冷却器表面形成相对完整均匀的水膜,冷却效率更高,所需水量少,目前喷雾冷却多用于高温物体表面的冷却降温,因此,研发一种耗水量少的新型喷雾间接蒸发冷却冷凝器,可以解决地铁空调系统设置冷却塔的问题。

该方案的最大优势在于不用设置冷却塔,节省冷却塔及配套设施的初投资和运行产生的环境问题,采用喷雾冷却的方法,由于所需的水量很少,喷雾水源问题就很容易解决,可以对喷雾所用的水进行软化处理,防止堵塞喷雾装置和缓解冷凝器表面结垢。

喷雾间接蒸发冷却冷凝器实质上是本文所述喷雾间接蒸发冷却器的一个改进方案,要开发它,除了要解决闭式喷雾冷却器的雾化效果,水膜均匀性、完整性和厚度等问题以外,还必须与厂商协商设置冷凝器与冷水机组设备接口,对管道进行保温,研究冷凝器与机组距离对系统其他设备性能的影响,确定机组性能随二者间距变化的曲线,这其中涉及系统压力损失、制冷剂压力与机组压力匹配等问题。

4结论

本文的两种方案可实现地铁空调系统冷却塔不设在城市地面上的设想,能节省目前冷却水系统中部分辅助设备的初投资和运行费用,机组制冷量越大,节水效益越明显,特别是在缺水地区,该项技术的效益更为明显,但是,还有以下问题需要解决:

1)保证喷雾压力的相对稳定,维持运行压力在适当范围内,使冷却效果不受流量变动等的影响。

2)研发一套喷雾装置,使换热器表面水膜完整、均匀,且厚度很小,通过该装置实现间歇喷雾冷却,建立喷雾评价指标体系。

3)研发换热效率高、空气侧阻力小的新型换热器。

4)建立喷雾间接蒸发冷却器性能评价指标体系。

5)喷雾水软化处理,缓解冷却器表面结垢。

6)解决喷雾冷却冷凝器与机组的集成问题及建立相应的评价指标体系。

参考文献:

[1]杨强生,铙钦阳,范云良.喷雾强化空气冷却器的实验研究[J].上海交通大学学报,1999,33(3):313-317

[2]梅国晖,武荣阳,孟红记,等.气水雾化喷嘴最佳气水比的确定[J].钢铁钒钛,2004,25(2):49-51

[3]梅国晖,孟红记,谢植.喷射方向对喷雾冷却换热的影响[J].东北大学学报:自然科学版,2004,25(4):374-377

[4]梅国晖,武荣阳,孟红记,等.高温表面喷雾冷却传热系数的理论分析[J].冶金能源,2004,23(6):18-22

[5]刘振华.微细喷雾时喷雾气流中液滴和空气速度比的研究[J].上海交通大学学报,1996,30(3):97-102

[6]KimJungho.Spraycoolingheattransfer:thestateoftheart[J].InternationalJournalofHeatandFluidFlow,2007,28(4),753-767

[7]SilkEA,KimJungho,KigerK.Spraycoolingofenhancedsurfaces:impactofstructuredsurfacegeometr

yandsprayaxisinclination[J].InternationalJournalofHeatandMassTransfer,2006,49(25):4910-4920

篇4

PID控制理论内涵给人们留下了较大的研究空间,关于PID参数自整定的方法也相继问世,但随着控制理论及应用范围的不断发展,控制对象也日趋复杂,有些系统的过程模型难以建立,并且具有高度的非线性、时变性;比如VAV变风量空调系统的时变控制,因此传统的PID控制策略就显露了它的不足。虽然研究人员试图通过简化控制算法或采取优化集合控制等来解决这一不足,但效果并不很理想。基于PID控制所存在的问题,相关研究人员根据变风量空调系统的特点结合控制技术在不断改进PID控制算法的基础上积极寻找其它更为高级的控制方式,通过实践,逐步将最优控制、自适应控制、模糊控制及神经网络控制等智能化控制手段应用于VAV空调系统的控制实践。随着控制技术、空调技术的发展以及将二者相结合运用于建筑系统的发展趋势来看,VAV空调系统控制技术从最初的定静压控制到变静压控制再到后来直接数字控制、总风量控制再到智能化控制已经取得了很大的发展,其中清华大学有关学者提出的总风量控制法具有一定影响,该方法不采用静压送风量,而是根据压力无关型VAV空调系统末端装置的设定风量来确定系统送风总量并据此计算出送风风机的转速,从而对送风量进行控制。他们通过对总风量控制法与定静压控制法、变静压控制法的节能效果比较,认为虽然总风量控制法的节能效果虽不如变静压控制法,但因其没有压力控制环节,所以运行稳定性很好。另外,还有学者通过分析变VAV空调系统的局部控制,利用其送风末端装置风阀的开度作为各空调区域相关负荷的指示信号,提出送风静压优化控制方法。

2、变风量空调(VAV)控制系统模型

免责声明:以上文章内容均来源于本站老师原创或网友上传,不代表本站观点,与本站立场无关,仅供学习和参考。本站不是任何杂志的官方网站,直投稿件和出版请联系出版社。
友情链接
发表咨询 加急咨询 范文咨询 杂志订阅 返回首页